EP2588392A1 - Dispositif de traitement pour boites de transport et de stockage - Google Patents

Dispositif de traitement pour boites de transport et de stockage

Info

Publication number
EP2588392A1
EP2588392A1 EP11734040.6A EP11734040A EP2588392A1 EP 2588392 A1 EP2588392 A1 EP 2588392A1 EP 11734040 A EP11734040 A EP 11734040A EP 2588392 A1 EP2588392 A1 EP 2588392A1
Authority
EP
European Patent Office
Prior art keywords
depollution
modules
treatment device
chamber
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11734040.6A
Other languages
German (de)
English (en)
Inventor
Sylvain Rioufrays
Erwan Godot
Arnaud Favre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum SAS
Original Assignee
Adixen Vacuum Products SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adixen Vacuum Products SAS filed Critical Adixen Vacuum Products SAS
Publication of EP2588392A1 publication Critical patent/EP2588392A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/04Cleaning by suction, with or without auxiliary action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67389Closed carriers characterised by atmosphere control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/0821Handling or manipulating containers, e.g. moving or rotating containers in cleaning devices, conveying to or from cleaning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/42Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus being characterised by means for conveying or carrying containers therethrough
    • B08B9/44Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus being characterised by means for conveying or carrying containers therethrough the means being for loading or unloading the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers

Definitions

  • the present invention relates to the devices used for the cleaning and the depollution of the transport and storage boxes of semiconductor substrates or photomasks.
  • substrates such as semiconductor wafers and / or masks are processed in process chambers. These treatments comprise various steps performed in different equipment, such as material deposition steps or etching steps for example. Between each step, the substrates are arranged in transport and storage boxes which themselves are moved between the different equipment of the semiconductor manufacturing plant. Wait times during transfers between equipment can be long, typically a few hours. The transport and storage boxes thus serve as means for storing the substrates during the waiting times.
  • the batches of substrates are contained in mini-environments consisting of transport and storage boxes, such as, in particular, standard lateral or front-opening transport enclosures ("FOU P” for “Front Opening Universal Pod”). or standardized bottom-shelf storage and transport enclosures ("SMI F” for "Standard Mechanical InterFace”).
  • transport and storage boxes such as, in particular, standard lateral or front-opening transport enclosures ("FOU P” for "Front Opening Universal Pod”). or standardized bottom-shelf storage and transport enclosures ("SMI F” for "Standard Mechanical InterFace”).
  • AMC airborne particulate contamination
  • AMC Airborne Molecular Contamination
  • a depollution module usually comprises a side access door depollution chamber adapted to contain a single transport and storage box. The depollution using such a module can last several hours.
  • a single module is therefore not able to handle under acceptable conditions the amount of transport and storage boxes implemented in a semiconductor manufacturing plant.
  • One idea may be to multiply the modules in the semiconductor manufacturing plant, to reach the required flow rate of depollution of the transport and storage boxes. But the disadvantage is that it also multiplies the size of the depollution modules, including their footprint. In fact, these clean-up modules are located in the clean room of the semiconductor manufacturing plant, and the square meters of clean room have a high investment and operating cost. At the same time, the arrangement of the depollution modules must be compatible with the "OHT" transport system ("OHT" for "Overhead Host Transport” in English) in a semiconductor manufacturing plant.
  • the present invention aims first of all to reduce the footprint of the pollution abatement means.
  • the invention also aims to ensure the compatibility of the pollution control means with the standardized path of the box transport system (OHT) in a semiconductor manufacturing plant.
  • OHT box transport system
  • the present invention aims at guaranteeing the independence and the operating identity of the depollution modules.
  • the objective is to gather and arrange several pollution control modules in the same compact treatment device.
  • Another object of the invention is to meet environmental standards, including noise standards, as well as safety standards.
  • the sound insulation means necessarily have a thermal insulation capacity, which promotes heating of the components of the treatment device, heating may damage these components. It is therefore necessary to provide means to avoid excessive heating, which is another object of the present invention.
  • Another difficulty to ensure the permanent maintenance of a sufficient processing capacity, is to allow the individual maintenance of the depollution modules constituting the processing device, allowing maintenance of a module without affecting the operation of the other modules.
  • the invention aims to minimize the production cost of such a processing device, including the cost of handling means of transport and storage boxes inside the device.
  • the subject of the invention is a treatment device for transport and storage boxes, comprising a depollution module having:
  • a depollution chamber with a lateral access door, able to contain a transport and storage box,
  • control and control means for controlling the gaseous atmosphere in the pollution control chamber.
  • the device according to the invention comprises:
  • each depollution module comprises its own pumping means having at least one primary pump
  • the primary pump is housed in a primary pumping compartment offset longitudinally relative to the pollution control chamber.
  • each depollution module is independent of the other modules, a significant space saving is realized in vertical dimension and in transverse dimension, and the depollution modules are interchangeable with the use because their performances are identical.
  • the primary pump is supported by the common frame with the interposition of elastic connection means avoiding the transmission of vibrations to the pollution control chamber.
  • Such an arrangement may be particularly useful in this case of arrangement of vacuum pumps in the high stages of the treatment device, because the possible transmission of pump vibrations could give rise to resonance phenomena causing vibrations and defects in the pads. semiconductor contained in the transport and storage boxes.
  • each primary pump comprises an air cooling system, with a cooling air intake at a first end of the pump and with a cooling air discharge at a second end of the pump,
  • an intermediate vertical wall separates one from the other:
  • a second zone of pumping compartments containing all the cooling air aspirations and having an upper ambient air inlet.
  • the lateral access doors of the depollution modules are all oriented on the same access side and are each controlled by actuating means ensuring their opening and closing,
  • a lateral transfer zone is provided according to the access side, and comprises a robot able to move the transport and storage boxes between a front loading and unloading station and the depollution chamber of each of the depollution modules.
  • the transverse bulk of the processing device is limited to the width value of an enhanced pollution control module.
  • the width of the lateral transfer zone comprising the robot. This transversal size defines the length occupied by the processing device along the path defined by the box transport system (OHT).
  • the vertical occupancy of the processing device can be optimized according to the height available in the semiconductor manufacturing plant.
  • each depollution module is a sliding access door which, in the open position, is offset laterally on the side of the primary pumping compartment, and which is controlled by a control actuator. sliding.
  • the sliding character of the lateral access doors makes it possible to avoid any risk of deterioration of the robot and the doors, since the sliding of the doors takes place outside the lateral transfer zone occupied by the robot.
  • the sliding movement of the door is carried out parallel to the lateral transfer zone, between the pollution control chamber and the primary pumping compartment, without increasing the size of the depollution module.
  • the sliding access door is mounted to slide longitudinally on a frame itself pivotally mounted along a vertical pivot axis and pivotally biased by a pivot actuator.
  • This arrangement makes it possible to ensure in a simple manner a good seal of the access door, and simultaneously makes it possible to reduce the friction of the joints, friction likely to release pollutant particles whose presence would be particularly harmful in a clean room of the factory. semiconductor manufacturing.
  • each depollution chamber of the depollution modules comprises, opposite the access side, a maintenance door that an operator can open to provide individual maintenance of a depollution module.
  • a maintenance door that an operator can open to provide individual maintenance of a depollution module.
  • each depollution module comprises a safety device ensuring:
  • a lateral transfer zone provided on the access side of the depollution modules, in line with the loading / unloading station,
  • a robot placed in the lateral transfer zone, able to move the transport and storage boxes between the front loading and unloading station and the depollution chamber of each of the depollution modules.
  • the general architecture of the processing device as defined above makes it possible to provide a particularly simple and inexpensive robot, for example a robot of a type comprising:
  • the device comprises:
  • a second loading-unloading station in line with the longitudinal row of columns of modules, and comprising means for longitudinal displacement and means of rotation of 90 ° of vertical axis.
  • each loading-unloading station can advantageously include a security lock.
  • each depollution module comprises its own control means
  • control means are arranged in a control panel arranged laterally at the side of the primary pumping compartment,
  • control means arranged laterally at the side of the primary pumping compartment make it possible to avoid any increase in the size of the depollution module. This provides a significant space saving.
  • the depollution modules require the use of a primary pump and a secondary pump, allowing pumping in two successive stages, namely a primary pumping step during which the primary pump is connected to the chamber of depollution, and a vacuum pumping step pushed during which the secondary pump is interposed between the depollution chamber and the suction of the primary pump.
  • each depollution module comprises a secondary pump housed below the depollution chamber.
  • the secondary pumps are each associated with a permanent purge device and with a device selective connection which:
  • each connects them to the respective primary pump of their depollution module during the high-vacuum pumping steps of the depollution chamber or during the waiting stages,
  • the permanent purge and the presence of the common primary pump make it possible to keep the secondary pumps in permanent operation, avoiding any increase in concentration of the harmful gases which would lead to the degradation and the destruction of the secondary pumps.
  • FIG. 1 schematically illustrates a processing device for transport and storage boxes, according to an embodiment of the present invention
  • FIG. 2 is a view from above illustrating the general organization of a semiconductor manufacturing plant
  • FIG. 3 schematically illustrates, in plan view, the positioning of a treatment device for transport and storage boxes, according to an embodiment of the present invention
  • FIG. 4 is a schematic view illustrating the supply means and the pumping means associated with the depollution chamber of a depollution module according to one embodiment of the invention
  • FIG. 5 is another block diagram of the supply and pumping means associated with the depollution chambers of a treatment device according to the present invention
  • FIG. 6 is a schematic side view illustrating the general architecture of a treatment device for transport and storage boxes, according to one embodiment of the invention with four depollution modules;
  • FIG. 7 is a schematic view from above of the processing device of FIG. 6;
  • FIG. 8 is a top view illustrating the kinematic detail of the doors of a depollution chamber of the processing device of Figures 6 and 7;
  • FIGS. 9 and 10 illustrate another embodiment of the movement kinematics of the doors of a depollution chamber of the treatment device of FIGS. 6 and 7;
  • FIG. 1 1 is a schematic sectional side view illustrating the ventilation system of the primary pumps of the treatment device according to one embodiment of the present invention.
  • FIG. 12 is a schematic sectional side view illustrating the general arrangement of the pump means of the processing device of Figures 6 and 7.
  • FIG. 1 is firstly considered, illustrating a transport and storage box 1 defining a sealed non-sealed environment in the form of a volume 2 bounded by a wall 3 and having a leakage 4.
  • the wall 3 is generally made in polycarbonate.
  • a depollution chamber 5 has an interior volume 5a just a little larger than the volume of the transport and storage box 1.
  • the depollution chamber 5 comprises a sealed peripheral wall 5b, with an access door 5c allowing the introduction and removal of the transport and storage box 1.
  • the wall 5b of the depollution chamber 5 is for example stainless steel with a polished inner surface, capable of withstanding a vacuum of 1 atmosphere. The internal polishing prevents degassing of the peripheral wall 5b during vacuum depollution operations.
  • An inlet 6 allows the introduction into the clearance chamber 5 of a gaseous flow from a source of process gas 13, while an outlet 7 connected to gas pumping means 8 makes it possible to do the same. empty inside the depollution chamber 5.
  • the pumping means 8 comprise at least one primary pumping group 8a, and advantageously also a secondary pumping group 8b, for example of the turbomolecular, molecular or hybrid type.
  • the depollution chamber 5 is associated with a pressure sensor 10, an isolation valve 12 connected in the pumping line in series with the pumping means 8, a source of treatment gas 13 connected to the inlet 6, a degassing flow sensor 11, control means 14, and a deformation sensor 15.
  • the control means 14 may comprise a processor 14a associated with a memory 14b in which control programs are recorded.
  • the processor 14a can receive information from the various sensors such as the pressure sensor 10, the deformation sensor 15, the degassing flow sensor 11.
  • the processor 14a is connected in a manner known per se to various actuators for acting on the isolation valve 12, on the drive motors of the primary pump 8a and the secondary pump 8b, on a valve of flow control of gas flow of the gas introduction means 6, 13.
  • the deformation sensor 15 comprises a laser transceiver which detects, through the window 9a, the distance which separates it from the wall 3 of the transport and storage box 1.
  • the deformation sensor 15 can be used both to detect the deformation of the transport and storage box 1 during a depollution operation, and to detect the presence, absence, or correct positioning of a transport and storage box 1 in the depollution chamber 5.
  • FIG. 2 is now considered, illustrating the general organization of a part of a semiconductor manufacturing plant 200.
  • the semiconductor manufacturing plant 200 comprises a large number of workstations, which will be called "tools”.
  • FIG. 2 illustrates a set of forty seven tools, such as tools 16 and 17, arranged in two zones or bays 18 and 19 of six rows. each, such as rows 18a and 18b.
  • Each tool 16 or 17 comprises, on the same side, a first loading-unloading station 16a or 17a and a second loading-unloading station 16b or 17b.
  • loading and unloading stations are aligned along a branch 20 of the OHT box transport system itself including guide rails, usually located at ceiling of the plant, and following a standardized path.
  • the OHT box transport system comprises a branch 20 or 21 for each row 18a or 18b of tools 16, 17.
  • the branches 20 and 21 are coupled in pairs in a so-called "intra bay” loop such as the loop 22, formed for example by the branches 20 and 21 of two successive rows 18a and 18b.
  • An "extra bay” loop 122 develops between the two successive zones 18 and 19, and feeds the "intra bay” loops such as the loop 22.
  • the OHT box transport system moves the transport and storage boxes 1, which contain the semiconductor wafers or masks to be treated, distributes the transport and storage boxes 1 to the tools 16 or 17 which perform the treatment provided on their contents, and takes the transport and storage boxes 1 after the treatment.
  • a processing device 23 for the treatment of the transport and storage boxes 1 and / or their content structured and dimensioned so as to have a size of the same order of magnitude as the tools 16, 17 of a semiconductor manufacturing plant 200, and so as to be compatible with the OHT box transport system.
  • processing device 23 can replace one of the tools 16, 17 as illustrated in FIG.
  • the processing device 23 is arranged in the same row of tools 18a as the tools 16 and 17. It can be seen that the floor space of the treatment device 23 is similar to the floor space of the tool 16. distinguishes, in this processing device 23, two loading-unloading stations 23a and 23b able to cooperate with the branch 20 of the OHT box transport system. There is furthermore a first column of modules 23c and a second column of modules 23d which is optional.
  • the processing device 23 may comprise several columns of modules, such as the column of modules 23c, each having a superposition of four depollution modules each consisting of a depollution chamber 5 associated with its introduction means. gas 6, 13, its pumping means 8 and its control means 14.
  • FIGS. 6 and 7 are now considered, which illustrate, respectively in side view and in plan view, a processing device 23 according to the invention in an embodiment with a single column of modules 23c.
  • the processing device 23 comprises, in this embodiment, four depollution modules 24, 25, 26 and 27, vertically superposed one above the other to form the column of modules 23c.
  • Each depollution module comprises a depollution chamber 5, pumping means 8, and the various additional means illustrated in Figure 1 but not recalled in Figures 6 and 7 for ease of reading.
  • the depollution chamber 5 of a module comprises a lateral access door 5c.
  • all the lateral access doors 5c of the depollution modules 24-27 are oriented along the same access side (on the right in FIG. 7), and are each biased by actuating means. ensuring their opening and closing.
  • the depollution chamber 5 comprises a maintenance door 5d, which an operator can open to provide individual maintenance of a depollution module.
  • the pollution control chamber 5 is in line on the same stage with the pumping means 8, and in FIG. 7 the assembly is in line along the longitudinal direction II with one of the loading-unloading stations 23b.
  • the assembly occupies half of the transverse bulk of the processing device 23, namely the left half in FIG. 7.
  • the right half is occupied on the one hand by the second loading-unloading station 23a and by a lateral zone.
  • 129 located on the access side of the depollution chambers 5 and containing a common robot transport boxes 29.
  • the robot 29 is adapted to move the transport and storage boxes 1 between the one and the other of the loading-unloading stations 23a and 23b and the depollution chambers 5 of each of the depollution modules 24-27.
  • the robot 29 comprises a support 29a with three upper lugs, such as the lugs 29b and 29c, arranged in a triangle in an arrangement corresponding to the standardized support points of a transport and storage box 1.
  • the support 29a is mounted at the end of a radially extensible arm 29d, allowing it to move horizontally, and itself mounted on a carriage 29e with vertical displacement along a vertical guide 29f.
  • the vertical guide 29f is itself mounted on a plate 29g, rotating along a vertical axis and with an amplitude of 90 °, carried by a lower carriage 29h itself mounted to slide longitudinally on a longitudinal guide 29i.
  • the vertical guide 29f has a height such that it can bring the support 29a up to each of the depollution chambers 5 of the pollution control modules 24-27.
  • the longitudinal guide 29i allows the longitudinal movement of the lower carriage 29h so as to bring the support 29a is opposite the loading-unloading station 23a, or facing the depollution chambers 5 of the pollution control modules 24-27.
  • a transfer device For the transfer of a transport and storage box 1 between the robot 29 and the loading-unloading station 23b, a transfer device is provided which makes it possible, on the one hand, to move the box support linearly as illustrated by the arrow 30 between the loading-unloading station 23b and an intermediate station 31, then the 90 ° rotation of the intermediate station around a vertical axis, as illustrated by the arrow 30a. Then, the arm 29d of the robot 29 can take or put back the transport and storage box 1 on the intermediate station 31.
  • the structure of the robot 29 is thus compatible, without complex modification, with the presence of two loading-unloading stations 23a and 23b.
  • the loading of the transport and storage boxes 1 on the loading-unloading stations 23a and 23b can be performed either automatically by the robot 29 of the OHT box transport system of the factory, or manually by an operator. Automatic loading does not pose a security problem.
  • the manual loading requires providing, at the loading-unloading stations 23a and 23b, two doors which are related to loading-loading locks. unloading: an external door on the operator side and an internal door on the robot side.
  • the control and control device manages the security of the openings and closures of the two doors, not allowing the opening of the outer door when the inner door is open, and vice versa.
  • FIG. 8 is now considered, illustrating a first embodiment for moving the access door 5c of the depollution chamber 5.
  • the access door 5c driven by appropriate actuating means, is displaced in two perpendicular motions, namely a first transverse movement 32 horizontal of small amplitude, towards and away from the opening of the depollution chamber 5, and a second longitudinal movement 33, perpendicular to the first movement 32, to move the access door 5c horizontally from an engagement position facing the opening of the depollution chamber 5 and a position of opening completely away from the depollution chamber 5, next to the pumping means 8.
  • the access door 5c does not interfere with the movement of the robot 29, does not disturb the access to the other depollution chambers 5 placed above or below, and does not increase the overall size of the treatment device 23.
  • Figures 9 and 10 illustrate a preferred embodiment of the means for moving the access door 5c.
  • Figure 9 illustrates the access door 5c in the closed state
  • Figure 10 illustrates the access door 5c in the open state.
  • the access door 5c In its longitudinal movement, the access door 5c is actuated by a sliding actuator 34, such as a pneumatic cylinder.
  • the access door assembly 5c-pneumatic jack 34 is mounted on a frame 35 itself rotatably mounted about a rear vertical axis 36 and rotated by a pivoting actuator 37.
  • the frame 35 can rotate between a closed position illustrated in Figure 9, wherein the access door 5c is pressed against the opening of the pollution control chamber 5, and an open position in which the frame 35 is away from the chamber depollution 5.
  • the seals 38 and 39 provided on the access door 5c, can seal with the pollution control chamber 5 without being subjected to friction during the opening and closing operations.
  • the maintenance door 5d is a swing door, the opening is manual.
  • FIGS 9 and 10 illustrate another embodiment of the processing device 23 according to one embodiment of the invention.
  • the pumping means 8 there is a primary pump 8a placed in a primary pumping chamber 8c, in horizontal alignment with the depollution chamber 5.
  • a primary pump 8a placed in a primary pumping chamber 8c, in horizontal alignment with the depollution chamber 5.
  • the door access port 5c On one side of the primary pumping compartment 8c moves the door access port 5c in its open position, as seen in FIG. 10.
  • an electrical panel 8d Opposite the primary pumping compartment 8c is an electrical panel 8d containing the control means 14 of the depollution module 24.
  • the control means 14 in Table 8d do not increase the vertical size of the depollution module 24-27, thus allowing the vertical stacking of four depollution modules 24-27 in the available height of a clean room. of semiconductor manufacturing plant 200.
  • each depollution module 24-27 comprises its own pumping means 8 having at least one primary pump 8a.
  • the primary pump 8a is housed in the primary pumping compartment 8c (FIGS. 9 and 10), which is offset longitudinally relative to the depollution chamber 5.
  • the depollution chamber 5 is closer to the loading-unloading stations 23a-23b, the primary pumping compartment 8c can be deported away from the loading-unloading stations 23a-23b, so as to reduce the longitudinal stroke of the robot 29.
  • the depollution modules 24-27 are supported by a common chassis 100.
  • a separate chassis supports the robot 29 (not shown) and the loading-unloading stations 23a-23b. The whole is confined in a common rollover.
  • the primary pump 8a of each of the depollution modules 24-27 is supported by the common frame 100 with the interposition of elastic connection means 101 preventing the transmission of vibrations to the depollution chamber 5.
  • the chamber 5 is itself placed in a depollution frame 102, which also carries the sensors and actuators associated with the depollution chamber 5.
  • the secondary pump 8b is advantageously placed below the depollution chamber 5, its suction inlet being directly connected inside the depollution chamber 5, its discharge outlet being connected by an intermediate pipe 48 to the suction inlet of the primary pump 8a. The same is true of the other decontamination modules 25-27.
  • FIG. 3 a top view shows the column of modules 23c comprising, as illustrated in FIGS. 6 and 7, a superposition of four depollution modules 24-27. This provides four times the flow of a depollution module.
  • FIG. 3 illustrates a second column of pollution control modules 23d, forming a second superposition of four depollution modules such as the modules 24-27 of FIGS. 6 and 7.
  • the two columns of depollution modules 23c and 23d form a longitudinal row 28 of two columns 23c and 23d of pollution control modules superimposed one above the other, the row 28 of columns of modules developing along the longitudinal direction II perpendicular to the direction of movement of the branch 20 of the OHT box transport system.
  • one also takes advantage of the available depth in the longitudinal direction I-I of the longitudinal row 28 of columns 23c, 23d of pollution control modules.
  • FIG. 4 which schematically illustrates a possible functional arrangement of the pumping and supply means for the depollution chamber 5.
  • the depollution chamber 5 is associated with two pressure gauges 13a and 13b. Gas sources (not shown) are controlled by the control device 14 (see FIG. 1) to introduce the gases at appropriate times during the process.
  • the primary pump 8a is connected to the depollution chamber 5 by a primary pumping line 40 associated with a primary control valve 41, by driving the pumping gases through an outlet pipe 42 to the extraction system and / or gas treatment of the semiconductor manufacturing plant.
  • the suction of the secondary pump 8b is connected to the depollution chamber 5 by a short secondary pumping line 43 provided with a secondary control valve 44, and its discharge takes place in a secondary discharge pipe 45 which itself it is connected on the one hand to a transfer line 46 by a valve 47, and on the other hand to an intermediate pipe 48 which leads to the suction of the primary pump 8a with the interposition of a valve 49.
  • An inlet purge 50 continuously introduced into the secondary pump 8b a purge gas.
  • the transfer line 46 is connected to a primary pump 51 (FIG. 5) of low flow rate, this pump being common to all the depollution modules 24-27.
  • the secondary pump 8b is in permanent rotation, permanently supplied with purge gas by the purge inlet 50, supplied periodically with process gas from the depollution chamber 5, and discharging either into the transfer line 46 or into the the intermediate pipe 48.
  • a first pre-emptying phase is carried out, by opening the primary control valve 41 to ensure the pumping by the only primary pump 8a, the secondary pump 8b being isolated by the secondary control valve 44 and the valve 49.
  • the valve 47 is open so that the primary pump 51 common pumping discharge of the secondary pump 8b.
  • a second emptying phase is carried out during which the primary control valve 41 is closed and the valves 44 and 49 are open, allowing the two pumps of the primary pumps to be summed in series. 8a and secondary 8b.
  • the valve 47 is closed in order to avoid contamination of the common primary pump 51 by the gases pumped into the pollution control chamber 5. This ensures the most independent operation possible between the different depollution modules 24-27 .
  • FIG. 5 which illustrates the common primary pump 51, connected by the transfer line 46 to all the secondary pumps 8b of the depollution modules 24-27 of the treatment device 23.
  • FIG. 11 which illustrates the ventilation means for thermal cooling of the primary pumps, and the sound insulation means of the treatment device according to one embodiment of the invention are now considered.
  • the primary pumps such as the primary pump 8a of the four depollution modules 24-27 of the treatment device of FIGS. 6 and 7 are diagrammatically illustrated.
  • the primary pump 8a is housed in its primary pumping compartment 8c.
  • the primary pumping compartments such as the compartment 8c of the four depollution modules 24-27 communicate with each other in the vertical direction, and they are each divided into two half-compartments, forming a common suction compartment 52 and a common discharge compartment 53 separated from each other by an intermediate wall 54 through which the primary pumps 8a.
  • the primary pumps such as the primary pump 8a themselves each comprise an air cooling system, with a cooling air intake 55 at a first end of the pump and with a cooling air discharge 56 at a second. end of the pump.
  • the intermediate vertical wall 54 separates a first zone of pumping compartments from each other, receiving all the cooling air discharges from the primary pumps and constituting the common discharge compartment 53, and a second zone of compartments. pump, containing all the cooling air aspirations of the primary pumps, and constituting the common suction compartment 52.
  • the first pumping compartment area constituting the common discharge compartment 53 has a lower air outlet 57.
  • the second pumping compartment area constituting the common suction compartment 52 has an upper ambient air inlet 58.
  • the cooling air circulation of the primary pumps is as indicated by the arrows 59, 60, 61 and 62, from top to bottom through the primary pumps 8a.
  • FIG. 11 also illustrates sound insulation means making it possible to reduce noise emissions towards the environment of the treatment device 23.
  • all the primary pumping compartments are isolated by absorbing plates. 63 for sound insulation.
  • the lower outlet 57 and the upper air inlet 58 are themselves equipped with baffles absorbing noise emissions.
  • the primary pump 51 common is also placed in one of the primary pumping compartments, to ensure its cooling and sound isolation in the same way as the other primary pumps.
  • a common control device manages the flow of the transport and storage boxes 1 to be processed according to the availability of the depollution chambers 5 and the processing requests of the production supervisor of the semiconductor production plant, and thus manages the loading-unloading stations 23a, 23b, the movement of the robot 29, and the launching of the processes in the depollution modules 24-27.
  • the common control device includes communication means with the supervisor of the semiconductor production plant and with the OHT box transport system to enable automatic loading of the transport and storage boxes 1 at the loading stations. unloading 23a, 23b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

Un dispositif de traitement pour boîtes de transport et de stockage selon l'invention comprend une pluralité de modules de dépollution (24-27) supportés par un châssis commun (100) et disposés selon une rangée d'au moins une colonne (23c) de modules superposés les uns au-dessus des autres. Chaque module de dépollution (24-27) comprend ses propres moyens de pompage (8) ayant au moins une pompe primaire (8a) logée dans un compartiment de pompage primaire (8c) décalé longitudinalement par rapport à la chambre de dépollution (5). L'accès aux modules de dépollution (24-27) se fait par des portes d'accès latérales qui sont toutes orientées selon un même côté d'accès et qui sont sollicitées par des moyens d'actionnement assurant leurs fermeture et ouverture automatiques. Une zone latérale de transfert est prévue selon le côté d'accès, et comprend un robot (29) apte à déplacer les boîtes de transport et de stockage entre un poste frontal de chargement-déchargement (23a) et les chambres de dépollution (5) de chacun des modules de dépollution (24-27). On optimise ainsi l'encombrement et le débit du dispositif de traitement (23).

Description

Dispositif de traitement pour boites de transport et de stockage
La présente invention concerne les dispositifs mis en œuvre pour le nettoyage et la dépollution des boîtes de transport et de stockage de substrats semi-conducteurs ou de photomasques. Dans une usine de fabrication de semi-conducteurs, des substrats tels que des plaquettes de semi-conducteur et/ou des masques subissent des traitements dans des chambres de procédé. Ces traitements comportent diverses étapes réalisées dans différents équipements, telles que des étapes de dépôt de matière ou des étapes de gravure par exemple. Entre chaque étape, les substrats sont disposés dans des boîtes de transport et de stockage qui elles-mêmes sont déplacées entre les différents équipements de l'usine de fabrication de semi-conducteurs. Les temps d'attente au cours des transferts entre les équipements peuvent être longs, typiquement de quelques heures. Les boîtes de transport et de stockage servent donc de moyens de stockage des substrats pendant les temps d'attente.
Actuellement, les lots de substrats sont contenus dans des mini-environnements constitués de boîtes de transport et de stockage, telles que notamment les enceintes de transport normalisées à ouverture latérale ou frontale ("FOU P" pour "Front Opening Universal Pod" en anglais) ou les enceintes standardisées de transport et de stockage à ouverture par le fond ("SMI F" pour "Standard Mechanical InterFace" en anglais).
Lors des étapes de stockage, la contamination particulaire véhiculée par l'air ("AMC" pour "Airborne Molecular Contamination" en anglais), qui résulte de la présence de gaz réactifs dans l'atmosphère intérieure des boîtes de transport et de stockage, réagit avec les substrats et crée des défauts. Ces défauts peuvent rendre inutilisables les plaquettes de semi-conducteur, et conduire à d'importantes pertes de rendement des usines de fabrication de semi-conducteurs. Ils sont ainsi responsables de pertes onéreuses de plaquettes de semi-conducteur dont le défaut n'est détecté qu'après traitement. Pour éviter ces baisses de rendement des usines de fabrication de semi-conducteurs, et les pertes de plaquettes de semi-conducteur déjà traitées, on a proposé de dépolluer les boîtes de transport et de stockage, et le lot de substrats qu'elles contiennent, à l'aide d'un procédé et d'un module de dépollution d'environnements confinés. Un module de dépollution comprend habituellement une chambre de dépollution à porte d'accès latérale apte à contenir une seule boîte de transport et de stockage, La dépollution en utilisant un tel module peut durer plusieurs heures.
Un seul module n'est donc pas capable de traiter dans des conditions acceptables la quantité de boîtes de transport et de stockage mis en œuvre dans une usine de fabrication de semi-conducteurs.
Une idée peut être de multiplier les modules dans l'usine de fabrication de semi-conducteurs, pour atteindre le débit nécessaire de dépollution des boîtes de transport et de stockage. Mais l'inconvénient est que l'on multiplie également l'encombrement des modules de dépollution, notamment leur encombrement au sol. En effet, ces modules de dépollution se trouvent dans la salle blanche de l'usine de fabrication de semi-conducteurs, et les mètres carrés de salle blanche ont un coût d'investissement et d'exploitation élevé. Simultanément, la disposition des modules de dépollution doit être compatible avec le système de transport de boîtes ("OHT" pour "Overhead Host Transport" en anglais) dans une usine de fabrication de semi-conducteurs.
Ainsi, la présente invention vise tout d'abord à réduire l'encombrement au sol des moyens de dépollution.
L'invention a aussi pour but d'assurer la compatibilité des moyens de dépollution avec le trajet normalisé du système de transport de boîtes (OHT) dans une usine de fabrication de semi-conducteurs.
Selon un autre but, la présente invention vise à garantir l'indépendance et l'identité de fonctionnement des modules de dépollution. L'objectif est de rassembler et d'agencer plusieurs modules de dépollution dans un même dispositif de traitement compact.
Un autre but de l'invention est de satisfaire les normes d'environnement, notamment les normes de bruit, ainsi que les normes de sécurité.
Du fait de la multiplication des modules de dépollution pour réaliser un même dispositif de traitement, le respect des normes de bruit nécessite de confiner le dispositif dans un châssis à isolation phonique. Or les moyens d'isolation phonique présentent nécessairement une capacité d'isolation thermique, qui favorise réchauffement des composants du dispositif de traitement, échauffement susceptible d'endommager ces composants. Il faut donc prévoir des moyens pour éviter un échauffement excessif, ce qui est un autre but de la présente invention.
Une autre difficulté, pour assurer le maintien permanent d'une capacité de traitement suffisante, est de permettre la maintenance individuelle des modules de dépollution constituant le dispositif de traitement, permettant la maintenance d'un module sans affecter le fonctionnement des autres modules.
Par ailleurs, l'invention vise à minimiser le coût de production d'un tel dispositif de traitement, notamment le coût des moyens de manutention des boîtes de transport et de stockage à l'intérieur du dispositif.
L'invention a pour objet un dispositif de traitement pour boîtes de transport et de stockage, comprenant un module de dépollution ayant :
- une chambre de dépollution, à porte d'accès latérale, apte à contenir une boîte de transport et de stockage,
- des moyens d'introduction de gaz dans la chambre de dépollution,
- des moyens de pompage des gaz dans la chambre de dépollution,
- des moyens de commande et de contrôle pour piloter l'atmosphère gazeuse dans la chambre de dépollution.
Le dispositif selon l'invention comprend :
- une pluralité de modules de dépollution supportés par un châssis commun; les modules de dépollution étant superposés les uns au-dessus des autres pour former au moins une colonne de modules,
- chaque module de dépollution comprend ses propres moyens de pompage ayant au moins une pompe primaire,
- la pompe primaire est logée dans un compartiment de pompage primaire décalé longitudinalement par rapport à la chambre de dépollution.
De la sorte, chaque module de dépollution est indépendant des autres modules, on réalise un important gain de place en dimension verticale et en dimension transversale, et les modules de dépollution sont interchangeables à l'utilisation car leurs performances sont identiques. De préférence, la pompe primaire est supportée par le châssis commun avec interposition de moyens de liaison élastique évitant la transmission de vibrations à l'enceinte de dépollution.
Une telle disposition peut être particulièrement utile dans ce cas de disposition de pompes à vide dans les étages élevés du dispositif de traitement, car la transmission éventuelle des vibrations des pompes pourrait donner lieu à des phénomènes de résonance provoquant des vibrations et des défauts dans les plaquettes de semi-conducteur contenues dans les boîtes de transport et de stockage.
Le respect des normes de bruit conduit à prévoir que les parois des compartiments de pompage primaire comportent des plaques absorbantes pour isolation phonique. Particulièrement dans ce cas, l'isolation thermique qui en découle nécessite de prévoir des moyens particuliers pour éviter les échauffements.
Ainsi on prévoit de préférence que :
- les compartiments de pompage primaire des modules de dépollution d'une même colonne de modules communiquent les uns avec les autres, sans séparation horizontale,
- chaque pompe primaire comprend un système de refroidissement à air, avec une aspiration d'air de refroidissement à une première extrémité de la pompe et avec un refoulement d'air de refroidissement à une seconde extrémité de la pompe,
- dans une même colonne de modules, une paroi verticale intermédiaire sépare l'une de l'autre :
une première zone de compartiments de pompage recevant tous les refoulements d'air de refroidissement et comportant une sortie d'air inférieure, et
une seconde zone de compartiments de pompage contenant toutes les aspirations d'air de refroidissement et comportant une entrée d'air ambiant supérieure.
Les circulations d'air qui résultent de cette disposition permettent de réduire très sensiblement réchauffement résultant du fonctionnement des pompes primaires, de sorte que l'on maintient une température satisfaisante pour l'ensemble des composants du dispositif de traitement. Selon un mode de réalisation, on prévoit que :
- les portes d'accès latérales des modules de dépollution sont toutes orientées selon un même côté d'accès et sont chacune commandées par des moyens d'actionnement assurant leur ouverture et leur fermeture,
- une zone latérale de transfert est prévue selon le côté d'accès, et comprend un robot apte à déplacer les boîtes de transport et de stockage entre un poste frontal de chargement-déchargement et la chambre de dépollution de chacun des modules de dépollution.
Grâce à la superposition de plusieurs modules en colonne, et à la disposition en ligne des colonnes de modules selon une rangée longitudinale de colonnes, on limite l'encombrement transversal du dispositif de traitement à la valeur de la largeur d'un module de dépollution augmentée de la largeur de la zone latérale de transfert comportant le robot. Cet encombrement transversal définit la longueur occupée par le dispositif de traitement selon le trajet défini par le système de transport de boîtes (OHT).
Simultanément, on peut optimiser l'occupation verticale du dispositif de traitement selon la hauteur disponible dans l'usine de fabrication de semiconducteurs.
Enfin, on peut optimiser l'occupation longitudinale du dispositif de traitement, selon la longueur disponible dans une baie d'usine de fabrication de semi-conducteurs entre deux travées successives du système de transport de boîtes (OHT), en choisissant convenablement le nombre de colonnes de modules disposées en ligne.
Selon une variante, on prévoit que la porte d'accès latérale de chaque module de dépollution est une porte d'accès coulissante qui, en position ouverte, est déportée latéralement du côté du compartiment de pompage primaire, et qui est commandée par un actionneur de coulissement.
Le caractère coulissant des portes latérales d'accès permet d'éviter tout risque de détérioration du robot et des portes, dès lors que le coulissement des portes s'effectue en dehors de la zone latérale de transfert occupée par le robot.
Simultanément, le déplacement en coulissement de la porte s'effectue parallèlement à la zone latérale de transfert, entre la chambre de dépollution et le compartiment de pompage primaire, sans augmenter l'encombrement du module de dépollution. On réalise ainsi un important gain de place. De préférence, la porte d'accès coulissante est montée à coulissement longitudinal sur un cadre lui-même monté à pivotement selon un axe de pivotement vertical et sollicité en pivotement par un actionneur de pivotement.
Cette disposition permet d'assurer de façon simple une bonne étanchéité de la porte d'accès, et permet simultanément de réduire les frottements des joints, frottements susceptibles de libérer des particules polluantes dont la présence serait particulièrement néfaste dans une salle blanche d'usine de fabrication de semiconducteurs.
Selon un autre mode de réalisation, chaque chambre de dépollution des modules de dépollution comprend, à l'opposé du côté d'accès, une porte de maintenance qu'un opérateur peut ouvrir pour assurer la maintenance individuelle d'un module de dépollution. De la sorte, un opérateur peut assurer la maintenance individuelle d'un module de dépollution, sans affecter le fonctionnement des autres modules, ni le fonctionnement du robot.
De préférence, chaque module de dépollution comprend un dispositif de sécurité assurant :
- le verrouillage de la porte de maintenance en cas d'ouverture de la porte d'accès latérale,
- le verrouillage de la porte d'accès latérale et l'inhibition partielle du robot en cas d'ouverture de la porte de maintenance.
On garantit ainsi la sécurité des opérateurs chargés de la maintenance, et on évite tout risque de dégradation du robot ou du contenu des boîtes de transport et de stockage lors d'une maintenance d'au moins un module de dépollution.
Le dispositif selon encore un autre mode de réalisation comprend en outre :
- au moins un premier poste de chargement-déchargement,
- une zone latérale de transfert prévue du côté de l'accès aux modules de dépollution, en ligne avec le poste de chargement-déchargement,
- un robot, placé dans la zone latérale de transfert, apte à déplacer les boîtes de transport et de stockage entre le poste frontal de chargement-déchargement et la chambre de dépollution de chacun des modules de dépollution. L'architecture générale du dispositif de traitement tel que défini ci-dessus permet de prévoir un robot particulièrement simple et peu onéreux, par exemple un robot d'un type comprenant :
- des moyens de translation longitudinale,
- des moyens de translation verticale,
- des moyens de rotation de 90° d'axe vertical,
- un bras à développement radial.
Notamment dans le cas d'une multiplication des colonnes de modules disposées en ligne selon une rangée longitudinale, il faut prévoir des moyens de chargement-déchargement présentant un débit suffisant pour ne pas retarder le fonctionnement des autres composants du dispositif de traitement. Pour cela, on peut avantageusement prévoir que le dispositif comprend :
- un premier poste de chargement-déchargement, en ligne avec la zone latérale de transfert,
- un second poste de chargement-déchargement, en ligne avec la rangée longitudinale de colonnes de modules, et comprenant des moyens de déplacement longitudinal et des moyens de rotation de 90° d'axe vertical.
On double ainsi la capacité de chargement-déchargement, permettant des opérations de chargement-déchargement en temps masqué, sans ralentir le robot.
Pour respecter les normes de sécurité, chaque poste de chargement- déchargement peut avantageusement comprendre un sas de sécurité.
De préférence, on prévoit en outre que :
- chaque module de dépollution comprend ses propres moyens de commande,
- les moyens de commande sont agencés dans un panneau de commande disposé latéralement au côté du compartiment de pompage primaire,
Les moyens de commande disposés latéralement au côté du compartiment de pompage primaire permettent d'éviter toute augmentation de l'encombrement du module de dépollution. On réalise ainsi un important gain de place.
Généralement, les modules de dépollution nécessitent l'utilisation d'une pompe primaire et d'une pompe secondaire, permettant un pompage en deux étapes successives, à savoir une étape de pompage primaire au cours de laquelle la pompe primaire est raccordée à la chambre de dépollution, et une étape de pompage à vide poussé au cours de laquelle la pompe secondaire est interposée entre la chambre de dépollution et l'aspiration de la pompe primaire.
Dans ce cas, on peut avantageusement prévoir que chaque module de dépollution comprend une pompe secondaire logée au-dessous de la chambre de dépollution.
Pour utiliser des pompes secondaires de faible encombrement (par exemple de type "ATH 31 " de la marque "ADIXEN", ou équivalent), on peut avantageusement prévoir que les pompes secondaires sont chacune associée à un dispositif de purge permanente et à un dispositif de raccordement sélectif qui :
- les raccorde chacune à la pompe primaire respective de leur module de dépollution pendant les étapes de pompage à vide poussé de la chambre de dépollution ou pendant les étapes d'attente,
- les raccorde toutes à une même pompe primaire commune pendant les étapes de pompage primaire.
La purge permanente et la présence de la pompe primaire commune permettent de maintenir les pompes secondaires en fonctionnement permanent, évitant toute augmentation de concentration des gaz nocifs qui conduirait à la dégradation et à la destruction des pompes secondaires.
D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles :
- la figure 1 illustre schématiquement un dispositif de traitement pour boîtes de transport et de stockage, selon un mode de réalisation de la présente invention ; - la figure 2 est une vue de dessus illustrant l'organisation générale d'une usine de fabrication de semi-conducteurs ;
- la figure 3 illustre schématiquement, en vue de dessus, le positionnement d'un dispositif de traitement pour boîtes de transport et de stockage, selon un mode de réalisation de la présente invention ;
- la figure 4 est une vue schématique illustrant les moyens d'alimentation et les moyens de pompage associés à la chambre de dépollution d'un module de dépollution selon un mode de réalisation de l'invention ; - la figure 5 est un autre schéma de principe des moyens d'alimentation et de pompage associés aux chambres de dépollution d'un dispositif de traitement selon la présente invention ;
- la figure 6 est une vue schématique de côté illustrant l'architecture générale d'un dispositif de traitement pour boîtes de transport et de stockage, selon un mode de réalisation de l'invention à quatre modules de dépollution ;
- la figure 7 est une vue schématique de dessus du dispositif de traitement de la figure 6 ;
- la figure 8 est une vue de dessus illustrant le détail de cinématique des portes d'une chambre de dépollution du dispositif de traitement des figures 6 et 7 ;
- les figures 9 et 10 illustrent un autre mode de réalisation de la cinématique de déplacement des portes d'une chambre de dépollution du dispositif de traitement des figures 6 et 7 ;
- la figure 1 1 est une vue de côté schématique en coupe illustrant le système de ventilation des pompes primaires du dispositif de traitement selon un mode de réalisation de la présente invention ; et
- la figure 12 est une vue de côté schématique en coupe illustrant la disposition générale des moyens de pompage du dispositif de traitement des figures 6 et 7.
On considère tout d'abord la figure 1 , illustrant une boîte de transport et de stockage 1 , définissant un environnement confiné non étanche sous forme d'un volume 2 limité par une paroi 3 et comportant une fuite 4. La paroi 3 est généralement réalisée en polycarbonate.
Une chambre de dépollution 5 présente un volume intérieur 5a juste un peu supérieur au volume de la boîte de transport et de stockage 1 . La chambre de dépollution 5 comporte une paroi périphérique 5b étanche, avec une porte d'accès 5c permettant l'introduction et le retrait de la boîte de transport et de stockage 1 . La paroi 5b de la chambre de dépollution 5 est par exemple en acier inoxydable avec une face intérieure polie, capable de supporter une dépression de 1 atmosphère. Le polissage intérieur évite le dégazage de la paroi périphérique 5b lors d'opérations de dépollution sous vide.
Une entrée 6 permet l'introduction, dans la chambre de dépollution 5, d'un flux gazeux provenant d'une source de gaz de traitement 13, tandis qu'une sortie 7 reliée à des moyens de pompage 8 de gaz permet de faire le vide à l'intérieur de la chambre de dépollution 5. Les moyens de pompage 8 comprennent au moins un groupe de pompage primaire 8a, et avantageusement aussi un groupe de pompage secondaire 8b, par exemple de type turbomoléculaire, moléculaire ou hybride.
Dans le mode de réalisation illustré, la chambre de dépollution 5 est associée à un capteur de pression 10, à une vanne d'isolation 12 raccordée dans la ligne de pompage en série avec les moyens de pompage 8, une source de gaz de traitement 13 raccordée à l'entrée 6, un capteur de flux de dégazage 1 1 , des moyens de commande 14, et un capteur de déformation 15.
Les moyens de commande 14 peuvent comprendre un processeur 14a, associé à une mémoire 14b dans laquelle sont enregistrés des programmes de commande. Le processeur 14a peut recevoir des informations des divers capteurs tels que le capteur de pression 10, le capteur de déformation 15, le capteur de flux de dégazage 11 .
En sortie, le processeur 14a est connecté de manière connue en soi à divers actionneurs permettant d'agir sur la vanne d'isolation 12, sur les moteurs d'entraînement de la pompe primaire 8a et de la pompe secondaire 8b, sur une vanne de commande de débit de flux gazeux des moyens d'introduction de gaz 6, 13.
Le capteur de déformation 15 comprend un émetteur-récepteur laser qui détecte, à travers le hublot 9a, la distance qui le sépare de la paroi 3 de la boîte de transport et de stockage 1 . Ainsi, le capteur de déformation 15 peut être utilisé à la fois pour détecter la déformation de la boîte de transport et de stockage 1 lors d'une opération de dépollution, et pour détecter la présence, l'absence, ou le bon positionnement d'une boîte de transport et de stockage 1 dans la chambre de dépollution 5.
Le fonctionnement d'une telle chambre de dépollution 5 est par exemple décrit dans le document WO-2007/135 347.
On considère maintenant la figure 2, illustrant l'organisation générale d'une partie d'usine de fabrication de semi-conducteurs 200.
Les procédés de fabrication de semi-conducteurs comportant un grand nombre d'étapes successives, l'usine de fabrication de semi-conducteurs 200 comprend un grand nombre de postes de travail, que l'on appellera « outils ».
Ainsi, on a illustré sur la figure 2 un ensemble de quarante sept outils, tels que les outils 16 et 17, disposés en deux zones ou baies 18 et 19 de six rangées chacune, telles que les rangées 18a et 18b. Chaque outil 16 ou 17 comporte, sur un même côté, un premier poste de chargement-déchargement 16a ou 17a et un second poste de chargement-déchargement 16b ou 17b. Ainsi, dans une rangée telle que la rangée 18a des outils 16 et 17, des postes de chargement et déchargement sont alignés le long d'une branche 20 du système de transport de boîtes OHT lui-même comprenant des rails de guidage, habituellement situés au plafond de l'usine, et suivant un trajet normalisé.
Le système de transport de boîtes OHT comporte une branche 20 ou 21 pour chaque rangée 18a ou 18b d'outils 16, 17. Les branches 20 et 21 sont couplées deux par deux en une boucle dite "intra bay" telle que la boucle 22, formée par exemple par les branches 20 et 21 de deux rangées 18a et 18b successives. Une boucle dite "extra bay" 122 se développe entre les deux zones successives 18 et 19, et alimente les boucles "intra bay" telles que la boucle 22.
Le système de transport de boîtes OHT déplace les boîtes de transport et de stockage 1 , qui contiennent les plaquettes de semi-conducteur ou masques à traiter, distribue les boîtes de transport et de stockage 1 aux outils 16 ou 17 qui effectuent le traitement prévu sur leur contenu, et prélève les boîtes de transport et de stockage 1 après le traitement.
Selon l'invention, on prévoit un dispositif de traitement 23 pour le traitement des boîtes de transport et de stockage 1 et/ou de leur contenu, structuré et dimensionné de façon à présenter un encombrement du même ordre de grandeur que les outils 16, 17 habituels d'une usine de fabrication de semi-conducteurs 200, et de façon à être compatible avec le système de transport de boîtes OHT.
Pour cela, le dispositif de traitement 23 selon l'invention, peut remplacer l'un des outils 16, 17 tels qu'illustrés sur la figure 2.
On considère par exemple le mode de réalisation illustré sur la figure 3, dans lequel on retrouve les outils 16 et 17, et la branche 20 du système de transport de boîtes OHT.
Le dispositif de traitement 23 est disposé dans la même rangée d'outils 18a que les outils 16 et 17. On voit que l'encombrement au sol du dispositif de traitement 23 est similaire à l'encombrement au sol de l'outil 16. On distingue, dans ce dispositif de traitement 23, deux postes de chargement-déchargement 23a et 23b aptes à coopérer avec la branche 20 du système de transport de boîtes OHT. On distingue en outre une première colonne de modules 23c, et une seconde colonne de modules 23d qui est optionnelle.
Selon l'invention, le dispositif de traitement 23 peut comprendre plusieurs colonnes de modules, telles que la colonne de modules 23c, ayant chacune une superposition de quatre modules de dépollution constitués chacun d'une chambre de dépollution 5 associée à ses moyens d'introduction de gaz 6, 13, ses moyens de pompage 8 et ses moyens de commande 14.
On considère maintenant les figures 6 et 7 qui illustrent, respectivement en vue de côté et en vue de dessus, un dispositif de traitement 23 selon l'invention dans un mode de réalisation à une seule colonne de modules 23c.
Ainsi, le dispositif de traitement 23 comprend, dans ce mode de réalisation, quatre modules de dépollution 24, 25, 26 et 27, superposés verticalement les uns au-dessus des autres pour former la colonne de modules 23c.
Chaque module de dépollution comprend une chambre de dépollution 5, des moyens de pompage 8, et les divers moyens annexes illustrés sur la figure 1 mais non rappelés sur les figures 6 et 7 pour en faciliter la lecture.
La chambre de dépollution 5 d'un module comprend une porte d'accès latérale 5c. Dans le dispositif de traitement 23, toutes les portes d'accès latérales 5c des modules de dépollution 24-27 sont orientées selon un même côté d'accès (à droite sur la figure 7), et sont chacune sollicitées par des moyens d'actionnement assurant leur ouverture et leur fermeture. A l'opposé du côté d'accès, la chambre de dépollution 5 comprend une porte de maintenance 5d, qu'un opérateur peut ouvrir pour assurer la maintenance individuelle d'un module de dépollution.
Comme on le voit sur ces figures 6 et 7, dans un module de dépollution tel que le module 24, la chambre de dépollution 5 est en ligne sur un même étage avec les moyens de pompage 8, et sur la figure 7 l'ensemble est en ligne selon la direction longitudinale I-I avec l'un des postes de chargement-déchargement 23b. L'ensemble occupe la moitié de l'encombrement transversal du dispositif de traitement 23, à savoir la moitié gauche sur la figure 7. La moitié droite est occupée d'une part par le second poste de chargement-déchargement 23a et par une zone latérale de transfert 129, située du côté de l'accès des chambres de dépollution 5 et contenant un robot commun de transport de boîtes 29. Le robot 29 est adapté pour déplacer les boîtes de transport et de stockage 1 entre l'un et l'autre des postes de chargement-déchargement 23a et 23b et les chambres de dépollution 5 de chacun des modules de dépollution 24-27.
Pour cela, le robot 29 comprend un support 29a avec trois ergots supérieurs, tels que les ergots 29b et 29c, disposés en triangle selon un agencement correspondant aux points de support normalisés d'une boîte de transport et de stockage 1 .
Le support 29a est monté en bout d'un bras 29d radialement extensible, permettant son déplacement horizontal, et lui-même monté sur un chariot 29e à déplacement vertical le long d'un guide vertical 29f. Le guide vertical 29f est lui- même monté sur un plateau 29g, rotatif selon un axe vertical et avec une amplitude de 90°, porté par un charriot inférieur 29h lui-même monté à coulissement longitudinal sur un guide longitudinal 29i. Le guide vertical 29f a une hauteur telle qu'il peut amener le support 29a à hauteur de chacun des chambres de dépollution 5 des modules de dépollution 24-27. Le guide longitudinal 29i permet le déplacement longitudinal du charriot inférieur 29h de façon à amener le support 29a soit en regard du poste de chargement-déchargement 23a, soit en regard des chambres de dépollution 5 des modules de dépollution 24-27.
Pour le transfert d'une boîte de transport et de stockage 1 entre le robot 29 et le poste de chargement-déchargement 23b, on prévoit un dispositif de transfert permettant d'une part le déplacement du support de boîte linéairement comme illustré par la flèche 30 entre le poste de chargement-déchargement 23b et un poste intermédiaire 31 , puis la rotation de 90° du poste intermédiaire autour d'un axe vertical, comme illustré par la flèche 30a. Ensuite, le bras 29d du robot 29 peut prendre ou remettre la boîte de transport et de stockage 1 sur le poste intermédiaire 31 . La structure du robot 29 est ainsi compatible, sans modification complexe, avec la présence de deux postes de chargement-déchargement 23a et 23b.
Le chargement des boîtes de transport et de stockage 1 sur les postes de chargement-déchargement 23a et 23b peut être réalisé soit de manière automatique par le robot 29 du système de transport de boîtes OHT de l'usine, soit manuellement par un opérateur. Le chargement automatique ne pose pas de problème de sécurité. Par contre, le chargement manuel nécessite de prévoir, aux postes de chargement- déchargement 23a et 23b, deux portes les apparentant à des sas de chargement- déchargement : une porte externe côté opérateur et une porte interne côté robot. Le dispositif de contrôle et de commande permet de gérer la sécurité des ouvertures et fermetures des deux portes, n'autorisant pas l'ouverture de la porte externe lorsque la porte interne est ouverte, et réciproquement. On considère maintenant la figure 8, illustrant un premier mode de réalisation pour le déplacement de la porte d'accès 5c de la chambre de dépollution 5.
Dans ce cas, la porte d'accès 5c, entraînée par des moyens d'actionnement appropriés, est déplacée selon deux mouvements perpendiculaires, à savoir un premier mouvement transversal 32 horizontal de faible amplitude, vers et à l'écart de l'ouverture de la chambre de dépollution 5, et un second mouvement longitudinal 33, perpendiculaire au premier mouvement 32, pour déplacer horizontalement la porte d'accès 5c depuis une position d'engagement face à l'ouverture de la chambre de dépollution 5 et une position d'ouverture entièrement à l'écart de la chambre de dépollution 5, à côté des moyens de pompage 8. De la sorte, en position ouverte, la porte d'accès 5c ne gène pas le déplacement du robot 29, ne perturbe pas l'accès aux autres chambres de dépollution 5 placées au-dessus ou au-dessous, et n'augmente pas l'encombrement total du dispositif de traitement 23.
Les figures 9 et 10 illustrent un mode de réalisation préféré des moyens de déplacement de la porte d'accès 5c. La figure 9 illustre la porte d'accès 5c à l'état fermé, tandis que la figure 10 illustre la porte d'accès 5c à l'état ouvert.
Dans son mouvement longitudinal, la porte d'accès 5c est actionnée par un actionneur de coulissement 34, tel qu'un vérin pneumatique. L'ensemble porte d'accès 5c-vérin pneumatique 34 est monté sur un cadre 35 lui-même monté rotatif autour d'un axe vertical postérieur 36 et entraîné en rotation par un actionneur de pivotement 37. Ainsi, le cadre 35 peut pivoter entre une position de fermeture illustrée sur la figure 9, dans laquelle la porte d'accès 5c est plaquée contre l'ouverture de la chambre de dépollution 5, et une position d'ouverture dans laquelle le cadre 35 est à l'écart de la chambre de dépollution 5.
Ainsi, les joints d'étanchéité 38 et 39, prévus sur la porte d'accès 5c, peuvent assurer une étanchéité avec la chambre de dépollution 5 sans subir de frottements lors des opérations d'ouverture et de fermeture. Comme on le voit sur les figures 7 à 10, la porte de maintenance 5d est une porte battante, dont l'ouverture est manuelle.
Les figures 9 et 10 illustrent un autre détail de réalisation du dispositif de traitement 23 selon un mode de réalisation de l'invention.
Dans ce cas, dans les moyens de pompage 8, on distingue une pompe primaire 8a placée dans un compartiment de pompage primaire 8c, en alignement horizontal avec la chambre de dépollution 5. D'un côté du compartiment de pompage primaire 8c se déplace la porte d'accès 5c dans sa position d'ouverture, comme on le voit sur la figure 10. A l'opposé du compartiment de pompage primaire 8c se trouve un tableau électrique 8d contenant les moyens de commande 14 du module de dépollution 24. De la sorte, les moyens de commande 14 dans le tableau 8d n'augmentent pas l'encombrement vertical du module de dépollution 24-27, permettant ainsi l'empilement vertical de quatre modules de dépollution 24-27 dans la hauteur disponible d'une salle blanche d'usine de fabrication de semi-conducteurs 200.
Dans le dispositif de traitement 23 illustré sur les figures 6 et 7, chaque module de dépollution 24-27 comprend ses propres moyens de pompage 8 ayant au moins une pompe primaire 8a. Dans chaque module de dépollution 24-27, la pompe primaire 8a est logée dans le compartiment de pompage primaire 8c (figures 9 et 10), qui est décalé longitudinalement par rapport à la chambre de dépollution 5. De préférence, la chambre de dépollution 5 est plus proche des postes de chargement-déchargement 23a-23b, le compartiment de pompage primaire 8c pouvant être déporté à l'écart des postes de chargement-déchargement 23a-23b, de façon à réduire la course longitudinale du robot 29. Comme illustré schématiquement sur la figure 12, les modules de dépollution 24-27 sont supportés par un châssis commun 100. Un châssis séparé supporte le robot 29 (non représenté) et les postes de chargement- déchargement 23a-23b. L'ensemble est confiné dans un capotage commun.
Dans le compartiment de pompage primaire 8c, la pompe primaire 8a de chacun des modules de dépollution 24-27 est supportée par le châssis commun 100 avec interposition de moyens de liaison élastiques 101 évitant la transmission des vibrations à la chambre de dépollution 5. La chambre de dépollution 5 est elle-même placée dans un châssis de dépollution 102, qui porte également les capteurs et actionneurs associés à la chambre de dépollution 5. La pompe secondaire 8b est avantageusement placée au-dessous de la chambre de dépollution 5, son entrée d'aspiration étant directement connectée à l'intérieur de la chambre de dépollution 5, sa sortie de refoulement étant connectée par une canalisation intermédiaire 48 à l'entrée d'aspiration de la pompe primaire 8a. Il en est de même des autres modules de dépollution 25-27.
On se réfère à nouveau à la figure 3. En vue de dessus, on distingue la colonne de modules 23c, comportant, comme illustré sur les figures 6 et 7, une superposition de quatre modules de dépollution 24-27. Cela permet d'obtenir quatre fois le débit d'un module de dépollution. Sur la figure 3, on a illustré une seconde colonne de modules de dépollution 23d, formant une seconde superposition de quatre modules de dépollution tels que les modules 24-27 des figures 6 et 7.
Les deux colonnes de modules de dépollution 23c et 23d forment une rangée longitudinale 28 de deux colonnes 23c et 23d de modules de dépollution superposés les uns au-dessus des autres, la rangée 28 de colonnes de modules se développant selon la direction longitudinale I-I perpendiculaire à la direction de déplacement de la branche 20 du système de transport de boîtes OHT. On multiplie ainsi le nombre de modules de dépollution 24-27 sans augmenter la dimension occupée par le dispositif de traitement 23 le long de la branche 20 du système de transport de boîtes OHT. Et on profite simultanément de la profondeur disponible selon la direction longitudinale I-I de la rangée longitudinale 28 de colonnes 23c, 23d de modules de dépollution.
On considère maintenant la figure 4, qui illustre schématiquement une disposition fonctionnelle possible des moyens de pompage et d'alimentation de la chambre de dépollution 5. La chambre de dépollution 5 est associée à deux jauges de pression 13a et 13b. Des sources de gaz (non représentées) sont pilotées par le dispositif de commande 14 (voir figure 1 ) pour introduire les gaz aux moments appropriés au cours du procédé.
La pompe primaire 8a est raccordée à la chambre de dépollution 5 par une canalisation de pompage primaire 40 associée à une vanne de commande primaire 41 , en refoulant les gaz de pompage par une canalisation de sortie 42 vers le système d'extraction et/ou de traitement des gaz de l'usine de fabrication de semi-conducteurs. L'aspiration de la pompe secondaire 8b est raccordée à la chambre de dépollution 5 par une canalisation de pompage secondaire 43 courte munie d'une vanne de commande secondaire 44, et son refoulement s'effectue dans une canalisation de refoulement secondaire 45 qui elle-même se raccorde d'une part à une canalisation de transfert 46 par une vanne 47, et d'autre part à une canalisation intermédiaire 48 qui la conduit à l'aspiration de la pompe primaire 8a avec interposition d'une vanne 49. Une entrée de purge 50 introduit en permanence dans la pompe secondaire 8b un gaz de purge. La canalisation de transfert 46 est raccordée à une pompe primaire 51 (fig.5) de faible débit, cette pompe étant commune à tous les modules de dépollution 24-27.
La pompe secondaire 8b est en rotation permanente, alimentée en permanence en gaz de purge par l'entrée de purge 50, alimentée périodiquement en gaz de traitement issus de la chambre de dépollution 5, et refoulant soit dans la canalisation de transfert 46, soit dans la canalisation intermédiaire 48. Lors de la descente en pression de la chambre de dépollution 5, on réalise une première phase de pré-vidage, en ouvrant la vanne de commande primaire 41 pour assurer le pompage par la seule pompe primaire 8a, la pompe secondaire 8b étant isolée par la vanne de commande secondaire 44 et par la vanne 49. Dans cette phase, la vanne 47 est ouverte afin que la pompe primaire 51 commune assure le pompage au refoulement de la pompe secondaire 8b. A partir d'un seuil de pression fixé, on entreprend une seconde phase de vidage au cours de laquelle la vanne de commande primaire 41 est fermée et les vannes 44 et 49 sont ouvertes, permettant d'additionner en série les deux pompages des pompes primaire 8a et secondaire 8b. Dans cette phase, la vanne 47 est fermée afin d'éviter une contamination de la pompe primaire 51 commune par les gaz pompés dans la chambre de dépollution 5. On assure ainsi un fonctionnement le plus indépendant possible entre les différents modules de dépollution 24-27.
On se réfère maintenant à la figure 5, qui illustre la pompe primaire 51 commune, raccordée par la canalisation de transfert 46 à toutes les pompes secondaires 8b des modules de dépollution 24-27 du dispositif de traitement 23.
On considère maintenant la figure 1 1 , qui illustre les moyens de ventilation pour refroidissement thermique des pompes primaires, et les moyens d'isolation phonique du dispositif de traitement selon un mode de réalisation de l'invention. On a illustré schématiquement les pompes primaires telles que la pompe primaire 8a des quatre modules de dépollution 24-27 du dispositif de traitement des figures 6 et 7. La pompe primaire 8a est logée dans son compartiment de pompage primaire 8c. Les compartiments de pompage primaires tels que le compartiment 8c des quatre modules de dépollution 24-27 communiquent les uns avec les autres dans le sens vertical, et ils sont divisés chacun en deux demi-compartiments, formant un compartiment commun d'aspiration 52 et un compartiment commun de refoulement 53 séparés l'un de l'autre par une paroi intermédiaire 54 traversée par les pompes primaires 8a. Les pompes primaires telles que la pompe primaire 8a comportent elles-mêmes chacune un système de refroidissement à air, avec une aspiration d'air de refroidissement 55 à une première extrémité de la pompe et avec un refoulement d'air de refroidissement 56 à une seconde extrémité de la pompe.
Ainsi, la paroi verticale intermédiaire 54 sépare l'une de l'autre une première zone de compartiments de pompage, recevant tous les refoulements d'air de refroidissement des pompes primaires et constituant le compartiment commun de refoulement 53, et une seconde zone de compartiments de pompage, contenant toutes les aspirations d'air de refroidissement des pompes primaires, et constituant le compartiment commun d'aspiration 52.
La première zone de compartiments de pompage constituant le compartiment commun de refoulement 53 comporte une sortie d'air inférieure 57. La seconde zone de compartiments de pompage constituant le compartiment commun d'aspiration 52 comporte une entrée d'air ambiant supérieure 58.
Ainsi, la circulation d'air de refroidissement des pompes primaires se fait comme indiqué par les flèches 59, 60, 61 et 62, du haut vers le bas en traversant les pompes primaires 8a.
On a également illustré, sur la figure 1 1 , des moyens d'isolation phonique permettant de réduire les émissions sonores vers l'environnement du dispositif de traitement 23. Pour cela, l'ensemble des compartiments de pompage primaires est isolé par des plaques absorbantes 63 pour isolation phonique. La sortie inférieure 57 et l'entrée supérieure 58 de circulation d'air sont elles-mêmes équipées de chicanes absorbant les émissions sonores.
La pompe primaire 51 commune est également placée dans l'un des compartiments de pompage primaires, pour assurer son refroidissement et son isolement phonique de la même manière que les autres pompes primaires. Un dispositif de contrôle commun gère le flux des boîtes de transport et de stockage 1 à traiter en fonction des disponibilités des chambres de dépollution 5 et des demandes de traitement du superviseur de production de l'usine de production de semi-conducteurs, et ainsi gère les postes de chargement- déchargement 23a, 23b, le déplacement du robot 29, et le lancement des procédés dans les modules de dépollution 24-27.
Le dispositif de contrôle commun comporte des moyens de communication avec le superviseur de l'usine de production de semi-conducteurs et avec le système de transport de boîtes OHT pour permettre le chargement automatique des boîtes de transport et de stockage 1 sur les postes de chargement- déchargement 23a, 23b.
La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations qui sont à la portée de l'homme du métier.

Claims

REVENDICATIONS
1 . Dispositif de traitement pour boîtes de transport et de stockage (1 ), comprenant un module de dépollution ayant :
une chambre de dépollution (5), à porte d'accès (5c) latérale apte à contenir une boîte de transport et de stockage (1 ),
des moyens d'introduction de gaz (6, 13) dans la chambre de dépollution (5), des moyens de pompage des gaz (7, 8) dans la chambre de dépollution (5), des moyens de commande (14) et de contrôle (12) pour piloter l'atmosphère gazeuse dans la chambre de dépollution (5),
dans lequel :
le dispositif comprend une pluralité de modules de dépollution (24-27) supportés par un châssis commun (100),
les modules de dépollution (24-27) sont superposés les uns au-dessus des autres pour former au moins une colonne (23c, 23d) de modules,
chaque module de dépollution (24-27) comprend ses propres moyens de pompage (8) ayant au moins une pompe primaire (8a),
la pompe primaire (8a) est logée dans un compartiment de pompage primaire (8c) décalé longitudinalement par rapport à la chambre de dépollution (5).
2. Dispositif de traitement selon la revendication 1 , dans lequel
- les compartiments de pompage primaire (8c) des modules de dépollution (24-27) d'une même colonne de modules (23c, 23d) communiquent les uns avec les autres, sans séparation horizontale,
- chaque pompe primaire (8a) comprend un système de refroidissement à air, avec une aspiration d'air de refroidissement (55) à une première extrémité de la pompe et avec un refoulement d'air de refroidissement (56) à une seconde extrémité de la pompe,
- dans une même colonne de modules (23c, 23d), une paroi verticale intermédiaire (54) sépare l'une de l'autre
une première zone de compartiments de pompage (53) recevant tous les refoulements d'air de refroidissement et comportant une sortie d'air inférieure (57), et une seconde zone de compartiments de pompage (52) contenant toutes les aspirations d'air de refroidissement et comportant une entrée d'air ambiant supérieure (58).
Dispositif de traitement selon l'une des revendications 1 et 2, dans lequel la pompe primaire (8a) est supportée par le châssis commun (100) avec interposition de moyens de liaison élastique (101 ) évitant la transmission des vibrations à l'enceinte de dépollution (5).
Dispositif de traitement selon l'une des revendications 1 à 3, dans lequel les portes d'accès (5c) latérales des modules de dépollution (24-27) sont toutes orientées selon un même côté d'accès, et sont chacune commandées par des moyens d'actionnement (34, 37) assurant leur ouverture et leur fermeture,
Dispositif de traitement selon l'une des revendications 1 à 4, dans lequel la porte d'accès (5c) de chaque module de dépollution (24-27) est une porte d'accès coulissante qui, en position ouverte, est déportée latéralement du côté du compartiment de pompage primaire (8c), et qui est commandée par un actionneur de coulissement (34).
Dispositif de traitement selon la revendication 5, dans lequel la porte d'accès coulissante (5c) est montée à coulissement longitudinal sur un cadre (35) lui- même monté à pivotement selon un axe de pivotement vertical (36) et sollicité en pivotement par un actionneur de pivotement (37).
Dispositif de traitement selon l'une des revendications 4 à 6, dans lequel chaque chambre de dépollution (5) des modules de dépollution (24-27) comprend, à l'opposé du côté de la porte d'accès, une porte de maintenance (5d) pour assurer la maintenance individuelle d'un module de dépollution (24-27).
8. Dispositif de traitement selon l'une des revendications précédentes, comportant en outre
- au moins un poste de chargement-déchargement (23a),
- une zone latérale de transfert (129) prévue du côté de l'accès aux modules de dépollution (24-27), en ligne avec le poste de chargement-déchargement (23a),
- un robot (29), placé dans la zone latérale de transfert, apte à déplacer les boîtes de transport et de stockage (1 ) entre le poste de chargement-déchargement (23a) et la chambre de dépollution (5) de chacun des modules de dépollution (24-27).
9. Dispositif de traitement selon la revendication 8, comprenant en outre
- un premier poste de chargement-déchargement (23a), en ligne avec la zone latérale de transfert (129),
- un second poste de chargement-déchargement (23b), en ligne avec la rangée longitudinale (28) de colonnes de modules (23c, 23d), et comprenant des moyens de déplacement longitudinal (30) et des moyens de rotation de 90° d'axe vertical (31 ).
10. Dispositif de traitement selon l'une des revendications 8 ou 9, prise ensemble avec la revendication 7, dans lequel chaque module de dépollution (24-27) comprend un dispositif de sécurité assurant :
- le verrouillage de la porte de maintenance (5d) en cas d'ouverture de la porte d'accès latérale (5c),
- le verrouillage de la porte d'accès latérale (5c) et l'inhibition partielle du robot (29) en cas d'ouverture de la porte de maintenance (5d).
1 1 . Dispositif de traitement selon l'une des revendications précédentes, dans lequel
- chaque module de dépollution (24-27) comprend ses propres moyens de commande (14),
- les moyens de commande (14) sont agencés dans un panneau de commande (8d) disposé latéralement au côté du compartiment de pompage primaire (8c).
EP11734040.6A 2010-06-29 2011-06-27 Dispositif de traitement pour boites de transport et de stockage Withdrawn EP2588392A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055187A FR2961946B1 (fr) 2010-06-29 2010-06-29 Dispositif de traitement pour boites de transport et de stockage
PCT/EP2011/060749 WO2012000950A1 (fr) 2010-06-29 2011-06-27 Dispositif de traitement pour boites de transport et de stockage

Publications (1)

Publication Number Publication Date
EP2588392A1 true EP2588392A1 (fr) 2013-05-08

Family

ID=42701989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11734040.6A Withdrawn EP2588392A1 (fr) 2010-06-29 2011-06-27 Dispositif de traitement pour boites de transport et de stockage

Country Status (9)

Country Link
US (1) US9403196B2 (fr)
EP (1) EP2588392A1 (fr)
JP (1) JP5814362B2 (fr)
KR (1) KR20130095198A (fr)
CN (1) CN102985344B (fr)
FR (1) FR2961946B1 (fr)
SG (2) SG186713A1 (fr)
TW (1) TWI533948B (fr)
WO (1) WO2012000950A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954583B1 (fr) 2009-12-18 2017-11-24 Alcatel Lucent Procede et dispositif de pilotage de fabrication de semi conducteurs par mesure de contamination
FR2999015B1 (fr) * 2012-11-30 2014-12-12 Adixen Vacuum Products Station et procede de mesure de la contamination en particules d'une enceinte de transport pour le convoyage et le stockage atmospherique de substrats semi-conducteurs
JP6237686B2 (ja) * 2015-04-06 2017-11-29 京セラドキュメントソリューションズ株式会社 電子機器及び画像形成装置
KR101695948B1 (ko) * 2015-06-26 2017-01-13 주식회사 테라세미콘 기판처리 시스템
JP6572854B2 (ja) * 2016-09-09 2019-09-11 株式会社ダイフク 容器収納設備
JP7234527B2 (ja) * 2018-07-30 2023-03-08 Tdk株式会社 センサー内蔵フィルタ構造体及びウエハ収容容器
US11365896B2 (en) * 2019-11-05 2022-06-21 Kenneth Edwin Bobko Negative pressure wall box
NO346963B1 (en) 2021-08-23 2023-03-20 Autostore Tech As Disinfection station for a storage container
CN114251774B (zh) * 2021-12-15 2023-12-08 浙江托马仕电器有限公司 一种离子风空气净化器

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250038A (en) * 1963-02-18 1966-05-10 Kota Products Inc Window structure
US5284412A (en) * 1990-08-17 1994-02-08 Tokyo Electron Sagami Limited Stock unit for storing carriers
JP2971184B2 (ja) * 1991-06-28 1999-11-02 中部電力株式会社 空気再生機
ATE129361T1 (de) * 1992-08-04 1995-11-15 Ibm Fertigungsstrasse architektur mit vollautomatisierten und rechnergesteuerten fördereinrichtungen geeignet für abdichtbaren tragbaren unter druck stehenden behältern.
DE4237767A1 (de) 1992-11-09 1994-05-11 Siemens Ag Verfahren und Vorrichtung zum Reinigen von Bauteiloberflächen, insbesondere von mit Partikeln kontaminierten hochreinen Oberflächen von für die Elektronikfertigung bestimmten Bauteilen, wie Masken, Wafern od. dgl.
JP2741156B2 (ja) 1993-09-17 1998-04-15 東京エレクトロン株式会社 マルチチャンバー処理装置のクリーニング方法
US5616208A (en) * 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
US5827118A (en) * 1996-08-28 1998-10-27 Seh America, Inc. Clean storage unit air flow system
US5879458A (en) 1996-09-13 1999-03-09 Semifab Incorporated Molecular contamination control system
US6287023B1 (en) 1997-09-22 2001-09-11 Tokyo Electron Limited Processing apparatus and method
JPH11168135A (ja) * 1997-12-03 1999-06-22 Toshiba Corp 基板保管装置および基板保管方法
US6168672B1 (en) * 1998-03-06 2001-01-02 Applied Materials Inc. Method and apparatus for automatically performing cleaning processes in a semiconductor wafer processing system
JPH11274282A (ja) 1998-03-23 1999-10-08 Toshiba Corp 基板収納容器、基板収納容器清浄化装置、基板収納容器清浄化方法および基板処理装置
US6193601B1 (en) 1998-11-10 2001-02-27 Sandia Corporation Module bay with directed flow
DE19922936B4 (de) * 1999-05-19 2004-04-29 Infineon Technologies Ag Anlage zur Bearbeitung von Wafern
DE19941399A1 (de) 1999-08-31 2001-04-19 Infineon Technologies Ag Reinigung von Stencilmasken mit Hilfe einer durch Maskenöffnungen hindurchtretenden Gasströmung
US6791661B2 (en) 1999-12-09 2004-09-14 Nikon Corporation Gas replacement method and apparatus, and exposure method and apparatus
US6346986B1 (en) 2000-03-14 2002-02-12 Wafertech, Inc. Non-intrusive pellicle height measurement system
JP2001267200A (ja) 2000-03-14 2001-09-28 Nikon Corp ガス置換方法及び装置、並びに露光方法及び装置
TW522460B (en) 2000-03-30 2003-03-01 Nikon Corp Exposure apparatus, exposure method, and device manufacturing method
WO2002015255A1 (fr) 2000-08-11 2002-02-21 Chem Trace Corporation Système et procédé de nettoyage de pièces d'équipements de fabrication de semi-conducteurs
US6710845B2 (en) 2000-12-29 2004-03-23 Intel Corporation Purging gas from a photolithography enclosure between a mask protective device and a patterned mask
JP2002372777A (ja) 2001-06-18 2002-12-26 Canon Inc ガス置換方法および露光装置
SE0102438D0 (sv) 2001-07-05 2001-07-05 Astrazeneca Ab New compounds
US20040023419A1 (en) 2001-09-24 2004-02-05 Extraction Systems, Inc System and method for monitoring contamination
WO2003034475A1 (fr) 2001-10-10 2003-04-24 Nikon Corporation Procede et dispositif de substitution de gaz, dispositif de protection de masque, masque, ainsi que procede et dispositif d'exposition
JP4006235B2 (ja) 2002-02-05 2007-11-14 キヤノン株式会社 不活性ガス置換方法及び装置、レチクル保管庫、レチクル検査装置、レチクル搬送ボックス、デバイスの製造方法
JP4355488B2 (ja) 2002-05-13 2009-11-04 富士通株式会社 分子汚染監視システム
KR100679591B1 (ko) 2003-04-28 2007-02-07 티디케이가부시기가이샤 퍼지 장치 및 퍼지 방법
JP2005093697A (ja) 2003-09-17 2005-04-07 Canon Inc 面位置検出装置及び方法、露光装置並びに収差補正方法
US7218983B2 (en) 2003-11-06 2007-05-15 Applied Materials, Inc. Method and apparatus for integrating large and small lot electronic device fabrication facilities
JP2005256983A (ja) 2004-03-12 2005-09-22 Shin Etsu Polymer Co Ltd 基板収納容器
CN100500526C (zh) * 2004-12-28 2009-06-17 友达光电股份有限公司 卡匣仓储系统
FR2883412B1 (fr) 2005-03-18 2007-05-04 Alcatel Sa Procede et dispositif pour le controle de la contamination des plaquettes de substrat
KR100719373B1 (ko) 2005-08-11 2007-05-17 삼성전자주식회사 반도체 노광 설비 및 펠리클 검사 방법
US7577487B2 (en) 2005-09-14 2009-08-18 Applied Materials, Inc. Methods and apparatus for a band to band transfer module
US20070062561A1 (en) 2005-09-19 2007-03-22 International Business Machines Corporation Method And Apparatus For Testing Particulate Contamination In Wafer Carriers
JP2007123673A (ja) * 2005-10-31 2007-05-17 Asyst Shinko Inc 物品収納用容器の防振機構
US8308418B2 (en) 2006-05-09 2012-11-13 Taiwan Semiconductor Manufacturing Co., Ltd. High efficiency buffer stocker
FR2901546B1 (fr) 2006-05-24 2010-10-15 Cit Alcatel Procede et dispositif de depollution d'environnement confine
FR2908674A1 (fr) 2007-01-29 2008-05-23 Alcatel Sa Dispositif de nettoyage et de depollution d'un objet a environnement confine non etanche limite par une paroi a membrane souple
WO2008144670A1 (fr) * 2007-05-18 2008-11-27 Brooks Automation, Inc. Ventilation rapide à pompe pour sas de chargement
FR2920046A1 (fr) 2007-08-13 2009-02-20 Alcatel Lucent Sas Procede de post-traitement d'un support de transport pour le convoyage et le stockage atmospherique de substrats semi-conducteurs, et station de post-traitement pour la mise en oeuvre d'un tel procede
US20090162170A1 (en) * 2007-12-19 2009-06-25 Asm Japan K.K. Tandem type semiconductor-processing apparatus
US20100021273A1 (en) * 2008-07-28 2010-01-28 Applied Materials, Inc. Concrete vacuum chamber
JP5517182B2 (ja) * 2008-08-08 2014-06-11 村田機械株式会社 保管庫システム
FR2954583B1 (fr) 2009-12-18 2017-11-24 Alcatel Lucent Procede et dispositif de pilotage de fabrication de semi conducteurs par mesure de contamination
FR2964334B1 (fr) 2010-09-08 2012-09-14 Alcatel Lucent Procede et dispositif de depollution d'un photomasque pellicule

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012000950A1 *

Also Published As

Publication number Publication date
JP2013539200A (ja) 2013-10-17
SG186713A1 (en) 2013-02-28
US20130097802A1 (en) 2013-04-25
FR2961946A1 (fr) 2011-12-30
JP5814362B2 (ja) 2015-11-17
CN102985344B (zh) 2015-08-12
TWI533948B (zh) 2016-05-21
SG10201505061WA (en) 2015-07-30
TW201221233A (en) 2012-06-01
KR20130095198A (ko) 2013-08-27
FR2961946B1 (fr) 2012-08-03
WO2012000950A1 (fr) 2012-01-05
US9403196B2 (en) 2016-08-02
CN102985344A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
EP2588392A1 (fr) Dispositif de traitement pour boites de transport et de stockage
EP2033215B1 (fr) Dispositif de transport, de stockage et de transfert de substrats
US6318945B1 (en) Substrate processing apparatus with vertically stacked load lock and substrate transport robot
EP0892985B1 (fr) Dispositif de transport d'objets plats et procede de transfert de ces objets entre ledit dispositif et une machine de traitement
US6231290B1 (en) Processing method and processing unit for substrate
JP4215079B2 (ja) クリーンストッカと物品の保管方法
JP4033689B2 (ja) 液処理装置および液処理方法
EP1630854A2 (fr) Interface sous vide entre une boîte de mini-environnement et un équipement
JPH08213446A (ja) 処理装置
TW201332871A (zh) 高載量太陽能晶圓裝載裝置
CN101728238A (zh) 处理装置及处理方法
EP2926370B1 (fr) Station et procede de mesure de la contamination en particules d'une enceinte de transport pour le convoyage et le stockage atmospherique de substrats semi-conducteurs
KR101530024B1 (ko) 기판 처리 모듈, 이를 포함하는 기판 처리 장치 및 기판 전달 방법
CN101140893A (zh) 处理装置和处理方法
JP2002198348A (ja) 液処理装置
TWI502694B (zh) 轉移物件通過低壓狀態下之負荷固定艙的裝置及方法
FR2527184A1 (fr) Dispositif pour accumuler des pieces et les transferer de part et d'autre d'une porte susceptible de fermeture
KR20070024517A (ko) 종형 열처리 장치 및 그 운용 방법
EP2926369B1 (fr) Station et procede de mesure de la contamination en particules d'une enceinte de transport pour le convoyage et le stockage atmospherique de substrats semi-conducteurs
JP4383636B2 (ja) 半導体製造装置および半導体装置の製造方法
JP4421311B2 (ja) インライン型成膜装置及び成膜装置用ユニット
FR3101001A1 (fr) Station et procédé de nettoyage d’une enceinte de transport pour le convoyage et le stockage atmosphérique de substrats semi-conducteurs
JP4728383B2 (ja) 基板処理装置および半導体装置の製造方法
WO2014034247A1 (fr) Robinet-vanne et système de traitement de substrat
JP2001203166A (ja) 処理装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PFEIFFER VACUUM

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190103