EP2569197B2 - Antrieb für schienenfahrzeuge - Google Patents
Antrieb für schienenfahrzeuge Download PDFInfo
- Publication number
- EP2569197B2 EP2569197B2 EP11720750.6A EP11720750A EP2569197B2 EP 2569197 B2 EP2569197 B2 EP 2569197B2 EP 11720750 A EP11720750 A EP 11720750A EP 2569197 B2 EP2569197 B2 EP 2569197B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- drive
- rotor
- wheel
- rail vehicle
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000725 suspension Substances 0.000 claims description 78
- 230000008878 coupling Effects 0.000 claims description 44
- 238000010168 coupling process Methods 0.000 claims description 44
- 238000005859 coupling reaction Methods 0.000 claims description 44
- 230000033001 locomotion Effects 0.000 claims description 37
- 230000005540 biological transmission Effects 0.000 claims description 29
- 238000005452 bending Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000012858 resilient material Substances 0.000 claims 2
- 230000007935 neutral effect Effects 0.000 description 23
- 229920001971 elastomer Polymers 0.000 description 14
- 239000005060 rubber Substances 0.000 description 14
- 239000013013 elastic material Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 229920003052 natural elastomer Polymers 0.000 description 3
- 229920001194 natural rubber Polymers 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61C—LOCOMOTIVES; MOTOR RAILCARS
- B61C9/00—Locomotives or motor railcars characterised by the type of transmission system used; Transmission systems specially adapted for locomotives or motor railcars
- B61C9/38—Transmission systems in or for locomotives or motor railcars with electric motor propulsion
- B61C9/48—Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors supported on vehicle frames and driving axles, e.g. axle or nose suspension
- B61C9/50—Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors supported on vehicle frames and driving axles, e.g. axle or nose suspension in bogies
Definitions
- the invention relates to a drive for rail vehicles with a drive motor and with at least one wheel or set of wheels driven by the drive motor. When the rail vehicle is in operation, the wheel or wheels of the wheel set roll on the running rails of a railway.
- the invention also relates to a method for producing such a drive.
- the invention also relates to a rail vehicle with such a drive.
- Drive motors of rail vehicles are often supported on the bogie whose wheels the drive motor is intended to drive.
- Support means absorbing the weight of the drive motor and the dynamic forces caused by movements of the rail vehicle and impacts during operation, as well as supporting the motor to generate the torque.
- relative movements of the drive motor on the one hand and of the driven wheel or wheelset on the other hand can occur.
- the problems associated with this will be discussed in more detail below.
- As an alternative to supporting the drive motor on the bogie it can be supported on the car body of the rail vehicle or on components that are connected to the bogie and/or the car body. These parts can also be movable relative to the car body and/or the bogie, although they are mechanically coupled thereto.
- a motor mount may be attached to the car body, allowing the drive motor to perform an oscillating movement relative to the car body.
- the relative movement mentioned between the drive motor and the driven wheel or wheel set is largely due to the fact that the wheel or wheel set does not perform a linear, uniform movement when the rail vehicle is running (i.e. it rolls straight ahead on the rail at a constant speed), but instead Longitudinal and lateral accelerations due to impacts, cornering and other events.
- the wheel or wheel set can move in the vertical direction (z-direction) relative to the bogie frame and counter to the suspension of the vehicle.
- the wheel set shaft can move out of its neutral position in any direction relative to the bogie, in particular tilting.
- the pivot point of a tipping movement can not only be in the middle of the wheelset axle, but also, for example, in the end areas or near the wheels.
- the axle can also move parallel to its neutral position.
- the wheelset axle is also exposed to torsional and bending vibrations.
- the hollow shaft drive is known, in which the wheel set shaft is arranged inside a hollow shaft and the drive motor transmits the drive torque via the hollow shaft to a wheel of the wheel set or to the wheel set.
- the hollow shaft is connected to the driven wheel via a coupling (e.g. rubber coupling, membrane coupling, plate coupling or toothed coupling).
- a coupling e.g. rubber coupling, membrane coupling, plate coupling or toothed coupling.
- a cardanic movable joint At the opposite end of the hollow shaft, this is connected via a cardanic movable joint to a gear, which is driven by the drive motor.
- Drives with hollow shafts are complex in terms of design and manufacture. In addition, they limit the space available for the drive motor, since the hollow shaft and the joints and/or gears coupled to the hollow shaft require a correspondingly large amount of space.
- a cardanically movable joint is understood to mean a joint that enables the parts coupled to one another via the joint to move relative to one another about two axes of rotation (also called axes of rotation) that are perpendicular to one another.
- the axes of rotation can be imaginary axes of rotation that do not have to correspond to the axes of rotation of shafts, as is the case, for example, with the universal joint (also called cardan joint).
- a cardanically movable joint does not have to be designed in one piece either. For example, it may consist of parts each allowing rotation about one of the two mutually perpendicular axes of rotation.
- a relative movement of the parts coupled to one another via the joint from a neutral position of the joint into a deflected position of the joint can be associated with elastic deformation, which leads to restoring forces in the neutral position. This is particularly the case when parts of the joint are made of elastic materials, such as is the case with the Hardy disc.
- the gimbal itself has no linear mobility in the direction of the axis perpendicular to the two axes of rotation. Also, the gimbal joint itself does not allow linear mobility in the direction of the two axes of rotation. Furthermore, the gimbal is non-rotatable about the axis perpendicular to the two axes of rotation.
- a cardanically movable joint with elastic restoring forces.
- a cardanically movable joint can, for example, also have components made of materials with a high modulus of elasticity (eg steel), which however are elastically deformable (eg spring elements such as leaf springs made of steel).
- the elastic or non-elastic relative mobility of parts of the drive train can also be referred to as mass decoupling, since unwanted dynamic excitations and movements of masses (e.g. the wheel or wheel set) are not or not completely transferred to other masses (e.g. the drive motor).
- Axial compliance in the drive train i.e. compliance in the direction of the axis of rotation, is often also desired, around which one or more parts of the drive train rotate in order to transmit the drive torque. If the drive torque is discussed here, this of course includes the case that this torque is converted, for example, by a gearbox in the drive train.
- the drive used in the ICE 3 of Deutsche Bahn AG has a so-called transverse drive, in which the axis of rotation of the rotor of the drive motor runs approximately parallel to the wheelset shaft of the driven wheelset.
- the stator of the drive motor is supported on a cross member of the bogie.
- the rotor shaft has a double curved tooth coupling. This coupling corresponds to the cascade connection of two joints with cardanic mobility, with the shaft sections coupled to one another via the curved tooth coupling also being able to move axially.
- the disadvantage of this type of mass decoupling is that there is only a short section of the drive train between the two cardanically movable joints in the axial direction of the drive train. Therefore, in contrast to the decoupling with the hollow shaft described above, only a relatively small offset of the wheelset axle from its neutral position can be compensated.
- axle-riding transmission i.e. a transmission that is at least partially supported on the wheel set shaft.
- DE 9116159 U1 describes an axle drive, in particular for a wheel set axle arranged in a bogie, of a rail vehicle, the axis of the drive motor running parallel to the wheel set axle.
- a spur gear is fixed to the axle, with which the wheelset axle is driven.
- the spur gear is supported by a torque arm in relation to the bogie.
- the torque arm is connected to the bogie by a universal joint on the one hand and to the spur gear by a universal joint on the other.
- the universal joints allow limited pivoting and twisting of the torque arm in relation to the pivot points.
- a cardanic coupling connects the drive shaft to the drive motor, which is attached to the bogie.
- DE 2925836 A1 describes a drive device for an electric traction vehicle with a traction motor connected to a gearbox.
- a drive end of the drive motor is provided with a ring which carries a flexible rubber ring coupling. This is pressed inside a flange.
- a pinion of the gearbox is connected to the flange by means of a fastening screw, the contact surfaces of the pinion and the flange having serrations that prevent the sliding of the contact surfaces.
- the gearbox is supported on the axle shaft via bearings.
- the non-drive end of the traction motor is fitted with a bracket that is secured with mounting screws.
- the middle part of the yoke is connected to the bogie via a spherical bearing, which is rotatably mounted in brackets.
- a spherical bearing is rotatably mounted in the fork-shaped extension 9' of the gearbox and is connected to the bogie via a torque arm and a mounting arm.
- EP 1 197 412 A2 describes a drive unit for rail vehicles with an electric motor suspended on the vehicle frame or on the running gear, a gearbox and a gimbal-acting coupling system which is arranged between the wheelset shaft and the gearbox.
- the drive unit is arranged on the outside of the wheelset and is connected to the bogie by means of fastening devices.
- EP 0 175 867 A1 describes a gimbal double clutch.
- an angle gear is flanged to the end faces of an electric motor running along the direction of travel, which drives hollow shafts of one of the double clutches with the help of bevel gears.
- the electric motor, together with the bevel gears, is connected to the bogie frame by elastic suspensions.
- the stand of the drive motor via a cardanic movable suspension on a bogie of the rail vehicle, on a car body of the rail vehicle or supported by a structure connected to the bogie and/or the car body.
- a gimballed movable suspension is understood to mean a joint that enables the parts coupled to one another via the joint to move relative to one another around two mutually perpendicular axes of rotation, i.e. to rotate.
- the gimbal can be linearly immobile with respect to the two axes of rotation, linearly immobile with respect to the axis perpendicular to the two axes of rotation and also with respect to the axis perpendicular to the two axes of rotation be rotationally immobile.
- linear mobility in the direction of the axis which is perpendicular to the two axes of rotation can be provided in addition to the actual gimballed joint or the gimbaled movable suspension.
- the gimbal is not located in the drive train (between the rotor and the wheel or wheelset) and therefore does not continuously rotate to transmit torque.
- the cardanically movable suspension supports the stator of the drive motor in such a way that the torque of the rotor can be transmitted.
- the two mutually perpendicular axes of rotation of the cardanically movable suspension are approximately perpendicular to the axis of rotation of the runner.
- the axes of rotation of the gimbal do not necessarily have to cross each other, as is the case with a universal joint (see above for the definition and designs of the gimbal).
- Perpendicular is also understood to mean that one axis of rotation only perpendicularly crosses a parallel line of the other axis of rotation. Also, the position of the axes of rotation in space and relative to the stand and the supporting part (e.g. bogie frame) can change slightly during the rotation. Furthermore, the rigidities and/or resistances of the rotational movements around the two axes of rotation of the cardanically movable suspension do not have to be the same.
- the cardanically movable suspension can be realized in the same way as described above in the definition of the term cardanically movable joint.
- it may consist of an assembly of several parts which are not directly connected to each other but are only connected to each other via the supporting structure and via the stand.
- one-piece gimbals e.g. the universal joint
- the gimbal is realized by two elongate elements made of elastic material, in particular natural or artificial rubber material.
- the rigidity of the two elongate elements for linear movements in the direction of their longitudinal axis (the axis in which the elements are elongate) is significantly greater than for bending of the elements about their longitudinal axis.
- the curvatures can be torsions about the longitudinal axis and/or curvatures of the longitudinal axis in two different mutually perpendicular directions.
- the two elongate elements are arranged with their longitudinal axes parallel to one another, with the wagon body of the rail vehicle or the structure connected to the bogie and/or the wagon body being connected to one end of the elongate element in its longitudinal direction, and to the other end in each case
- the runner of the drive motor is connected to the longitudinally opposite end of the elongate element, so that the described rotational movements of the cardanically movable suspension are realized due to the curvatures.
- the longitudinal axes of the elongate elements run in the vertical direction in the neutral position (see below).
- the weight of the drive motor and possibly a part of the drive train that they carry does not lead to an unequal change in length of the two elongate elements that are designed in the same way.
- an equal bending of both elongate elements about their longitudinal axes leads to a rotational movement about an axis of rotation which crosses the two longitudinal axes of the elongate elements approximately perpendicularly.
- torsional movements of the two elongate elements result in a rotational movement of the stand relative to the supporting structure, this second axis of rotation being approximately central to the two longitudinal axes of the elongate elements in the direction of the longitudinal axes in the neutral position, i.e. parallel to the longitudinal axes in the neutral position.
- Combinations of the rotary motions about the two axes of rotation mentioned are also possible, with a slight shift in the position of the two axes of rotation being possible.
- the cardanic mobile suspension is realized by two annular elements made of elastic material, in particular natural or artificial rubber material.
- the ring-shaped elements each extend around an axis, which is in particular an axis of rotational symmetry.
- the two axes are parallel to each other at a distance.
- the bogie or other part of the supporting structure of the vehicle are connected to each other via the two ring-shaped elements.
- One part of the two is with each other parts to be connected (e.g. the motor housing) is connected to the radially inner surfaces of the annular members and the other part (e.g.
- the bogie frame is connected to the radially outer surface of the annular members.
- the rubber material can be vulcanized to a first annular sleeve on the radially inner side and to a second annular sleeve on the radially outer side.
- the sleeves are firmly connected to the part to be connected.
- the direction-dependent rigidity of the ring-shaped, elastic elements can now be selected and/or adjusted in such a way that the desired cardanic mobility of the suspension is achieved.
- a cardanic joint in the drive train and a separate cardanic suspension are easier to implement than two cardanic joints in the drive train. Therefore, the weight of the assembly can also be reduced. In general, it applies to all embodiments that the number of complex components for ensuring the offset (e.g. parallel offset of the axis of rotation of a drive train part) can be reduced.
- An additional axial mobility of the rotor compared to the stator of the electric motor has the advantage that the cardanic movable joint in the drive train can be made simpler. For example, a curved tooth coupling with axial compliance is not required.
- the axial mobility of the motor also has the advantage that the bearing of the rotor is completely free of friction and wear due to the magnetic field of the motor.
- a neutral position can be defined for the gimbal, in which the axis of rotation of the runner crosses the two axes of rotation of the gimbal vertically, but not necessarily at the same point.
- an articulated chain is implemented, with the drive motor being part of the articulated chain.
- the drive motor is located between the gimballed suspension and the gimbaled joint with respect to the power flow between the supporting structure and the drive train.
- the following configuration relates in particular to a transverse drive, i.e. the axis of rotation of the motor rotor runs transversely to the direction of travel:
- the degrees of freedom of the movement that the drive motor due to the cardanically movable suspension relative to the bogie of the rail vehicle, relative to the car body of the rail vehicle or relative relative to the structure connected to the bogie and/or the car body can be the same degrees of freedom of movement that the part of the drive train that is coupled to the runner via the cardanically movable joint can perform relative to the runner.
- the runner is coupled via the universal joint to a part of the drive train which, when the drive motor is in operation, rotates about an axis of rotation which, in a neutral position, runs coaxially with the axis of rotation of the runner.
- the agreement in the degrees of freedom of movement allows the axis of rotation of said part of the drive train to be displaced parallel to the neutral position, e.g. B. if corresponding deflections take place during operation.
- the axis of rotation of said part of the drive train can also be moved out of the neutral position in a manner other than by parallel displacement, or it can be located permanently or predominantly in a deflected position.
- the universal joint in the case of the transverse drive, is located in the drive train between the rotor and the transmission, via which the drive forces generated by the engine are transmitted to the wheel or wheel set.
- the universal joint is located between the runner and the first gear in the course of the drive train if there are several gears. This means that the stator of the drive motor and the non-moving parts of the gearbox (especially the gearbox housing) are not connected.
- the stand and the immovable parts of the housing are movably connected relative to each other.
- the drive torque can be transmitted with the aid of a hollow shaft.
- the principle of a hollow shaft has already been discussed above. It is preferred that, in the case of the transverse drive, the torque is transmitted from the hollow shaft to the wheelset, which has two running wheels connected to one another via an axle, only on one of the running wheels. Consequently, there is no direct transmission of the drive torque from the hollow shaft to the other impeller. This other wheel is only driven via the axle of the wheelset.
- the following configuration relates in particular to a longitudinal drive, i.e. the axis of rotation of the runner runs in the direction of travel:
- an axis of rotation of the gimbal-type suspension can run parallel to an axis of rotation of the gimbal-type movable joint in the drive train and the other axis of rotation of the gimbal-type suspension perpendicular to the other axis of rotation of the gimbal moveable joint.
- the runner is coupled to the wheel or wheel set via an angular gear.
- the stand or the housing of the drive motor and the gear housing or the immovable parts of the transmission are fixed, ie immovable relative to each other, connected to each other.
- the engine and bevel gear therefore form a common drive module which is suspended from the vehicle's supporting structure by the gimbal, the output side of the bevel gear being coupled to the driven wheel or wheel set via the gimbal.
- connection of the engine with the bevel gear saves additional suspensions, which would have to be designed to be movable accordingly.
- the fixed connection between the motor and the bevel gear prevents a linear movement of the bevel gear in the vertical direction without an additional suspension of the bevel gear.
- An angular gear means a gear that converts a drive torque about a first axis of rotation into a second drive torque about a second axis of rotation, the first and the second axis of rotation running transversely and in particular exactly perpendicular to one another.
- a significantly greater offset can be compensated for by the combination of the cardanic suspension with the cardanic joint in the drive train.
- the offset is understood to mean, in particular, the offset of the axis of rotation of the runner or the offset of the drive train from the point of view of the runner beyond the cardanically movable joint.
- the angles of deflection of the gimbal and gimbal are smaller. Therefore, for example, cardanic joints can be used, which have a smaller construction volume because they only allow a smaller deflection. This applies in particular to curved tooth couplings.
- the invention is therefore particularly suitable for the transverse drive and for operating situations in which particularly strong or rapid movements of the wheel or wheel set relative to the drive motor are to be expected. This is the case, for example, with high-speed trains.
- the length of the drive train in extension of the rotor's axis of rotation is limited by the width transverse to the direction of travel that is available for installation. If lower deflections are to be expected, lower demands can also be placed on the precision of the components of the universal joint in the drive train.
- the above-mentioned combination of two ground tooth couplings in the drive train enables the length compensation required in the direction of the axis of rotation of the drive train when the drive train is deflected or misaligned.
- the rotor can move axially in the direction of its axis of rotation relative to the stator. Since the gimbal mount and the gimbal, which is typically located at the other end of the motor or even much further away from the motor, are very far apart compared to the combination of two ground tooth couplings, the axial compensation in the direction of the rotor's axis of rotation is also comparatively small .
- Common drive motors allow the required axial compensation without any design changes.
- axial mobility in the direction of the axis of rotation of the rotor and/or in the direction of the further drive train connected to the rotor shaft via the universal joint can also be achieved via a universal joint that can be moved in the axial direction.
- This variant is used when the motor has no axial mobility.
- the motor has such an axial mobility, the axial mobility of the cardanic movable joint is dispensed with, so that the rotor cannot move back and forth freely in the axial direction between two end points.
- a third possibility of axial mobility consists in mobility of the cardanically movable suspension, which is preferred in particular for the above-described embodiment of a longitudinal drive with a motor and transmission that are firmly connected to one another.
- neither the motor nor the universal joint can be deflected in the axial direction.
- the axial mobility of the gimbals prevents drive forces from being transmitted via the gimbals.
- driving forces are understood to mean forces that act between the wheel and the rail and are transmitted to the supporting structure of the vehicle in order to accelerate or brake the vehicle.
- the gimbal and gimbal may be at opposite ends of the motor or even at a distance from the ends.
- the gimballed suspension may be arranged to the side of the engine. An embodiment will be discussed later. Although this arrangement shortens the distance between the suspension and joint. As a rule, however, the distance will still be significantly larger than with two cardanic joints in the drive train.
- the lateral arrangement of the cardanic suspension saves further installation space for the arrangement of the engine and the drive train.
- a drive for rail vehicles which has a drive motor with a stator and a rotor and at least one wheel driven by the drive motor or a set of wheels driven by the drive motor, which rolls on the rails of a rail route when the rail vehicle is in operation.
- the stator of the drive motor is supported via a cardanic suspension on a bogie of the rail vehicle, on a car body of the rail vehicle or on a structure connected to the bogie and/or the car body.
- the rotor of the drive motor is coupled to the wheel, to the wheel set, to at least one wheel of the wheel set and/or to a shaft of the wheel set via a cardanic joint and/or a cardanic coupling, so that during operation of the rail vehicle the driving force of the Drive motor is transmitted via the joint and / or the clutch.
- the rotor drives a drive shaft, which drives a wheel of the wheel set or a wheel set shaft of the wheel set via a transmission.
- the runner can drive a drive shaft, with the universal joint coupling a first section of the drive shaft, which is connected to the runner, to a second section of the drive shaft, so that the axes of rotation of the first section and of the second section run at an angle to one another be able.
- the gearbox mentioned in the previous paragraph is preferably located in the course of the drive train, from the point of view of the runner, beyond the second section of the drive shaft, i. H.
- the second section of the drive shaft has in particular an axis of rotation which runs coaxially to the axis of rotation of the rotor in a neutral position in which the cardanic movable joint does not lead to an angling of the first and second sections of the drive shaft.
- the axes of rotation of the drive shaft run transversely to the direction of travel of the rail vehicle.
- a longitudinal drive possible, in which the axes of rotation of the drive shaft run approximately in the direction of travel of the rail vehicle.
- the joint allows an axial relative movement of the first section and the second section in the direction of at least one of the axes of rotation of the sections.
- the axial flexibility or mobility is realized by the motor, relative between the rotor and the stator, i.e. the rotor is movably mounted in the direction of its axis of rotation, preferably solely by the magnetic field of the motor.
- the scope of the invention also includes a rail vehicle, the rail vehicle having a drive according to one of the described configurations.
- the drive motor drives the wheel or wheel set via a gear.
- the drive motor and a gear in particular an angular gear
- the drive module is via the gimbal and/or via the gimbal Coupling coupled to the wheel, to the wheel set, with at least one wheel of the wheel set and/or to the shaft of the wheel set.
- the rotor of the drive motor can have a drive shaft or be connected to a drive shaft in a rotationally fixed manner.
- the drive shaft is coupled to the wheel, the wheel set or the shaft of the wheel set via the cardanic joint and/or the cardanic coupling.
- the bogie has a bogie frame 100 with an H-shaped support profile that is open in the direction of travel, the cross member of which is denoted by 9 and the longitudinal members of which are denoted by 3a, 3b.
- Bearings 11a and 11b are arranged on opposite side members of the bogie frame 100, in which the wheel set shaft 6 of the wheel set 7a, 7b is rotatably mounted.
- the wheel set shaft 6 is driven via a gear 8 riding on the axle, which is suspended from the cross member 9 via an elastic suspension 25 .
- the drive torque is introduced into the transmission 8 via a drive shaft 19 .
- the drive shaft 19 is driven by the rotor shaft 18 of an electric motor 1 via a cardanically movable joint 5 .
- the universal joint 5 has an axial resilience or mobility in the direction of the axis of rotation of the rotor shaft 18 .
- the rotor of the drive motor 1 is denoted by 4 .
- Attached to the stand 22 is an attachment 21 which is suspended via a cardanically movable suspension 2 on a longitudinal support 12 which is attached to the crossbeam 9 .
- FIG. 2 shows the arrangement in a front view, wherein the suspension 16a, 16b can also be seen, via which the wheel bearings 11a, 11b are resiliently connected to the car body 14 of the rail vehicle.
- FIG 3 shows a top view that corresponds to the top view in FIG 1 is very similar, but with the gimbal 5 replaced by a gimbal 15 which has no axial compliance. Instead, the axial flexibility in the direction of the rotor shaft is provided by the mobility of the rotor 4 relative to the stator 22 .
- figure 5 shows a plan view of an arrangement according to an embodiment of the arrangement 3 is.
- the design relates to the cardanic movable suspension and the suspension of the gear 8. These two suspensions can also be used in the in 1 arrangement shown are used.
- the gimbal of the electric motor 1 connects the longitudinal support 12 to the stator 22 of the motor 1.
- the suspension has two elongated elastic elements 52a, 52b, the longitudinal axes of which in the representation of figure 5 perpendicular to the image plane.
- the longitudinal support 12 extends at the height of the cross member 9 of the bogie frame 100.
- the two elongated elements 52a, 52b are spaced apart from one another in the longitudinal direction of the rail vehicle, i.e. in the direction of the longitudinal extension of the longitudinal support 12, and extend upwards in the direction of their longitudinal axes.
- the elements 52 are connected at their upper end to a console 51 which is fastened to the stand 22 in the upper area. A similar arrangement is based on the Figures 15 to 18 described. The mobility of the elongated elements 52 is also explained here.
- the elements 52 are rigid in the direction of their longitudinal axis, ie the length in the direction of the longitudinal axis does not change or changes only slightly as a result of the action of the forces which usually occur during operation of the bogie.
- the suspension 55 of the gear 8 can also be seen in the sectional drawing in 6 recognizable.
- a C-shaped bracket is attached to the cross member 9 of the bogie.
- Rubber springs 61a, 61b are attached to the opposite inner sides of the free ends of the C-shaped bracket 63, the opposite ends of which receive an end region of the transmission 8 between them and are fastened thereto.
- the mutually opposite rubber springs 61 each have a longitudinal axis which is aligned with the longitudinal axis of the other rubber spring and which intersects the drive shaft 10 perpendicularly to its axis of rotation.
- the longitudinal axes from the 6 shown position are offset and therefore intersect a parallel of the axis of rotation.
- the suspension 55 allows, in particular, rotations of the drive shaft 10 about three mutually perpendicular axes of rotation. These axes of rotation run in 6 in the vertical and horizontal direction in the plane of the figure and perpendicular to the plane of the figure.
- a suspension of the transmission 8 has a pendulum support.
- a pendulum carrier 71 is firmly connected, which has a first joint 73 at its upper end in the direction of gear 8 projecting, which a rotational movement of a pendulum 77 to a perpendicular to the plane of 7 axis of rotation allowed.
- this is connected to the transmission via a further joint 75.
- the second joint 75 also allows a rotational movement about a perpendicular to the plane of 7 rotating axis of rotation.
- the suspension mainly admits movements in the direction of the horizontal axis 7 to, which runs approximately at the level of the drive shaft 10 and the wheelset shaft 6.
- the second joint 75 can also run above or below the level of the drive shaft 10 .
- Out 8 is the already based on figure 5 described gimbal movable suspension recognizable.
- the cross member 9 sets (in 8 extending to the left) the longitudinal support 12, on top of which the elongate elements 52a, 52b are fixed, at a distance from each other. At their upper ends, the elements 52 are connected to the console 51, which is fastened to the stand housing in the upper area.
- FIG. 9 shows a plan view of a longitudinal drive for a wheel set with wheels 7a, 7b.
- the wheelset shaft 6 is connected via wheel bearings 11a, 11b to the bogie frame 101, which is open on one side in the direction of travel.
- the bogie has a crossbeam 91 on which the cardanic mobile suspension 92 is attached, which also allows a linear movement of the engine 1 in the direction of travel (from top to bottom in 9 running) allows relative to the cross member.
- the suspension 92 via a support structure 97 connected to the stator of the engine 1, allows rotary movements about a horizontal direction, transverse to the direction of travel (in the plane of the figure 9 from left to right) extending axis of rotation and a perpendicular to the plane of the figure 9 running axis of rotation.
- rotary movements about the axis running in the direction of travel which is aligned with the axis of rotation of the rotor shaft 108, are prevented.
- the engine 1 is fixed, ie immovable relative thereto, connected to a transmission 98 which is coupled to the wheelset shaft 6 via a hollow shaft 109 and a cardanically movable coupling 95 .
- the rotor 4 of the motor 1 transmits the torque it produces via the rotor shaft 108, the gear 98, the hollow shaft 109 and the universally movable coupling 95 to the wheel set shaft 6 and therefore drives it.
- a longitudinal drive with the engine suspension according to the invention can also be different than based on 9 explained are realized.
- the rotor of the motor which is gimballed to the cross member of the bogie, can be coupled directly to a gearbox, for example a bevel spur gear, without the interposition of a cardanic joint.
- the rotor shaft of the motor rotor is therefore not cardanically movable relative to the gear.
- the cardanic mobility in the drive train is realized in the area of the drive train between the transmission and the wheelset.
- a pinion of the transmission can drive a large wheel, which is non-rotatably connected to the drive side of a cardanic joint.
- This cardanic joint can be, for example, a curved tooth coupling.
- the output side of the curved tooth coupling can, for example, be connected directly to the shaft of the wheelset to be driven.
- FIG 10 shows schematically the basic principle of mobility of the arrangement according to the invention.
- the supporting structure on the left in the picture is denoted by the reference number 90 .
- the motor 1 with its stand 22 is suspended from this supporting structure 90 via a connecting element 21 and the cardanically movable suspension 2 .
- the stand 22 is thus rotatably movable relative to the supporting structure 90 about two mutually perpendicular axes of rotation, in particular those perpendicular to the plane of the drawing in FIG 10 rotating axis of rotation.
- this axis of rotation running perpendicular to the image plane can be, for example, the horizontal or the vertical axis.
- the axial mobility in the direction of the axis of rotation of the rotor shaft or the drive shaft is from the example of 10 not visible. Rather, the example corresponds, for example, to an axial mobility at the transition between the drive shaft and the non-in 10 gear shown.
- FIG. 11 shows a variant in which the in 10
- the arrangement shown is in its neutral position, but with the connection 21 not being aligned in the direction of the rotor shaft, but already inclined with respect to the supporting structure 90.
- This example shows that the mobile gimbal 2 also allows the suspension to be displaced within certain limits without hampering its operation.
- the arrangement according to the invention therefore allows tolerances in production and assembly within certain limits without jeopardizing the function.
- the supporting structure 109 is connected via a connection 31 to the cardanically movable suspension 32, which acts on the motor 1 in the left-hand area of the stator housing.
- a concrete embodiment shows 13 .
- Supporting parts 19a, 19b can be seen on the right and left in the figure.
- the suspension is connected to the cross member of a bogie via these parts, for example.
- a connecting element 131, 132 which is attached to the lower end of an elastic element 135a or 135b, extends from the supporting parts 19a, 19b in the direction of the other supporting part 19, respectively.
- a connecting element 136a, 136b made of non-elastic material is fastened to the upper end of the elastic element 135 and connects the elastic element 135a, 135b to the housing of the motor 1.
- the function of the mobile gimbal according to 13 is e.g. as in the in 8 suspension shown. The function is also based on the Figures 15 to 18 explained.
- FIG. 14 shows an example of an elongate elastic element.
- This element has a cylindrical shape. In practice, however, the shape does not have to be cylindrical, but rather can be used, for example, as in 13 shown have a curved course in the longitudinal direction.
- disc-shaped segments 142a to 142e made of elastic material, for example made of natural or synthetic rubber material are located between these end discs 141.
- a bore extends longitudinally through all discs 141, 142.
- a tension element made of non-elastic material extends through it, via which the end discs 141 are clamped against one another, so that the discs 142 made of elastic material are clamped together in the longitudinal direction. Therefore, no or only very little elastic deformation is possible in the longitudinal direction.
- the bracing is designed in such a way that the elastic element can twist about its longitudinal axis and bend in such a way that the longitudinal axis is no longer straight but curved.
- FIG 15 shows schematically an arrangement with two elastic elements 151 a, 151 b, whose longitudinal axes are perpendicular to the plane of FIG 15 get lost.
- the elements 151 are connected to the supporting structure 150 .
- the elements 151 are each connected to a connecting structure 153a, 153b, wherein the connecting structures 153a, 153b can also be a single structure, ie they can also be firmly connected to one another or form one piece.
- the housing of the motor 1 is connected to the supporting structure 153 .
- the rotor shaft 18 is connected to the drive shaft 19 via a cardanically movable joint 155 in the drive train.
- 17 and 18 show the arrangement of 15 in a side view. 17 shows the neutral position. In the view of 17 are the elastic elements 151 above the supporting structure 150 in a row. Therefore, only the outline of one of the elements 151 can be seen.
- connection structure 153 and the motor 1 connected thereto are perpendicular to the plane of the image 17 and 18 axis of rotation rotated upwards.
- the elastic elements have performed a movement in which their longitudinal axis (runs in 17 and 18 in vertical direction) has warped.
- the longitudinal axis runs from bottom to top, sloping slightly to the left.
- FIG. 19 shows a schematic plan view of another embodiment of a transverse drive according to the invention.
- the wheel set 207a, 207b which is mounted in a rotationally fixed manner on the wheel set shaft 6, is fastened to the bogie frame 200 via pivot bearings 11a, 11b.
- FIG. 1 shows a top view of the arrangement according to FIG 13 .
- the dimensions of the drive motor 1 in relation to the dimensions of the attachment and the crossbeams can be chosen differently than in FIG 13 , why in 19 reference numeral 201 is used for the drive motor.
- a first cross member 19b of the bogie connects the opposite longitudinal members on which the pivot bearings 11 are mounted.
- a second cross member 19a connects the two longitudinal members (at the top in the figure).
- the drive motor 201 is located between the wheels 207. Its rotor 221 is designed as a hollow shaft and concentrically encloses the wheelset shaft 6.
- the cardanic movable joint is designated by the reference numbers 205a, 205b, but it is shown differently than schematically as described above and as with hollow shafts can be realized with gimbal mobility usual ring-shaped elastic elements.
- the rotor 221 is connected via the universal joint 205 to a gear 208 or to a transmission element fixedly mounted on the wheelset shaft 6 .
- the stator of the electric motor 201 is also fastened to the crossbeams 19a, 19b via a cardanically movable suspension.
- the axes of rotation of the gimbals move with respect to the image plane of 19 perpendicular to the plane of the image and vertically in the plane of the image, i.e. perpendicular to the axis of rotation of the axle 6.
- the drive module shown is formed by a drive motor 1 and an angular gear 181 .
- the stator 22 of the motor 1 is firmly connected to the housing 190 of the bevel gear 181, so that the motor and bevel gear cannot move relative to one another.
- the motor housing and transmission housing are flanged and screwed together.
- the drive module is attached to the bogie frame 9 via a suspension 182 .
- At least one axle 6 of a wheel set with the running wheels 7a and 7b is mounted on the bogie frame 9.
- the direction of travel of the vehicle is in 20 represented by a left-to-right arrow labeled "x". This indicates that the direction of travel is usually referred to as the x-direction.
- the suspension 182 has two recesses 192 (see 21 ), in each of which an annular elastic element 184 is introduced.
- the elements 184 are designed to be essentially rotationally symmetrical, with a radially inner, cylindrical sleeve 198 (see 22 ) is attached to the radially inner surface of a rubber ring 199 and a second annular cylindrical sleeve 197 is attached to the radially outer surface of the rubber ring 199.
- the two sleeves 197, 198 and also the rubber ring 199 are arranged coaxially to an axis of rotational symmetry.
- two such annular elastic elements 184 are inserted into the corresponding recesses 192 of the suspension 182, the recesses 192 coming into contact with the outer circumference of the annular element 184 and also its linear mobility in the direction of the axis of rotational symmetry, e.g. by a constriction 193 limit in one direction.
- a projection 191 of the motor 1 is inserted into the cylindrical interior space of the annular element 184, which is formed radially on the inside by the inner sleeve 198.
- the bevel gear 181 shown schematically is non-rotatably connected to the rotor shaft of the motor 1 by a first bevel gear 185 .
- the first bevel gear 185 is part of a first bevel gear which transmits the drive torque to a first gear 187 which in turn drives a second gear 188 .
- the second gear wheel 188 is arranged in a rotationally fixed manner on an output shaft 186 of the bevel gear 181, which drives the running wheel 7b via a cardanically movable joint 180.
- the right part of the impeller 7b is in 20 and 21 shown cut open. On the cut-away side, one can also see the cardanically movable joint, which is designed, for example, as a curved-tooth coupling half.
- the curved tooth coupling half 180 can (as in 21 shown) screwed in via screws 194 and threaded holes 195 of the impeller 7b.
- an elastic pin coupling can be used, for example, which, similar to the cardanically movable suspension, can have annular elastic elements for torque transmission.
- annular elastic elements 184 of the suspension 182 there is in the case shown a rotational mobility of the drive module relative to the suspension 182 by a vertical to the plane of the 20 or. 21 axis of rotation (z-axis) and about a second axis of rotation (y-axis) running horizontally and perpendicularly to the x-axis and z-axis. Furthermore, there is linear mobility of the annular elastic elements 184 relative to the recesses 192 in the x-direction. This linear mobility in the x-direction can also be achieved in other ways, for example by a corresponding relative mobility of the projections 191 of the motor 1 relative to the annular elastic elements 184. This linear mobility prevents forces between the wheels 7 and the rails as Driving forces or braking forces act, are transmitted via the gimbal movable suspension 182.
- the drive module is arranged outside the bogie frame 9
- the drive module also within the bogie frame, ie between the wheels 7a, 7b are arranged.
- a hollow shaft coupling can optionally be used, which also has cardanic mobility.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Toys (AREA)
- Vehicle Body Suspensions (AREA)
Description
- Die Erfindung betrifft einen Antrieb für Schienenfahrzeuge mit einem Antriebsmotor und mit zumindest einem von dem Antriebsmotor angetriebenen Rad oder Radsatz. Das Rad oder die Räder des Radsatzes rollen beim Betrieb des Schienenfahrzeugs auf den Fahrschienen eines Schienenweges. Die Erfindung betrifft ferner ein Verfahren zum Herstellen eines derartigen Antriebs. Außerdem betrifft die Erfindung ein Schienenfahrzeug mit einem solchen Antrieb.
- Antriebsmotoren von Schienenfahrzeugen werden häufig am Drehgestell abgestützt, dessen Räder der Antriebsmotor antreiben soll. Unter Abstützung wird die Aufnahme der Gewichtskraft des Antriebsmotors und der dynamischen Kräfte durch Bewegungen des Schienenfahrzeugs und Stöße während des Betriebes sowie die Abstützung des Motors zur Erzeugung des Drehmomentes verstanden. Dabei können insbesondere Relativbewegungen des Antriebsmotors einerseits und des angetriebenen Rades oder Radsatzes andererseits auftreten. Auf die damit verbundenen Probleme wird noch näher eingegangen. Alternativ zu der Abstützung des Antriebsmotors am Drehgestell kommt eine Abstützung am Wagenkasten des Schienenfahrzeugs oder an Bauteilen infrage, die mit dem Drehgestell und/oder dem Wagenkasten verbunden sind. Diese Teile können auch relativ zu dem Wagenkasten und/oder dem Drehgestell beweglich sein, obwohl sie daran mechanisch angekoppelt sind. Z.B. kann am Wagenkasten eine Motoraufhängung befestigt sein, die es dem Antriebsmotor erlaubt, eine Pendelbewegung relativ zu dem Wagenkasten auszuführen.
- Die erwähnte Relativbewegung zwischen dem Antriebsmotor und dem angetriebenen Rad oder Radsatz ist zu einem wesentlichen Teil darauf zurückzuführen, dass das Rad oder der Radsatz bei der Fahrt des Schienenfahrzeuges keine geradlinige, gleichförmige Bewegung ausführt (d.h. mit konstanter Geschwindigkeit geradeaus auf der Fahrschiene abrollt), sondern Längsbeschleunigungen und Querbeschleunigungen aufgrund von Stößen, Kurvenfahrten und anderen Ereignissen ausgesetzt ist. Insbesondere kann das Rad oder der Radsatz relativ zu dem Drehgestellrahmen und entgegen der Federung des Fahrzeuges Bewegungen in vertikaler Richtung (z-Richtung) ausführen. Bei einem Radsatz mit zwei einander gegenüberliegenden drehfest auf einer Radsatzwelle montierten Rädern z.B. kann sich die Radsatzwelle relativ zum Drehgestell in beliebigen Richtungen aus ihrer Neutralstellung herausbewegen, insbesondere verkippen. Der Drehpunkt einer Kippbewegung kann nicht nur in der Mitte der Radsatzwelle liegen, sondern z.B. auch in deren Endbereichen oder nahe den Rädern. Auch kann sich die Radsatzwelle parallel zu ihrer Neutralstellung verlagern. Außerdem ist die Radsatzwelle Torsionsund Biegeschwingungen ausgesetzt.
- Daher ist es üblich, die Übertragungsmittel zum Übertragen des AntriebsDrehmoments vom Antriebsmotor auf das Rad oder die Radsatzwelle so auszugestalten, dass eine Elastizität oder Beweglichkeit gegeben ist, die das Antriebssystem vor Schäden bewahrt. Bekannt ist z.B. der Hohlwellenantrieb, bei dem die Radsatzwelle innerhalb einer Hohlwelle angeordnet ist und wobei der Antriebsmotor das Antriebs-Drehmoment über die Hohlwelle auf ein Rad des Radsatzes oder auf den Radsatz überträgt. Die Hohlwelle ist über eine Kupplung (z. B. Gummikupplung, Membrankupplung, Laschenkupplung oder Zahnkupplung) mit dem angetriebenen Rad verbunden. Am gegenüberliegenden Ende der Hohlwelle ist diese über ein kardanisch bewegliches Gelenk mit einem Getriebe verbunden, welches von dem Antriebsmotor angetrieben wird. Antriebe mit Hohlwellen sind konstruktiv und herstellungstechnisch aufwendig. Außerdem beschränken sie den für den Antriebsmotor zur Verfügung stehenden Bauraum, da die Hohlwelle und die mit der Hohlwelle gekoppelten Gelenke und/oder Getriebe entsprechend großen Bauraum benötigen.
- Unter einem kardanisch beweglichen Gelenk wird ein Gelenk verstanden, das den über das Gelenk miteinander gekoppelten Teilen ermöglicht, sich relativ zueinander um zwei zueinander senkrecht stehende Drehachsen (auch Rotationsachsen genannt) zu bewegen. Bei den Drehachsen kann es sich um gedachte Drehachsen handeln, die nicht den Rotationsachsen von Wellen entsprechen müssen, wie es z.B. bei dem Kreuzgelenk (auch Kardangelenk genannt) der Fall ist. Ein kardanisch bewegliches Gelenk muss auch nicht einstückig ausgestaltet sein. Z.B. kann es aus Teilen bestehen, die jeweils die Rotation um eine der beiden zueinander senkrecht stehenden Rotationsachsen ermöglichen. Außerdem kann eine Relativbewegung der über das Gelenk miteinander gekoppelten Teile aus einer Neutralstellung des Gelenks in eine ausgelenkte Stellung des Gelenks mit einer elastischen Verformung verbunden sein, die zu Rückstellkräften in die Neutralstellung führt. Dies ist insbesondere dann der Fall, wenn Teile des Gelenks aus elastischen Materialen bestehen, wie es z.B. bei der Hardy-Scheibe der Fall ist.
- Insbesondere hat das kardanisch bewegliche Gelenk selbst keine lineare Beweglichkeit in der Richtung der Achse, die senkrecht zu den beiden Rotationsachsen steht. Ebenfalls ermöglicht das kardanisch bewegliche Gelenk nicht selbst eine lineare Beweglichkeit in Richtung der beiden Rotationsachsen. Ferner ist das kardanisch bewegliche Gelenk nicht rotationsbeweglich um die Achse, die senkrecht zu den beiden Rotationsachsen verläuft.
- Die oben beschriebene Ankopplung der Hohlwelle über eine Gummikupplung mit ringförmigem Gummielement an das angetriebene Rad ist ein weiteres Beispiel für ein kardanisch bewegliches Gelenk mit elastischen Rückstellkräften. Anstelle von Gummimaterialien kann ein kardanisch bewegliches Gelenk z.B. auch Bauteile aus Materialien mit hohem Elastizitätsmodul (z.B. Stahl) aufweisen, die jedoch elastisch formveränderlich sind (z.B. Federelemente wie Blattfedern aus Stahl).
- Die elastische oder nicht elastische Relativbeweglichkeit von Teilen des Antriebsstranges kann auch als Masseentkopplung bezeichnet werden, da unerwünschte dynamische Anregungen und Bewegungen von Massen (z.B. des Rades oder des Radsatzes) nicht oder nicht vollständig auf andere Massen übertragen werden (z.B. den Antriebsmotor).
- Zur Masseentkopplung von Komponenten des Antriebsstranges können außer dem beschriebenen Hohlwellensystem auch andere Spezialkupplungen, spezielle Getriebe und/oder Gelenkwellen eingesetzt werden. Häufig ist auch eine axiale Nachgiebigkeit im Antriebsstrang, d.h. eine Nachgiebigkeit in Richtung der Rotationsachse, gewünscht, um die ein Teil oder mehrere Teile des Antriebsstrangs rotieren, um das Antriebs-Drehmoment zu übertragen. Wenn hier von dem Antriebs-Drehmoment die Rede ist, so schließt dies selbstverständlich den Fall ein, dass dieses Drehmoment z.B. durch ein Getriebe im Antriebsstrang gewandelt wird. Z.B. bei dem im ICE 3 der Deutschen Bahn AG verwendeten Antrieb ist ein so genannter Querantrieb realisiert, bei dem die Rotationsachse des Läufers des Antriebsmotors etwa parallel zur Radsatzwelle des angetriebenen Radsatzes verläuft. Der Ständer des Antriebsmotors ist an einem Querträger des Drehgestells abgestützt. Die Läuferwelle weist eine doppelte Bogenzahnkupplung auf. Diese Kupplung entspricht der Hintereinanderschaltung von zwei Gelenken mit kardanischer Beweglichkeit, wobei außerdem noch eine axiale Beweglichkeit der über die Bogenzahnkupplung miteinander gekoppelten Wellenabschnitte gegeben ist. Nachteilig an dieser Art der Masseentkopplung ist, dass zwischen den beiden kardanisch beweglichen Gelenken in axialer Richtung des Antriebsstrangs lediglich ein kurzer Abschnitt des Antriebsstrangs liegt. Daher kann anders als bei der oben beschriebenen Entkopplung mit Hohlwelle lediglich ein relativ kleiner Versatz der Radsatzwellenachse aus ihrer Neutralstellung ausgeglichen werden. Bei dem Querantrieb ist das aus Sicht des Läufers entfernte Ende der Läuferwelle über ein so genanntes achsreitendes Getriebe, d.h. ein Getriebe, welches sich zumindest teilweise auf der Radsatzwelle abstützt, mit der Radsatzwelle gekoppelt.
-
DE 9116159 U1 beschreibt einen Achsantrieb, insbesondere für eine in einem Drehgestell angeordnete Radsatzachse, eines Schienenfahrzeuges, wobei die Achse des Antriebsmotors parallel zur Radsatzachse verläuft. Auf der Achse ist ein Stirnradgetriebe fest angeordnet, mit welchem die Radsatzachse angetrieben wird. Das Stirnradgetriebe wird durch eine Drehmomentstütze gegenüber dem Drehgestell abgestützt. Die Drehmomentstütze ist einerseits durch ein Universalgelenk mit dem Drehgestell und andererseits durch ein Universalgelenk mit dem Stirnradgetriebe verbunden. Die Universalgelenke erlauben ein begrenztes Schwenken und Verdrehen der Drehmomentstütze gegenüber den Anlenkpunkten. Eine kardanische Kupplung verbindet die Antriebswelle mit dem Antriebsmotor, welcher am Drehgestell befestigt ist. -
DE 2925836 A1 beschreibt eine Antriebsvorrichtung für ein elektrisches Triebfahrzeug mit einem Triebmotor, der mit einem Getriebekasten verbunden ist. Ein Antriebsende des Triebmotors ist mit einem Ring versehen, der eine elastische Gummiringkupplung trägt. Diese ist im Inneren eines Flansches eingepresst. Ein Ritzel des Getriebes ist mit Hilfe einer Befestigungsschraube mit dem Flansch verbunden, wobei die Kontaktflächen des Ritzels und des Flansches Verzahnungen aufweisen, die das Gleiten der Kontaktflächen verhindern. Der Getriebekasten ist über Lager auf der Achswelle abgestützt. Das Nicht-Antriebsende des Triebmotors ist mit einem Bügel versehen, der mit Befestigungsschrauben befestigt ist. Der mittlere Teil des Bügels ist über ein Sphärolager, das in Halterungen drehbar gelagert ist, mit dem Drehgestell verbunden. Zur Verbindung des Triebmotors und des Getriebekastens dienen ein mit dem Triebmotor verbundener innerer Ring und ein mit dem Getriebekasten verbundener äußerer Ring, zwischen welchen eine elastische Gummiringkupplung eingepresst ist. In der gabelförmigen Verlängerung 9' des Getriebekastens ist drehbar ein Sphärolager befestigt, das über eine Drehmomentstütze und einen Befestigungsarm mit dem Drehgestell verbunden ist. -
EP 1 197 412 A2 beschreibt eine Antriebseinheit für Schienenfahrzeuge mit einem am Fahrzeugrahmen oder am Fahrwerk aufgehängten Elektromotor, einem Getriebe und einem kardanisch wirkenden Kupplungssystem, das zwischen der Radsatzwelle und dem Getriebe angeordnet ist. In einer Ausführungsform ist die Antriebseinheit an der Außenseite des Radsatzes angeordnet und mittels Befestigungseinrichtungen mit dem Drehgestell verbunden. -
EP 0 175 867 A1 beschreibt eine kardanische Doppelkupplung. Bei einer Anwendung der Doppelkupplung in einem Doppelachsantrieb für Schienenfahrzeuge ist an den Stirnseiten eines längs zur Fahrtrichtung liegenden Elektromotors je ein Winkelgetriebe angeflanscht, welches mit Hilfe von Kegelrädern Hohlwellen einer der Doppelkupplungen antreibt. Der Elektromotor ist zusammen mit den Winkelgetrieben durch elastische Aufhängungen mit dem Drehgestellrahmen verbunden. - Es ist eine Aufgabe der vorliegenden Erfindung, einen Antrieb für Schienenfahrzeuge anzugeben, der bei geringem benötigtem Bauraum Relativbewegungen des angetriebenen Rades oder Radsatzes einerseits und des Antriebsmotors andererseits über einen möglichst weiten Bewegungsbereich ermöglicht. Ferner ist es eine Aufgabe der vorliegenden Erfindung, ein Herstellungsverfahren für ein derartiges Getriebe und ein Schienenfahrzeug mit einem derartigen Getriebe anzugeben.
- Die beigefügten Patentansprüche definieren den Schutzumfang.
- Es wird vorgeschlagen, dass der Ständer des Antriebsmotors über eine kardanisch bewegliche Aufhängung an einem Drehgestell des Schienenfahrzeugs, an einem Wagenkasten des Schienenfahrzeugs oder an einer mit dem Drehgestell und/oder den Wagenkasten verbundenen Konstruktion abgestützt ist.
- Unter einer kardanisch beweglichen Aufhängung wird analog zu der oben genannten Definition eines kardanisch beweglichen Gelenks ein Gelenk verstanden, das den über das Gelenk miteinander gekoppelten Teilen ermöglicht, sich relativ zueinander um zwei zueinander senkrecht stehende Drehachsen zu bewegen, d.h. zu rotieren. Insbesondere kann die kardanisch bewegliche Aufhängung in derselben Weise, wie oben für das kardanisch bewegliche Gelenk beschrieben, bezüglich der beiden Rotationsachsen linear unbeweglich sein, bezüglich der senkrecht zu den beiden Rotationsachsen stehenden Achse linear unbeweglich sein und auch bezüglich der senkrecht zu den beiden Rotationsachsen verlaufenden Achse rotatorisch unbeweglich sein. Allerdings kann, wie noch näher ausgeführt wird, zusätzlich zu dem eigentlichen kardanisch beweglichen Gelenk oder der kardanisch beweglichen Aufhängung eine lineare Beweglichkeit in Richtung der Achse vorgesehen werden, die senkrecht zu den beiden Rotationsachsen steht.
- Die kardanisch bewegliche Aufhängung ist jedoch nicht im Antriebsstrang (zwischen Läufer und Rad oder Radsatz) angeordnet und rotiert daher nicht kontinuierlich, um ein Drehmoment zu übertragen. Andererseits stützt die kardanisch bewegliche Aufhängung den Ständer des Antriebsmotors derart ab, dass das Drehmoment des Läufers übertragbar ist. Die zwei zueinander senkrecht stehenden Drehachsen der kardanisch beweglichen Aufhängung stehen etwa senkrecht zu der Drehachse des Läufers.
- Je nach Ausführung müssen die Drehachsen der kardanisch beweglichen Aufhängung nicht unbedingt einander kreuzen, wie es bei einem Kreuzgelenk der Fall ist (s.o. zur Definition und zu Ausführungen des kardanisch beweglichen Gelenks).
- Unter senkrecht wird auch verstanden, dass die eine Drehachse lediglich eine Parallele der anderen Drehachse senkrecht kreuzt. Auch kann sich die Lage der Drehachsen im Raum und relativ zu dem Ständer und dem abstützenden Teil (z. B. Drehgestellrahmen) während der Drehung leicht verändern. Ferner müssen die Steifigkeiten und/oder Widerstände der Rotationsbewegungen um die beiden Drehachsen der kardanisch beweglichen Aufhängung nicht gleich sein.
- Die kardanisch bewegliche Aufhängung kann in gleicher Weise wie oben bei der Definition des Begriffs kardanisch bewegliches Gelenk beschrieben realisiert werden. Insbesondere kann sie aus einer Anordnung von mehreren Teilen bestehen, die nicht direkt miteinander verbunden sind, sondern lediglich über die abstützende Konstruktion und über den Ständer miteinander verbunden sind. Wie ebenfalls oben erwähnt, kommen jedoch auch einstückige kardanisch bewegliche Gelenke (z. B. das Kreuzgelenk) für die Aufhängung infrage.
- Bei einer bevorzugten Ausführungsform wird die kardanisch bewegliche Aufhängung durch zwei langgestreckte Elemente aus elastischem Material, insbesondere aus natürlichem oder künstlichem Gummimaterial, realisiert. Dabei ist die Steifigkeit der beiden langgestreckten Elemente für Linearbewegungen in Richtung ihrer Längsachse (der Achse, in der die Elemente langgestreckt sind) wesentlich größer als für Verkrümmungen der Elemente um ihre Längsachse. Die Verkrümmungen können Torsionen um die Längsachse sein und/oder Krümmungen der Längsachse in zwei verschiedene zueinander senkrecht stehende Richtungen. Die beiden langgestreckten Elemente sind mit ihren Längsachsen parallel zueinander angeordnet, wobei jeweils mit dem einen Ende des langgestreckten Elements in dessen Längsrichtung der Wagenkasten des Schienenfahrzeugs oder die mit dem Drehgestell und/oder dem Wagenkasten verbundene Konstruktion verbunden ist und jeweils mit dem anderen, in der Längsrichtung entgegengesetzten Ende des langgestreckten Elements der Läufer des Antriebsmotors verbunden ist, so dass aufgrund der Verkrümmungen die beschriebenen Drehbewegungen der kardanisch beweglichen Aufhängung realisiert sind. Dabei wird ferner bevorzugt, dass die Längsachsen der langgestreckten Elemente in der Neutralstellung (siehe unten) in vertikaler Richtung verlaufen. Da die langgestreckten Elemente in dieser Richtung sehr steif ausgestaltet sind, führt das von ihnen getragene Gewicht des Antriebsmotors und gegebenenfalls eines Teils des Antriebsstranges nicht zu einer ungleichen Längenänderung der beiden gleich ausgestalteten langgestreckten Elemente. Insbesondere führt daher eine gleiche Verbiegung beider langgestreckten Elemente um ihre Längsachsen zu einer Drehbewegung um eine Drehachse, die die beiden Längsachsen der langgestreckten Elemente etwa senkrecht kreuzt. Ferner führen Torsionsbewegungen der beiden langgestreckten Elemente zu einer Drehbewegung des Ständers relativ zu der abstützenden Konstruktion, wobei diese zweite Drehachse etwa mittig zu den beiden Längsachsen der langgestreckten Elemente in Richtung der Längsachsen in Neutralstellung, d.h. parallel zu den Längsachsen in Neutralstellung verläuft. Kombinationen der Drehbewegungen um die beiden genannten Drehachsen sind ebenfalls möglich, wobei es zu einer leichten Verschiebung der Lage der beiden Drehachsen kommen kann.
- Gemäß einer weiteren bevorzugten Ausführungsform, die insbesondere für einen Längsantrieb (die Rotationsachse des Läufers des Antriebsmotors erstreckt sich in Fahrtrichtung) geeignet ist, wird die kardanisch bewegliche Aufhängung durch zwei ringförmige Elemente aus elastischem Material, insbesondere aus natürlichem oder künstlichem Gummimaterial, realisiert. Die ringförmigen Elemente erstrecken sich jeweils um eine Achse, die insbesondere eine Rotationssymmetrieachse ist. Die beiden Achsen verlaufen parallel zueinander in einem Abstand. Über die beiden ringförmigen Elemente sind das Drehgestell oder der andere Teil der tragenden Konstruktion des Fahrzeugs miteinander verbunden. Dabei ist der eine Teil der beiden miteinander zu verbindenden Teile (z.B. das Motorgehäuse) mit den radial innenliegenden Oberflächen der ringförmigen Elemente verbunden und ist der andere Teil (z.B. der Drehgestellrahmen) mit der radial außenliegenden Oberfläche der ringförmigen Elemente verbunden. Z.B. kann das Gummimaterial an der radial innenliegenden Seite an eine erste ringförmige Hülse und an der radial außenliegenden Seite an eine zweite ringförmige Hülse anvulkanisiert sein. Die Hülsen wiederum sind fest mit dem jeweils zu verbindenden Teil verbunden. Die richtungsabhängige Steifigkeit der ringförmigen, elastischen Elemente kann nun so gewählt und/oder eingestellt werden, dass die gewünschte kardanische Beweglichkeit der Aufhängung erzielt wird.
- Ein kardanisch bewegliches Gelenk im Antriebsstrang und eine separate kardanisch bewegliche Aufhängung sind einfacher zu realisieren als zwei kardanisch bewegliche Gelenke im Antriebsstrang. Daher kann auch das Gewicht der Anordnung reduziert werden. Generell gilt für alle Ausführungsformen, dass die Anzahl der komplexen Bauteile für die Gewährleistung des Versatzes (z.B. Parallelversatz der Rotationsachse eines Antriebsstrang-Teils) reduziert werden kann.
- Eine zusätzliche axiale Beweglichkeit des Läufers gegenüber dem Ständer des Elektromotors hat den Vorteil, dass das kardanisch bewegliche Gelenk im Antriebsstrang einfacher ausgeführt werden kann. Z.B. wird keine Bogenzahnkupplung mit axialer Nachgiebigkeit benötigt. Die axiale Beweglichkeit des Motors hat ferner den Vorteil, dass die Lagerung des Läufers durch das magnetische Feld des Motors vollständig reibungs- und verschleißfrei ist.
- Für die kardanisch bewegliche Aufhängung kann eine Neutralstellung definiert werden, in der die Rotationsachse des Läufers die beiden Drehachse der kardanisch beweglichen Aufhängung jeweils senkrecht jedoch nicht zwangsläufig in demselben Punkt kreuzt.
- Da - wie erwähnt - Drehbewegungen des Ständers und des abstützenden Teils um die beiden Drehachse der kardanisch beweglichen Aufhängung möglich sind und da sich auch im Antriebsstrang ein kardanisch bewegliches Gelenk befindet, ist eine Gelenkkette realisiert, wobei der Antriebsmotor Teil der Gelenkkette ist. Der Antriebsmotor befindet sich hinsichtlich des Kraftflusses zwischen der abstützenden Konstruktion und dem Antriebsstrang zwischen der kardanisch beweglichen Aufhängung und dem kardanisch beweglichen Gelenk.
- Die folgende Ausgestaltung betrifft insbesondere einen Querantrieb, d.h. die Rotationsachse des Motor-Läufers verläuft quer zur Fahrtrichtung: Insbesondere können die Freiheitsgrade der Bewegung, die der Antriebsmotor aufgrund der kardanisch beweglichen Aufhängung relativ zu dem Drehgestell des Schienenfahrzeugs, relativ zu dem Wagenkasten des Schienenfahrzeugs oder relativ zu der mit dem Drehgestell und/oder dem Wagenkasten verbundenen Konstruktion ausführen kann, dieselben Freiheitsgrade der Bewegung sein, die der Teil des Antriebsstranges, der über das kardanisch bewegliche Gelenk mit dem Läufer gekoppelt ist, relativ zu dem Läufer ausführen kann. Dies bedeutet, dass der Läufer über das kardanisch bewegliche Gelenk mit einem Teil des Antriebsstranges gekoppelt ist, der beim Betrieb des Antriebsmotors um eine Rotationsachse rotiert, welche in einer Neutralstellung koaxial zu der Rotationsachse des Läufers verläuft. Allerdings ermöglicht es die Übereinstimmung in den Freiheitsgraden der Bewegung, dass die Rotationsachse des genannten Teils des Antriebsstranges parallel gegen die Neutralstellung versetzt werden kann, z. B. wenn im Betrieb entsprechende Auslenkungen stattfinden. Selbstverständlich kann die Rotationsachse des genannten Teils des Antriebsstrangs auch auf andere Weise als durch Parallelverschiebung aus der Neutralstellung herausbewegt werden oder sich permanent oder vorwiegend in einer ausgelenkten Stellung befinden.
- Erfindungsgemäß ist Im Fall des Querantriebs vorgesehen, dass sich das kardanisch bewegliche Gelenk im Antriebsstrang zwischen dem Läufer und dem Getriebe befindet, über das die vom Motor erzeugten Antriebskräfte auf das Rad oder den Radsatz übertragen werden. Dabei befindet sich das kardanisch bewegliche Gelenk zwischen dem Läufer und dem im Verlauf des Antriebsstrangs ersten Getriebes, wenn mehrere Getriebe vorhanden sind. Dies bedeutet, dass der Ständer des Antriebsmotors und die unbeweglichen Teile des Getriebes (insbesondere das Getriebegehäuse) nicht verbunden sind. Gemäß einer Ausgestaltung, die nicht zum Umfang der Ansprüche gehört, sind der Ständer und die unbeweglichen Teile des Gehäuses beweglich relativ zueinander verbunden.
- Ferner kann insbesondere bei einem Querantrieb die Übertragung des Antriebsdrehmoments mit Hilfe einer Hohlwelle erfolgen. Auf das Prinzip einer Hohlwelle wurde bereits oben eingegangen. Dabei wird es bevorzugt, dass im Fall des Querantriebs die Drehmomentübertragung von der Hohlwelle auf den Radsatz, welcher zwei über eine Achse miteinander verbundene Laufräder aufweist, nur an einem der Laufräder erfolgt. Folglich findet an dem anderen Laufrad keine direkte Übertragung des Antriebsdrehmoments von der Hohlwelle statt. Dieses andere Laufrad wird lediglich über die Achse des Radsatzes angetrieben.
- Die folgende Ausgestaltung betrifft insbesondere einen Längsantrieb, d.h. die Rotationsachse des Läufers verläuft in Fahrtrichtung: Insbesondere kann eine Rotationsachse der kardanisch beweglichen Aufhängung parallel zu einer Rotationsachse des kardanisch beweglichen Gelenks im Antriebsstrang verlaufen und die andere Rotationsachse der kardanisch beweglichen Aufhängung senkrecht zur anderen Rotationsachse des kardanisch beweglichen Gelenks verlaufen. Dabei ist der Läufer über ein Winkelgetriebe mit dem Rad oder dem Radsatz gekoppelt. Dabei sind der Ständer bzw. das Gehäuse des Antriebsmotors und das Getriebegehäuse bzw. die unbeweglichen Teile des Getriebes fest, d.h. relativ zueinander unbeweglich, miteinander verbunden. Der Motor und das Winkelgetriebe bilden daher ein gemeinsames Antriebsmodul, das durch die kardanisch bewegliche Aufhängung an der tragenden Konstruktion des Fahrzeugs aufgehängt ist, wobei die Abtriebsseite des Winkelgetriebes über das kardanisch bewegliche Gelenk mit dem angetriebenen Rad oder Radsatz gekoppelt ist.
- Die Verbindung des Motors mit dem Winkelgetriebe erspart zusätzliche Aufhängungen, die entsprechend beweglich ausgestaltet werden müssten. Die feste Verbindung zwischen Motor und Winkelgetriebe verhindert ohne eine zusätzliche Aufhängung des Winkelgetriebes eine lineare Bewegung des Winkelgetriebes in vertikaler Richtung.
- Unter einem Winkelgetriebe wird ein Getriebe verstanden, das ein Antriebsdrehmoment um eine erste Rotationsachse in ein zweites Antriebsdrehmoment um eine zweite Rotationsachse umsetzt, wobei die erste und die zweite Rotationsachse quer und insbesondere exakt senkrecht zueinander verlaufen.
- Im Gegensatz zu der oben erwähnten Anordnung von zwei Bogenzahnkupplungen im Antriebsstrang kann durch die Kombination der kardanisch beweglichen Aufhängung mit dem kardanisch beweglichen Gelenk im Antriebsstrang ein wesentlich größerer Versatz ausgeglichen werden. Unter dem Versatz wird insbesondere der Versatz der Rotationsachse des Läufers oder der Versatz des Antriebsstrangs aus Sicht des Läufers jenseits des kardanisch beweglichen Gelenks verstanden. Bei gleichem Versatz sind die Winkel der Auslenkungen der kardanisch beweglichen Aufhängung und des kardanisch beweglichen Gelenks geringer. Es können daher z.B. kardanisch bewegliche Gelenke eingesetzt werden, die ein geringeres Bauvolumen haben, weil sie nur eine geringere Auslenkung ermöglichen. Dies gilt insbesondere bei Bogenzahnkupplungen. Die Erfindung eignet sich daher besonders für den Querantrieb und für Betriebssituationen, in denen besonders starke oder schnelle Bewegungen des Rades oder des Radsatzes gegenüber dem Antriebsmotor zu erwarten sind. Dies ist z.B. bei Hochgeschwindigkeitszügen der Fall. Beim Querantrieb ist die Länge des Antriebsstrangs in Verlängerung der Rotationsachse des Läufers durch die Breite quer zur Fahrtrichtung begrenzt, die für den Einbau zur Verfügung steht. Wenn geringere Auslenkungen zu erwarten sind, können auch an die Präzision der Bauteile des kardanisch beweglichen Gelenks im Antriebsstrang geringere Anforderungen gestellt werden.
- Die oben erwähnte Kombination von zwei Bodenzahnkupplungen im Antriebsstrang ermöglicht den bei Auslenkung bzw. Versatz des Antriebsstrangs erforderlichen Längenausgleich in Richtung der Rotationsachse des Antriebsstrangs. Bei gängigen Antriebsmotoren mit einem Läufer, der innerhalb des Ständers über das Magnetfeld gelagert ist, kann eine axiale Bewegung des Läufers in Richtung seiner Rotationsachse relativ zum Ständer stattfinden. Da die kardanisch bewegliche Aufhängung und das typischerweise am anderen Ende des Motors oder sogar noch deutlich weiter entfernt vom Motor angeordnete kardanisch bewegliche Gelenk im Vergleich zu der Kombination zweier Bodenzahnkupplungen sehr weit auseinander liegen, ist auch der axiale Ausgleich in Richtung der Rotationsachse des Läufers vergleichsweise gering. Gängige Antriebsmotoren ermöglichen ohne konstruktive Änderung den erforderlichen axialen Ausgleich.
- Die axiale Beweglichkeit in Richtung der Rotationsachse des Läufers und/oder in Richtung des mit der Läuferwelle über das kardanisch bewegliche Gelenk verbundenen weiteren Antriebsstrangs kann alternativ zu einer axialen Beweglichkeit des Läufers relativ zum Stator auch über ein in axialer Richtung bewegliches kardanisch bewegliches Gelenk erzielt werden. Diese Variante wird eingesetzt, wenn der Motor keine axiale Beweglichkeit besitzt. Besitzt der Motor dagegen eine solche axiale Beweglichkeit, wird auf die axiale Beweglichkeit des kardanisch beweglichen Gelenks verzichtet, damit der Läufer sich nicht frei in axialer Richtung zwischen zwei Endpunkten hin und her bewegen kann. Eine dritte Möglichkeit der axialen Beweglichkeit besteht in einer Beweglichkeit der kardanisch beweglichen Aufhängung, die insbesondere für die oben beschriebene Ausführungsform eines Längsantriebes mit fest miteinander verbundenem Motor und Getriebe bevorzugt wird. In diesem Fall sind weder der Motor noch das kardanisch bewegliche Gelenk in axialer Richtung auslenkbar. Im Fall des Antriebsmoduls mit fest verbundenem Motor und Winkelgetriebe verhindert die axiale Beweglichkeit der kardanisch beweglichen Aufhängung, dass Antriebskräfte über die kardanisch bewegliche Aufhängung übertragen werden. Unter Antriebskräften werden in diesem Fall Kräfte verstanden, die zwischen Rad und Schiene wirken und zur Beschleunigung oder Bremsung des Fahrzeugs auf die tragende Konstruktion des Fahrzeugs übertragen werden.
- Es wurde erwähnt, dass sich die kardanisch bewegliche Aufhängung und das kardanisch bewegliche Gelenk (betrachtet in Richtung der Rotationsachse des Läufers) an gegenüberliegenden Enden des Motors oder sogar in einer Entfernung von den Enden befinden können. Es ist jedoch auch möglich, dass die kardanisch bewegliche Aufhängung seitlich des Motors angeordnet ist. Auf eine Ausführungsform wird noch eingegangen. Diese Anordnung verkürzt zwar den Abstand zwischen Aufhängung und Gelenk. Der Abstand wird aber in aller Regel immer noch deutlich größer sein als bei zwei kardanisch beweglichen Gelenken im Antriebsstrang. Durch die seitliche Anordnung der kardanisch beweglichen Aufhängung wird weiterer Bauraum für die Anordnung des Motors und des Antriebsstrangs gespart.
- Wenn zuvor oder im Folgenden von dem kardanisch beweglichen Gelenk im Antriebsstrang die Rede ist, so schließt dies mit ein, dass statt des kardanisch beweglichen Gelenks eine kardanisch bewegliche Kupplung im Antriebsstrang vorgesehen ist. Gemäß der obigen Definition von dem Begriff kardanisch bewegliches Gelenk ist darunter auch eine Kupplung mit kardanischer Beweglichkeit zu verstehen. In der Praxis werden bereits Bauteile und Baugruppen eingesetzt, die mit dem Begriff Kupplung bezeichnet sind. Daher wird klargestellt, dass es sich bei dem Element oder der Baugruppe mit kardanischer Beweglichkeit im Antriebsstrang auch um eine Kupplung handeln kann.
- Insbesondere wird ein Antrieb für Schienenfahrzeuge vorgeschlagen, der einen Antriebsmotor mit einem Ständer und einem Läufer und zumindest ein vom Antriebsmotor angetriebenes Rad oder einen vom Antriebsmotor angetriebenen Radsatz, das/der beim Betrieb des Schienenfahrzeugs auf den Fahrschienen eines Schienenweges rollt, aufweist. Der Ständer des Antriebsmotors ist über eine kardanisch bewegliche Aufhängung an einem Drehgestell des Schienenfahrzeugs, an einem Wagenkasten des Schienenfahrzeugs oder an einer mit dem Drehgestell und/oder dem Wagenkasten verbundenen Konstruktion abgestützt. Der Läufer des Antriebsmotors ist über ein kardanisch bewegliches Gelenk und/oder über eine kardanisch bewegliche Kupplung mit dem Rad, mit dem Radsatz, mit zumindest einem Rad des Radsatzes und/oder mit einer Welle des Radsatzes gekoppelt, sodass beim Betrieb des Schienenfahrzeugs die Antriebskraft des Antriebsmotors über das Gelenk und/oder die Kupplung übertragen wird.
- Insbesondere treibt der Läufer beim Betrieb des Antriebes eine Antriebswelle an, die über ein Getriebe ein Rad des Radsatzes oder eine Radsatzwelle des Radsatzes antreibt.
- Der Läufer kann beim Betrieb des Antriebes eine Antriebswelle antreiben, wobei das kardanisch bewegliche Gelenk einen ersten Abschnitt der Antriebswelle, der mit dem Läufer verbunden ist, mit einem zweiten Abschnitt der Antriebswelle koppelt, sodass die Rotationsachsen des ersten Abschnitts und des zweiten Abschnitts gegeneinander abgewinkelt verlaufen können. In diesem Fall befindet sich das Getriebe, das in dem vorangegangen Absatz erwähnt wurde, vorzugsweise im Verlauf des Antriebsstranges aus Sicht des Läufers jenseits des zweiten Abschnitts der Antriebswelle, d. h. der zweite Abschnitt der Antriebswelle hat insbesondere eine Rotationsachse, die in einer Neutralstellung, in der das kardanisch bewegliche Gelenk nicht zu einer Abwinklung des ersten und zweiten Abschnitts der Antriebswelle führt, koaxial zur Drehachse des Läufers verläuft.
- Bei einer Realisierung als Querantrieb verlaufen die Rotationsachsen der Antriebswelle quer zur Fahrtrichtung des Schienenfahrzeugs. Jedoch ist z. B. auch ein Längsantrieb möglich, bei dem die Rotationsachsen der Antriebswelle ungefähr in Fahrtrichtung des Schienenfahrzeugs verlaufen.
- Bei einer speziellen Ausgestaltung erlaubt das Gelenk eine axiale Relativbewegung des ersten Abschnitts und des zweiten Abschnitts in Richtung zumindest einer der Rotationsachsen der Abschnitte. Bevorzugt wird jedoch, dass die axiale Nachgiebigkeit bzw. Beweglichkeit durch den Motor, relativ zwischen Läufer und Ständer, realisiert ist, d.h. der Läufer ist in Richtung seiner Rotationsachse beweglich gelagert, vorzugsweise allein durch das Magnetfeld des Motors.
- Eine mit dem Läufer verbundene Antriebswelle kann wie üblich an einer ersten Seite des Motors (so genannte A-Seite) angeordnet sein und die kardanisch bewegliche Aufhängung am Ständer des Motors kann
- an einer der ersten Seite gegenüberliegenden zweiten Seite des Motors (so genannte B-Seite) angeordnet sein und/oder
- zwischen der ersten und der zweiten Seite des Motors angeordnet sein, insbesondere näher an der zweiten Seite des Motors als an der ersten Seite.
- Zum Umfang der Erfindung gehört auch ein Schienenfahrzeug, wobei das Schienenfahrzeug einen Antrieb gemäß einer der beschriebenen Ausgestaltungen aufweist.
- Ferner gehört zum Umfang der Erfindung ein Verfahren zum Herstellen eines Antriebs für ein Schienenfahrzeug, wobei folgendes bereitgestellt wird:
- ein Antriebsmotor mit einem Ständer und einem Läufer und
- zumindest ein vom Antriebsmotor angetriebenes Rad oder ein vom Antriebsmotor angetriebener Radsatz, das/der beim Betrieb des Schienenfahrzeugs auf den Fahrschienen eines Schienenweges rollt,
- der Ständer des Antriebsmotors über eine kardanisch bewegliche Aufhängung an einem Drehgestell des Schienenfahrzeugs, an einem Wagenkasten des Schienenfahrzeugs, oder an einer mit dem Drehgestell und/oder dem Wagenkasten verbundenen Konstruktion abgestützt wird und
- der Läufer des Antriebsmotors über ein kardanisch bewegliches Gelenk und/oder über eine kardanisch bewegliche Kupplung mit dem Rad, mit dem Radsatz, mit zumindest einem Rad des Radsatzes und/oder mit einer Welle des Radsatzes gekoppelt wird, sodass beim Betrieb des Schienenfahrzeugs die Antriebskraft des Antriebsmotors über das Gelenk und/oder die Kupplung übertragen wird.
- Insbesondere treibt der Antriebsmotor das Rad oder den Radsatz über ein Getriebe an.
- Wie oben bereits anhand einer besonderen Ausführungsform beschrieben, können der Antriebsmotor und ein Getriebe, insbesondere ein Winkelgetriebe, ein Antriebsmodul bilden, wobei der Ständer des Antriebsmotors und nicht bewegliche Teile des Getriebes (insbesondere das Getriebegehäuse) fest und relativ zueinander unbeweglich miteinander verbunden sind. In diesem Fall ist das Antriebsmodul über das kardanisch bewegliche Gelenk und/oder über die kardanisch bewegliche Kupplung mit dem Rad, mit dem Radsatz, mit zumindest einem Rad des Radsatzes und/oder mit der Welle des Radsatzes gekoppelt.
- Wie üblich kann der Läufer des Antriebsmotors eine Antriebswelle aufweisen oder mit einer Antriebswelle drehfest verbunden sein. In diesem Fall ist die Antriebswelle über das kardanisch bewegliche Gelenk und/oder die kardanisch bewegliche Kupplung mit dem Rad, dem Radsatz oder der Welle des Radsatzes gekoppelt.
- Weitere Ausgestaltungen und Ausführungsbeispiele der Erfindung werden nun unter Bezugnahme auf die beigefügte Zeichnung beschrieben. Die einzelnen Figuren der Zeichnung zeigen:
- Fig. 1
- schematisch eine erste Ausgestaltung eines Querantriebes, wobei die axiale Nachgiebigkeit durch eine Beweglichkeit des kardanisch beweglichen Gelenks im Antriebsstrang realisiert ist,
- Fig. 2
- eine Frontalansicht der Draufsicht gemäß
Fig. 1 in Richtung des Pfeils A inFig. 1 , - Fig. 3
- eine Ausgestaltung ähnlich der in
Fig. 1 , wobei jedoch die axiale Beweglichkeit durch eine Relativbeweglichkeit des Läufers und des Ständers des Antriebsmotors gegeben ist, - Fig. 4
- eine Draufsicht ähnlich der in
Fig. 1 undFig. 3 , wobei jedoch gemäß dem Stand der Technik keine kardanisch bewegliche Aufhängung des Motors vorgesehen ist, sondern zwei kardanisch bewegliche Gelenke mit axialer Beweglichkeit relativ zueinander im Antriebsstrang, - Fig. 5
- eine Draufsicht ähnlich der in
Fig. 1 ,3 und 4 , die schematisch eine Ausführungsform des inFig. 1 oderFig. 3 gezeigten Querantriebs zeigt, - Fig. 6
- einen Schnitt entlang der Linie B-B in
Fig. 5 , um die elastische Aufhängung des Getriebes darzustellen, - Fig. 7
- eine Variante der Aufhängung des Getriebes zu der Ausführungsform von
Fig. 6 , - Fig. 8
- einen Schnitt entlang der Linie C-C in
Fig. 5 , wobei die Schnittebene wie auch bei denFig. 6 und7 senkrecht zu der Bildebene derFig. 5 verläuft, - Fig. 9
- eine Ausführungsform bei einem Längsantrieb in Draufsicht,
- Fig. 10
- schematisch eine Neutralstellung einer Anordnung mit einem Antriebsmotor, der über eine kardanisch bewegliche Aufhängung aufgehängt ist und dessen Läufer über ein kardanisch bewegliches Gelenk einen Antriebsstrang antreibt,
- Fig. 11
- schematisch eine Anordnung wie in
Fig. 10 , wobei jedoch die Anordnung nicht nur dem Ausgleich eines parallelen Versatzes der Antriebswelle dient, sondern eine asymmetrische Anordnung der kardanisch beweglichen Aufhängung ausgleicht, - Fig. 12
- schematisch eine Variante der kardanisch beweglichen Aufhängung bei einer Anordnung wie in
Fig. 10 und Fig. 11 , wobei die kardanisch bewegliche Aufhängung seitlich des Motors angeordnet ist, - Fig. 13
- eine Ansicht auf eine Ausführungsform der seitlich des Motors angeordneten kardanisch beweglichen Aufhängung,
- Fig. 14
- eine Ausführungsform eines langgestreckten Elements, das als Gummifeder zur Realisierung der kardanisch beweglichen Aufhängung ausgestaltet ist,
- Fig. 15
- eine Draufsicht auf eine Anordnung, bei der mit Hilfe von zwei langgestreckten elastisch verformbaren Elementen eine kardanisch bewegliche Aufhängung realisiert ist,
- Fig. 16
- die Anordnung von
Fig. 15 , wobei jedoch die Anordnung in einem ausgelenkten Zustand gegenüber der Neutralstellung ausFig. 15 zu sehen ist, bei der bezüglich einer Drehachse der kardanisch beweglichen Aufhängung, die parallel zu den Längsachsen der langgestreckten Elemente verläuft, eine Auslenkung um den Winkel α stattgefunden hat, - Fig. 17
- eine Seitenansicht auf die Anordnung gemäß
Fig. 15 , die die Neutralstellung zeigt, - Fig. 18
- die Anordnung von
Fig. 17 , wobei jedoch eine Auslenkung um eine Drehachse der kardanisch beweglichen Aufhängung stattgefunden hat, die senkrecht zu den Längsachsen der langgestreckten Elemente verläuft, wobei eine Auslenkung um den Winkel β stattgefunden hat, - Fig. 19
- eine Draufsicht ähnlich der von
Fig. 1 undFig. 3 , wobei jedoch die Welle des Radsatzes in einer Hohlwelle des Motors angeordnet ist und der Motor an einem Querträger des Drehgestells über eine kardanisch bewegliche Aufhängung aufgehängt ist, - Fig. 20
- in Draufsicht von oben schematisch ein Drehgestell mit einem außenliegenden Antriebsmodul, wobei ein angetriebenes Laufrad teilweise aufgeschnitten dargestellt ist,
- Fig. 21
- eine vergrößerte Darstellung des Antriebsmoduls, der Aufhängung des Antriebsmoduls und des von dem Antriebsmodul angetriebenen Laufrades, wobei die drei genannten Teile und Baugruppen in Explosionsdarstellung, d.h. noch nicht miteinander verbunden, dargestellt sind, und
- Fig. 22
- in vergrößerter Darstellung ein ringförmiges elastisches Element zur Realisierung der kardanischen Beweglichkeit der Aufhängung des Antriebsmoduls gemäß
Fig. 20 undFig. 21 . -
Fig. 1 zeigt eine Draufsicht auf ein Drehgestell mit einem Radsatz, der über einen Querantrieb angetrieben wird. Das Drehgestell weist einen Drehgestellrahmen 100 mit einem in Fahrtrichtung offenen H-förmigen Tragprofil auf, dessen Querträger mit 9 bezeichnet ist und dessen Längsträger mit 3a, 3b bezeichnet sind. An gegenüberliegenden Längsträgern des Drehgestellrahmens 100 sind Lager 11 a und 11 b angeordnet, in denen die Radsatzwelle 6 des Radsatzes 7a, 7b drehbar gelagert ist. Die Radsatzwelle 6 wird über ein achsreitendes Getriebe 8 angetrieben, welches über eine elastische Aufhängung 25 an dem Querträger 9 aufgehängt ist. Das Antriebsmoment wird über eine Antriebswelle 19 in das Getriebe 8 eingeleitet. - Die Antriebswelle 19 ist über ein kardanisch bewegliches Gelenk 5 von der Läuferwelle 18 eines Elektromotors 1 angetrieben. Das kardanisch bewegliche Gelenk 5 weist in Richtung der Rotationsachse der Läuferwelle 18 eine axiale Nachgiebigkeit bzw. Beweglichkeit auf. Der Läufer des Antriebsmotors 1 ist mit 4 bezeichnet. An dem Ständer 22 ist eine Befestigung 21 angebracht, die über eine kardanisch bewegliche Aufhängung 2 an einer Längsstütze 12 aufgehängt ist, welche an dem Querträger 9 befestigt ist.
-
Fig. 2 zeigt die Anordnung in einer Frontansicht, wobei außerdem noch die Federung 16a, 16b zu erkennen ist, über die die Radlager 11 a, 11 b federnd mit dem Wagenkasten 14 des Schienenfahrzeugs verbunden sind. - In den folgenden Figuren werden für gleiche oder einander entsprechende Teile dieselben Bezugszeichen verwendet wie in
Fig. 1 oder wie in verschiedenen der folgenden Figuren. -
Fig. 3 zeigt eine Draufsicht, die der Draufsicht inFig. 1 sehr ähnlich ist, wobei jedoch das kardanisch bewegliche Gelenk 5 durch ein kardanisch bewegliches Gelenk 15 ersetzt ist, welche keine axiale Nachgiebigkeit aufweist. Stattdessen ist die axiale Nachgiebigkeit in Richtung der Läuferwelle durch eine Beweglichkeit des Läufers 4 relativ zum Ständer 22 gegeben. - Die in
Fig. 4 dargestellte Draufsicht auf eine Ausführungsform gemäß dem Stand der Technik unterscheidet sich von der inFig. 1 dadurch, dass der Motor über eine starre Aufhängung 29 an dem Querträger 9 aufgehängt ist. Außerdem sind die Läuferwelle 18 und die Antriebswelle 19 über zwei kardanisch bewegliche Gelenke 35a, 35b zur Übertragung des Drehmoments miteinander gekoppelt, wobei die kardanisch beweglichen Gelenke 35 in axialer Richtung relativ zueinander beweglich sind. - In
Fig. 1 ,3 und 4 sind durch jeweils ein Dreieckssymbol Lager dargestellt, die eine Rotation der Läuferwelle 18 bzw. des Läufers 4 ermöglichen. Dabei ist jedoch die weitere Funktion des jeweils rechts von dem Läufer 4 dargestellten Drehlagers in den Fällen derFig. 1 ,3 und 4 verschieden. In dem Fall derFig. 1 weist das kardanisch bewegliche Gelenk 5 wie erwähnt eine axiale Nachgiebigkeit auf. Daher erlaubt das genannte Drehlager keine axiale Beweglichkeit der Läuferwelle 18. Für den Fall derFig. 4 gilt das gleiche. Dagegen besitzt das kardanisch bewegliche Gelenk 15 in der Ausführungsform derFig. 3 keine axiale Nachgiebigkeit. Daher ermöglicht das genannte Drehlager eine axiale Beweglichkeit der Läuferwelle 18. -
Fig. 5 zeigt eine Draufsicht auf eine Anordnung, die eine Ausgestaltung der Anordnung gemäßFig. 3 ist. Die Ausgestaltung betrifft die kardanisch bewegliche Aufhängung und die Aufhängung des Getriebes 8. Diese beiden Aufhängungen können auch bei der inFig. 1 dargestellten Anordnung verwendet werden. - Die kardanisch bewegliche Aufhängung des Elektromotors 1 verbindet die Längsstütze 12 mit dem Ständer 22 des Motors 1. Um die Drehbeweglichkeit der kardanisch beweglichen Aufhängung um die zwei senkrecht zueinander stehenden Drehachsen zu gewährleisten, weist die Aufhängung zwei langgestreckte elastische Elemente 52a, 52b auf, deren Längsachsen in der Darstellung von
Fig. 5 senkrecht zur Bildebene verlaufen. Auf Höhe des Querträgers 9 des Drehgestellrahmens 100 erstreckt sich die Längsstütze 12. Die beiden langgestreckten Elemente 52a, 52b sind in Längsrichtung des Schienenfahrzeugs, d.h. in der Richtung der Längserstreckung der Längsstütze 12, voneinander beabstandet und erstrecken sich in Richtung ihrer Längsachsen nach oben. An ihrem oberen Ende sind die Elemente 52 mit einer Konsole 51 verbunden, die im oberen Bereich am Ständer 22 befestigt ist. Eine ähnliche Anordnung wird noch anhand derFig. 15 bis 18 beschrieben. Daran wird auch die Beweglichkeit der langgestreckten Elemente 52 erläutert. Die Elemente 52 sind in Richtung ihrer Längsachse steif, d.h. die Länge in Richtung der Längsachse verändert sich durch die Einwirkung der üblicherweise beim Betrieb des Drehgestells auftretenden Kräfte nicht oder nur geringfügig. - Die Aufhängung 55 des Getriebes 8 ist auch aus der Schnittzeichnung in
Fig. 6 erkennbar. WieFig. 6 zeigt, ist ein C-förmiger Bügel an dem Querträger 9 des Drehgestells befestigt. An den einander gegenüberliegenden Innenseiten der freien Enden des C-förmigen Bügels 63 setzen Gummifedern 61 a, 61 b an, deren entgegengesetzte Enden zwischen sich einen Endbereich des Getriebes 8 aufnehmen und daran befestigt sind. Die einander gegenüberliegenden Gummifedern 61 weisen jeweils eine Längsachse auf, die mit der Längsachse der anderen Gummifeder fluchtet und die die Antriebswelle 10 senkrecht zu deren Rotationsachse schneidet. Es ist jedoch auch möglich, dass die Längsachsen aus der inFig. 6 gezeigten Position versetzt sind und daher eine Parallele der Rotationsachse schneiden. Ebenfalls erkennbar inFig. 6 ist die Lage der Radsatzwelle 6, die über das Getriebe 8 angetrieben wird. Details der Getriebekonstruktion sind ausFig. 6 nicht erkennbar. Die Aufhängung 55 erlaubt insbesondere Drehungen der Antriebswelle 10 um drei aufeinander senkrecht stehende Drehachsen. Diese Drehachsen verlaufen inFig. 6 in vertikaler und horizontaler Richtung in der Figurenebene sowie senkrecht zur Figurenebene. - Die in
Fig. 7 dargestellte Variante einer Aufhängung des Getriebes 8 weist eine Pendelstütze auf. Mit dem Querträger 9 ist ein Pendelträger 71 fest verbunden, der an seinem oberen, in Richtung Getriebe 8 vorspringendem Ende ein erstes Gelenk 73 aufweist, das eine Drehbewegung eines Pendels 77 um eine senkrecht zur Bildebene vonFig. 7 verlaufende Drehachse erlaubt. Am unteren Ende des Pendels 77 ist dieses über ein weiteres Gelenk 75 mit dem Getriebe verbunden. Das zweite Gelenk 75 erlaubt ebenfalls eine Drehbewegung um eine senkrecht zur Bildebene vonFig. 7 verlaufende Drehachse. Somit lässt die Aufhängung hauptsächlich Bewegungen in Richtung der horizontalen Achse inFig. 7 zu, die etwa auf Höhe der Antriebswelle 10 und der Radsatzwelle 6 verläuft. Anders als inFig. 7 gezeigt, kann das zweite Gelenk 75 auch oberhalb oder unterhalb der Höhe der Antriebswelle 10 verlaufen. - Aus
Fig. 8 ist die bereits anhand vonFig. 5 beschriebene kardanisch bewegliche Aufhängung erkennbar. An dem Querträger 9 setzt (inFig. 8 nach links erstreckend) die Längsstütze 12 an, auf deren Oberseite die langgestreckten Elemente 52a, 52b befestigt sind, und zwar in einem Abstand zueinander. An deren oberen Enden sind die Elemente 52 mit der Konsole 51 verbunden, die im oberen Bereich an dem Ständergehäuse befestigt ist. -
Fig. 9 zeigt in Draufsicht einen Längsantrieb für einen Radsatz mit Rädern 7a, 7b. Wiederum ist die Radsatzwelle 6 über Radlager 11 a, 11 b mit dem Drehgestellrahmen 101 verbunden, der in Fahrtrichtung einseitig offen ist. An dem der Öffnung des Rahmens gegenüberliegenden Ende weist das Drehgestell einen Querträger 91 auf, an dem die kardanisch bewegliche Aufhängung 92 ansetzt, welche auch eine lineare Bewegung des Motors 1 in Fahrtrichtung (von oben nach unten inFig. 9 verlaufend) relativ zu dem Querträger ermöglicht. Die Aufhängung 92 lässt über eine mit dem Ständer des Motors 1 verbundene Trägerstruktur 97 Drehbewegungen um eine horizontal, quer zur Fahrtrichtung (in der Figurenebene derFig. 9 von links nach rechts) verlaufende Drehachse und um eine senkrecht zu der Figurenebene vonFig. 9 verlaufende Drehachse zu. Dagegen werden Drehbewegungen um die in Fahrtrichtung verlaufende Achse verhindert, die mit der Drehachse der Läuferwelle 108 fluchtet. Der Motor 1 ist fest, d.h. relativ dazu unbeweglich, mit einem Getriebe 98 verbunden, welches über eine Hohlwelle 109 und eine kardanisch bewegliche Kupplung 95 mit der Radsatzwelle 6 gekoppelt ist. - Der Läufer 4 des Motors 1 überträgt das von ihm produzierte Drehmoment über die Läuferwelle 108, das Getriebe 98, die Hohlwelle 109 und die kardanisch bewegliche Kupplung 95 auf die Radsatzwelle 6 und treibt diese daher an.
- Ein Längsantrieb mit der erfindungsgemäßen Aufhängung des Motors kann auch anders als anhand von
Fig. 9 erläutert realisiert werden. Zum Beispiel kann der Läufer des über eine kardanische Aufhängung an dem Querträger des Drehgestells abgestützten Motors direkt, ohne Zwischenschaltung eines kardanischen Gelenks mit einem Getriebe, zum Beispiel einem Kegel-Stirnradgetriebe, gekoppelt sein. Die Läuferwelle des Motorläufers ist daher nicht relativ zu dem Getriebe kardanisch beweglich. Die kardanische Beweglichkeit im Antriebsstrang ist in diesem Fall in dem Bereich des Antriebsstranges zwischen dem Getriebe und dem Radsatz realisiert. Zum Beispiel kann ein Ritzel des Getriebes ein Großrad antreiben, welches drehfest mit der Antriebsseite eines kardanischen Gelenks verbunden ist. Bei diesem kardanischen Gelenk kann es sich zum Beispiel um eine Bogenzahnkupplung handeln. Die Abtriebseite der Bogenzahnkupplung kann zum Beispiel unmittelbar mit der Welle des anzutreibenden Radsatzes verbunden sein. -
Fig. 10 zeigt schematisch das Grundprinzip der Beweglichkeit der erfindungsgemäßen Anordnung. Die tragende Struktur links im Bild ist mit dem Bezugszeichen 90 bezeichnet. An dieser tragenden Struktur 90 ist der Motor 1 mit seinem Ständer 22 über ein Verbindungselement 21 und die kardanisch bewegliche Aufhängung 2 aufgehängt. Drehbeweglich ist der Ständer 22 somit relativ zur tragenden Struktur 90 um zwei zueinander senkrecht verlaufende Drehachsen, insbesondere die senkrecht zur Bildebene inFig. 10 verlaufende Drehachse. In der Praxis kann diese senkrecht zur Bildebene verlaufende Drehachse z.B. die horizontale oder die vertikale Achse sein. -
Fig. 10 zeigt zwei Drehstellungen des Motors 1 und der gemeinsam mit dem Motor 1 beweglichen Teile der Anordnung. Die eine Stellung ist durch die mit durchgezogenen Linien dargestellten Umrisse repräsentiert. Die andere Stellung ist durch die mit unterbrochenen Linien dargestellten Teile repräsentiert. Man erkennt, dass aus der Neutralstellung (Stellung, die mit den durchgezogenen Linien gezeichnet ist) in der Drehachse durch die kardanisch bewegliche Aufhängung 2 eine Drehbewegung stattfinden kann, so dass die Verbindung 21, der Ständer 22, der Läufer 4 und die Läuferwelle 18 um einen Winkel gegen die Neutralstellung gedreht ausgerichtet sind. Aufgrund des kardanisch beweglichen Gelenks 5 am Übergang zwischen der Läuferwelle 18 und der Antriebswelle 19 kann die Antriebswelle 19 lediglich parallel versetzt zu der Neutralstellung aber in die gleiche Richtung verlaufen. Es ist jedoch auch möglich, dass in der ausgelenkten Stellung die Antriebswelle 19 nicht parallel zu der Neutralstellung ausgerichtet ist, sondern anders als inFig. 10 gezeigt auf einen Punkt ungefähr am rechten Ende der Antriebswelle ausgerichtet verläuft, an dem sie aufgehängt ist. - Die axiale Beweglichkeit in Richtung der Rotationsachse der Läuferwelle oder der Antriebswelle ist aus dem Beispiel von
Fig. 10 nicht erkennbar. Das Beispiel entspricht vielmehr z.B. einer Axialbeweglichkeit am Übergang zwischen der Antriebswelle und dem nicht inFig. 10 gezeigten Getriebe. -
Fig. 11 zeigt eine Variante, in der die inFig. 10 gezeigt Anordnung in ihrer Neutralstellung ist, wobei jedoch die Verbindung 21 nicht in Richtung der Läuferwelle ausgerichtet ist, sondern bereits geneigt bezüglich der tragenden Struktur 90 verläuft. Dieses Beispiel zeigt, dass die kardanisch bewegliche Aufhängung 2 auch gestattet, die Aufhängung in gewissen Grenzen zu versetzen, ohne die Funktion zu behindern. Die erfindungsgemäße Anordnung erlaubt daher in gewissen Grenzen Toleranzen bei der Fertigung und Montage, ohne die Funktion zu gefährden. -
Fig. 12 zeigt schematisch, dass die kardanisch bewegliche Aufhängung auch seitlich des Motors 1 angeordnet sein kann. Die tragende Struktur 109 ist über eine Verbindung 31 mit der kardanisch beweglichen Aufhängung 32 verbunden, die im linken Bereich des Ständergehäuses an den Motor 1 angreift. - Eine konkrete Ausführungsform zeigt
Fig. 13 . Tragende Teile 19a, 19b sind rechts und links in der Figur erkennbar. Über diese Teile ist die Aufhängung z.B. mit dem Querträger eines Drehgestells verbunden. Von den tragenden Teilen 19a, 19b erstreckt sich jeweils in Richtung des anderen tragenden Teils 19 ein Verbindungselement 131, 132, das am unteren Ende eines elastischen Elements 135a bzw. 135b befestigt ist. Am oberen Ende des elastischen Elements 135 ist jeweils ein Verbindungselement 136a, 136b aus nicht elastischem Werkstoff befestigt, welches das elastische Element 135a, 135b mit dem Gehäuse des Motors 1 verbindet. Die Funktion der kardanisch beweglichen Aufhängung gemäßFig. 13 ist z.B. wie bei der inFig. 8 gezeigten Aufhängung. Die Funktion wird auch noch anhand derFig. 15 bis 18 erläutert. -
Fig. 14 zeigt ein Beispiel für ein langgestrecktes elastisches Element. Dieses Element hat eine zylindrische Form. In der Praxis muss die Form jedoch nicht zylindrisch sein, sondern kann vielmehr z.B. wie inFig. 13 dargestellt einen in Längsrichtung gekrümmten Verlauf haben. - An den in Längsrichtung (horizontale Richtung in
Fig. 14 ) gegenüberliegenden Enden des Elements ist jeweils ein scheibenförmiger Teil 141 a, 141 b aus einem nicht elastischen Material, z.B. aus Metall, angeordnet. Zwischen diesen End-Scheiben 141 befinden sich im Ausführungsbeispiel 5 scheibenförmige Segmente 142a bis 142e aus elastischem Material, z.B. aus natürlichem oder künstlichem Gummimaterial. Durch alle Scheiben 141, 142 hindurch erstreckt sich eine Bohrung in Längsrichtung. Nicht dargestellt ist inFig. 14 , dass sich bei dem betriebsfertigen elastischen Element ein Zugelement aus nicht elastischem Material hindurcherstreckt, über das die End-Scheiben 141 gegeneinander verspannt sind, so dass die Scheiben 142 aus elastischem Material in Längsrichtung zusammengespannt werden. Daher ist in Längsrichtung keine oder nur eine sehr geringe elastische Verformung möglich. Dagegen ist die Verspannung so ausgeführt, dass das elastische Element um seine Längsachse tordieren kann und sich so verbiegen kann, dass die Längsachse nicht mehr gradlinig, sondern gekrümmt verläuft. -
Fig. 15 zeigt schematisch eine Anordnung mit zwei elastischen Elementen 151 a, 151 b, deren Längsachsen senkrecht zur Bildebene vonFig. 15 verlaufen. In Längsrichtung an einem Ende der Elemente 151 sind diese mit der tragenden Struktur 150 verbunden. Am anderen Ende sind die Elemente 151 mit jeweils einer Verbindungsstruktur 153a, 153b verbunden, wobei die Verbindungsstrukturen 153a, 153b auch eine einzige Struktur sein können, d.h. sie können auch fest miteinander verbunden sein oder ein Stück bilden. Mit der tragenden Struktur 153 ist das Gehäuse des Motors 1 verbunden. Wiederum ist die Läuferwelle 18 über ein kardanisch bewegliches Gelenk 155 im Antriebsstrang mit der Antriebswelle 19 verbunden. -
Fig. 15 zeigt die Neutralstellung der durch die elastischen Elemente 151 realisierten kardanisch beweglichen Aufhängung des Motors 1. -
Fig. 16 zeigt eine ausgelenkte Stellung. In der Figur ist das fest mit der tragenden Struktur 150 verbundene Ende der elastischen Elemente 151 durch eine gestrichelte Kreislinie dargestellt, während das fest mit der Verbindungsstruktur 153 verbundene Ende durch eine ununterbrochene Linie dargestellt ist. Man erkennt, dass durch eine Drehung um eine senkrecht zur Bildebene inFig. 16 verlaufende Drehachse, die sich in der Mitte zwischen den Längsachsen der elastischen Elemente 151 befindet (der Drehwinkel beträgt α), das an der Verbindungsstruktur 153a befestigte Ende des Elements 151 a geringfügig nach links bewegt hat, während sich das an der Verbindungsstruktur 153b befestigte Ende des Elements 151 b etwas nach rechts bewegt hat. Beide Elemente 151 haben daher sowohl eine Torsionsbewegung um ihre Längsachse ausgeführt, als auch eine Biegebewegung, bei der die Längsachse leicht gekrümmt verläuft. -
Fig. 17 und Fig. 18 zeigen die Anordnung vonFig. 15 in einer Seitenansicht.Fig. 17 zeigt dabei die Neutralstellung. In der Ansicht vonFig. 17 befinden sich die elastischen Elemente 151 oberhalb der tragenden Struktur 150 hintereinander. Daher sind nur die Umrisse eines der Elemente 151 erkennbar. -
Fig. 18 zeigt eine andere Drehstellung alsFig. 16 . Die Verbindungsstruktur 153 und der damit verbundene Motor 1 sind um eine senkrecht zur Bildebene derFig. 17 und 18 verlaufende Drehachse nach oben gedreht. Um dies zu ermöglichen, haben die elastischen Elemente eine Bewegung ausgeführt, bei der sich ihre Längsachse (verläuft inFig. 17 und 18 in vertikaler Richtung) verkrümmt hat. Die Längsachse verläuft von unten nach oben, wobei sie sich leicht nach links neigt. -
Fig. 19 zeigt schematisch eine Draufsicht auf eine andere erfindungsgemäße Ausführungsform eines Querantriebes. Wiederum ist der Radsatz 207a, 207b, der drehfest auf der Radsatzwelle 6 montiert ist, über Drehlager 11 a, 11 b an dem Drehgestellrahmen 200 befestigt. - Bezüglich der Befestigung des Antriebsmotors 201 wird auf die bereits anhand von
Fig. 13 beschriebene Ausführungsform Bezug genommen.Fig. 19 zeigt also bezüglich der Anordnung aus Querträgern 19a, 19b und des Antriebsmotors eine Draufsicht der Anordnung gemäßFig. 13 . Allerdings können die Abmessungen des Antriebsmotors 1 im Verhältnis zu den Abmessungen der Befestigung und der Querträger anders gewählt sein als inFig. 13 , weshalb inFig. 19 für den Antriebsmotor das Bezugszeichen 201 verwendet wird. Ein erster Querträger 19b des Drehgestells verbindet die gegenüberliegenden Längsträger, an denen die Drehlager 11 montiert sind. Ferner verbindet ein zweiter Querträger 19a die beiden Längsträger (oben in der Figur). - Zwischen den Rädern 207 befindet sich der Antriebsmotor 201. Sein Läufer 221 ist als Hohlwelle ausgestaltet und umfängt konzentrisch die Radsatzwelle 6. Durch die Bezugszeichen 205a, 205b ist das kardanisch bewegliche Gelenk bezeichnet, das jedoch anders als schematisch dargestellt wie oben beschrieben und wie bei Hohlwellen mit kardanischer Beweglichkeit üblich über ringförmige elastische Elemente realisiert werden kann. Im Ergebnis ist der Läufer 221 über das kardanisch bewegliche Gelenk 205 mit einem Getriebe 208 oder mit einem fest auf der Radsatzwelle 6 montierten Übertragungselement verbunden.
- Erfindungsgemäß ist auch der Ständer des Elektromotors 201 über eine kardanisch bewegliche Aufhängung an den Querträgern 19a, 19b befestigt. Hierzu wird auf die Beschreibung der
Fig. 13 Bezug genommen. Die Drehachsen der kardanisch beweglichen Aufhängung verlaufen bezüglich der Bildebene vonFig. 19 senkrecht zu der Bildebene und vertikal in der Bildebene, d.h. senkrecht zur Rotationsachse der Radsatzwelle 6. - Das in
Fig. 20 dargestellte Antriebsmodul wird durch einen Antriebsmotor 1 und ein Winkelgetriebe 181 gebildet. Der Ständer 22 des Motors 1 ist fest mit dem Gehäuse 190 des Winkelgetriebes 181 verbunden, so dass Motor und Winkelgetriebe nicht relativ zueinander beweglich sind. Beispielsweise werden Motorgehäuse und Getriebegehäuse aneinander angeflanscht und verschraubt. Das Antriebsmodul ist über eine Aufhängung 182 an dem Drehgestellrahmen 9 befestigt. An dem Drehgestellrahmen 9 wird zumindest eine Achse 6 eines Radsatzes mit den Laufrädern 7a und 7b gelagert. - Die Fahrtrichtung des Fahrzeugs ist in
Fig. 20 durch einen von links nach rechts verlaufenden Pfeil dargestellt, der die Beschriftung "x" aufweist. Dadurch wird angedeutet, dass die Fahrtrichtung üblicherweise als x-Richtung bezeichnet wird. - Die Aufhängung 182 weist zwei Aussparungen 192 auf (siehe
Fig. 21 ), in die jeweils ein ringförmiges elastisches Element 184 eingebracht ist. Die Elemente 184 sind im Wesentlichen rotationssymmetrisch gestaltet, wobei eine radial innere, zylindrische Hülse 198 (sieheFig. 22 ) an der radial innenliegenden Oberfläche eines Gummirings 199 befestigt ist und wobei eine zweite ringförmige, zylindrische Hülse 197 an der radial äußeren Oberfläche des Gummirings 199 befestigt ist. Die beiden Hülsen 197, 198 und auch der Gummiring 199 sind koaxial zu einer Rotationssymmetrieachse angeordnet. - Zur Herstellung der kardanisch beweglichen Aufhängung werden zwei solcher ringförmigen elastischen Elemente 184 in die entsprechenden Aussparungen 192 der Aufhängung 182 eingesetzt, wobei die Aussparungen 192 in Anlage zum Außenumfang des ringförmigen Elements 184 gelangen und außerdem dessen lineare Beweglichkeit in Richtung der Rotationssymmetrieachse z.B. durch eine Verengung 193 in einer Richtung begrenzen.
- Vor oder nach dem Einführen der ringförmigen Elemente 184 in die Aussparungen 192 wird in den zylindrischen Innenraum des ringförmigen Elements 184, der radial innenseitig durch die innere Hülse 198 gebildet wird, jeweils ein Vorsprung 191 des Motors 1 eingesetzt.
- Das schematisch dargestellte Winkelgetriebe 181 ist mit einem ersten Kegelrad 185 mit der Läuferwelle des Motors 1 drehfest verbunden. Das erste Kegelrad 185 ist Teil eines ersten Winkelgetriebes, welches das Antriebsdrehmoment auf ein erstes Zahnrad 187 überträgt, welches wiederum ein zweites Zahnrad 188 antreibt. Das zweite Zahnrad 188 ist drehfest auf einer Abtriebswelle 186 des Winkelgetriebes 181 angeordnet, die über ein kardanisch bewegliches Gelenk 180 das Laufrad 7b antreibt. Der rechte Teil des Laufrades 7b ist in
Fig. 20 undFig. 21 aufgeschnitten dargestellt. Man erkennt auf der aufgeschnitten Seite auch das kardanisch bewegliche Gelenk, welches z.B. als Bogenzahnkupplungshälfte ausgestaltet ist. Die Bogenzahnkupplungshälfte 180 kann (wie inFig. 21 dargestellt) über Schrauben 194 und Gewindebohrungen 195 des Laufrades 7b eingeschraubt sein. Alternativ zu einer Bogenzahnkupplung kann beispielsweise eine elastische Bolzenkupplung verwendet werden, die ähnlich wie die kardanisch bewegliche Aufhängung ringförmige elastische Elemente zur Drehmomentübertragung aufweisen kann. - Aufgrund der ringförmigen elastischen Elementen 184 der Aufhängung 182 besteht in dem dargestellten Fall eine Drehbeweglichkeit des Antriebsmoduls relativ zu der Aufhängung 182 um eine vertikal zur Bildebene der
Fig. 20 bzw.Fig. 21 verlaufenden Drehachse (z-Achse) und um eine horizontal und senkrecht zur x-Achse und z-Achse verlaufende zweite Drehachse (y-Achse). Ferner ist eine lineare Beweglichkeit der ringförmigen elastischen Elemente 184 relativ zu den Aussparungen 192 in x-Richtung gegeben. Diese lineare Beweglichkeit in x-Richtung kann auch auf andere Weise erreicht werden, z.B. durch eine entsprechende Relativbeweglichkeit der Vorsprünge 191 des Motors 1 relativ zu den ringförmigen elastischen Elementen 184. Diese Linearbeweglichkeit verhindert, dass Kräfte, die zwischen den Laufrädern 7 und den Fahrschienen als Antriebskräfte oder Bremskräfte wirken, über die kardanisch bewegliche Aufhängung 182 übertragen werden. - Alternativ zu der außenliegenden Konstruktion gemäß
Fig. 20 , bei der das Antriebsmodul außerhalb des Drehgestellrahmens 9 angeordnet ist, kann das Antriebsmodul auch innerhalb des Drehgestellrahmens, d.h. zwischen den Laufrädern 7a, 7b angeordnet werden. Statt einer Bogenzahnkupplung oder elastischen Bolzenkupplung kann in diesem Fall optional eine Hohlwellenkupplung eingesetzt werden, die ebenfalls eine kardanische Beweglichkeit aufweist.
Claims (10)
- Antrieb für Schienenfahrzeuge, aufweisend- einen Antriebsmotor (1) mit einem Ständer (22) und einem Läufer (4) und- zumindest ein vom Antriebsmotor (1) angetriebenes Rad (7) oder einen vom Antriebsmotor angetriebenen Radsatz (7a, 7b), das/der beim Betrieb des Schienenfahrzeugs auf den Fahrschienen eines Schienenweges rollt,wobei- der Ständer (22) des Antriebsmotors (1) über eine kardanisch bewegliche Aufhängung (2; 92) des Antriebs an einem Drehgestell (100) des Schienenfahrzeugs, an einem Wagenkasten des Schienenfahrzeugs oder an einer mit dem Drehgestell und/oder dem Wagenkasten verbundenen Konstruktion abgestützt ist,- der Läufer (4) des Antriebsmotors (1) über ein kardanisch bewegliches Gelenk (5; 95) und/oder über eine kardanisch bewegliche Kupplung mit dem Rad (7), mit dem Radsatz (7a, 7b), mit zumindest einem Rad des Radsatzes und/oder mit einer Welle des Radsatzes gekoppelt ist, sodass beim Betrieb des Schienenfahrzeugs die Antriebskraft des Antriebsmotors (1) über das Gelenk (5; 95) und/oder die Kupplung übertragen wird, und- der Läufer (4) beim Betrieb des Antriebes eine Antriebswelle (19) antreibt, die über ein Getriebe (8; 98) das Rad (7) oder die Radsatzwelle (6) des Radsatzes (7a, 7b) antreibt,dadurch gekennzeichnet,dass die Rotationsachse des Läufers (4) quer zur Fahrtrichtung des Schienenfahrzeugs verläuft und der Ständer (22) nicht mit unbeweglichen Teilen des Getriebes (8) verbunden ist sowie das Gelenk (5; 95) und/oder die Kupplung sich zwischen dem Läufer (4) und dem Getriebe (8) befindet; oderdass der Ständer (22) fest mit den unbeweglichen Teilen des Getriebes (98) verbunden ist.
- Antrieb nach Anspruch 1, wobei der Läufer (4) beim Betrieb des Antriebes eine Antriebswelle antreibt, wobei das kardanisch bewegliche Gelenk (5) einen ersten Abschnitt (18) der Antriebswelle, der mit dem Läufer (4) verbunden ist, mit einem zweiten Abschnitt (19) der Antriebswelle koppelt, sodass die Rotationsachsen des ersten Abschnitts (18) und des zweiten Abschnitts (19) gegeneinander abgewinkelt verlaufen können.
- Antrieb nach dem vorhergehenden Anspruch, wobei die Rotationsachsen der Antriebswelle (18, 19) quer zur Fahrtrichtung des Schienenfahrzeugs verlaufen.
- Antrieb nach Anspruch 2 oder 3, wobei das Gelenk (5) eine axiale Relativbewegung des ersten Abschnitts (18) und des zweiten Abschnitts (19) in Richtung zumindest einer der Rotationsachsen der Abschnitte erlaubt.
- Antrieb nach einem der Ansprüche 1 bis 3, wobei der Läufer (4) in Richtung seiner Rotationsachse linear beweglich gelagert ist.
- Antrieb nach einem der vorhergehenden Ansprüche, wobei eine mit dem Läufer (4) verbundene Antriebswelle (18, 19) an einer ersten Seite des Motors (A-Seite) angeordnet ist und wobei die kardanisch bewegliche Aufhängung (2) am Ständer (22) des Motors (1)- an einer der ersten Seite gegenüberliegenden zweiten Seite des Motors (B-Seite) befestigt ist und/oder- zwischen der ersten und der zweiten Seite des Motors näher an der zweiten Seite des Motors befestigt ist.
- Antrieb nach einem der vorhergehenden Ansprüche, wobei die kardanisch bewegliche Aufhängung zwei langgestreckte Elemente (52a, 52b) aus elastischem Material aufweist, deren Steifigkeit für Linearbewegungen in Richtung ihrer Längsachse wesentlich größer ist als für Verkrümmungen der Elemente um ihre Längsachse, wobei die beiden langgestreckten Elemente (52a, 52b) mit ihren Längsachsen parallel zueinander angeordnet sind und wobei jeweils mit dem einen Ende des langgestreckten Elements (52a, 52b) in dessen Längsrichtung der Wagenkasten des Schienenfahrzeugs oder die mit dem Drehgestell (9) und/oder dem Wagenkasten verbundene Konstruktion verbunden ist und jeweils mit dem anderen, in der Längsrichtung entgegengesetzten Ende des langgestreckten Elements (52a, 52b) der Läufer (4) des Antriebsmotors (1) verbunden ist, so dass aufgrund der Verkrümmungen die kardanisch beweglichen Aufhängung realisiert ist.
- Antrieb nach einem der Ansprüche 1 bis 6, wobei die kardanisch bewegliche Aufhängung (182) zwei ringförmige Elemente (184) aus elastischem Material aufweist, die sich jeweils um eine Achse erstrecken, wobei die Achsen der beiden ringförmigen Elemente (184) parallel zueinander und in einem Abstand zueinander verlaufen, wobei über die beiden ringförmigen Elemente das Drehgestell (9) oder der andere Teil der tragenden Konstruktion des Fahrzeugs miteinander verbunden sind, wobei der eine Teil der beiden über die ringförmigen Elemente (184) miteinander verbundenden Teile mit den radial innenliegenden Oberflächen der ringförmigen Elemente (184) verbunden ist und der andere Teil mit der radial au ßenliegenden Oberfläche der ringförmigen Elemente (184) verbunden ist.
- Schienenfahrzeug, wobei das Schienenfahrzeug einen Antrieb nach einem der vorhergehenden Ansprüche aufweist.
- Verfahren zum Herstellen eines Antriebs für ein Schienenfahrzeug, wobei folgendes bereitgestellt wird:- ein Antriebsmotor (1) mit einem Ständer (22) und einem Läufer (4) und- zumindest ein vom Antriebsmotor (1) angetriebenes Rad (7) oder ein vom Antriebsmotor angetriebener Radsatz (7a, 7b) , das/der beim Betrieb des Schienenfahrzeugs auf den Fahrschienen eines Schienenweges rollt, wobei- der Ständer (22) des Antriebsmotors (1) über eine kardanisch bewegliche Aufhängung (2; 92) des Antriebs an einem Drehgestell (100) des Schienenfahrzeugs,
an einem Wagenkasten des Schienenfahrzeugs, oder an einer mit dem Drehgestell und/oder dem Wagenkasten verbundenen Konstruktion abgestützt wird,- der Läufer (4) des Antriebsmotors (1) über ein kardanisch bewegliches Gelenk (5; 95) und/oder über eine kardanisch bewegliche Kupplung mit dem Rad (7), mit dem Radsatz (7a, 7b), mit zumindest einem Rad des Radsatzes und/oder mit einer Welle des Radsatzes gekoppelt wird, sodass beim Betrieb des Schienenfahrzeugs die Antriebskraft des Antriebsmotors (1) über das Gelenk (5; 95) und/oder die Kupplung übertragen wird,- der Läufer (4) beim Betrieb des Antriebes eine Antriebswelle (19) antreibt, die über ein Getriebe (8; 98) das Rad (7) oder die Radsatzwelle (6) des Radsatzes (7a, 7b) antreibt, undwobei die Rotationsachse des Läufers (4) quer zur Fahrtrichtung des Schienenfahrzeugs verläuft und der Ständer (22) nicht mit unbeweglichen Teilen des Getriebes (8) verbunden wird sowie das Gelenk (5; 95) und/oder die Kupplung sich zwischen dem Läufer (4) und dem Getriebe (8) befindet; oderwobei der Ständer (22) fest mit den unbeweglichen Teilen des Getriebes (98) verbunden wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010020981A DE102010020981A1 (de) | 2010-05-12 | 2010-05-12 | Antrieb für Schienenfahrzeuge |
PCT/EP2011/057612 WO2011141510A1 (de) | 2010-05-12 | 2011-05-11 | Antrieb für schienenfahrzeuge |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2569197A1 EP2569197A1 (de) | 2013-03-20 |
EP2569197B1 EP2569197B1 (de) | 2017-05-10 |
EP2569197B2 true EP2569197B2 (de) | 2022-01-19 |
Family
ID=44227790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11720750.6A Active EP2569197B2 (de) | 2010-05-12 | 2011-05-11 | Antrieb für schienenfahrzeuge |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2569197B2 (de) |
CN (1) | CN103108790B (de) |
DE (1) | DE102010020981A1 (de) |
ES (1) | ES2635592T5 (de) |
PL (1) | PL2569197T3 (de) |
WO (1) | WO2011141510A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5772761B2 (ja) * | 2012-08-13 | 2015-09-02 | 新日鐵住金株式会社 | 鉄道車両の台車枠 |
EP3020611A1 (de) | 2014-11-14 | 2016-05-18 | Siemens Aktiengesellschaft | Bahnantrieb mit Bremseinrichtung |
DE102015211064A1 (de) | 2015-06-16 | 2016-12-22 | Bombardier Transportation Gmbh | Antriebsanordnung für Schienenfahrzeug, Schienenfahrzeug mit Antriebsanordnung sowie Verfahren zum Herstellen der Antriebsanordnung und des Schienenfahrzeugs |
DE102015222125A1 (de) | 2015-11-10 | 2017-05-11 | Bombardier Transportation Gmbh | Antriebsanordnung für ein Schienenfahrzeug, Schienenfahrzeug mit der Antriebsanordnung und Verfahren zur Herstellung |
US11318965B2 (en) * | 2018-12-27 | 2022-05-03 | Bombardier Transportation Gmbh | Locomotive bogie having an anti-pitching geometry |
EP4013655B1 (de) | 2019-09-30 | 2024-04-24 | Siemens Mobility Austria GmbH | Fahrwerk eines schienenfahrzeugs |
AT523285B1 (de) * | 2020-06-04 | 2021-07-15 | Siemens Mobility Austria Gmbh | Fahrwerk für ein Schienenfahrzeug |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1916078A1 (de) † | 1969-03-25 | 1970-10-01 | Siemens Ag | Einzelachsantrieb fuer ein elektrisches Triebfahrzeug |
DE1530034A1 (de) † | 1965-07-15 | 1971-07-29 | Siemens Ag | Einzelachsantrieb fuer ein elektrisches Triebfahrzeug |
DE3514124A1 (de) † | 1984-09-14 | 1986-03-20 | Thyssen Industrie Ag, 4300 Essen | Kardanische doppelkupplung |
WO2009056415A1 (de) † | 2007-10-31 | 2009-05-07 | Siemens Transportation Systems Gmbh & Co. Kg | Antrieb mit achsreitendem getriebe für hohe geschwindigkeiten |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1276078B (de) * | 1957-03-04 | 1968-08-29 | Licentia Gmbh | Kardanwellenantrieb fuer elektrische Triebfahrzeuge |
CH637337A5 (en) * | 1979-05-11 | 1983-07-29 | Bbc Brown Boveri & Cie | Drive device for an electrical power unit |
DE3302639A1 (de) * | 1983-01-27 | 1984-08-02 | Thyssen Industrie Ag, 4300 Essen | Antriebsdrehgestell fuer schienenfahrzeuge, wie strassenbahnen |
DE9116159U1 (de) * | 1991-01-17 | 1992-03-19 | A. Friedr. Flender AG, 4290 Bocholt | Achsantrieb |
CN2405826Y (zh) * | 2000-01-17 | 2000-11-15 | 襄樊轨道车辆工厂 | 一种铁路轨道车的电传动装置 |
DE10050757A1 (de) * | 2000-10-13 | 2002-04-25 | Zahnradfabrik Friedrichshafen | Antriebseinheit für Schienenfahrzeuge |
DE10113300A1 (de) | 2001-03-19 | 2002-10-02 | Compact Dynamics Gmbh | Lastschalt-Automatgetriebe für Fahrzeuge |
-
2010
- 2010-05-12 DE DE102010020981A patent/DE102010020981A1/de active Pending
-
2011
- 2011-05-11 WO PCT/EP2011/057612 patent/WO2011141510A1/de active Application Filing
- 2011-05-11 CN CN201180034510.5A patent/CN103108790B/zh not_active Expired - Fee Related
- 2011-05-11 ES ES11720750T patent/ES2635592T5/es active Active
- 2011-05-11 EP EP11720750.6A patent/EP2569197B2/de active Active
- 2011-05-11 PL PL11720750T patent/PL2569197T3/pl unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1530034A1 (de) † | 1965-07-15 | 1971-07-29 | Siemens Ag | Einzelachsantrieb fuer ein elektrisches Triebfahrzeug |
DE1916078A1 (de) † | 1969-03-25 | 1970-10-01 | Siemens Ag | Einzelachsantrieb fuer ein elektrisches Triebfahrzeug |
DE3514124A1 (de) † | 1984-09-14 | 1986-03-20 | Thyssen Industrie Ag, 4300 Essen | Kardanische doppelkupplung |
WO2009056415A1 (de) † | 2007-10-31 | 2009-05-07 | Siemens Transportation Systems Gmbh & Co. Kg | Antrieb mit achsreitendem getriebe für hohe geschwindigkeiten |
Also Published As
Publication number | Publication date |
---|---|
WO2011141510A1 (de) | 2011-11-17 |
PL2569197T3 (pl) | 2017-09-29 |
EP2569197B1 (de) | 2017-05-10 |
CN103108790A (zh) | 2013-05-15 |
ES2635592T5 (es) | 2022-05-13 |
EP2569197A1 (de) | 2013-03-20 |
DE102010020981A1 (de) | 2011-11-17 |
CN103108790B (zh) | 2017-06-09 |
ES2635592T3 (es) | 2017-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2569197B2 (de) | Antrieb für schienenfahrzeuge | |
EP1998930B1 (de) | Positioniereinrichtung | |
DE1605826C3 (de) | Drehgestell für Eisenbahnwagen mit mindestens zwei Radsätzen | |
AT505902B1 (de) | Drehgestell für eine lokomotive mit achsreitend angeordneten getrieben | |
CH670228A5 (de) | ||
DE2905453C2 (de) | Homokinetische Doppelgelenkkupplung | |
DE3123858A1 (de) | Laufwerk fuer ein schienenfahrzeug | |
DE2636864B2 (de) | Triebdrehgestell für ein Schienenfahrzeug | |
EP0420801B1 (de) | Schienenfahrzeug | |
WO2013068174A1 (de) | Getriebeeinheit | |
EP0308616B1 (de) | Antriebsaggregat für Schienenfahrzeuge | |
EP0501204A1 (de) | Drehgestell für Schienenfahrzeuge | |
DE102014207793B4 (de) | Radaufhängung für ein Fahrzeug | |
WO2009144319A1 (de) | Drehgestell mit geteiltem rahmen und motor-getriebe-kupplungs-einheit | |
WO2017081032A1 (de) | Antriebsanordnung für ein schienenfahrzeug, schienenfahrzeug mit der antriebsanordnung und verfahren zur herstellung | |
DE3004208A1 (de) | Fahrgestell fuer allradgetriebene kraftfahrzeuge | |
DE202014101981U1 (de) | Radaufhängung für ein Fahrzeug | |
EP0137931A2 (de) | Antriebsaggregat für Schienenfahrzeuge | |
EP1532033B1 (de) | Triebgestell für ein schienenfahrzeug | |
EP3470288B1 (de) | Schienenfahrzeug mit kompaktem direktantrieb | |
DE2837302C2 (de) | ||
DE102013217613A1 (de) | Aktive Stabilisierungseinrichtung für ein Kraftfahrzeug | |
EP0930210B1 (de) | Fahrwerk für Schienenfahrzeuge und Schienenfahrzeug mit mindestens einem derartigen Fahrwerk | |
DE102013210235A1 (de) | Drehmomentstütze für ein Schienenfahrzeug | |
DE10041583A1 (de) | Befestigung für Differentialgetriebe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121108 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150105 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20161201 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 891988 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011012218 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2635592 Country of ref document: ES Kind code of ref document: T3 Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170811 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170810 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170810 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170910 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502011012218 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
26 | Opposition filed |
Opponent name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20180208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170511 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170511 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 891988 Country of ref document: AT Kind code of ref document: T Effective date: 20170511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170511 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110511 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170510 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210527 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20210429 Year of fee payment: 11 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20220119 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502011012218 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2635592 Country of ref document: ES Kind code of ref document: T5 Effective date: 20220513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220511 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240626 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240509 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240528 Year of fee payment: 14 |