EP2553269A2 - Doppelmembranpumpe - Google Patents

Doppelmembranpumpe

Info

Publication number
EP2553269A2
EP2553269A2 EP11713179A EP11713179A EP2553269A2 EP 2553269 A2 EP2553269 A2 EP 2553269A2 EP 11713179 A EP11713179 A EP 11713179A EP 11713179 A EP11713179 A EP 11713179A EP 2553269 A2 EP2553269 A2 EP 2553269A2
Authority
EP
European Patent Office
Prior art keywords
piston
diaphragm pump
hydraulic
pump according
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11713179A
Other languages
English (en)
French (fr)
Other versions
EP2553269B1 (de
Inventor
Thomas SCHÜTZE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Promera GmbH and Co KG
Original Assignee
Promera GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promera GmbH and Co KG filed Critical Promera GmbH and Co KG
Publication of EP2553269A2 publication Critical patent/EP2553269A2/de
Application granted granted Critical
Publication of EP2553269B1 publication Critical patent/EP2553269B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • F04B43/026Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel each plate-like pumping flexible member working in its own pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/073Pumps having fluid drive the actuating fluid being controlled by at least one valve

Definitions

  • the present invention relates to a diaphragm pump having at least one membrane.
  • the membrane limits a delivery chamber into which a supply line and an outlet line open.
  • check valves in the supply and discharge lines become such
  • the conveying medium can be sucked into the conveying space via the feed line and then be forced out of the conveying space via the outlet line.
  • Membranes which are usually formed as a plate membranes, by means of a common piston-cylinder system or by means of a
  • CONFIRMATION COPY Electric drive can be adjusted. In rooms in which explosive gases may occur, no electric pumps may be operated or the strict requirements of explosion protection must be taken into account. Here usually pneumatic pumps are used, in which a piston, which with the membranes
  • Double membrane pump is known from WO2009 / 024619.
  • the piston driving the compressed air is simultaneously in the
  • a double-chamber diaphragm pump without driven piston is known from DE 32 06 242.
  • a disadvantage of this pump are the large spaces that must be filled after reaching dead center with compressed air, so that the membrane can be moved in the other direction. This requires a lot of compressed air, which increases the maintenance costs of the pump.
  • a similarly constructed pump with The same disadvantages are known from CA 1172904, WO97 / 10902 and US 5,368,452. Even with the pump known from WO2009 / 024619, a disproportionate amount of compressed air is required for the operation of the pump. Also, these pumps are not pressure-translated, so that the delivery pressure is always below the feed pressure.
  • Object of the present invention is to provide a diaphragm pump, in which the membranes have a long service life and are subjected to low differential pressures and has a good efficiency. This object is achieved with a diaphragm pump having the features of claim 1. Advantageous embodiments of the diaphragm pump according to claim 1 result from the features of the subclaims.
  • the invention is based on the idea that the diaphragm pump has a first piston-cylinder system whose piston drives at least one hydraulic cylinder.
  • the piston can thereby by means of a fluid, e.g. Compressed air or a liquid medium driven, i. be moved back and forth.
  • a fluid e.g. Compressed air or a liquid medium driven, i. be moved back and forth.
  • Hydraulic piston moves back and forth.
  • the hydraulic piston is in turn arranged in a cylinder and divides this into two working spaces, a first and a second working space.
  • At least one first working space is filled with a hydraulic medium which acts on the membrane of the diaphragm pump.
  • the diaphragm pump is designed as a double diaphragm pump, so that in each case the two
  • the first working space is limited in each case by the hydraulic piston and the membrane.
  • the work space has a
  • the first piston of the first piston-cylinder system is thereby Advantageously driven by compressed air, so that the diaphragm pump can also be used in explosion-proof rooms.
  • any desired pressure ratio between the driving pneumatic pressure and the delivery pressure of the pump can be adjusted.
  • the diaphragms are exposed to a maximum of one differential pressure load (maximum suction power) of one bar, which advantageously results in a long service life of the diaphragms.
  • an inert liquid is selected for the conveyed medium, so that in the event of a defect in the membrane, the fluid being conveyed is not contaminated. Penetrate in case of failure
  • the second working spaces of the hydraulically acting piston-cylinder systems are connected to each other, so that they act as attenuators by the medium located in these work spaces, which advantageously inert the same
  • Hydraulic medium as in the first work rooms is pumped back and forth.
  • the membranes are advantageously connected to each other by means of a connecting element, which synchronizes the movement of the membranes.
  • This connecting element is not used to drive the membranes.
  • the connecting element at its ends in each case a thread with which it is screwed into the membranes. The screwing can be done directly in the material, in particular rubber, or in an inset in the membrane threaded bushing. Since that
  • a small construction is advantageously achieved when the
  • first piston-cylinder system is arranged between the hydraulically acting piston-cylinder systems.
  • the first piston is rigidly connected by means of piston rods with the two hydraulic pistons, whereby they are adjusted synchronously with him.
  • the diaphragm pump has at least one device for monitoring the quantity of hydraulic medium present in one and / or several working chambers of the hydraulically acting piston-cylinder systems and / or in their connecting line.
  • Hydraulic medium escapes and is sucked from a storage container, this is detected by the device and shut down the pump and / or sent an error signal to a higher-level control system.
  • the first piston of the first piston-cylinder system reciprocating fluid, in particular compressed air is guided by a main valve, which is controlled in particular by the movement of the first piston, alternately into the first and second working space of the first piston-cylinder system.
  • a main valve which is controlled in particular by the movement of the first piston, alternately into the first and second working space of the first piston-cylinder system.
  • the switching valves control the main valve switching compressed air.
  • Advantageously unregulated compressed air is used, ie compressed air, which is provided by an external compressed air source available. This pressure is usually higher than that Pressure with which the diaphragm pumps are operated according to the prior art. This will ensure that the
  • Main valve has only one input for regulated air, often not given, because the regulated pressure to the first piston-cylinder system is often very low.
  • the first piston mechanically actuates the valve actuators of the change-over valves, the change-over valves being designed in particular as a cartridge valve, i. from the outside in the respective frontally limiting wall of the first piston-cylinder system can be used, in particular screwed, are. This results in a particularly favorable
  • valves can be replaced without opening the pumping rooms. Also, the main valve is advantageous outside of the housing
  • Diaphragm pump arranged so that even the main valve can be easily cleaned, repaired or replaced.
  • the main valve is designed as a 4/2-way valve or as a 5/2-way valve. That the valve control element of the main valve moves alternately back and forth between two end positions. It thus has only two defined positions in the form of end positions. On the way from one end position to the other end position, that is, during the movement, are in a middle area between the
  • End positions the two working spaces of the first piston-cylinder system connected to each other via the valve control element of the main valve and thus the acquiring working space with the
  • the main valve has an input for unregulated compressed air of an external compressed air source, wherein the main valve itself may have a pressure control device for generating regulated compressed air of a certain pressure.
  • a displaceably arranged in the housing of the main valve valve control element which is controlled by the switching valves controlled by the compressed air, in particular the
  • Uncontrolled compressed air is adjusted, the regulated compressed air is passed alternately into the working chambers of the first piston-cylinder system.
  • Piston is as small as possible, the axial cylinder walls of the cylinder of the first piston-cylinder system can be advantageously adapted to the shape of the axial walls of the first piston.
  • a planar design of the walls is to be preferred here.
  • the switching valves may advantageously have throttles, so that the forced out of the respective working space air is braked by the throttle and this advantageously leads to a slowed movement of the valve control element of the main valve from the central region, whereby the phase of pressure equalization between the prestressed and soon To be emptied work space and the next to be filled work space is as long as possible.
  • the throttle is not so strong at the beginning of the movement of the pneumatic piston, so that the valve control element of the main valve at high speed from its end position in the direction of the middle
  • Each delivery chamber can advantageously via a respective supply channel with a common supply line and / or via one each
  • Outlet channel with a common pressure line in connection wherein the supply and / or the pressure line floating is mounted at least one connection region of the pump housing.
  • Valves in particular non-return valves, are respectively arranged in the feed channels and in the outlet channels.
  • Hydraulic piston can be driven. This can be done by means of a
  • Pneumatic drive more than two membranes, in particular one
  • diaphragm pump which is designed as a double diaphragm pump, based on
  • Fig. 1 Perspective view of the invention
  • FIG. 2 is a sectional view of the diaphragm pump according to FIG. 1;
  • FIG. 2 is a sectional view of the diaphragm pump according to FIG. 1;
  • Fig. 3 cross-sectional view through the double diaphragm pump
  • Fig. 4 partial detail of Figure 3;
  • Fig. 5 Pneumatic plan for a diaphragm pump according to the invention with a 5/2-way valve as the main valve;
  • Fig. 6 Pneumatic plan for a diaphragm pump according to the invention with
  • Figures 1 and 2 show a perspective view of
  • inventive membrane pump in the form of a
  • Double diaphragm pump has a
  • the housing part 11 is, as shown in Figure 2, fixed by means of coaxial screws IIa to the axial cylinder wall 3 of the first piston-cylinder system. From the housing cover 19 and the housing part 11, the membrane M is clamped at 22 (see Figures 3 and 4). Housing cover 19 and housing part 11 are connected to each other by means of screws 19a and hold the membrane M in position.
  • the housing cover 19 forms below and above each a receptacle for a check valve 24.
  • the check valves 23, 24 are before screwing the
  • Housing flanges 25, 27 used on the housing cover 19 in the corresponding recesses of the housing cover 19.
  • Wall sleeve 2 which forms the cylinder, arranged, with additional seals to ensure the tightness.
  • the screws 6 have a screw head 6a and at its end a thread 6b, with which they are screwed to the one axial wall 3.
  • the first piston 1 is arranged, which is formed by two discs la, lb and the working spaces A and B separated from each other.
  • the discs la, lb are screwed together by means of screws 4.
  • Wall 2 has on its outer side ribs for absorbing heat from the ambient air to prevent icing of the diaphragm pump.
  • the axial walls 3 also have recesses 3b, which also serve better heat conduction and for stiffening and material savings.
  • the piston 1 has a circumferential Seal lc, which bears sealingly against the inner wall of the cylinder 2.
  • Piston rods 8a, 8b positively secured to the piston 1.
  • the piston rods 8a, 8b pass through the bores 3a of the axial walls 3, wherein seals 56 ensure that no compressed air from the working chambers A, B enters the hydraulic chambers H 2 . With their ends 8 d, the piston rods 8 a, 8 b are sealingly connected to the hydraulic piston by means of screws 60.
  • the piston rods 8a, 8b are formed as tubes in which the connecting element 5 rests displaceably in the form of a rod.
  • the connecting element 5 is screwed with its outer thread having ends 5a in the diaphragm plate 20.
  • the diaphragm plate 20 is formed in the membrane M, in the center 21 thereof.
  • the hydraulic pistons 9 each have a circumferential seal 12, which abut sealingly on the inner wall of the cylinder wall 10 and the two working spaces Hi, H 2 separate from each other.
  • the two hydraulic chambers H 2 of the two hydraulic piston-cylinder systems are connected to each other via the connecting channels 16, 17 and 18.
  • In the hydraulic piston 9 are each differential pressure valves 13th
  • the connecting channel 16, 17, 18 can be connected by means of a further connection line, not shown, with a storage container and / or a sensor. If there is now an inflow or outflow of hydraulic medium on the reservoir or the connecting line, this may mean a breakage of the membrane, whereupon a higher-level control system generates an error signal can be sent and / or the diaphragm pump is automatically stopped. This can eg by the force-controlled
  • the feed channels 28 are connected to one another by means of the feed line 36, wherein the feed line 36 forms with its one end 41 the delivery medium inlet of the pump.
  • the other end of the feed line 36 designed as a tube is screwed in by means of a screw
  • the supply line 36 is located with its areas 36a floating in the housing flanges 27, wherein seals 39 provide the necessary tightness.
  • the housing flanges 27 have an annular space 40 which encompasses the regions 36a and which extends through an annular space 40
  • the supply line 36 has window-like openings 38, through which the pumped medium passes from the interior 37 of the supply line 36 into the annular space 40 and from there into the feed channel 28.
  • the outlet channels 26 are connected to each other by means of the pressure line 29, wherein the pressure line 29 forms with its one end 33 the delivery medium outlet of the pump.
  • the other end of the pipe formed as a pressure line 29 is closed by means of a screwed plug 34.
  • the pressure line 29 is located with its areas 29a floating in the housing flanges 25, wherein seals 39 provide the necessary tightness.
  • the housing flanges 25 have an area surrounding the regions 29 a annular space 32, which by a
  • the pressure line 29 has window-like openings 31, through which the conveying medium can pass from the annular space 32 into the interior space 30 of the pressure line 29.
  • switching valves 14 are arranged, which extend with an extension 15 of its valve control members in the working spaces A, B. If the piston 1 reaches its dead center, the respective changeover valve is actuated, whereby compressed air, not shown, to the main valve 50 is passed, and the main valve in turn switches.
  • the main valve 50 is disposed on the outside of the pump housing, so that a good heat exchange with the ambient air can take place, whereby the risk of icing is reduced. If the diaphragm plate 20 is adjusted by means of the hydraulic piston 9 so that the delivery chamber Fi decreases, the delivery medium located in the delivery chamber F, through the check valve 24 in the
  • Outlet channel 26 promoted.
  • the check valve 23 is closed during this. Is subsequently in the delivery chamber F, by retraction of the membrane M, increased, so is the now open
  • FIG. 5 shows a pneumatic diagram of the diaphragm pump according to FIGS. 1 to 4.
  • the diaphragm pump operated with compressed air has a compressed air inlet 43, which is advantageously arranged on the main valve 50.
  • the pressure regulating device 45 In or on the main valve 50, the pressure regulating device 45
  • the pressure regulator 45 may be arranged, which is connected by means of the connecting line 44 to the input 43.
  • the pressure regulator 45 may be arranged, which is connected by means of the connecting line 44 to the input 43.
  • the pressure regulator 45 may be arranged, which is connected by means of the connecting line 44 to the input 43.
  • the pressure regulator 45 may be arranged, which is connected by means of the connecting line 44 to the input 43.
  • the pressure regulator 45 may be arranged, which is connected by means of the connecting line 44 to the input 43.
  • Proportional valve which has an adjustment mechanism, e.g. in the form of an adjusting screw, with which a spring for
  • Pressure setting can be biased. If an unregulated pressure of 7 bar is provided by the external compressed air source (not shown), the regulated pressure of the main valve 50 can be regulated by the pressure regulating device 45 via the connecting line. 5.5 bar are supplied.
  • the input 43 is connected via connecting lines 48, 49 with the
  • Changeover valves 14 in conjunction are designed as 3/2-way valves and are connected by means of extending into the working spaces A, B extensions 15 of their valve control members.
  • a spring presses the valve control members in the shown position in which the control lines 52, 53 are not connected to the valve inlet or the connecting line 48, 49.
  • the main valve 50 is designed as a 5/2-way valve.
  • FIG. 6 shows an alternative embodiment in which the
  • Main valve 50 is designed as a 4/2-way valve.
  • the main valve 50 differs from the main valve shown in Figure 5 only in that only one output 51 is provided. LIST OF REFERENCES:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Die Erfindung betrifft eine Membranpumpe, bei der ein Fluid mindestens einen ersten Kolben (1) eines ersten Kolben-Zylinder-Systems (1, 2, 3) hin- und her bewegt, wobei der erste Kolben (1) mit mindestens einem weiteren Hydraulikkolben (9) mechanisch verbunden ist, und der Hydraulikkolben (9) mittels eines Hydraulikmediums mindestens eine Membran (M1, M2) antreibt.

Description

Doppelmembranpumpe
Die vorliegende Erfindung betrifft eine Membranpumpe mit mindestens einer Membran.
Bei Membranpumpen begrenzt die Membran einen Förderraum, in den eine Zuführleitung und eine Auslassleitung münden. In der Regel werden Rückschlagventile in den Zuführ- und Auslassleitungen derart
angeordnet, dass durch hin und her bewegen der Membran das
Fördermedium zunächst über die Zuführleitung in den Förderraum gesaugt und anschließend über die Auslassleitung aus dem Förderraum herausgedrückt werden kann.
Damit eine kontinuierliche Förderung möglich ist, werden meist zwei Membranpumpen parallel geschaltet, wobei die eine das Fördermedium ansaugt und die andere in derselben Zeit das Fördermedium aus ihrem Förderraum herausdrückt.
Es sind zudem Doppelmembranpumpen bekannt, bei denen die
Membranen, welche meist als Tellermembranen ausgebildet sind, mittels eines gemeinsamen Kolben-Zylinder-Systems oder mittels eines
BESTÄTIGUNGSKOPIE elektrischen Antriebes verstellt werden. In Räumen, in denen explosive Gase auftreten können, dürfen keine elektrischen Pumpen betrieben werden oder müssen die strengen Forderungen des Ex-Schutzes berücksichtigt werden. Hier werden in der Regel Pneumatikpumpen eingesetzt, bei denen ein Kolben, welcher mit den Membranen
mechanisch verbunden ist, mittels Druckluft in einem Zylinder hin und her bewegt wird. Die Druckluft wird dabei mittels eines Hauptventils derart geschaltet, dass die beiden Arbeitsräume abwechselnd mit
Druckluft befüllt werden. Eine derartige Pumpe ist aus der US 4,818,191 bekannt. Die vom Förderraum von den Membranen getrennten Räume sind mittels Kanäle mit der Umgebung verbunden, so dass bei einer eventuelle Leckage das Fördermedium aus der Pumpe austreten kann und die Bewegung der Membranen nicht behindert. Nachteilig bei dieser Pumpe ist, dass die Membranen aufgrund des hohen Drucks im
Förderraum und dem hinter der Membran herrschenden Umgebungsdruck einer hohen Differenzdruckbelastung ausgesetzt sind, was zu einem schnellen Verschleiß der Membranen führt.
Eine weiter entwickelte pneumatisch angetriebene
Doppelmembranpumpe ist aus der WO2009/024619 bekannt. Bei dieser Pumpe wird die den Kolben antreibende Druckluft gleichzeitig in den
Raum hinter der Membran geleitet. Gleichzeitig wird die Membran durch einen Teller gestützt, welcher jedoch lediglich in einem Totpunkt vollständig an der Membran unterstützend anliegt. Nachteilig bei dieser Pumpe ist, dass bei einem Defekt der Membran das Fördermedium in die Pneumatik gelangt und die Ventile und somit die gesamte Pumpe außer Funktion setzt. Die Pumpe ist anschließend, wenn überhaupt, nur mit hohem Aufwand wieder in Stand zu setzen.
Eine Doppelkammer-Membranpumpe ohne angetriebenen Kolben ist aus der DE 32 06 242 bekannt. Nachteilig bei dieser Pumpe sind die großen Räume, die nach dem Erreichen des Totpunktes mit Druckluft befüllt werden müssen, damit die Membran in die andere Richtung bewegt werden können. Hierdurch wird sehr viel Druckluft benötigt, welches die Unterhaltskosten der Pumpe erhöht. Eine ähnlich aufgebaute Pumpe mit den gleichen Nachteilen ist aus der CA 1172904, der WO97/10902 und der US 5,368,452 bekannt. Auch bei der aus der W2009/024619 bekannten Pumpe wird unverhältnismäßig viel Druckluft für den Betrieb der Pumpe benötigt. Auch sind diese Pumpen nicht druckübersetzt, so dass der Förderdruck immer unter dem Einspeisedruck liegt.
Aufgabe der vorliegenden Erfindung ist es, eine Membranpumpe bereit zu stellen, bei der die Membranen eine hohe Lebensdauer aufweisen sowie mit niedrigen Differenzdrücken beaufschlagt werden und die einen guten Wirkungsgrad aufweist. Diese Aufgabe wird erfindungsgemäß mit einer Membranpumpe mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Membranpumpe nach Patentanspruch 1 ergeben sich durch die Merkmale der Unteransprüche.
Der Erfindung liegt der Gedanke zugrunde, dass die Membranpumpe ein erstes Kolben-Zylinder-System aufweist, dessen Kolben mindestens einen Hydraulikzylinder antreibt. Der Kolben kann dabei mittels eines Fluid, z.B. Druckluft oder einem flüssigen Medium angetrieben, d.h. hin und her bewegt werden. Hierdurch wird auch der mindestens eine
Hydraulikkolben hin und her bewegt. Der Hydraulikkolben ist seinerseits in einem Zylinder angeordnet und unterteilt diesen in zwei Arbeitsräume, einen ersten und einen zweiten Arbeitsraum. Zumindest der eine erste Arbeitsraum ist dabei mit einem Hydraulikmedium gefüllt, welches auf die Membran der Membranpumpe wirkt. Vorteilhaft ist die Membranpumpe als Doppelmembranpumpe ausgebildet, so dass jeweils die beiden
Membranen im Wechsel fördern. Vorteilhaft ist der erste Arbeitsraum stirnseitig jeweils durch den Hydraulikkolben und die Membran begrenzt. Es ist jedoch auch möglich, dass der Arbeitsraum über eine
Verbindungsleitung mit dem von der Membran vom Förderraum
getrennten Raum in Verbindung ist und so das vom Hydraulikkolben bewegte Hydraulikmedium auf die Membran wirkt und diese verstellt.
Der erste Kolben des ersten Kolben-Zylinder-Systems wird dabei vorteilhaft mittels Druckluft angetrieben, so dass die Membranpumpe auch in explosionsgeschützten Räumen einsetzbar ist.
Durch die frei wählbaren Flächen von erstem Kolben und Hydraulikkolben kann eine beliebige Druckübersetzung zwischen dem antreibenden Pneumatikdruck und dem Förderdruck der Pumpe eingestellt werden.
Unabhängig vom Förderdruck der Membranpumpe sind die Membranen maximal einer Differenzdruckbelastung (max. Saugleistung) von einem bar ausgesetzt, wodurch sich vorteilhaft eine hohe Lebensdauer der Membranen ergibt. Vorteilhaft wird als Hydraulikmedium eine für das geförderte Medium inerte Flüssigkeit gewählt, so dass bei einem Defekt der Membran das Fördermedium nicht verunreinigt wird. Dringt im Störfall das
Fördermedium in den ersten Arbeitsraum ein, so beeinflusst dies nicht die Pumpe. Vorteilhaft sind die zweiten Arbeitsräume der hydraulisch wirkenden Kolben-Zylinder-Systeme miteinander verbunden, so dass diese als Dämpfungsglieder fungieren, indem das in diesen Arbeitsräumen befindliche Medium, welches vorteilhaft das gleiche inerte
Hydraulikmedium wie in den ersten Arbeitsräumen ist, hin und her gepumpt wird.
Sofern die Pumpe als Doppelmembranpumpe ausgebildet ist, sind die Membranen vorteilhaft mittels eines Verbindungselementes miteinander in Verbindung, welches die Bewegung der Membranen synchronisiert. Dieses Verbindungselement dient nicht dem Antrieb der Membranen. Vorteilhaft weist das Verbindungselement an seinen Enden jeweils ein Gewinde auf, mit dem es in die Membranen eingeschraubt ist. Das Einschrauben kann direkt in das Material, insbesondere Gummi, oder in eine in der Membran einliegende Gewindebuchse erfolgen. Da das
Verbindungselement keine großen Kräfte überträgt, kann meist auf eine Gewindebuchse verzichtet werden. Eine kleine Bauweise wird vorteilhaft dadurch erzielt, wenn das
antreibende erste Kolben-Zylinder-System zwischen den hydraulisch wirkenden Kolben-Zylinder-Systemen angeordnet ist. Der erste Kolben ist dabei mittels Kolbenstangen mit den beiden Hydraulikkolben starr verbunden, wodurch diese mit ihm synchron verstellt werden. Das
Verbindungselement der Membranen kann dabei vorteilhaft die
rohrförmig ausgebildeten Kolbenstangen durchgreifen und ist in diesen verschieblich gelagert. Gleichsam durchtritt das Verbindungselement die Hydraulikkolben, wobei entsprechend angeordnete Dichtungen
verhindern, dass durch die Kolbenstangen Hydraulikmedium von einem Arbeitsraum zum anderen gelangt.
Vorteilhaft weist die Membranpumpe mindestens eine Einrichtung zur Überwachung der Menge des in einem und/oder mehreren Arbeitsräumen der hydraulisch wirkenden Kolben-Zylinder-Systeme und/oder in deren Verbindungsleitung befindlichen Hydraulikmediums auf. Sofern
Hydraulikmedium entweicht und aus einem Vorratsbehältnis angesaugt wird, wird dies von der Einrichtung erkannt und die Pumpe stillgesetzt und/oder ein Fehlersignal an eine übergeordnete Steuerungsanlage gesendet. Das den ersten Kolben des ersten Kolben-Zylindersystems hin und her bewegende Fluid, insbesondere Druckluft, wird von einem Hauptventil, welches insbesondere durch die Bewegung des ersten Kolbens gesteuert ist, abwechselnd in den ersten und zweiten Arbeitsraum des ersten Kolben-Zylinder-Systems geleitet. In den die Arbeitsräume axial bzw. stirnseitig begrenzenden Wandungen des ersten Kolben-Zylinder-Systems sind jeweils vom ersten Kolben vor oder bei Erreichen des jeweiligen Totpunktes bzw. Umschaltpunktes mechanisch betätigte Umschaltventile, insbesondere 3/2-Wege-Ventile, angeordnet. Die Umschaltventile steuern dabei die das Hauptventil schaltende Druckluft. Vorteilhaft wird dabei ungeregelte Druckluft verwendet, d.h. Druckluft, die von einer externen Druckluftquelle zur Verfügung gestellt wird. Dieser Druck ist in der Regel höher als der Druck, mit welchem die Membranpumpen nach dem Stand der Technik betrieben werden. Hierdurch wird sichergestellt, dass die
erfindungsgemäße Membranpumpe sicher umschaltet. Dies ist bei
Membranpumpen nach dem Stand der Technik, bei denen das
Hauptventil nur einen Eingang für geregelte Luft aufweist, oft nicht gegeben, da der geregelte Druck zum ersten Kolben-Zylinder-System oft sehr niedrig ist.
Der erste Kolben betätigt die Ventilstellglieder der Umschaltventile mechanisch, wobei die Umschaltventile insbesondere als Cartridge-Ventil ausgebildet sind, d.h. von außen in die jeweils stirnseitig begrenzende Wandung des ersten Kolben-Zylinder-Systems einsetzbar, insbesondere einschraubbar, sind. Hierdurch ergibt sich ein besonders günstiger
Aufbau, da die Ventile ohne Öffnen der Förderräume ausgetauscht werden können. Auch das Hauptventil wird vorteilhaft außen am Gehäuse der
Membranpumpe angeordnet, so dass auch das Hauptventil leicht gesäubert, repariert oder ausgetauscht werden kann.
Vorteilhaft ist das Hauptventil als 4/2-Wegeventil bzw. als 5/2-Wegeventil ausgebildet. D.h. das Ventilsteuerelement des Hauptventils bewegt sich zwischen zwei Endstellungen alternierend hin und her. Es hat somit nur zwei definierte Stellungen in Form der Endstellungen. Auf dem Weg von einer Endstellung in die andere Endstellung, das heißt während der Bewegung, werden in einem mittleren Bereich zwischen den
Endstellungen die beiden Arbeitsräume des ersten Kolben-Zylinder- Systems miteinander über das Ventilsteuerelement des Hauptventils verbunden und somit der übernehmende Arbeitsraum mit der
komprimierten Druckluft aus dem übergebenden Arbeitsraum vorgefüllt. Danach wird der Arbeitsraum, der vorgefüllt wurde, mit geregelter Luft weiter befüllt. Der andere Arbeitsraum wird mit dem Ventilausgang verbunden, so dass sich die restliche Arbeitsluft aus dem Arbeitsraum über Schalldämpfer entspannen kann. Hierdurch ergibt sich ein besserer Wirkungsgrad der erfindungsgemäßen Membranpumpe, da weniger Druckluft für den Betrieb der Pumpe benötigt wird.
Vorteilhaft weist das Hauptventil einen Eingang für ungeregelte Druckluft einer externen Druckluftquelle auf, wobei das Hauptventil selbst eine Druckregeleinrichtung zur Erzeugung von geregelter Druckluft eines bestimmten Druckes aufweisen kann. Über ein verschieblich im Gehäuse des Hauptventils angeordnetes Ventilsteuerelement, welches von der von den Umschaltventilen gesteuerten Druckluft, insbesondere der
ungeregelten Druckluft, verstellt wird, wird die geregelte Druckluft abwechselnd in die Arbeitsräume des ersten Kolben-Zylinder-Systems geleitet.
Damit der verbleibende Arbeitsraum in den Totpunkten des ersten
Kolbens möglichst klein ist, können die axialen Zylinderwandungen des Zylinders des ersten Kolben-Zylinder-Systems vorteilhaft an die Form der axialen Wandungen des ersten Kolbens angepasst sein. Eine plane Ausbildung der Wandungen ist hierbei zu bevorzugen.
Die Umschaltventile können vorteilhaft Drosseln aufweisen, so dass die aus dem jeweiligen Arbeitsraum herausgedrückte Luft durch die Drossel gebremst wird und es hierdurch vorteilhaft zu einer verlangsamten Bewegung des Ventilsteuerelementes des Hauptventils ab des mittleren Bereiches kommt, wodurch die Phase des Druckausgleichs zwischen dem vorgespannten und dem demnächst zu entleerenden Arbeitsraum und dem als nächstes zu befüllenden Arbeitsraum möglichst lang wird. Die Drossel wirkt am Anfang der Bewegung des Pneumatikkolbens noch nicht so stark, so dass das Ventilsteuerelement des Hauptventils mit hoher Geschwindigkeit aus seiner Endstellung in Richtung des mittleren
Bereiches, in dem die Arbeitsräume des Pneumatikzylinders
kurzgeschlossen sind, verstellt wird.
Jeder Förderraum kann vorteilhaft über jeweils einen Zuführkanal mit einer gemeinsamen Zuführleitung und/oder über jeweils einen
Auslasskanal mit einer gemeinsamen Druckleitung in Verbindung sein, wobei die Zuführleitung und/oder die Druckleitung schwimmend an mindestens einem Verbindungsbereich des Pumpengehäuses gelagert ist. Hierdurch wird vorteilhaft erreicht, dass kein wechselseitig auftretenden Beanspruchungen an den Verbindungsstellen mechanische
Ermüdungserscheinungen auftreten. In den Zuführkanälen und in den Auslasskanälen sind jeweils Ventile, insbesondere Rückschlagventile, angeordnet.
Es ist selbstverständlich möglich, dass mittels des ersten Kolben- Zylinder-Systems, welches insbesondere pneumatisch mittels Druckluft angetrieben ist, mehrere parallel zueinander angeordnete
Hydraulikkolben antreibbar sind. Hierdurch können mittels eines
Pneumatikantriebes mehr als zwei Membranen, insbesondere ein
Vielfaches von zwei zum Saugen und Drücken angetrieben bzw. verstellt werden.
Nachfolgend wird eine mögliche Ausführungsform der Membranpumpe, welche als Doppelmembranpumpe ausgebildet ist, anhand von
Zeichnungen näher erläutert.
Es zeigen :
Fig. 1 : Perspektivische Ansicht der erfindungsgemäßen
Membranpumpe in Form einer Doppelmembranpumpe; Fig. 2: geschnittene Darstellung der Membranpumpe gemäß Fig. 1;
Fig. 3: Querschnittsdarstellung durch die Doppelmembranpumpe
gemäß der Figuren 1 und 2;
Fig. 4: Teilausschnitt aus der Figur 3;
Fig. 5: Pneumatikplan für eine erfindungsgemäße Membranpumpe mit einem 5/2-Wegeventil als Hauptventil;
Fig. 6: Pneumatikplan für eine erfindungsgemäße Membranpumpe mit
4/2-Wegeventil als Hauptventil. Die Figuren 1 und 2 zeigen eine perspektivische Ansicht der
erfindungsgemäßen Membranpumpe in Form einer
Doppelmembranpumpe. Die Doppelmembranpumpe weist einen
Gehäusedeckel 19 sowie ein den Zylinder 10 des hydraulisch wirkenden Kolben-Zylinder-Systems 9, 10 aufnehmendes Gehäuseteil 11 auf. Das Gehäuseteil 11 ist, wie in Figur 2 dargestellt, mittels koaxialer Schrauben IIa an der axialen Zylinderwandung 3 des ersten Kolben-Zylinder- Systems befestigt. Vom Gehäusedeckel 19 und dem Gehäuseteil 11 ist bei 22 (s. Figur 3 und 4) die Membran M eingespannt. Gehäusedeckel 19 und Gehäuseteil 11 sind mittels der Schrauben 19a miteinander verbunden und halten die Membran M in Position. Der Gehäusedeckel 19 bildet unten und oben jeweils eine Aufnahme für ein Rückschlagventil 24. Die Rückschlagventile 23, 24 werden vor dem Anschrauben der
Gehäuseflansche 25, 27 an den Gehäusedeckel 19 in die entsprechenden Ausnehmungen des Gehäusedeckels 19 eingesetzt. Zusätzliche
Dichtungen verhindern, dass Fördermedium um das Gehäuse der
Rückschlagventile 23, 24 herum dringen kann. Die axialen Wandungen 3 des ersten Kolben-Zylinder-Systems sind mittels Distanzhülsen 7 auf Abstand gehalten und mittels der Schrauben 6 miteinander verbunden. Zwischen den Wandungen 3 ist zudem druckdicht die zylindrische
Wandungshülse 2, welche den Zylinder bildet, angeordnet, wobei zusätzliche Dichtungen für die Dichtheit sorgen. Die Schrauben 6 weisen einen Schraubenkopf 6a und an ihrem Ende ein Gewinde 6b auf, mit dem sie mit der einen axialen Wandung 3 verschraubt sind. In dem Zylinder 2, 3 des ersten Kolben-Zylinder-Systems ist der erste Kolben 1 angeordnet, der durch zwei Scheiben la, lb gebildet ist und die Arbeitsräume A und B voneinander trennt. Die Scheiben la, lb sind mittels der Schrauben 4 miteinander verschraubt. Die zylindrische
Wandung 2 weist an ihrer Außenseite Rippen zur Wärmeaufnahme aus der Umgebungsluft auf, um ein Vereisen der Membranpumpe zu verhindern. Die axialen Wandungen 3 weisen ebenfalls Ausnehmungen 3b auf, die ebenfalls der besseren Wärmeleitung sowie zur Versteifung und Materialersparnis dienen. Der Kolben 1 weist eine umlaufende Dichtung lc auf, die abdichtend an der Innenwandung des Zylinders 2 anliegt.
Beim Zusammenbau des Kolbens 1 werden vorher durch die Bohrungen ld die Kolbenstanden 8a, 8b geschoben, bis die Kragen 8c in den entsprechenden Ausnehmungen le der Kolbenscheiben la, lb einliegen. Durch den Zusammenbau der Kolbenscheiben la, lb sind die
Kolbenstangen 8a, 8b formschlüssig an dem Kolben 1 befestigt.
Die Kolbenstangen 8a, 8b durchgreifen die Bohrungen 3a der axialen Wandungen 3, wobei Dichtungen 56 dafür sorgen, dass keine Druckluft aus den Arbeitsräumen A, B in die Hydraulikräume H2 gelangt. Mit ihren Enden 8d sind die Kolbenstangen 8a, 8b mit den Hydraulikkolben abdichtend mittels Schrauben 60 verbunden. Die Kolbenstangen 8a, 8b sind als Rohre ausgebildet, in denen das Verbindungselement 5 in Form einer Stange verschieblich einliegt. Das Verbindungselement 5 ist mit seinen Außengewinde aufweisenden Enden 5a in den Membranteller 20 eingeschraubt. Der Membranteller 20 ist in der Membran M, in deren Mitte 21 eingeformt.
Die Hydraulikkolben 9 weisen jeweils eine umlaufende Dichtung 12 auf, die abdichtend an der Innenwandung der Zylinderwandung 10 anliegen und die beiden Arbeitsräume Hi, H2 voneinander trennen. Die beiden Hydraulikräume H2 der beiden hydraulischen Kolben-Zylinder-Systeme sind über die Verbindungskanäle 16, 17 und 18 miteinander verbunden. In den Hydraulikkolben 9 sind jeweils Differenzdruckventile 13
angeordnet. Sofern beim Arbeiten der Pumpe der Differenzdruck zwischen den Arbeitsräumen Hi und H2 einen gewissen Wert übersteigen, öffnet das Differenzdruckventil 13 und der Differenzdruck kann auf einen vorgegebenen Wert abgesenkt werden. Der Verbindungskanal 16, 17, 18 kann mittels einer weiteren, nicht dargestellten Verbindungsleitung, mit einem Vorratsbehältnis und/oder einem Sensor verbunden sein. Erfolgt nun ein Zu- oder Abfluss von Hydraulikmedium auf dem Vorratsbehälter bzw. der Verbindungsleitung, kann dies einen Bruch der Membran bedeuten, woraufhin einer übergeordneten Steuerung ein Fehlersignal gesandt werden kann und/oder die Membranpumpe automatisch angehalten wird. Dies kann z.B. durch das zwangsgesteuerte
Verschließen der die Pumpe mit Druckluft versorgenden Zuleitung erfolgen. Die Zuführkanäle 28 sind mittels der Zuführleitung 36 miteinander verbunden, wobei die Zuführleitung 36 mit ihrem einen Ende 41 den Fördermediumseingang der Pumpe bildet. Das andere Ende der als Rohr ausgebildeten Zuführleitung 36 ist mittels eines eingeschraubten
Stopfens 34 verschlossen. Die Zuführleitung 36 liegt mit ihren Bereichen 36a schwimmend in den Gehäuseflanschen 27 ein, wobei Dichtungen 39 für die nötige Dichtheit sorgen. Die Gehäuseflansche 27 weisen einen die Bereiche 36a umfassenden Ringraum 40 auf, welche durch eine
umlaufende Nut gebildet ist. Im Bereich 36a weist die Zuführleitung 36 fensterartige Öffnungen 38 auf, durch die das Fördermedium aus dem Innenraum 37 der Zuführleitung 36 in den Ringraum 40 und von dort in den Zuführkanal 28 gelangt.
Die Auslasskanäle 26 sind mittels der Druckleitung 29 miteinander verbunden, wobei die Druckleitung 29 mit ihrem einen Ende 33 den Fördermediumsausgang der Pumpe bildet. Das andere Ende der als Rohr ausgebildeten Druckleitung 29 ist mittels eines eingeschraubten Stopfens 34 verschlossen. Die Druckleitung 29 liegt mit ihren Bereichen 29a schwimmend in den Gehäuseflanschen 25 ein, wobei Dichtungen 39 für die nötige Dichtheit sorgen. Die Gehäuseflansche 25 weisen einen die Bereiche 29a umfassenden Ringraum 32 auf, welche durch eine
umlaufende Nut gebildet ist. In den Bereichen 29a weist die Druckleitung 29 fensterartige Öffnungen 31 auf, durch die das Fördermedium von dem Ringraum 32 in den Innenraum 30 der Druckleitung 29 gelangen kann.
In den axialen Wandungen 3 sind Umschaltventile 14 angeordnet, die mit einer Verlängerung 15 ihrer Ventilsteuerglieder in die Arbeitsräume A, B hineinreichen. Sofern der Kolben 1 seinen Totpunkt erreicht, wird das jeweilige Umschaltventil betätigt, wodurch über nicht dargestellte Kanäle Druckluft zum Hauptventil 50 geleitet wird, und das Hauptventil seinerseits umschaltet.
Das Hauptventil 50 ist außen am Pumpengehäuse angeordnet, so dass ein guter Wärmeaustausch mit der Umgebungsluft stattfinden kann, wodurch die Vereisungsgefahr gemindert wird. Sofern der Membranteller 20 mittels des Hydraulikkolbens 9 so verstellt wird, dass sich der Förderraum Fi verkleinert, wird das im Förderraum F, befindliche Fördermedium durch das Rückschlagventil 24 in den
Auslasskanal 26 gefördert. Das Rückschlagventil 23 ist während dessen geschlossen. Wird anschließend in den Förderraum F, durch Zurückfahren der Membran M, vergrößert, so wird über das nunmehr geöffnete
Rückschlagventil 23 aus der Zuführleitung 36 Fördermedium in den Förderraum F, angesaugt. Während der Ansaugphase ist das
Rückschlagventil 24 verschlossen.
Die Figur 5 zeigt einen Pneumatikplan der Membranpumpe gemäß der Figuren 1 bis 4. Die mit Druckluft betriebene Membranpumpe hat einen Drucklufteingang 43, der vorteilhaft am Hauptventil 50 angeordnet ist. Im oder am Hauptventil 50 kann die Druckregeleinrichtung 45
angeordnet sein, welche mittels der Verbindungsleitung 44 mit dem Eingang 43 verbunden ist. Die Druckregeleinrichtung 45 kann ein
Proportionalventil sein, welches einen Einstellmechanismus, z.B. in Form einer Einstellschraube, aufweisen kann, mit der eine Feder zur
Druckeinstellung vorgespannt werden kann. Wird durch die externe Druckluftquelle (nicht dargestellt) ein ungeregelter Druck von 7 bar zur Verfügung gestellt, so kann durch die Druckregeleinrichtung 45 über die Verbindungsleitung dem Hauptventil 50 ein geregelte Druckluft von z.B. 5,5 bar zugeführt werden.
Der Eingang 43 ist über Verbindungsleitungen 48, 49 mit den
Umschaltventilen 14 in Verbindung. Die Umschaltventile sind als 3/2- Wege-Ventile ausgebildet und werden mittels der in die Arbeitsräume A, B hineinreichenden Verlängerungen 15 ihrer Ventilsteuerglieder geschaltet. Eine Feder drückt dabei die Ventilsteuerglieder in die dargestellte Stellung, in der die Steuerleitungen 52, 53 nicht mit dem Ventileingang bzw. der Verbindungsleitung 48, 49 verbunden sind.
Sobald der Kolben 1 das jeweilige Ventilsteuerglied 15 verstellt, wird das Umschaltventil 14 geschaltet und die ungeregelte Druckluft der externen Druckquelle schaltet das Hauptventil 50 um.
Das Hauptventil 50 ist als 5/2-Wege-Ventil ausgebildet. In der
dargestellten Stellung gelangt die geregelte Druckluft über die
Verbindungsleitung 57 in den Arbeitsraum A. Der Kolben 1 wird somit zusammen mit den Hydraulikkolben 9 nach rechts verstellt. Durch das in den Hydraulikräumen Hi befindliche Hydraulikmedium wird nunmehr die nicht dargestellte rechte Membran nach rechts verstellt, wodurch sich ihr zugehöriger Förderraum verkleinert. Die rechte Membran fördert somit. Zur gleichen Zeit saugt die ebenfalls in Figur 5 nicht dargestellte linke Membran Fördermedium aus der Zuführleitung in ihren Förderraum. Beim Erreichen des rechten Totpunktes wird das rechte Umschaltventil 14 über die Verlängerung 15 geschaltet, so dass das Hauptventil 50 ebenfalls geschaltet wird. Auf dem Weg nach links wird zunächst die Verbindung des Arbeitsraumes A mit der Verbindungsleitung 47 unterbrochen.
Danach werden die beiden Arbeitsräume miteinander
kurzgeschlossen, so dass die im Arbeitsraum B befindliche vorgespannte Druckluft in den Arbeitsraum A hinein entspannen kann. Hierfür steht eine gewisse Zeit zur Verfügung, bis letztendlich das Hauptventil 50 vollständig durchgeschaltet hat und über die Verbindungsleitung 47 geregelte Druckluft in den Arbeitsraum B geleitet wird, wodurch der Kolben 1 nunmehr nach links bewegt wird. Die übrige noch nicht entspannte Druckluft im Druckraum B entspannt sich anschließend über die Ventilausgänge 51 über die Schalldämpfer 35 in die Umgebung.
Die Figur 6 zeigt eine alternative Ausführungsform, bei der das
Hauptventil 50 als 4/2-Wegeventil ausgebildet ist. Das Hauptventil 50 unterscheidet sich von dem in Figur 5 dargestellten Hauptventil lediglich dadurch, dass nur ein Ausgang 51 vorgesehen ist. Bezuqszeichenliste:
A, B Arbeitsraum des ersten Kolben-Zylinder-Systems
Mi, M2 Membran
1 Erster Kolben des ersten Kolben-Zylinder-Systems
la, lb Kolbenscheiben
lc Dichtung
ld Bohrung
le Ausnehmung für Kragen 8c
2 Zylinder des ersten Kolben-Zylinder-Systems
2a Äußere Kühlrippen des Zylinders 2
3 axiale Zylinderwandung des ersten Kolben-Zylinder-Systems
4 Schrauben
5 Verbindungselement
5a Gewinde des Verbindungselementes 5
6 Verbindungsschraube
7 Abstandshülse
8a, 8b Kolbenstange
8c Kragen
9 Hydraulikkolben
10 Zylinder des hydraulisch wirkenden Kolben-Zylinder-Systems
11 Gehäuseteil
12 Dichtung
13 Differenzdruckventil (PHI>PH2)
14 Umschaltventil
15 Ventilsteuerglied
16, 17, 18 Kanal/Verbindungsleitung
19 Gehäusedeckel
20 Membranteller
21 Membranbereich, in dem der Membranteller 20 angeordnet, ist 22 Einspannbereich der Membran M,
23 Rückschlagventil im Zuführkanal (nur in linker Kammer dargestellt)
24 Rückschlagventil im Auslasskanal (nur in linker Kammer dargestellt)
25 Gehäuseflansch mit Auslasskanal 26 (Auslassgehäuse)
26 Auslasskanal
27 Gehäuseflansch mit Zuführkanal 28 (Einlassgehäuse)
28 Zuführkanal
29 Druckleitung
30 Innenraum der Druckleitung 29
31 Durchlassöffnung in Wandung der Druckleitung 29
32 Ringraum, der die Druckleitung 29 umfasst
33 Pumpenausgang für Fördermedium
34 Stopfen mit Einschraubgewinde Fortsetzung der Bezuqszeichenliste
35 Schalldämpfer für Ausströmen der sich entspannenden Druckluft
36 Zuführleitung
37 Innenraum der Zuführleitung 36
38 Durchlassöffnung in Wandung der Zuführleitung 36
39 Dichtringe
40 Ringraum, der die Zuführleitung 36 umfasst
41 Pumpeneingang für Fördermedium
42 Fuß
43 Eingang für ungeregelte Druckluft einer externen Druckluftquelle
44 Verbindungsleitung
45 Druckregeleinrichtung in Form eines Proportionalventils
46 Einstellmechanismus für geregelten Ausgangsdruck der
Druckregeleinrichtung 46
47 Verbindungsleitung, führt geregelte Druckluft zum Hauptventil 50
48, 49 Verbindungsleitung für ungeregelte Druckluft
50 Hauptventil
51 Ausgänge des Hauptventils, die mit den Schalldämpfern 35 in
Verbindung sind
52, 53 Steuerleitung vom Umschaltventil 14 zum Hauptventil 50
54, 55 Ausgang nach Außen
56 Dichtung
57 Verbindungsleitung zum Arbeitsraum A
58 Verbindungsleitung zum Arbeitsraum B
66 Drossel im Umschaltventil 14

Claims

P a t e n t a n s p r ü c h e
Membranpumpe, bei der ein Fluid mindestens einen ersten Kolben (1) eines ersten Kolben-Zylinder-Systems (1, 2, 3) hin- und her bewegt, wobei der erste Kolben (1) mit mindestens einem weiteren Hydraulikkolben (9) mechanisch verbunden ist, und der
Hydraulikkolben (9) mittels eines Hydraulikmediums mindestens eine Membran (Mi, M2) antreibt, d a d u r c h
g e k e n n z e i c h n e t , dass die Membranpumpe eine Doppelmembranpumpe mit mindestens zwei Membranen (Mi, M2) ist, wobei ein Hydraulikmedium die Membranen (Mi, M2) bewegt bzw. antreibt, wobei mindestens ein Hydraulikkolben (9) das Hydraulikmedium bewegt, und dass jeweils zwei Membranen (Mi, M2) mittels eines Verbindungselementes (5), insbesondere einer Stange oder eines Rohres, mechanisch miteinander verbunden sind
Membranpumpe, bei der ein Fluid mindestens einen ersten Kolben (1) eines ersten Kolben-Zylinder-Systems (1, 2, 3) hin- und her bewegt, wobei der erste Kolben (1) mit mindestens einem weiteren Hydraulikkolben (9) mechanisch verbunden ist, und der
Hydraulikkolben (9) mittels eines Hydraulikmediums mindestens eine Membran (Mi, M2) antreibt.
Membranpumpe nach Anspruch 1, d a d u r c h
g e k e n n z e i c h n e t , dass die Membranpumpe eine Doppelmembranpumpe mit mindestens zwei Membranen (Mi, M2) ist, wobei ein Hydraulikmedium die Membranen (Mi, M2) bewegt bzw. antreibt, wobei mindestens ein Hydraulikkolben (9) das Hydraulikmedium bewegt. Membranpumpe nach Anspruch 3, d a d u r c h
g e k e n n z e i c h n e t , dass jeweils zwei Membranen (Mi, M2) mittels eines Verbindungselementes (5), insbesondere einer Stange oder eines Rohres, mechanisch miteinander verbunden sind.
Membranpumpe nach Anspruch 1 oder 4, d a d u r c h
g e k e n n z e i c h n e t , dass das Verbindungselement (5) mit jedem seiner Enden (5a) jeweils mit einer Membran (Mi, M2) verbunden, insbesondere in diese eingeschraubt oder eingepresst, ist.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass eine Membran (Mi, M2) in einem Membranraum eines Gehäuses (11, 19) angeordnet ist, und diesen in einen Förderraum (Fi, F2) und einen Hydraulikraum (Hi) unterteilt.
Membranpumpe nach Anspruch 6, d a d u r c h
g e k e n n z e i c h n e t , dass der Hydraulikraum (Hi) mit dem einen ersten Arbeitsraum des Kolben-Zylinder-Systems eines Hydraulikkolbens (9), insbesondere mittels eines Kanals oder einer Leitung, in Verbindung ist, einen Bestandteil des Arbeitsraums bildet oder der Arbeitsraum selbst ist.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass Druckluft den ersten Kolben (1) des ersten Kolben-Zylinder-Systems (1, 2, 3) hin und her bewegt, wobei ein Hauptventil (50), welches
insbesondere durch die Bewegung des ersten Kolbens (1) gesteuert ist, die Druckluft abwechselnd in den ersten und zweiten
Arbeitsraum (A, B) des ersten Kolben-Zylinder-Systems (1, 2, 3) leitet.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das erste Kolben-Zylinder-System (1, 2, 3) zwischen zwei hydraulisch wirkenden Kolben-Zylinder-Systemen (9, 10) angeordnet ist, wobei der erste Kolben (1) mit den Hydraulikkolben (9) über mindestens eine Kolbenstange (8a, 8b), die insbesondere den ersten Kolben (1) durchgreift bzw. durchgreifen und/oder an diesem befestigt ist/sind, in Verbindung ist.
10. Membranpumpe nach Anspruch 9, d a d u r c h
g e k e n n z e i c h n e t , dass das Verbindungselement (5) frei verschieblich zum ersten Kolben (1) und zu den Hydraulikkolben (9) gelagert ist, insbesondere in der Kolbenstange (8a, 8b) verschieblich gelagert ist und die beiden Hydraulikkolben (9) durchgreift.
11. Membranpumpe nach Anspruch 10, d a d u r c h
g e k e n n z e i c h n e t , dass Dichtungselemente zwischen dem Verbindungselement (5) und den Hydraulikkolben (9) und/oder der Kolbenstange (8a, 8b) angeordnet sind, derart, dass kein
Hydraulikmedium entlang des Verbindungselements (5) von einem Hydraulikraum (Hi, H2) in den anderen Hydraulikraum gelangen kann.
12. Membranpumpe nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass die hydraulisch wirkenden Kolben-Zylinder-Systeme (9, 10) jeweils einen ersten und einen zweiten Arbeitsraum (Hi, H2) aufweisen, und jeweils der erste Arbeitsraum (Hi) Bestandteil des Hydraulikraums ist, diesen bildet oder mit diesem über einen Kanal in Verbindung ist, und die zweiten Arbeitsräume (H2) über eine Verbindungsleitung
(16, 17, 18) miteinander in Verbindung sind.
13. Membranpumpe nach Anspruch 12, d a d u r c h
g e k e n n z e i c h n e t , dass die zweiten Arbeitsräume (H2) sowie die Verbindungsleitung (16, 17, 18) mit einem
Hydraulikmedium gefüllt sind.
14. Membranpumpe nach Anspruch 12 oder 13, d a d u r c h g e k e n n z e i c h n e t , dass die Membranpumpe
mindestens eine Einrichtung zur Überwachung der Menge des in einem und/oder mehreren Arbeitsräumen (Hi, H2) der hydraulisch wirkenden Kolben-Zylinder-Systeme (9, 10) und/oder in der
Verbindungsleitung (16, 17, 18) befindlichen Hydraulikmediums aufweist.
15. Membranpumpe nach Anspruch 14, d a d u r c h
g e k e n n z e i c h n e t , dass die zweiten Arbeitsräume (H2) und diese miteinander verbindende Verbindungsleitung (16, 17, 18) über eine weitere Verbindungsleitung mit einem ein
Hydraulikmedium enthaltenden Vorratsbehältnis verbunden sind, wobei die Einrichtung einen Ab- und/oder Zufluss von
Hydraulikmedium durch die weitere verbindende Verbindungsleitung ermittelt. 16. Membranpumpe nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass zumindest das in den Hydraulikräumen (Hi, H2) befindliche Hydraulikmedium inert zum geförderten Medium ist.
17. Membranpumpe nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass jeder
Förderraum (Fi, F2) über jeweils einen Zuführkanal (28) mit einer gemeinsamen Zuführleitung (36) und/oder über jeweils einen Auslasskanal (26) mit einer gemeinsamen Druckleitung (29) in Verbindung ist, wobei die Zuführleitung (36) und/oder die
Druckleitung (29) schwimmend an mindestens einem
Verbindungsbereich (25) des Pumpengehäuses gelagert ist.
18. Membranpumpe nach Anspruch 17, d a d u r c h
g e k e n n z e i c h n e t , dass im Zuführkanal (28) und im Auslasskanal (25) jeweils ein Ventil (23, 24), insbesondere
Rückschlagventil, angeordnet ist.
19. Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die
Kolbenfläche des ersten Kolbens (1), insbesondere des
Pneumatikkolbens, größer oder gleich, insbesondere in einem bestimmten Verhältnis, insbesondere im Verhältnis 1:1 bis 1:40 zur Kolbenfläche des bzw. der Hydraulikkolben(s) (9) ist.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass ein
Austausch von Hydraulikmedium vom einen in den anderen
Arbeitsraum (Hi, H2) eines hydraulisch wirkenden Kolben-Zylinder- Systems (9, 10) über ein Ventil (13), insbesondere Überdruck oder Unterdruckventil, bei Über- oder Unterschreiten einer bestimmten Druckdifferenz zwischen den Arbeitsräume (Mi, M2) erfolgt.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass in dem Hydraulikkolben (9) ein Überdruck oder Unterdruckventil (13) angeordnet ist, das einen axial durch den Hydraulikkolben (9) verlaufenden Verbindungskanal im Normalfall absperrt.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die axialen Zylinderwandungen (3a) der Arbeitsräume (A, B) des ersten Kolben- Zylinder-Systems (1, 2, 3) an die Form der axialen Wandungen (lc) des ersten Kolbens (1) angepasst sind, insbesondere plan
ausgebildet sind, derart, dass der verbleibende Arbeitsraum in den Totpunkten des Kolbens (1) minimal ist.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass in den die Arbeitsräume (A, B) axial bzw. stirnseitig begrenzenden Wandungen (3) des ersten Kolben-Zylinder-Systems (1, 2, 3) jeweils ein vom ersten Kolben (1) vor oder bei Erreichen des jeweiligen Totpunktes bzw. Umschaltpunktes mechanisch betätigtes Umschaltventil (14), insbesondere ein 3/2-Wege-Ventil, angeordnet ist, wobei die
Umschaltventile (14) die das Hauptventil (50) schaltende Druckluft, insbesondere ungeregelte Druckluft, steuern.
Membranpumpe nach Anspruch 23, d a d u r c h
g e k e n n z e i c h n e t , dass der Kolben (1) die
Ventilstellglieder der Umschaltventile (14) mechanisch betätigt, wobei die Umschaltventile (14) insbesondere als Cartridge-Ventil ausgebildet sind, d.h. von außen in die jeweils stirnseitig
begrenzende Wandung (3) des ersten Kolben-Zylinder-Systems (1, 2, 3) einsetzbar, insbesondere einschraubbar, sind.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Hauptventil (50) ein 5/2-Wegeventil oder 4/2-Wegeventil ist, das insbesondere in der Umschaltphase die beiden Arbeitsräume (A, B) des ersten Kolben-Zylinder-Systems (1, 2, 3) miteinander verbindet und somit der übernehmende Arbeitsraum (A, B) mit der
komprimierten Druckluft aus dem übergebenden Arbeitsraum (B, A) vorfüllt.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Hauptventil (50) einen Eingang (43) für ungeregelte Druckluft einer externen Druckluftquelle aufweist, wobei das Hauptventil (50) selbst eine Druckregeleinrichtung (45) zur Erzeugung von geregelter Druckluft eines bestimmten Druckes aufweist.
Membranpumpe nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das
Hauptventil (50) ein Ventilsteuerglied aufweist, welches von der von den Umschaltventilen (14) gesteuerten Druckluft, insbesondere ungeregelten Druckluft, verstellt wird.
Membranpumpe nach Anspruch 27, d a d u r c h g e k e n n z e i c h n e t , dass das Ventilsteuerglied die von der Druckregeleinrichtung (45) geregelte Druckluft steuert und zur Verstellung des ersten Kolbens (1) in die Arbeitsräume (A, B) des ersten Kolben-Zylinder-Systems (1, 2, 3) leitet. 29. Membranpumpe nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass die Umschaltventile (14) Drosseln (66) aufweisen.
EP11713179.7A 2010-03-26 2011-03-18 Doppelmembranpumpe Active EP2553269B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010013108A DE102010013108A1 (de) 2010-03-26 2010-03-26 Doppelmembranpumpe
PCT/EP2011/001360 WO2011116911A2 (de) 2010-03-26 2011-03-18 Doppelmembranpumpe

Publications (2)

Publication Number Publication Date
EP2553269A2 true EP2553269A2 (de) 2013-02-06
EP2553269B1 EP2553269B1 (de) 2016-09-07

Family

ID=44510839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11713179.7A Active EP2553269B1 (de) 2010-03-26 2011-03-18 Doppelmembranpumpe

Country Status (5)

Country Link
US (1) US20130101445A1 (de)
EP (1) EP2553269B1 (de)
CN (1) CN102947593B (de)
DE (1) DE102010013108A1 (de)
WO (1) WO2011116911A2 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4115985A1 (de) 2008-10-22 2023-01-11 Graco Minnesota Inc. Tragbare airless-spritzvorrichtung
KR101321976B1 (ko) * 2013-08-16 2013-10-28 (주)금강인더스트리 작동 신뢰성이 보장되는 다이어프램 펌프
PL3567251T3 (pl) 2014-02-07 2021-07-19 Graco Minnesota Inc. Układ napędowy do bezpulsacyjnej pompy wyporowej
CN103925200B (zh) * 2014-03-21 2017-12-26 上海如迪流体输送设备有限公司 一种气动隔膜泵
DE102014006759A1 (de) * 2014-05-08 2015-11-12 Dürr Systems GmbH Abluftführung für eine Beschichtungsmittelpumpe
EP3115607B1 (de) * 2015-07-10 2018-02-21 J. Wagner AG Doppelmembranpumpe
US20170051734A1 (en) * 2015-08-20 2017-02-23 Trebor International Air operated double diaphragm pump with differentiated check valve sizing
DE102015226463A1 (de) * 2015-12-22 2017-06-22 Robert Bosch Gmbh Magnetaktor für ein Förderaggregat
US11007545B2 (en) 2017-01-15 2021-05-18 Graco Minnesota Inc. Handheld airless paint sprayer repair
CN107701407A (zh) * 2017-10-20 2018-02-16 项达章 一种气动式双隔膜泵
DE102017126651B4 (de) * 2017-11-13 2021-05-27 Timmer Gmbh Pumpeinrichtung mit über einem gemeinsamen Antrieb gekoppelten Pumpen
US11022106B2 (en) 2018-01-09 2021-06-01 Graco Minnesota Inc. High-pressure positive displacement plunger pump
CN112368082B (zh) 2018-04-10 2022-11-08 固瑞克明尼苏达有限公司 用于油漆和其他涂料的手持式无气喷涂器
TWI668372B (zh) * 2018-07-12 2019-08-11 聖寶品企業股份有限公司 液體輸送方法及其系統
JP2022508166A (ja) * 2018-09-25 2022-01-19 サン オートメーション インク. ダイアフラム式電動インクポンプ装置および方法
CN109404264A (zh) * 2018-11-29 2019-03-01 东莞市力壹机械设备有限公司 气缸式隔膜泵
EP3976270A1 (de) 2019-05-31 2022-04-06 Graco Minnesota Inc. Handsprüher für flüssigkeit
AU2021246059A1 (en) 2020-03-31 2022-10-06 Graco Minnesota Inc. Electrically operated displacement pump
US10968903B1 (en) 2020-06-04 2021-04-06 Graco Minnesota Inc. Handheld sanitary fluid sprayer having resilient polymer pump cylinder
US10926275B1 (en) 2020-06-25 2021-02-23 Graco Minnesota Inc. Electrostatic handheld sprayer
CA3200674A1 (en) * 2020-11-09 2022-05-12 Pdc Machines Inc. Hydraulically driven diaphragm compressor system
US11867169B2 (en) 2021-11-08 2024-01-09 Pdc Machines, Inc. High-throughput diaphragm compressor
USD1014562S1 (en) * 2022-02-11 2024-02-13 Graco Minnesota Inc. Displacement pump
USD1013732S1 (en) * 2022-02-11 2024-02-06 Graco Minnesota Inc. Displacement pump
USD1014561S1 (en) * 2022-02-11 2024-02-13 Graco Minnesota Inc. Displacement pump control box with center section
USD1006830S1 (en) * 2022-02-11 2023-12-05 Graco Minnesota Inc. Control box for a displacement pump
CN114718852A (zh) * 2022-03-17 2022-07-08 天德(威海)工业装备股份有限公司 一种氢气压缩方法及装备
CN117189556B (zh) * 2023-11-07 2024-03-12 上海如迪流体输送设备有限公司 一种往复增压式多腔气动隔膜泵

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1552305A (de) * 1967-12-15 1969-01-03
DE3112434A1 (de) * 1981-03-28 1982-10-07 Depa GmbH, 4000 Düsseldorf Druckluftgetriebene doppelmembran-pumpe
DE3150976A1 (de) * 1981-12-23 1983-06-30 DEPA Gesellschaft für Verfahrenstechnik mbH, 4000 Düsseldorf Druckluftgetriebene doppelmembranpumpe
CA1172904A (en) 1981-10-23 1984-08-21 Savage (D.B.) Industrial Sales Limited Fluid driven reciprocating pump
DE3206242A1 (de) 1982-02-20 1983-09-22 Rudolf 4670 Lünen Leinkenjost Doppelkammer-membranpumpe
US4818191A (en) 1982-03-31 1989-04-04 Neyra Industries, Inc. Double-acting diaphragm pump system
DE8433622U1 (de) * 1984-11-16 1985-03-21 Almatec Maschinenbau GmbH, 4100 Duisburg Luftsteuerventil fuer eine druckluftbetriebene doppelmembranpumpe
DE8518347U1 (de) * 1985-06-25 1986-10-23 Kopperschmidt-Mueller Gmbh & Co Kg, 4800 Bielefeld Pneumatisch getriebene Hochdruckpumpe
IT1190613B (it) * 1986-04-11 1988-02-16 Taiver Srl Pompa volumetrica alternativa a membrana,particolarmente per liquidi abrasivi,corrosivi,con particelle in sospensione o simili
JPH0635870B2 (ja) * 1986-05-19 1994-05-11 トウフク株式会社 圧送装置
DE3737350A1 (de) * 1987-11-04 1989-05-24 Kopperschmidt Mueller & Co Pumpenanordnung mit doppelpumpe
US5062770A (en) * 1989-08-11 1991-11-05 Systems Chemistry, Inc. Fluid pumping apparatus and system with leak detection and containment
US5368452A (en) * 1993-07-20 1994-11-29 Graco Inc. Double diaphragm pump having two-stage air valve actuator
DE4443778A1 (de) * 1994-12-08 1996-06-20 Abel Gmbh & Co Doppelmembranpumpe
US5620746A (en) 1995-09-22 1997-04-15 Snyder, Jr.; Guy T. Method and apparatus for reversibly pumping high viscosity fluids
US5927954A (en) * 1996-05-17 1999-07-27 Wilden Pump & Engineering Co. Amplified pressure air driven diaphragm pump and pressure relief value therefor
DE10300280A1 (de) * 2003-01-08 2004-07-22 Itw Gema Ag Pumpeneinrichtung für Pulver, Verfahren hierfür und Pulverbeschichtungseinrichtung
CN100513783C (zh) * 2006-06-21 2009-07-15 王明显 多级隔膜泵
DE102007039964B4 (de) * 2007-08-23 2011-06-22 Timmer Pneumatik GmbH, 48485 Hochdruck-Doppelmembranpumpe und Membranelement für eine solche Pumpe
ATE503112T1 (de) * 2008-01-31 2011-04-15 Wagner J Ag Fördervorrichtung, insbesondere doppel-membran- kolbenpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011116911A2 *

Also Published As

Publication number Publication date
CN102947593B (zh) 2016-08-03
US20130101445A1 (en) 2013-04-25
WO2011116911A3 (de) 2012-04-12
CN102947593A (zh) 2013-02-27
DE102010013108A1 (de) 2011-09-29
WO2011116911A2 (de) 2011-09-29
EP2553269B1 (de) 2016-09-07

Similar Documents

Publication Publication Date Title
EP2553269B1 (de) Doppelmembranpumpe
EP2553270B1 (de) Ventil zum alternierenden befüllen zweier arbeitsräume eines kolben-zylinder-systems einer pumpe
EP2085614B1 (de) Fördervorrichtung, insbesondere Doppel-Membran-Kolbenpumpe
DE3112434A1 (de) Druckluftgetriebene doppelmembran-pumpe
EP3265680B1 (de) Zweizylinder-kolbenpumpe
DE4407679A1 (de) Balgpumpe
DE1403973A1 (de) Dosierungspumpe
DE112008000123B4 (de) Verdrängerpumpenvorrichtung
AT521618B1 (de) Hydraulischer Druckübersetzer und Verfahren zur Herstellung einer axialen Druckspannung im Hochdruckzylinder
DE102014000469B4 (de) Schraubenverdichter
EP3030784B1 (de) Verdrängerpumpe
EP4285026A1 (de) Fördereinrichtung
EP0892174B1 (de) Pumpenkopf für eine Hubkolbenpumpe
DE3117027C2 (de)
DE102010038225B4 (de) Schlauchmembran-Prozeßpumpe
WO2016206966A1 (de) Steuerungsvorrichtung für eine pneumatische kolben-zylinder-einheit zum verstellen eines verschlussgliedes eines vakuumventils
DE10038061A1 (de) Hydraulischer Zylinder
DE4438621A1 (de) Wasserhydraulikschweißsystem sowie ein Ventil und ein Druckübersetzer für ein solches
WO2012163619A1 (de) Kompressor mit druckbegrenzung
DE2542392A1 (de) Hochdruckmembranpumpe
DE102016119069A1 (de) Gelenkdosierpumpe
DE102022203979A1 (de) Hydraulischer Linearantrieb
DE1653414C3 (de) Hydraulische Spannvorrichtung für das dicht schließende Anpessen von Spritz kopfteilen eines Kautschukextruders
DE102021116843A1 (de) Entleervorrichtung mit Fassfolge-Schlauchpumpe sowie Verfahren für ihren Betrieb
CH420862A (de) Druckflüssigkeitsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120920

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 827139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010627

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161208

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010627

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

26N No opposition filed

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 827139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230328

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 13

Ref country code: CH

Payment date: 20230402

Year of fee payment: 13