EP2524970A1 - Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung - Google Patents

Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
EP2524970A1
EP2524970A1 EP11166622A EP11166622A EP2524970A1 EP 2524970 A1 EP2524970 A1 EP 2524970A1 EP 11166622 A EP11166622 A EP 11166622A EP 11166622 A EP11166622 A EP 11166622A EP 2524970 A1 EP2524970 A1 EP 2524970A1
Authority
EP
European Patent Office
Prior art keywords
steel
temperature
content
flat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11166622A
Other languages
English (en)
French (fr)
Inventor
Jens-Ulrik Dr.-Ing. Becker
Jian Dr.-Ing. Bian
Thomas Dr. Heller
Rudolf Dipl.-Ing. Schönenberg
Richard G. Dr. Thiessen
Sabine Dipl.-Ing. Zeizinger
Thomas Dipl.-Ing. Rieger
Oliver Dipl.-Ing. Bülters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46124355&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2524970(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP11166622A priority Critical patent/EP2524970A1/de
Priority to ES12721842.8T priority patent/ES2628409T3/es
Priority to US14/117,711 priority patent/US9650708B2/en
Priority to PL12721842T priority patent/PL2710158T3/pl
Priority to KR1020137030555A priority patent/KR102001648B1/ko
Priority to PCT/EP2012/059076 priority patent/WO2012156428A1/de
Priority to EP12721842.8A priority patent/EP2710158B1/de
Priority to CN201280024105.XA priority patent/CN103597100B/zh
Priority to JP2014510785A priority patent/JP6193219B2/ja
Publication of EP2524970A1 publication Critical patent/EP2524970A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the invention relates to a high-strength flat steel product and to a method for producing such a flat steel product.
  • the invention relates to a high-strength flat steel product provided with a metallic protective layer and to a method for producing such a product.
  • cooling rates are given a negative value because they lead to a decrease in temperature. Accordingly, cooling rates have a lower value for a rapid cooling than for a slower cooling. The leading to an increase in temperature heating rates, however, are given a positive.
  • High strength steels regularly tend to corrode because of their alloying constituents and are therefore typically coated with a metallic protective layer which protects the respective steel substrate from contact with the ambient oxygen.
  • a metallic protective layer which protects the respective steel substrate from contact with the ambient oxygen.
  • Various methods for applying such a metallic protective layer are known. These include hot-dip coating, also known in technical language as "fire-coating", and electrolytic coating.
  • the coating metal is deposited electrochemically on the flat steel product to be coated, which is at most slightly heated in the process, during hot dip coating the products to be coated are subjected to a heat treatment before immersion in the respective melt bath.
  • the respective flat steel product is heated to high temperatures under a certain atmosphere in order to set the desired structure and to produce an optimum for the adhesion of the metallic coating surface state of the respective flat steel product.
  • the flat steel product passes through the melt bath, which also has an elevated temperature, to keep the coating material molten.
  • the steel strip is dip-coated.
  • the metallic coating applied in this case should preferably be a zinc coating.
  • a cold strip is to be obtained in this way, the optimized mechanical properties, such as a tensile strength of at least 1200 MPa, an elongation of at least 13% and a hole widening of at least 50%, has.
  • the cold rolled strip processed in the manner described above is said to be made of a steel containing, in addition to iron and unavoidable impurities (in% by weight) 0.05-0.5% C, 0.01-2.5% Si, 0.5 - 3.5% Mn, 0.003 - 0.100% P, up to 0.02% S and 0.010 - 0.5 Al.
  • the steel should have a microstructure comprising (in area%) up to 10% ferrite, up to 10% martensite and 60-95 tempered martensite, and further 5 - 20% retained austenite, as determined by X-ray diffraction.
  • the steel (in weight%) can be 0.005 - 2.00% Cr, 0.005 - 2.00 Mo, 0.005 - 2.00% V, 0.005 - 2.00% Ni and 0.005 - 2.00% Cu and 0.01-0.20% Ti, 0.01-0.20 Nb, 0.0002-0.005% B, 0.001-0.005% Ca and 0.001-0.005% of rare earths.
  • the object of the invention was to provide a low-cost producible high-strength flat steel product which has further optimized mechanical properties, which are expressed in particular in a very good bending behavior.
  • a method for producing such a flat steel product should be specified.
  • this method should be incorporated into a process for hot dip coating of flat steel products.
  • the solution according to the invention of the abovementioned object consists in that during the production of a flat steel product according to the invention at least the steps mentioned in claim 6 are completed.
  • the operations specified in claim 7 can optionally also be carried out.
  • a steel flat product according to the invention consists of a steel which, in addition to iron and unavoidable impurities (in% by weight) C: 0.10-0.50%, Si: 0.1-2.5%, Mn: 1.0. 3.5%, Al: up to 2.5%, P: up to 0.020%, S: up to 0.003%, N: up to 0.02%, and optionally one or more of the elements "Cr, Mo, V, Ti, Nb, B and Ca" in the following contents: Cr: 0.1-0.5%, Mo: 0.1-0.3%, V : 0.01 - 0.1%, Ti: 0.001 - 0.15%, Nb: 0.02 - 0.05%, wherein for the sum ⁇ (V, Ti, Nb) of the contents of V, Ti and Nb ⁇ (V, Ti, Nb) is at most equal to 0.2%, B: 0.0005 - 0.005%, Ca: up to 0.01%.
  • Essential for the superior mechanical properties of the flat steel product according to the invention is that it has a structure with (in area%) less than 5% ferrite, less than 10% bainite, 5-70% unanbergem martensite, 5-30% retained austenite and 25 80% tempered martensite. At least 99% of the number of iron carbides contained in tempered martensite has a size of less than 500 nm.
  • Over-tempered martensite is characterized in that more than 1% number of carbide grains (iron carbides) are more than 500 nm in size.
  • over-cut martensite can be detected by scanning electron microscopy at 20,000 magnifications on steel samples etched with 3% nitric acid.
  • the C content of the steel of a flat steel product according to the invention is limited to values between 0.10 and 0.50 wt.%. Carbon influences a flat steel product according to the invention in many respects.
  • C plays a major role in the formation of austenite and lowering the Ac3 temperature.
  • a sufficient concentration of C allows complete austenitization at temperatures ⁇ 960 ° C, even if at the same time elements, such as Al, are present, which increase the Ac3 temperature.
  • the retained austenite is also stabilized by the presence of C. This effect continues during the partitioning step.
  • a stable residual austenite leads to a maximum strain range, in which the effect of the TRIP effect (TRANSformation Induced Plasticity) becomes noticeable.
  • the strength of the martensite is most strongly influenced by the respective C content. Too high a content of C leads to such a strong shift of the martensite start temperature to ever lower temperatures that the production of the flat steel product according to the invention becomes excessively difficult. In addition, too high C contents can adversely affect weldability.
  • the Si content in the steel of the flat steel product according to the invention should be less than 2.5% by weight. Silicon is important for suppressing cementite formation. The formation of cementite would break the C as a carbide and would then no longer stand for the stabilization of the retained austenite to disposal. In addition, the stretch would be worsened.
  • the effect achieved by the addition of Si can in part also be achieved by alloying aluminum. However, a minimum of 0.1% by weight of Si should always be present in the flat steel product according to the invention in order to utilize its positive effect.
  • Manganese contents of 1.0-3.5% by weight, in particular up to 3.0% by weight, are important for the hardenability of the flat steel product according to the invention and the prevention of perlite formation during cooling. These properties make it possible to form a starting structure consisting of martensite and retained austenite, and as such is suitable for the partitioning step carried out according to the invention.
  • manganese proves advantageous with regard to the setting of comparatively low cooling rates of, for example, faster than -100 K / s.
  • an excessively high Mn concentration has a negative influence on the elongation properties and the weldability of a flat steel product according to the invention.
  • Aluminum is present in the steel of a flat steel product of the present invention at levels of up to 2.5% for deoxidation and for the setting of any nitrogen present.
  • Al can also be used for the suppression of cementite and does not have such a negative effect on the surface properties as high contents of Si.
  • Al is not as effective as Si and also increases the austenitizing temperature. Therefore, the Al content is of a flat steel product according to the invention is limited to a maximum of 2.5% by weight and preferably to values of between 0.01 and 1.5% by weight.
  • Phosphorus is unfavorable to weldability and should therefore be present in the steel of a flat steel product of the present invention at levels less than 0.02% by weight.
  • the S content in the steel of a flat steel product according to the invention should be below 0.003 wt .-%.
  • nitrogen in the steel of a flat steel product according to the invention has a detrimental effect on the formability.
  • the N content of a flat steel product according to the invention should therefore be less than 0.02% by weight.
  • V, Ti and Nb are added to the steel of a flat steel product according to the invention.
  • These elements contribute to higher strength through the formation of very finely divided carbides or carbonitrides.
  • a minimum Ti content of 0.001% by weight leads to a freezing of the grain and phase boundaries during the Partitioning step.
  • too high a concentration of V, Ti and Nb can be detrimental to the stabilization of retained austenite. Therefore, the sum of the contents of V, Ti and Nb in a flat steel product according to the invention is limited to 0.2% by weight.
  • Chromium is an effective inhibitor of perlite, contributes to the strength and therefore may be added up to 0.5% by weight to the steel of a flat steel product according to the invention. Above 0.5% by weight, there is a risk of pronounced grain boundary oxidation. In order to be able to safely use the positive influence of Cr, the Cr content can be set to 0.1-0.5% by weight.
  • molybdenum is also a very effective element for suppressing perlite formation.
  • the steel of a flat steel product according to the invention can be alloyed with 0.1-0.3% by weight.
  • Calcium in contents of up to 0.01% by weight is used in the steel of a steel flat product according to the invention for setting sulfur and for inclusion modification.
  • the method according to the invention for producing a high-strength steel flat product, optionally provided with a metallic protective coating provided by hot-dip coating comprises the following working steps:
  • the steel constituting the flat steel product contains C: 0.10-0.50%, Si: 0.1-2.5%, Mn: 1.0 - 3.5%, Al: up to 2.5%, P: up to 0.020%, S: up to 0.003%, N: up to 0.02%, and optionally one or more of the elements "Cr, Mo, V, Ti, Nb, B and Ca "in the following contents: Cr: 0.1 - 0.5%, Mo: 0.1 - 0.3%, V: 0.01 - 0.1%, Ti: 0.001 - 0.15%, Nb: 0.02 - 0.05%, where for the sum ⁇ (V, Ti, Nb) the contents of V, Ti and Nb holds ⁇ (V, Ti, Nb) ⁇ 0.2 %, B: 0.0005
  • the thus provided flat steel product is then heated to a above the Ac3 temperature of the steel of the steel flat product and at most 960 ° C amount austenitizing temperature T HZ at a heating rate ⁇ H1 , ⁇ H2 of at least 3 ° C / s. Fast heating reduces the process time and improves the overall cost-effectiveness of the process.
  • the heating to the Austenitmaschinestemperatur T HZ can in two uninterrupted successive stages be performed with different heating rates ⁇ H1 , ⁇ H2 .
  • the heating at lower temperatures can be done very quickly to increase the efficiency of the process.
  • the dissolution of carbides begins.
  • lower heating rates ⁇ H2 are advantageous in order to ensure a uniform distribution of the carbon and other possible alloying elements, such. Mo or Cr.
  • the carbides are deliberately annealed already below the A c1 temperature to exploit the faster diffusion in the ferrite over the slower diffusion in austenite.
  • the dissolved atoms can be distributed more uniformly in the material as a result of a lower heating rate ⁇ H2 .
  • a limited heating rate ⁇ H2 is also favorable during the austenite transformation, ie between A c1 and A c3 . This contributes to a homogeneous starting structure before quenching and thus a uniformly distributed martensite and a fine retained austenite after quenching and ultimately improved mechanical properties of the flat steel product.
  • the heating rate ⁇ H1 of the first stage may be 5-25 ° C / s and the heating rate ⁇ H2 of the second stage 3-10 ° C, especially 3-5 ° C / s amount.
  • the flat steel product with the first heating rate ⁇ H1 can be heated to an intermediate temperature T w of 200-500 ° C, in particular 250-500 ° C, and the heating can then be continued at the second heating rate ⁇ H2 up to the austenitizing temperature T HZ .
  • the flat steel product is kept at the austenitizing temperature T Hz for an austenitizing time t HZ of 20-180 s.
  • the annealing temperature in the holding zone should be above the A c3 temperature in order to achieve complete austenitization.
  • the steel sheet After annealing at temperatures above A c3 , the steel sheet is cooled to a cooling stop temperature T Q greater than the martensite stop temperature T Mf and less than the martensite start temperature T Ms (T Mf ⁇ T Q ⁇ T Ms ) at a cooling rate ⁇ Q ,
  • the cooling rate ⁇ Q is in the range of -20 ° C / s to -120 ° C / s.
  • the condition ⁇ Q ⁇ ⁇ Q (min) can be surely satisfied in practice even for steels having a low C or Mn content.
  • Parallel to the yield strength increase can be achieved by the inventively carried out cooling to the cooling stop temperature and the subsequent holding of the flat steel product at this temperature over the times prescribed by the invention, an improvement of the forming properties. If tensile strength and tensile elongation are to be maximized, the holding time t Q should rather be kept in the lower range, ie between 10 and 30 s. Longer holding times t Q of 30 - 60 s tend to have a positive effect on the forming properties. This concerns in particular the bending angle.
  • the cooling stop temperature T Q is at least 200 ° C.
  • the steel flat product After cooling and holding the steel flat product at the cooling stop temperature T Q , the steel flat product is heated to a 400-500 ° from the cooling stop temperature T Q with a heating rate ⁇ P1 of 2 - 80 ° C / s, especially 2 - 40 ° C / s C, in particular 450 - 490 ° C, amounting temperature T P heated.
  • the heating to the temperature T P is preferably carried out within a heating time t A of 1 - 150 s, in order to achieve optimum efficiency. At the same time, the heating can make a contribution x Dr to a diffusion length x D explained below.
  • the purpose of the heating and a subsequent optional additional holding of the flat steel product at the temperature T P over a holding period t Pi of up to 500 s is the enrichment of the retained austenite with carbon from the supersaturated martensite.
  • the holding period t Pi is in particular up to 200 s, wherein holding periods t Pi of less than 10 s are particularly practical.
  • the partitioning can already during the heating as a so-called “Ramped Partitioning” done by the held after the heating hold at the partitioning temperature T P (so-called “isothermal” partitioning) or by a combination of isothermal and ramped partitioning.
  • the high temperatures necessary for the subsequent hot-dip coating can be achieved without causing special tempering effects, ie over-tempering of the martensite.
  • the slower heating rate ⁇ P1 envisaged for ramped partitioning in comparison to isothermal partitioning permits a particularly precise control of the respectively prescribed partitioning temperature T P with reduced energy input, since higher temperature gradients require a higher energy expenditure in the system.
  • the inventively predetermined partitioning temperature T P ensures sufficient homogenization of the carbon in the austenite, this homogenization being able to be influenced by the heating speed ⁇ P1 , the partitioning temperature T P and the optional holding at the partitioning temperature T P over a suitable holding time t Pi .
  • the proportions x Dr or x Di can also be "0" depending on the respective process control, the total diffusion length x D being always> 0 as a result of the method according to the invention.
  • the method according to the invention provides optimum work results if the sum of the respective diffusion lengths x Di , x Dr to be considered is at least 1.0 ⁇ m, in particular at least 1.5 ⁇ m.
  • the operating parameters in the heat treatment so that the diffusion length increases, the bending angle of the respective flat steel product can be improved, while the hole expansion is only slightly affected.
  • the hole widening can be improved, but this can be accompanied by a deterioration of the bending properties.
  • Even larger diffusion lengths eventually cause the deterioration of both bending properties and hole widening.
  • Optimal work results arise when the operating parameters are set in the method according to the invention so that diffusion lengths of 1.5 to 5.7 microns, in particular from 2.0 to 4.5 microns are achieved.
  • the interaction with the cooling and holding step preceding the partitioning can also be achieved by the Yield ratio can be influenced. If, for example, a high martensite content of 40% or more is generated by selecting a low cooling stop temperature T Q and / or a longer hold time t Q in the cooling step, by selecting a high partitioning temperature T P and time t Pt a larger diffusion length x D and thus ultimately a high yield ratio can be achieved. If less than about 40% martensite is produced, then the influence of the diffusion length x D on the yield ratio is rather small.
  • the yield ratio is a measure of the solidification potential of the steel.
  • a relatively low yield ratio of about 0.50 has a positive effect on the tensile elongation, but is unfavorable for the hole widening and the bending angle.
  • a higher yield ratio of about 0.90 can improve hole widening and bending properties, but leads to losses in tensile elongation.
  • the steel flat product is cooled starting from the partitioning temperature T P with a cooling rate ⁇ P2 which amounts to -3 ° C / s to -25 ° C / s, in particular -5 ° C / s to -15 ° C / s.
  • the flat steel product according to the invention is to be additionally provided with a hot-dip coating in the course of the method according to the invention, it is initially cooled to a melt-bath inlet temperature T B of 400-500 ° C., starting from the partitioning temperature T P at the cooling rate ⁇ P2 .
  • the steel flat product for hot dip coating passes through a melt bath, at the leaving of which the thickness of the protective coating produced on the flat steel product is adjusted in a conventional manner, for example by wiping nozzles.
  • the protective coated steel flat product exiting the melt bath is finally cooled to room temperature at the cooling rate ⁇ P2 to again produce martensite.
  • the process according to the invention is particularly suitable for the production of flat steel products which are provided with a zinc coating.
  • other metallic coatings which can be applied by hot-dip coating to the respective flat steel product, such as ZnAl, ZnMg or comparable protective coatings, are also possible.
  • the product produced according to the invention has a microstructure containing 25 to 80% tempered martensite (martensite from the first cooling step), 5 to 70% unannealed, new martensite (martensite from the second cooling step), 5 to 30% retained austenite, less than 10% Bainite (0% included) and less than 5% ferrite (0% included).
  • the inventive method thus enables the production of a refined flat steel product having a tensile strength of 1200 to 1900 MPa, a yield strength of 600 to 1400 MPa, a yield ratio of 0.40 to 0.95, an elongation (A 50 ) of 10 to 30% and a very good formability.
  • the product R m * A 50 is 15,000-35,000 MPa%.
  • high strength and good forming properties are paired with each other.
  • FIG. 1 a variant of the method according to the invention is shown in which the heating time t A required for heating the steel flat product from the cooling stop temperature T Q to the partitioning temperature T P is equal to the duration t Pr of the ramped partitioning and the flat steel product in the course of this process a hot dip coating in a Zinc bath ("zinc pot”) is subjected.
  • the heating time t A required for heating the steel flat product from the cooling stop temperature T Q to the partitioning temperature T P is equal to the duration t Pr of the ramped partitioning and the flat steel product in the course of this process a hot dip coating in a Zinc bath ("zinc pot”) is subjected.
  • the variant comprising a hot-dip coating of the method according to the invention can be carried out in a conventional fire-coating system if certain modifications are made to it.
  • ceramic radiant tubes may be needed.
  • the high cooling rates ⁇ Q of up to -120 K / s can be achieved with modern gas jet cooling.
  • the heating to the partitioning temperature T P after holding at the cooling stop temperature T Q can be achieved through use a booster can be achieved. After the partitioning step, the belt passes through the melt bath and is cooled in a controlled manner to regenerate martensite.
  • the samples have the inventively given, in FIG. 1 through process steps shown with the process parameters given in Table 2.
  • the process parameters between parameters according to the invention and parameters not according to the invention have been varied in order to demonstrate the effects of a procedure which is outside the scope of the invention.
  • the calculation of the diffusion length was based on time steps of 1 s each.
  • microstructural constituents of the cold strip samples obtained are given in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Die Erfindung betrifft ein Stahlflachprodukt, das eine Zugfestigkeit R m von mindestens 1200 MPa besitzt und aus einem Stahl besteht, der neben Fe und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,10 - 0,50 %, Si: 0,1 - 2,5 %, Mn: 1,0 - 3,5 %, Al: bis zu 2,5 %, P: bis zu 0,020 %, S: bis zu 0,003 %, N: bis zu 0,02 %, sowie optional eines oder mehrere der Elemente "Cr, Mo, V, Ti, Nb, B und Ca" in folgenden Gehalten: Cr: 0,1 - 0,5 %, Mo: 0,1 - 0,3 %, V: 0,01 - 0,1 %, Ti: 0,001 - 0,15 %, Nb: 0,02 - 0,05 %, wobei für die Summe £(V,Ti,Nb) der Gehalte an V, Ti und Nb gilt £(V,Ti,Nb) ‰¤ 0,2 %, B: 0,0005 - 0,005 %, Ca: bis zu 0,01 % enthält, und ein Gefüge mit (in Flächen-%) weniger als 5 % Ferrit, weniger als 10 % Bainit, 5 - 70 % unangelassenem Martensit, 5 - 30 % Restaustenit und 25 - 80 % angelassenem Martensit aufweist, wobei mindestens 99 % der im angelassenen Martensit enthaltenen Eisenkarbide eine Größe von weniger als 500 nm aufweisen. Aufgrund seines minimierten Anteils an überangelassenen Martensit weist das Stahlflachprodukt eine optimierte Verformbarkeit auf. Das erfindungsgemäße Verfahren sieht dabei eine Wärmebehandlung vor, mit der das für diese Eigenschaft optimale Gefüge gezielt erzeugt werden kann.

Description

  • Die Erfindung betrifft ein hochfestes Stahlflachprodukt und ein Verfahren zur Herstellung eines solchen Stahlflachprodukts.
  • Insbesondere betrifft die Erfindung ein mit einer metallischen Schutzschicht versehenes hochfestes Stahlflachprodukt und ein Verfahren zur Herstellung eines solchen Produkts.
  • Wenn hier von Stahlflachprodukten die Rede ist, sind damit Stahlbänder, -bleche oder daraus gewonnene Blechzuschnitte, wie Platinen gemeint.
  • Wenn nachfolgend Abkühl- oder Erwärmungsgeschwindigkeiten oder -raten genannt sind, dann sind Abkühlgeschwindigkeiten negativ angegeben, weil sie zu einer Temperaturabnahme führen. Dementsprechend weisen Abkühlraten bei einer schnellen Abkühlung einen niedrigeren Wert auf als bei einer langsameren Abkühlung. Die zu einer Temperaturzunahme führenden Erwärmungsgeschwindigkeiten sind dagegen positiv angegeben.
  • Hochfeste Stähle neigen aufgrund ihrer Legierungsbestandteile regelmäßig zu Korrosion und werden daher typischerweise mit einer metallischen Schutzschicht belegt, die das jeweilige Stahlsubstrat gegen einen Kontakt mit dem Umgebungssauerstoff schützt. Es sind verschiedene Verfahren zum Auftrag einer solchen metallischen Schutzschicht bekannt. Dazu zählen das Schmelztauchbeschichten, in der Fachsprache auch "Feuerbeschichten" genannt, sowie das elektrolytische Beschichten.
  • Während beim elektrolytischen Beschichten das Beschichtungsmetall elektro-chemisch auf dem zu beschichtenden, im Prozess allenfalls geringfügig erwärmten Stahlflachprodukt abgeschieden wird, werden beim Schmelztauchbeschichten die zu beschichtenden Produkte vor dem Eintauchen in das jeweilige Schmelzenbad einer Wärmebehandlung unterzogen. Dabei wird das jeweilige Stahlflachprodukt unter einer bestimmten Atmosphäre auf hohe Temperaturen erwärmt, um das gewünschte Gefüge einzustellen und einen für die Haftung des metallischen Überzugs optimalen Oberflächenzustand des jeweiligen Stahlflachprodukts herzustellen. Anschließend durchläuft das Stahlflachprodukt das Schmelzenbad, das ebenfalls eine erhöhte Temperatur aufweist, um den Beschichtungswerkstoff schmelzflüssig zu halten.
  • Die notwendigerweise hohen Temperaturen bedingen bei durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukten eine Obergrenze der Festigkeit von 1000 MPa. Stahlflachprodukte mit einer noch höheren Festigkeit lassen sich in der Regel nicht feuerbeschichten, da sie in Folge der damit einhergehenden Erwärmung in Folge von Anlasseffekten erhebliche Festigkeitsverluste erleiden. Hochfeste Stahlflachprodukte werden daher derzeit regelmäßig elektrolytisch mit einer metallischen Schutzschicht versehen. Dieser Arbeitsschritt setzt eine einwandfrei saubere Oberfläche voraus, die in der Praxis nur durch ein vor dem elektrolytischen Beschichten durchzuführendes Beizen gewährleistet werden kann.
  • Aus der EP 2 267 176 A1 ist ein Verfahren zum Herstellen eines hochfesten, mit einem durch Schmelztauchbeschichten aufgetragenen metallischen Schutzüberzug versehenen Kaltbands bekannt, das folgende Arbeitsschritte umfasst:
    • Warmwalzen eines Warmbands aus einer Bramme,
    • Kaltwalzen des Warmbands zu einem Kaltband,
    • Wärmebehandeln des Kaltbands, wobei im Zuge dieser Wärmebehandlung
    • das Kaltband mit einer mittleren Erwärmungsgeschwindigkeit von maximal 2 °C/s von einer Temperatur, die um 50 °C niedriger ist als die Ac3-Temperatur des Stahls, aus dem das Kaltband besteht, auf die jeweilige Ac3-Temperatur erwärmt wird,
    • das Kaltband anschließend für mindestens 10 s auf einer Temperatur gehalten wird, die mindestens der jeweiligen Ac3-Temperatur entspricht,
    • daraufhin das Kaltband mit einer mittleren Abkühlgeschwindigkeit von mindestens 20 °C/s auf eine Temperatur abgekühlt wird, die 100 - 200 °C unterhalb der Martensitstarttemperatur des jeweils verarbeiteten Stahls liegt, und
    • schließlich das Kaltband für 1 bis 600 s auf eine 300 - 600 °C betragende Temperatur erwärmt wird.
  • Abschließend wird das Stahlband schmelztauchbeschichtet. Bei der dabei aufgetragenen metallischen Beschichtung soll es sich vorzugsweise um eine Zink-Beschichtung handeln. Im Ergebnis soll auf diesem Wege ein Kaltband erhalten werden, das optimierte mechanische Eigenschaften, wie eine Zugfestigkeit von mindestens 1200 MPa, eine Dehnung von mindestens 13 % und eine Lochaufweitung von mindestens 50 %, besitzt.
  • Das in der voranstehend beschriebenen Weise verarbeitete Kaltband soll aus einem Stahl bestehen, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.- %) 0,05 - 0,5 % C, 0,01 - 2,5 % Si, 0,5 - 3,5 % Mn, 0,003 - 0,100 % P, bis zu 0,02 % S und 0,010 - 0,5 Al enthält. Gleichzeitig soll der Stahl eine Mikrostruktur aufweisen, welche (in Flächen- %) bis zu 10 % aus Ferrit, bis zu 10 % aus Martensit und 60 - 95 angelassenen Martensit und darüber hinaus 5 - 20 Restaustenit aufweist, der durch Röntgenstrahlbeugung ermittelt wird.
  • Darüber hinaus kann der Stahl (in Gew.- %) 0,005 - 2,00 % Cr, 0,005 - 2,00 Mo, 0,005 - 2,00 % V, 0,005 - 2,00 % Ni und 0,005 - 2,00 % Cu sowie 0,01 - 0,20 % Ti, 0,01 - 0,20 Nb, 0,0002 - 0,005 % B, 0,001 - 0,005 % Ca und 0,001 - 0,005 % an Seltenen Erden enthalten.
  • Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein kostengünstig herstellbares hochfestes Stahlflachprodukt anzugeben, das weiter optimierte mechanische Eigenschaften besitzt, die sich insbesondere in einem sehr guten Biegeverhalten ausdrücken.
  • Darüber hinaus sollte ein Verfahren zur Herstellung eines solchen Stahlflachprodukts angegeben werden. Insbesondere sollte sich dieses Verfahren in einen Prozess zur Schmelztauchbeschichtung von Stahlflachprodukten einbinden lassen.
  • Diese Aufgabe ist in Bezug auf das Stahlflachprodukt erfindungsgemäß dadurch gelöst worden, dass ein solches Produkt die in Anspruch 1 angegebenen Merkmale aufweist.
  • In Bezug auf das Verfahren besteht die erfindungsgemäße Lösung der oben genannten Aufgabe darin, dass bei der Herstellung eines erfindungsgemäßen Stahlflachprodukts mindestens die in Anspruch 6 genannten Arbeitsschritte absolviert werden. Um eine Einbindung des erfindungsgemäßen Verfahrens in einen Prozess zur Schmelztauchbeschichtung zu ermöglichen, können dabei optional zusätzlich die in Anspruch 7 angegebenen Arbeitsschritte durchgeführt werden.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.
  • Ein erfindungsgemäßes Stahlflachprodukt, das optional mit einer durch Feuerverzinken aufgebrachten metallischen Schutzschicht versehen ist, besitzt eine Zugfestigkeit Rm von mindestens 1200 MPa. Darüber hinaus zeichnet sich ein erfindungsgemäßes Stahlflachprodukt regelmäßig durch
    • eine Dehngrenze Rp0,2 von 600 - 1400 MPa,
    • ein Streckgrenzenverhältnis Rp/Rm von 0,40 - 0,95,
    • eine Dehnung A50 von 10 - 30 %,
    • ein Produkt Rm*A50 aus Zugfestigkeit Rm und Dehnung A50 von 15.000 - 35.000 MPa*%,
    • eine Lochaufweitung von λ: 50 - 120 %
      (λ=(df-d0)/d0 in [%] mit df = Lochdurchmesser nach der Aufweitung und d0 = Lochdurchmesser vor der Aufweitung) und
    • einen Bereich für den zulässigen Biegewinkel α (nach Rückfederung bei einem Biegedornradius = 2 x Blechdicke) von 100° - 180° (ermittelbar gemäß DIN EN 7438)
    aus.
  • Hierzu besteht ein erfindungsgemäßes Stahlflachprodukt aus einem Stahl, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,10 - 0,50 %, Si: 0,1 - 2,5 %, Mn: 1,0 - 3,5 %, Al: bis zu 2,5 %, P: bis zu 0,020 %, S: bis zu 0,003 %, N: bis zu 0,02 %, und optional eines oder mehrere der Elemente "Cr, Mo, V, Ti, Nb, B und Ca" in folgenden Gehalten enthält: Cr: 0,1 - 0,5 %, Mo: 0,1 - 0,3 %, V: 0,01 - 0,1 %, Ti: 0,001 - 0,15 %, Nb: 0,02 - 0,05 %, wobei für die Summe Σ(V,Ti,Nb) der Gehalte an V, Ti und Nb gilt Σ(V,Ti,Nb) höchstens gleich 0,2 %, B: 0,0005 - 0,005 %, Ca: bis zu 0,01 %.
  • Wesentlich für die überlegenen mechanischen Eigenschaften des erfindungsgemäßen Stahlflachproduktes ist dabei, dass es ein Gefüge mit (in Flächen-%) weniger als 5 % Ferrit, weniger als 10 % Bainit, 5 - 70 % unangelassenem Martensit, 5 - 30 % Restaustenit und 25 - 80 % angelassenem Martensit aufweist. Dabei haben mindestens 99 % der Anzahl der im angelassenen Martensit enthaltenen Eisenkarbide eine Größe von weniger als 500 nm.
  • Demzufolge ist in einem erfindungsgemäßen Stahlflachprodukt der Gehalt an so genanntem "überangelassenem Martensit" auf ein Minimum reduziert. Überangelassener Martensit ist dadurch gekennzeichnet, dass mehr als 1 % Anzahl der Karbidkörner (Eisenkarbide) mehr als 500 nm groß sind. Überangelassener Martensit kann beispielsweise im Rasterelektronenmikroskop festgestellt werden, bei 20.000-facher Vergrößerung, an Stahlproben, die mit 3 %-iger Salpetersäure geätzt wurden. Durch die Vermeidung von überangelassenem Martensit erhält ein erfindungsgemäßes Stahlflachprodukt optimale mechanische Eigenschaften, die sich insbesondere im Hinblick auf seine Biegeeigenschaften, die durch den hohen Biegewinkel α von 100° bis 180° gekennzeichnet sind, günstig auswirken.
  • Der C-Gehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts ist auf Werte zwischen 0,10 und 0,50 Gew.-% begrenzt. Kohlenstoff beeinflusst ein erfindungsgemäßes Stahlflachprodukt in vielerlei Hinsicht. Zuerst spielt C eine große Rolle bei der Bildung des Austenits und der Absenkung der Ac3-Temperatur. So ermöglicht eine ausreichende Konzentration an C eine vollständige Austenitisierung bei Temperaturen ≤ 960 °C auch dann noch, wenn gleichzeitig Elemente, wie Al, vorhanden sind, die die Ac3-Temperatur erhöhen. Beim Abschrecken wird zudem der Restaustenit durch die Anwesenheit von C stabilisiert. Dieser Effekt setzt sich während des Partitioning-Schritts fort. Ein stabiler Restaustenit führt zu einem maximalen Dehnungsbereich, in welchem sich die Wirkung des TRIP-Effekts (TRansformation Induced Plasticity) bemerkbar macht. Des Weiteren wird die Festigkeit des Martensits am stärksten vom jeweiligen C-Gehalt beeinflusst. Zu hohe Gehalte an C führen zu einer so starken Verschiebung der Martensitstarttemperatur zu immer tieferen Temperaturen, dass die Erzeugung des erfindungsgemäßen Stahlflachprodukts übermäßig erschwert wird. Darüber hinaus kann durch zu hohe C-Gehalte die Schweißbarkeit negativ beeinflusst werden.
  • Um eine gute Oberflächenqualität eines erfindungsgemäßen Stahlflachprodukts zu gewährleisten, soll der Si-Gehalt im Stahl des erfindungsgemäßen Stahlflachprodukts weniger als 2,5 Gew.-% betragen. Silizium ist aber wichtig für die Unterdrückung der Zementitbildung. Durch Bildung von Zementit würde der C als Carbid abgebunden und stünde dann nicht mehr für die Stabilisierung des Restaustenits zur Verfügung. Darüber hinaus würde die Dehnung verschlechtert. Die durch die Zugabe von Si erzielte Wirkung kann teilweise auch durch Zulegieren von Aluminium erreicht werden. Jedoch sollte stets ein Minimum von 0,1 Gew.-% Si im erfindungsgemäßen Stahlflachprodukt vorhanden sein, um dessen positive Wirkung zu nutzen.
  • Mangan-Gehalte von 1,0 - 3,5 Gew.-%, insbesondere bis zu 3,0 Gew.-%, sind wichtig für die Härtbarkeit des erfindungsgemäßen Stahlflachprodukts und die Vermeidung der Perlit-Bildung während der Abkühlung. Diese Eigenschaften ermöglichen die Bildung eines Ausgangsgefüges, das aus Martensit und Restaustenit besteht und als solches für den erfindungsgemäß durchgeführten Partitioning-Schritt geeignet ist. Darüber hinaus erweist sich Mangan vorteilhaft im Hinblick auf die Einstellung vergleichbar niedriger Abkühlraten von beispielsweise schneller als -100 K/s. Eine zu hohe Mn-Konzentration hat dagegen einen negativen Einfluss auf die Dehnungseigenschaften und die Schweißbarkeit eines erfindungsgemäßen Stahlflachprodukts.
  • Aluminium ist im Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von bis zu 2,5 % zur Desoxidation und zum Abbinden von gegebenenfalls vorhandenem Stickstoff vorhanden. Wie erwähnt, kann Al aber auch für die Unterdrückung von Zementit verwendet werden und wirkt sich dabei nicht so negativ auf die Oberflächenbeschaffenheit aus wie hohe Gehalte an Si. Al ist jedoch nicht so wirksam wie Si und erhöht zudem die Austenitisierungstemperatur. Daher ist der Al-Gehalt eines erfindungsgemäßen Stahlflachprodukts auf maximal 2,5 Gew.-% und bevorzugt auf Werte zwischen 0,01 und 1,5 Gew.-% begrenzt.
  • Phosphor ist ungünstig für die Schweißbarkeit und soll daher im Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von weniger als 0,02 Gew.-% vorhanden sein.
  • Schwefel führt in ausreichender Konzentration zur Bildung von MnS bzw. (Mn,Fe)S, welches sich negativ auf die Dehnung auswirkt. Daher soll der S-Gehalt im Stahl eines erfindungsgemäßen Stahlflachprodukts unterhalb von 0,003 Gew.-% liegen.
  • Als Nitrid abgebunden wirkt sich Stickstoff im Stahl eines erfindungsgemäßen Stahlflachprodukts schädlich auf die Umformbarkeit aus. Der N-Gehalt eines erfindungsgemäßen Stahlflachprodukts soll daher weniger als 0,02 Gew.-% betragen.
  • Zur Verbesserung bestimmter Eigenschaften können im Stahl eines erfindungsgemäßen Stahlflachprodukts "Cr, Mo, V, Ti, Nb, B und Ca" vorhanden sein.
  • So kann es im Hinblick auf eine Optimierung der Festigkeit zweckmäßig sein, dem Stahl eines erfindungsgemäßen Stahlflachprodukts eines oder mehrere der Mikrolegierungselemente V, Ti und Nb zuzugeben. Diese Elemente tragen durch die Bildung sehr fein verteilter Karbide oder Carbonitride zu einer höheren Festigkeit bei. Ein minimaler Ti-Gehalt von 0,001 Gew.-% führt zu einer Einfrierung der Korn- und Phasengrenzen während des Partitioning-Schritts. Eine zu hohe Konzentration an V, Ti und Nb kann sich aber schädlich auf die Stabilisierung des Restaustenits auswirken. Daher ist die Summe der Gehalte an V, Ti und Nb in einem erfindungsgemäßen Stahlflachprodukt auf 0,2 Gew.-% begrenzt.
  • Chrom ist ein effektiver Inhibitor des Perlits, trägt zur Festigkeit bei und darf daher bis zu 0,5 Gew.-% dem Stahl eines erfindungsgemäßen Stahlflachprodukts zulegiert werden. Oberhalb von 0,5 Gew.-% besteht die Gefahr ausgeprägter Korngrenzenoxidation. Um den positiven Einfluss von Cr sicher nutzen zu können, kann der Cr-Gehalt auf 0,1 - 0,5 Gew.-% festgesetzt werden.
  • Molybdän ist wie Cr ebenfalls ein sehr wirksames Element zur Unterdrückung der Perlitbildung. Um diesen günstigen Einfluss effektiv zu nutzen, kann dem Stahl eines erfindungsgemäßen Stahlflachprodukts 0,1 - 0,3 Gew.-% zulegiert werden.
  • Bor seigert auf den Korngrenzen und bremst deren Bewegung. Dies führt bei Gehalten ab 0,0005 Gew.-% zu einem feinkörnigen Gefüge, was sich vorteilhaft auf die mechanischen Eigenschaften auswirkt. Beim Zulegieren von B muss allerdings genügend Ti für die Abbindung des N vorhanden sein. Bei einem Gehalt von rund 0,005 Gew.-% tritt eine Sättigung des positiven Einflusses von B ein. Daher wird der B-Gehalt auf 0,0005 - 0,005 Gew.-% festgelegt.
  • Kalzium in Gehalten von bis zu 0,01 Gew.-% wird im Stahl eines erfindungsgemäßen Stahlflachprodukts zum Abbinden von Schwefel und zur Einschlussmodifikation eingesetzt.
  • Das Kohlenstoff-Äquivalent CE ist ein wichtiger Parameter für die Beschreibung der Schweißbarkeit. Es sollte beim Stahl eines erfindungsgemäßen Stahlflachprodukts im Bereich von 0,35 - 1,2 liegen, insbesondere 0,5 - 1,0 betragen. Zur Berechnung des Kohlenstoff-Äquivalents CE wird hier eine von der American Welding Society (AWS) entwickelte und in der Veröffentlichung D1.1/D1.1M:2006, Structural Welding Code - Steel. Section 3.5.2. (Table 3.2). pp. 58 and 66, veröffentlichte Formel verwendet: CE = % C + % Mn + % Si / 6 + % Cr + % Mo + % V / 5 + % Ni + % Cu / 15 ,
    Figure imgb0001

    mit
    • %C: C-Gehalt des Stahls,
    • %Mn: Mn-Gehalt des Stahls,
    • %Si: Si-Gehalt des Stahls,
    • %Cr: Cr-Gehalt des Stahls,
    • %Mo: Mo-Gehalt des Stahls,
    • %V: V-Gehalt des Stahls,
    • %Ni: Ni-Gehalt des Stahls,
    • %Cu: Cu-Gehalt des Stahls.
  • Das erfindungsgemäße Verfahren zum Herstellen eines hochfesten, optional mit einem durch Schmelztauchbeschichten metallischen Schutzüberzug versehenen Stahlflachprodukts, umfasst folgende Arbeitsschritte:
  • Es wird ein unbeschichtetes, also noch nicht mit dem jeweiligen Schutzüberzug versehenes Stahlflachprodukt zur Verfügung gestellt, das aus demselben Stahl erzeugt ist, wie das bereits voranstehend erläuterte erfindungsgemäße Stahlflachprodukt. Der Stahl, aus dem das Stahlflachprodukt besteht, enthält dementsprechend neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,10 - 0,50 %, Si: 0,1 - 2,5 %, Mn: 1,0 - 3,5 %, Al: bis zu 2,5 %, P: bis zu 0,020 %, S: bis zu 0,003 %, N: bis zu 0,02 %, sowie optional eines oder mehrere der Elemente "Cr, Mo, V, Ti, Nb, B und Ca" in folgenden Gehalten: Cr: 0,1 - 0,5 %, Mo: 0,1 - 0,3 %, V: 0,01 - 0,1 %, Ti: 0,001 - 0,15 %, Nb: 0,02 - 0,05 %, wobei für die Summe Σ(V,Ti,Nb) der Gehalte an V, Ti und Nb gilt Σ(V,Ti,Nb) ≤ 0,2 %, B: 0,0005 - 0,005 %, Ca: bis zu 0,01 %. Bei dem bereitgestellten Stahlflachprodukt kann es sich insbesondere um ein kaltgewalztes Stahlflachprodukt handeln. Jedoch ist es auch denkbar, ein warmgewalztes Stahlflachprodukt in erfindungsgemäßer Weise zu verarbeiten.
  • Das derart bereitgestellte Stahlflachprodukt wird dann auf eine oberhalb der Ac3-Temperatur des Stahls des Stahlflachprodukts liegende und höchstens 960 °C betragende Austenitisierungstemperatur THZ mit einer Erwärmungsgeschwindigkeit θH1H2 von mindestens 3 °C/s erwärmt. Durch die schnelle Erwärmung wird die Prozesszeit verkürzt und die Wirtschaftlichkeit des Verfahrens insgesamt verbessert.
  • Die Erwärmung auf die Austenitisierungstemperatur THZ kann in zwei unterbrechungsfrei aufeinander folgenden Stufen mit unterschiedlichen Erwärmungsgeschwindigkeiten θH1H2 durchgeführt werden.
  • Das Aufheizen bei niedrigeren Temperaturen, d. h. unterhalb von Tw, kann dabei sehr schnell erfolgen, um die Wirtschaftlichkeit des Prozesses zu steigern. Bei höheren Temperaturen beginnt die Auflösung von Karbiden. Hierfür sind niedrigere Aufheizgeschwindigkeiten θH2 vorteilhaft, um eine gleichmäßige Verteilung des Kohlenstoffs und weiterer, möglicher Legierungselemente, wie z. B. Mo oder Cr, zu erreichen. Die Karbide werden gezielt bereits unterhalb der Ac1-Temperatur angelöst, um die schnellere Diffusion im Ferrit gegenüber der langsameren Diffusion im Austenit auszunutzen. Somit können sich die gelösten Atome in Folge einer niedrigeren Aufheizgeschwindigkeit θH2 gleichmäßiger im Werkstoff verteilen.
  • Um ein möglichst homogenes Material zu erzeugen, ist eine begrenzte Aufheizrate θH2 auch während der Austenitumwandlung, d. h. zwischen Ac1 und Ac3, günstig. Dies trägt zu einem homogenen Ausgangsgefüge vor dem Abschrecken und damit einem gleichmäßig verteilten Martensit sowie einem feinen Restaustenit nach dem Abschrecken und letztlich verbesserten mechanischen Eigenschaften des Stahlflachprodukts bei.
  • Es hat sich als zweckmäßig erwiesen, bei Temperaturen zwischen 200 - 500 °C die Aufheizgeschwindigkeit zu drosseln. Dabei zeigt sich überraschender Weise, dass selbst Aufheizgeschwindigkeiten von 3 - 10 °C/s noch eingestellt werden können, ohne das angestrebte Ergebnis zu gefährden.
  • Um die erfindungsgemäß angestrebten Eigenschaften eines Stahlflachprodukts zu erreichen, kann folglich bei der zweistufigen Erwärmung die Erwärmungsgeschwindigkeit θH1 der ersten Stufe 5 - 25 °C/s und die Erwärmungsgeschwindigkeit θH2 der zweiten Stufe 3 - 10 °C, insbesondere 3 - 5 °C/s betragen. Dabei kann das Stahlflachprodukt mit der ersten Erwärmungsgeschwindigkeit θH1 auf eine Zwischentemperatur Tw von 200 - 500 °C, insbesondere 250 - 500 °C, erwärmt werden und die Erwärmung anschließend mit der zweiten Erwärmungsgeschwindigkeit θH2 bis zur Austenitisierungstemperatur THZ fortgesetzt werden.
  • Nachdem die Austenitisierungstemperatur THZ erreicht ist, wird das Stahlflachprodukt erfindungsgemäß bei der Austenitisierungstemperatur THz über eine Austenitisierungsdauer tHZ von 20 - 180 s gehalten. Die Glühtemperatur in der Haltezone soll dabei oberhalb der Ac3-Temperatur liegen, um eine vollständige Austenitisierung zu erreichen.
  • Die Ac3-Temperatur des jeweiligen Stahls ist analysenabhängig und lässt sich entweder konventionell messtechnisch erfassen oder beispielsweise mit der folgenden empirischen Gleichung abschätzen (Legierungsgehalte eingesetzt in Gew.-%): A c 3 °C = 910 - 203 % C - 15 , 2 % Ni + 44 , 7 % Si + 31 , 5 % Mo + 104 % V
    Figure imgb0002

    mit
    • %C: C-Gehalt des Stahls,
    • %Ni: Ni-Gehalt des Stahls,
    • %Si: Si-Gehalt des Stahls,
    • %Mo: Mo-Gehalt des Stahls,
    • %V: V-Gehalt des Stahls.
  • Nach der Glühung bei Temperaturen oberhalb von Ac3 wird das Stahlflachprodukt auf eine Kühlstopptemperatur TQ, die größer als die Martensitstopptemperatur TMf und kleiner als die Martensitstarttemperatur TMs (TMf < TQ < TMs) ist, mit einer Abkühlungsgeschwindigkeit θQ abgekühlt.
  • Die Abkühlung auf die Kühlstopptemperatur TQ erfolgt erfindungsgemäß mit der Maßgabe, dass die Abkühlgeschwindigkeit θQ mindestens gleich, vorzugsweise schneller als eine Mindestabkühlungsgeschwindigkeit θQ(min) ist (θQ ≤ θQ(min)). Die Mindestabkühlungsgeschwindigkeit θQ(min) kann dabei nach folgender empirischer Formel berechnet werden: θ Q min °C / s = - 314 , 35 °C / s + 268 , 74 % C + 56 , 27 % Si + 58 , 50 % Al + 43 , 40 % Mn + 195 , 02 % Mo + 166 , 60 % Ti + 199 , 19 % Nb ) °C / Gew . - % s
    Figure imgb0003

    mit
    • %C: C-Gehalt des Stahls,
    • %Si: Si-Gehalt des Stahls,
    • %Al: Al-Gehalt des Stahls,
    • %Mn: Mn-Gehalt des Stahls,
    • %Mo: Mo-Gehalt des Stahls,
    • %Ti: Ti-Gehalt des Stahls,
    • %Nb: Nb-Gehalt des Stahls;
  • Typischerweise liegt die Abkühlgeschwindigkeit θQ im Bereich von -20 °C/s bis - 120 °C/s. Mit Abkühlgeschwindigkeiten θQ von -51 °C/s bis - 120 °C/s lässt sich die Bedingung θQ ≤ θQ(min) in der Praxis selbst bei Stählen sicher einhalten, die einen niedrigen C- oder Mn-Gehalt haben.
  • Bei Einhaltung der Mindestabkühlgeschwindigkeit θQ(min) wird eine ferritische und bainitische Umwandlung sicher vermieden und es wird ein martensitisches Gefüge im Stahlflachprodukt mit bis zu 30 % Restaustenit eingestellt.
  • Wie viel Martensit bei der Abkühlung tatsächlich erzeugt wird, ist abhängig davon, wie stark das Stahlflachprodukt im Zuge der Abkühlung unterhalb der Martensitstarttemperatur (TMS) abgekühlt wird und von der Haltezeit tQ, über die das Stahlflachprodukt nach der beschleunigten Abkühlung auf der Kühlstopptemperatur gehalten wird. Erfindungsgemäß ist für die Haltezeit tQ eine Spanne von 10 - 60 Sekunden, insbesondere 12 - 40 s, vorgesehen. Während der ersten ca. 3 bis 5 Sekunden des Haltens findet eine thermische Homogenisierung parallel zur martensitischen Umwandlung statt. In den nächsten Sekunden werden mittels C-Diffusion Versetzungen gepinned und feinste Ausscheidungen erscheinen. Somit bewirkt eine Verlängerung der Haltezeit zunächst einen Anstieg des Martensitanteils und damit der Streckgrenze. Mit zunehmender Haltezeit schwächt sich dieser Effekt ab, wobei erfahrungsgemäß nach ca. 60 s eine Abnahme der Streckgrenze zu beobachten ist.
  • Parallel zur Streckgrenzenerhöhung kann durch die erfindungsgemäß durchgeführte Abkühlung auf die Kühlstopptemperatur und das anschließende Halten des Stahlflachprodukts bei dieser Temperatur über die erfindungsgemäß vorgegebenen Zeiten eine Verbesserung der Umformeigenschaften erzielt werden. Sollen Zugfestigkeit und Zugdehnung maximiert werden, sollte die Haltezeit tQ eher im unteren Bereich, d. h. zwischen 10 - 30 s gehalten werden. Längere Haltezeiten tQ von 30 - 60 s wirken sich tendenziell positiv auf die Umformeigenschaften auf. Dies betrifft insbesondere den Biegewinkel.
  • Die Martensitstarttemperatur TMS kann mittels der folgenden Gleichung abgeschätzt werden: T MS °C = 539 °C + - 423 % C - 30 , 4 % Mn - 7 , 5 % Si + 30 % Al °C / Gew . - %
    Figure imgb0004

    mit
    • %C: C-Gehalt des Stahls,
    • %Si: Si-Gehalt des Stahls,
    • %Al: Al-Gehalt des Stahls,
    • %Mn: Mn-Gehalt des Stahls.
  • Die Martensitstopptemperatur TMf kann in der Praxis mittels der Gleichung T Mf = T Ms - 272 °C
    Figure imgb0005

    berechnet werden. Diese Gleichung ist aus der Koistinen-Marburger-Gleichung (s. D. P. Koistinen, R.E. Marburger, Acta Metall.7 (1959), S. 59) unter Zugrundelegung folgender Annahmen abgeleitet worden:
    1. a) Die Martensitumwandlung wird als abgeschlossen betrachtet, wenn ein Martensitanteil von 95 % erreicht wird.
    2. b) Die zusammensetzungunabhängige Konstante α beträgt -0,011.
    3. c) Die Martensitstopptemperatur ist gleich der Kühlstopptemperatur.
  • Typischerweise beträgt die Kühlstopptemperatur TQ mindestens 200 °C.
  • Nach dem Abkühlen und Halten des Stahlflachprodukts auf der Kühlstopptemperatur TQ wird das Stahlflachprodukt ausgehend von der Kühlstopptemperatur TQ mit einer Erwärmungsgeschwindigkeit θP1 von 2 - 80 °C/s, insbesondere 2 - 40 °C/s, auf eine 400 - 500 °C, insbesondere 450 - 490 °C, betragende Temperatur TP erwärmt.
  • Das Aufheizen auf die Temperatur TP erfolgt dabei bevorzugt innerhalb einer Aufheizzeit tA von 1 - 150 s, um eine optimale Wirtschaftlichkeit zu erreichen. Gleichzeitig kann das Aufheizen einen Beitrag xDr zu einer weiter unten erläuterten Diffusionslänge xD leisten.
  • Zweck des Erwärmens und eines anschließend optional zusätzlich durchgeführten Haltens des Stahlflachprodukts bei der Temperatur TP über eine Haltedauer tPi von bis zu 500 s ist die Anreicherung des Restaustenits mit Kohlenstoff aus dem übersättigten Martensit. Hier spricht man vom "Partitionieren des Kohlenstoffs", in der Fachsprache auch als "Partitioning" bezeichnet. Die Haltedauer tPi beträgt insbesondere bis zu 200 s, wobei Haltedauern tPi von weniger als 10 s besonders praxisgerecht sind.
  • Das Partitioning kann bereits während des Aufheizens als so genanntes "Ramped Partitioning", durch das nach dem Erwärmen durchgeführte Halten bei der Partitioningtemperatur TP (so genanntes "Isothermes" Partitioning) oder durch eine Kombination von Isothermem und Ramped Partitioning erfolgen. Auf diese Weise können die für das anschließende Schmelztauchbeschichten notwendigen hohen Temperaturen erreicht werden, ohne dass besondere Anlasseffekte, d.h., ein Überanlassen des Martensits, eintreten. Die beim Ramped Partitioning im Vergleich zum Isothermen Partitioning angestrebte langsamere Erwärmungsgeschwindigkeit θP1 erlaubt eine besonders genaue Ansteuerung der jeweils vorgegebenen Partitioningtemperatur TP bei vermindertem Energieeinsatz, da höhere Temperaturgradienten einen höheren Energieaufwand in der Anlage erfordern.
  • Die negativen Einflüsse von überangelassenem Martensit, wie grobe Karbide, die eine plastische Dehnung blockieren und sich negativ auf die Festigkeit des Martensits sowie die Umformeigenschaften Biegewinkel und Lochaufweitung auswirken, werden durch die erfindungsgemäße Erwärmung auf die Haltetemperatur TP vermieden, wobei das optionale Halten bei der Partitioningtemperatur die Sicherheit der Vermeidung von überangelassenem Martensit zusätzlich erhöht. Insbesondere werden die Bildung von Karbiden und der Zerfall von Restaustenit durch Einhalten der erfindungsgemäß vorgegebenen gesamten Partitioningzeit tPT, die sich aus der Zeit tPR des Ramped Partitioning und der Zeit des Isothermen Partitioning tPI zusammensetzt, und Partitioningtemperatur TP gezielt unterdrückt.
  • Gleichzeitig gewährleistet die erfindungsgemäß vorgegebene Partitioningtemperatur TP eine ausreichende Homogenisierung des Kohlenstoffs im Austenit, wobei diese Homogenisierung durch die Erwärmungsgeschwindigkeit θP1, die Partitioningtemperatur TP und das optional durchgeführte Halten bei der Partitioningtemperatur TP über eine geeignete Haltezeit tPi beeinflusst werden kann.
  • Um die Homogenisierung des Kohlenstoffs im Austenit zu bewerten, wird die so genannte "Diffusionslänge xD" verwendet. Anhand der Diffusionslänge xD können unterschiedliche Aufheizraten, Partitioning-Temperaturen und mögliche Partitioning-Zeiten miteinander verglichen werden. Die Diffusionslänge xD setzt sich aus einem Anteil xDr, der aus dem Ramped Partitioning folgt, und aus einem Anteil xDi, der aus dem Isothermen Partinioning folgt, zusammen (xD = xDi + xDr). Dabei können abhängig von der jeweiligen Verfahrensführung die Anteile xDr oder xDi auch "0" sein, wobei als Ergebnis des erfindungsgemäßen Verfahrens insgesamt die Diffusionslänge xD immer > 0 ist.
  • Die Diffusionslänge xDi, d.h. der im Zuge des isothermen Haltens erhaltene Beitrag zur Diffusionslänge xD, kann für das optional durchgeführte Isotherme Partitioning anhand folgender Gleichung berechnet werden: x Di = 6 * D * t Pi
    Figure imgb0006

    mit
    • tPi = Zeit, über die das isotherme Halten durchgeführt worden ist, angegeben in Sekunden,
    • D = Do * exp(-Q/RT), Do = 3,72*10-5 m2/s,
    • Q = 148 kJ/mol, R = 8,314 J/(mol·K),
    • T = Partitioningtemperatur TP in Kelvin
  • Da beim Ramped Partitioning die Umverteilung des Kohlenstoffs nicht isotherm stattfindet, wird für die Berechnung der über die Erwärmungsdauer erzielten Diffusionslänge xDr eine numerische Annäherung verwendet: x Dr = j 6 * D j * Δt Pr , j
    Figure imgb0007

    wobei ΔtPr,j der Zeitschritt zwischen zwei Berechnungen angegeben in Sekunden und Dj der jeweils aktuelle Diffusionskoeffizient D, berechnet wie voranstehend angegeben, zum Zeitpunkt des jeweiligen Zeitschritts sind. Bei der Bestimmung des Zeitschritts ΔtPr,j wird beispielsweise davon ausgegangen, dass zwischen zwei Berechnungen jeweils 1 Sekunde vergangen ist (ΔtPr,j = 1 s) .
  • Grundsätzlich gilt für die Dauer tPr des Partitionings während des Aufheizens auf die Partitioningtemperatur TP: t Pr s = 0 - t A .
    Figure imgb0008

    D. h., in Fällen, in denen die Erwärmung auf die Partitioningtemperatur TP so schnell erfolgt, dass während des Aufheizens keine wesentliche Umverteilung des Kohlenstoffs stattfindet, können die Dauer tPr = 0 und dementsprechend auch der Beitrag xDr = 0 angenommen werden. Eine besonders wirtschaftliche Betriebsweise ergibt sich, wenn die Dauer tPR des Partitionings auf höchstens 85 s beschränkt wird.
  • Das erfindungsgemäße Verfahren liefert optimale Arbeitsergebnisse, wenn die Summe der jeweils zu berücksichtigenden Diffusionslängen xDi, xDr mindestens 1,0 µm, insbesondere mindestens 1,5 µm beträgt.
  • Indem die Betriebsparameter bei der Wärmebehandlung so eingestellt werden, dass die Diffusionslänge zunimmt, kann der Biegewinkel des jeweiligen Stahlflachprodukts verbessert werden, während die Lochaufweitung nur geringfügig beeinflusst wird. Bei weiter zunehmender Diffusionslänge kann auch die Lochaufweitung verbessert werden, womit jedoch eine Verschlechterung der Biegeeigenschaften einhergehen kann. Noch größere Diffusionslängen bewirken schließlich die Verschlechterung von sowohl Biegeeigenschaften als auch Lochaufweitung. Optimale Arbeitsergebnisse ergeben sich, wenn beim erfindungsgemäßen Verfahren die Betriebsparameter so eingestellt werden, dass Diffusionslängen von 1,5 - 5,7 µm, insbesondere von 2,0 - 4,5 µm, erreicht werden.
  • Mittels der Diffusionslänge xD bzw. über eine Veränderung der für ihren jeweiligen Wert wesentlichen Einflussgrößen kann im Zusammenspiel mit dem dem Partitioning vorausgehenden Abkühl- und Halteschritt auch das Streckgrenzenverhältnis beeinflusst werden. Wird z.B. durch Wahl einer niedrigen Kühlstopptemperatur TQ und/oder einer längeren Haltezeit tQ im Abkühlschritt ein hoher Martensitanteil von 40 % und mehr erzeugt, kann durch die Wahl einer hohen Partitioningtemperatur TP und -zeit tPt eine größere Diffusionslänge xD und damit letztlich ein hohes Streckgrenzenverhältnis erreicht werden. Wird weniger als ca. 40 % Martensit erzeugt, so ist der Einfluss der Diffusionslänge xD auf das Streckgrenzenverhältnis eher gering.
  • Das Streckgrenzenverhältnis ist ein Maß für das Verfestigungspotenzial des Stahls. Ein relativ niedriges Streckgrenzenverhältnis von ca. 0,50 wirkt sich positiv auf die Zugdehnung aus, ist aber ungünstig für die Lochaufweitung und den Biegewinkel. Ein höheres Streckgrenzenverhältnis von ca. 0,90 kann die Lochaufweitung und die Biegeeigenschaften verbessern, führt aber zu Einbußen bei der Zugdehnung.
  • Nach dem Partitioning wird das Stahlflachprodukt von der Partitioningtemperatur TP ausgehend mit einer -3 °C/s bis -25 °C/s, insbesondere -5 °C/s bis -15 °C/s, betragenden Abkühlgeschwindigkeit θP2 abgekühlt.
  • Soll das erfindungsgemäße Stahlflachprodukt im Zuge des erfindungsgemäßen Verfahrens zusätzlich mit einer Schmelztauchbeschichtung versehen werden, wird es ausgehend von der Partitioningtemperatur TP mit der Abkühlgeschwindigkeit θP2 zunächst auf eine Schmelzbadeintrittstemperatur TB von 400 - <500 °C abgekühlt.
  • Anschließend durchläuft das Stahlflachprodukt zum Schmelztauchbeschichten ein Schmelzenbad, bei dessen Verlassen die Dicke des auf dem Stahlflachprodukt erzeugten Schutzüberzugs in konventioneller Weise beispielsweise durch Abstreifdüsen eingestellt wird.
  • Das aus dem Schmelzenbad austretende, mit dem Schutzüberzug versehene Stahlflachprodukt wird schließlich mit der Abkühlgeschwindigkeit θP2 auf Raumtemperatur abgekühlt, um erneut Martensit zu erzeugen.
  • Besonders geeignet ist das erfindungsgemäße Verfahren zur Herstellung von Stahlflachprodukten, die mit einer Zinkbeschichtung versehen sind. Es sind jedoch auch andere metallische, durch Schmelztauchbeschichten auf das jeweilige Stahlflachprodukt aufbringbare Beschichtungen, wie ZnAl-, ZnMg- oder vergleichbare Schutzüberzüge möglich.
  • Das erfindungsgemäß hergestellte Produkt hat ein Gefüge, welches 25 bis 80 % angelassenen Martensit (Martensit aus dem ersten Abkühlschritt), 5 bis 70 % nicht angelassenen, neuen Martensit (Martensit aus dem zweiten Abkühlschritt), 5 bis 30% Restaustenit, weniger als 10 % Bainit (0 % eingeschlossen) und weniger als 5 % Ferrit (0 % eingeschlossen) enthält.
  • Das erfindungsgemäße Verfahren ermöglicht so die Herstellung eines veredelten Stahlflachprodukts mit einer Zugfestigkeit von 1200 bis 1900 MPa, einer Streckgrenze von 600 bis 1400 MPa, einem Streckgrenzenverhältnis von 0,40 bis 0,95, einer Dehnung (A50) von 10 bis 30 % und einer sehr guten Umformbarkeit. Diese drückt sich darin aus, dass für ein erfindungsgemäßes Stahlflachprodukt das Produkt Rm*A50 15.000 - 35.000 MPa% beträgt. Das erfindungsgemäße Stahlflachprodukt weist gleichzeitig einen hohen Biegewinkel α von 100 bis 180° (bei Biegedornradius = 2,0 * Blechdicke in Anlehnung an DIN EN 7438) und sehr gute Werte für die Lochaufweitung λ von 50 bis 120 % (nach ISO-TS 16630) auf. Somit sind bei einem erfindungsgemäßen Stahlflachprodukt hohe Festigkeit und gute Umformeigenschaften miteinander gepaart.
  • In Figur 1 ist eine Variante des erfindungsgemäßen Verfahrens dargestellt, bei der die für das Aufheizen des Stahlflachprodukts von der Kühlstopptemperatur TQ auf die Partitioningtemperatur TP benötigte Aufheizzeit tA gleich der Dauer tPr des Ramped Partitioning ist und das Stahlflachprodukt im Zuge dieses Verfahrens einer Schmelztauchbeschichtung in einem Zinkbad ("Zinkpott") unterzogen wird.
  • Grundsätzlich lässt sich die eine Schmelztauchbeschichtung umfassende Variante des erfindungsgemäßen Verfahrens in einer konventionellen Feuerbeschichtungsanlage durchführen, wenn an dieser gewisse Modifikationen vorgenommen werden. Um Bandtemperaturen von oberhalb 930°C zu erreichen, werden gegebenenfalls keramische Strahlrohre benötigt. Die hohen Abkühlgeschwindigkeiten θQ von bis zu -120 K/s lassen sich mit einer modernen Gasjetkühlung erzielen. Die nach dem Halten auf der Kühlstopptemperatur TQ erfolgende Erwärmung auf die Partitioningtemperatur TP kann durch den Einsatz eines Boosters erreicht werden. Nach dem Partitioning-Schritt fährt das Band durch das Schmelzenbad und wird zur erneuten Erzeugung von Martensit kontrolliert abgekühlt.
  • Die Erfindung ist anhand zahlreicher Ausführungsbeispiele erprobt worden.
  • Dabei sind Proben von kaltgewalzten Stahlbändern untersucht worden, die aus den in Tabelle 1 angegebenen Stählen A - N erzeugt worden sind.
  • Die Proben haben die erfindungsgemäß vorgegebenen, in Figur 1 dargestellten Verfahrensschritte mit den in Tabelle 2 angegebenen Verfahrensparametern durchlaufen. Dabei sind die Verfahrensparameter zwischen erfindungsgemäßen und nicht erfindungsgemäßen Parametern variiert worden, um die Auswirkungen einer außerhalb der erfindungsgemäß vorgegebenen Verfahrensweise aufzuzeigen. Bei der Berechnung der Diffusionslänge wurden Zeitschritte von jeweils 1 s zu Grunde gelegt.
  • Die mechanischen Eigenschaften der auf diese Weise erhaltenen Kaltbandproben sind in Tabelle 3 zusammengefasst.
  • Die Gefügebestandteile der erhaltenen Kaltbandproben sind in Tabelle 4 angegeben.
  • In den Tabellen, den Ansprüchen und der Beschreibung sind folgende Kurzzeichen verwendet worden:
    Kurzzeichen Bezeichnung Einheit
    θH1 Aufheizgeschwindigkeit für erste Aufheizphase vor dem Austenitisieren °C/s
    TW Temperatur für Wechsel von erster in zweite Aufheizphase vor dem Austenitisieren °C
    θH2 Aufheizgeschwindigkeit für zweite Aufheizphase vor dem Austenitisieren °C/s
    THZ Austenitisierungstemperatur °C
    tHZ Austenitisierungsdauer s
    θQ Abkühlungsgeschwindigkeit für Abschrecken (quenching) nach dem Austenitisieren °C/s
    θQ (min) Mindestabkühlungsgeschw. zum Vermeiden ferritischer oder bainitischer Umwandlung °C/s
    TQ Kühlstopptemperatur für Abschrecken nach dem Austenitisieren °C
    tQ Haltedauer auf Kühlstopptemperatur s
    θP1 Aufheizgeschwindigkeit auf Temperatur für Isothermes Partitioning °C/s
    tA Dauer des Aufheizens auf die Partitioningtemperatur TP s
    tPR Dauer für Partitioning während des Aufheizens (Ramped Partitioning) s
    tPI Haltedauer für Isothermes Partitioning s
    tPT Gesamte Partitioningzeit (tPR + tPI) s
    TP Temperatur für Isothermes Partitioning °C
    XD Gesamtdiffusionslänge µm
    XDr Diffusionslänge aus dem Ramped Partitioning µm
    XD1 Diffusionslänge aus dem Isothermen Partitioning µm
    θP2 Abkühlungsgeschwindigkeit nach dem Partitioning °C/s
    F Ferrit %
    B Bainit %
    MT angelassener Martensit (Martensit alt) %
    MN Martensit aus Abkühlung nach dem Partitioning (Martensit neu) %
    RA Restaustenit %
    Rp0,2 Dehngrenze MPa
    Rm Zugfestigkeit MPa
    Rp0,2/Rm Streckgrenzenverhältnis -
    A50 Dehnung %
    Rm*A50 Produkt aus Zugfestigkeit und Dehnung (= Maß für hohe Festigkeit bei gleichzeitig guter Umformbarkeit) MPa * %
    λ Lochaufweitung %
    α Biegewinkel (nach Rückfederung bei Biegedornradius=2xBlechdicke) o
    Tabelle 1
    Stahl C Si Mn Al P S N Cr V Mo Ti Nb B Σ(MLE) CE
    A 0,169 1,47 1,55 0,038 0,015 0,0006 0,0037 0,011 0,027 0,04 0,67
    B 0,230 1,66 1,87 0,037 0,009 0,0010 0,0049 0,008 0,040 0,05 0,82
    C 0,224 0,16 1,67 1,410 0,016 0,0020 0,0042 0,00 0,53
    D 0,452 1,30 1,73 0,041 0,013 0,0020 0,0039 0,00 0,96
    E 0,331 1,91 1,52 0,035 0,008 0,0010 0,0041 0,071 0,07 0,90
    F 0,193 1,41 1,53 0,460 0,009 0,0020 0,0040 0,00 0,68
    G 0,183 1,78 2,34 0,032 0,008 0,0020 0,0047 0,047 0,031 0,08 0,87
    H 0,196 1,64 3,14 0,012 0,011 0,0010 0,0040 0,008 0,01 0,99
    I 0,306 1,70 1,96 0,018 0,013 0,0010 0,0030 0,00 0, 92
    J 0,150 1,51 2,01 0,010 0,009 0,0010 0,0060 0,25 0,042 0,0015 0,04 0,79
    K 0,150 1,43 1,96 0,024 0,009 0,0022 0, 0050 0,32 0,124 0,12 0,78
    L 0,276 1,05 1,82 0,021 0,012 0,0020 0,0006 0,22 0,133 0,0030 0,13 0,80
    M 0,259 0,85 1,58 0,036 0,010 0,0015 0,0070 0,067 0,084 0,0040 0,15 0,68
    N 0, 174 0,97 1,47 0,028 0,009 0,0010 0,0040 0,23 0,00 0, 63
    Angaben in Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen
    Tabelle 2 (Teil 1)
    Stahl Versuch-Nr. θH1 [°C/s] TW [°C] θH2 [°C/s] Ac3 [°C/] THZ [°C] tHZ [s] θQ(min) [°C/s] θQ [°C/s] TQ [°C] TMS [°C] tQ [s]
    A 1 11 270 3 892 920 84 -110 -115 250 411 10
    A 2 15 300 4 892 920 84 -110 -70 350 411 20
    A 3 5 270 5 892 930 50 -110 -120 270 411 12
    A 4 10 300 5 892 830 50 -110 -110 460 411 0
    A 5 10 270 3 892 910 110 -110 -110 320 411 10
    B 6 18 270 3 887 920 75 -67 -70 310 374 0
    B 7 12 375 5 887 930 48 -67 -75 310 374 40
    B 8 5 270 5 887 905 115 -67 -70 310 374 40
    B 9 14 300 4 887 925 65 -67 -70 250 374 15
    B 10 5 300 5 887 820 48 -67 -20 470 374 0
    B 11 5 270 5 887 915 80 -67 -75 250 374 10
    C 12 11 270 3 821 930 70 -90 -90 290 435 20
    C 13 11 270 3 821 930 70 -90 -105 210 435 10
    C 14 5 270 5 821 890 125 -90 -95 250 435 12
    D 15 6 300 4 832 895 100 -42 -45 250 287 50
    D 16 5 270 5 832 880 140 -42 -50 200 287 10
    D 17 9 290 3 832 920 55 -42 -50 230 287 15
    E 18 5 270 5 879 930 50 -38 -40 310 340 14
    E 19 11 290 3 879 920 65 -38 -55 275 340 10
    E 20 11 270 4 879 930 55 -38 -10 300 340 0
    E 21 10 270 3 879 930 55 -38 -50 300 340 20
    F 22 10 350 3 884 930 45 -90 -90 255 414 30
    F 23 5 270 5 884 920 55 -90 -50 270 414 15
    F 24 5 270 5 884 930 60 -90 -100 310 414 12
    F 25 11 270 4 884 890 150 -90 -100 250 414 10
    G 26 10 300 5 903 930 60 -48 -60 290 378 10
    G 27 11 270 4 903 930 60 -48 -60 250 378 10
    H 28 5 270 5 893 930 66 -31 -45 290 348 24
    H 29 5 270 5 893 905 80 -31 -40 240 348 24
    H 30 10 270 4 893 905 80 -31 -40 240 348 10
    H 31 11 300 5 893 930 52 -31 -50 270 348 15
    H 32 5 270 5 893 930 52 -31 -30 250 348 0
    H 33 9 255 3 893 930 66 -31 -80 210 348 5
    H 34 20 295 3 893 920 70 -31 -60 320 348 12
    H 35 5 270 5 893 920 70 -31 -60 270 348 70
    I 36 14 310 5 874 905 75 -50 -65 200 337 17
    I 37 10 270 3 874 900 73 -50 -70 310 337 15
    I 38 10 270 3 874 880 98 -50 -50 285 337 0
    I 39 15 290 5 874 930 24 -50 -75 230 337 20
    J 40 5 270 5 899 930 20 -94 -95 350 403 10
    J 41 20 300 3 899 910 46 -94 -100 200 403 0
    J 42 5 270 4 899 910 46 -94 -105 265 403 16
    J 43 5 270 5 899 905 78 -94 -100 320 403 12
    Tabelle 2 (Teil 2)
    Stahl Versuch-Nr. θH1 [°C/s] TW [°C] θH2 [°C/s] Ac3 [°C/s] THZ [°C] tHZ [s] θQ(min) [°C/s] θQ [°C/s] TQ [°C] TMS [°C] tQ [s]
    K 44 10 300 3 895 920 57 -86 -95 300 406 10
    K 45 8 270 4 895 920 57 -86 -95 350 406 17
    K 46 5 270 5 895 910 83 -86 -87 340 406 0
    L 47 5 270 5 850 900 60 -79 -80 220 360 14
    L 48 10 290 4 850 875 95 -79 -80 275 360 12
    L 49 5 270 5 850 890 75 -79 -90 300 360 18
    M 50 5 270 3 852 895 80 -112 -120 240 376 10
    M 51 5 270 3 852 870 120 -112 -120 285 376 16
    M 52 5 270 3 852 890 75 -112 -115 200 376 80
    N 53 10 270 3 876 930 38 -103 -105 350 414 12
    N 54 11 270 4 876 900 80 -103 -110 250 414 10
    N 55 11 270 4 876 900 80 -103 -115 310 414 10
    Tabelle 2 (Teil 3)
    Stahl Versuch-Nr. θP1 [°C/s] tPR [s] tPI [s] TP [°C] XD [µm] θP2 [°C/s] Erfindungsgemäß?
    A 1 6,5 30, 8 5 450 2,27 -8 JA
    A 2 80 1, 8 22 490 7,71 -8 NEIN
    A 3 8 27, 5 0 490 2,74 -8 JA
    A 4 0 0,0 34 460 1, 14 -8 NEIN
    A 5 10 12,0 10 440 2,12 -8 JA
    B 6 90 2, 0 28 490 9, 44 -10 NEIN
    B 7 90 2,0 16 490 5,83 -10 NEIN
    B 8 75 2,1 20 470 5, 14 -10 JA
    B 9 12 18, 3 5 470 2,31 -10 JA
    B 10 0 0,0 218 470 3,40 -10 NEIN
    B 11 5 48, 0 0 490 3, 98 -10 JA
    C 12 85 2, 4 16 490 5,83 -7 NEIN
    C 13 4,5 62,2 0 490 4,34 -7 JA
    C 14 3 66,7 4 450 3,43 -7 JA
    D 15 80 3,0 22 490 7,70 -11 NEIN
    D 16 6 41,7 5 450 2,31 -11 JA
    D 17 3,5 68, 6 0 470 3,74 -11 JA
    E 18 5 36,0 0 490 3,60 -18 JA
    E 19 4 50,0 10 475 4, 61 -18 JA
    E 20 85 2,1 25 480 7,49 -18 NEIN
    E 21 75 2, 4 7 480 2,06 -18 JA
    F 22 9 26,1 0 490 2,37 -12 JA
    F 23 90 2, 4 15 490 5,51 -12 NEIN
    F 24 5 32, 0 0 470 2,71 -12 JA
    F 25 7,5 32,0 0 490 2,86 -12 JA
    G 26 11 18,2 0 490 3,27 -11 JA
    G 27 6,5 34, 6 0 475 2,46 -11 JA
    H 28 75 2,7 15 490 5,33 -20 JA
    H 29 75 2, 8 20 450 3,61 -20 JA
    H 30 2,5 84, 0 0 450 3,55 -20 JA
    H 31 3,5 62, 9 0 490 5,59 -20 JA
    H 32 95 2,5 26 490 8, 98 -20 NEIN
    H 33 95 2, 9 16 490 5,81 -20 NEIN
    H 34 5 26,0 22 450 5,51 -20 JA
    H 35 7 30,0 0 480 2,44 -20 NEIN
    I 36 4, 5 55, 6 0 450 2,02 -10 JA
    I 37 5 32,0 0 470 2,59 -10 JA
    I 38 95 2,2 25 490 8, 66 -10 NEIN
    I 39 6 40,8 0 475 2, 54 -10 JA
    J 40 2 45, 0 0 440 3,51 -16 JA
    J 41 80 3,6 28 490 9, 61 -16 NEIN
    J 42 6 37, 5 5 490 4,86 -16 JA
    J 43 4 32,5 0 450 2,21 -16 JA
    Tabelle 2 (Teil 4)
    Stahl Versuch-Nr. θP1 [°C/s] tPR [s] tPI [s] TP [°C] xD [µm] θP2 [°C/s] Erfindungsgemäß?
    K 44 4, 5 33,3 0 450 2,02 -9 JA
    K 45 7 17, 9 0 475 2,31 -9 JA
    K 46 95 1,6 27 490 9,29 -9 NEIN
    L 47 3 83, 3 0 470 4, 33 -18 JA
    L 48 6 33,3 10 475 2, 60 -18 JA
    L 49 20 9,5 5 490 2,74 -18 JA
    M 50 4,5 53,3 5 480 4,81 -13 JA
    M 51 7 27, 9 8 480 4,84 -13 JA
    M 52 85 3, 4 22 490 7,72 -13 NEIN
    N 53 6 23, 3 0 490 3,62 -15 JA
    N 54 4 51,3 5 455 3,28 -15 JA
    N 55 2,5 58,0 5 455 4, 62 -15 JA
    Tabelle 3 (Teil 1)
    Stahl Versuch Nr. RP0,2 [MPa] Rm [MPa] RP0,2/Rm [-] A50 [%] Rm*A50 [MPa%] λ [%] αmax [°] Erfindungsgemäß?
    A 1 1014 1257 0,81 13 16341 62 133 JA
    A 2 979 1070 0,91 12 12840 68 117 NEIN
    A 3 983 1231 0,80 16 19696 57 147 JA
    A 4 400 840 0,48 25 21000 n. e. n. e. NEIN
    A 5 768 1202 0, 64 17 20434 51 139 JA
    B 6 828 1005 0,82 8 8040 63 96 NEIN
    B 7 958 1245 0,77 11 13695 59 128 NEIN
    B 8 932 1303 0,72 15 19545 56 114 JA
    B 9 1071 1399 0,77 11 15389 60 125 JA
    B 10 420 1060 0,40 12 12720 n.e. n.e. NEIN
    B 11 1143 1276 0,90 12 15312 74 105 JA
    C 12 722 1256 0,57 15 18840 26 109 NEIN
    C 13 1040 1342 0,77 14 18788 68 117 JA
    C 14 917 1289 0,71 12 15468 55 133 JA
    D 15 995 1432 0,69 14 20048 41 108 NEIN
    D 16 912 1484 0,61 16 23744 57 130 JA
    D 17 874 1320 0, 66 13 17160 73 143 JA
    E 18 935 1541 0,61 14 21574 55 109 JA
    E 19 1118 1474 0,76 12 17688 77 121 JA
    E 20 632 1150 0,55 9 10350 31 90 NEIN
    E 21 1093 1405 0,78 15 21075 68 105 JA
    F 22 914 1236 0,74 14 17304 68 130 JA
    F 23 702 1149 0,61 15 17235 38 116 NEIN
    F 24 727 1371 0,53 16 21936 51 139 JA
    F 25 1064 1206 0,88 13 15678 81 127 JA
    G 26 1101 1497 0,74 13 19461 59 114 JA
    G 27 1272 1522 0,84 11 16742 72 137 JA
    n.e. = nicht ermittelt
    Tabelle 3 (Teil 2)
    Stahl Versuch Nr. RP0,2 [MPa] Rm [MPa] RP0,2/Rm [-] A50 [%] Rm*A50 [MPa%] λ [%] αmax [°] Erfindungsgemäß?
    H 28 760 1357 0,56 13 17641 52 111 JA
    H 29 874 1412 0,62 12 16944 57 106 JA
    H 30 826 1398 0,59 16 22368 78 128 JA
    H 31 797 1261 0,63 17 21437 63 135 JA
    H 32 893 1056 0,85 13 13728 48 98 NEIN
    H 33 1114 1199 0,93 13 15587 86 125 NEIN
    H 34 650 1315 0,49 18 23670 61 120 JA
    H 35 852 1194 0,71 15 17910 49 109 NEIN
    I 36 1066 1476 0,72 14 20664 53 102 JA
    I 37 898 1384 0,65 18 24912 59 117 JA
    I 38 978 1132 0,86 8 9056 72 103 NEIN
    I 39 933 1447 0, 64 15 21705 55 129 JA
    J 40 788 1273 0,62 21 26733 51 122 JA
    J 41 1068 1102 0, 97 4 4408 57 93 NEIN
    J 42 1037 1463 0,71 17 24871 75 131 JA
    J 43 985 1379 0,71 19 26201 54 114 JA
    K 44 1202 1576 0,76 13 20488 58 112 JA
    K 45 954 1398 0,68 16 22368 66 130 JA
    K 46 1017 1255 0,81 8 10040 71 108 NEIN
    L 47 1263 1642 0,77 12 19704 56 119 JA
    L 48 991 1482 0,67 15 22230 51 131 JA
    L 49 870 1451 0,60 17 24667 68 139 JA
    M 50 1126 1401 0,80 16 22416 62 109 JA
    M 51 930 1529 0, 61 13 19877 51 123 JA
    M 52 1242 1297 0,96 6 7782 76 117 NEIN
    N 53 905 1386 0,65 19 26334 63 129 JA
    N 54 1132 1475 0,77 12 17700 77 136 JA
    N 55 1063 1458 0,73 16 23328 69 125 JA
    n.e. = nicht ermittelt
    Tabelle 4 (Teil 1)
    Stahl Versuch-Nr. F [%] MT [%] Enthält überangelassenen Martensit? RA [%-] MN [%] B [%] Erfindungsgemäß?
    A 1 0 80 NEIN 10 10 Sp. JA
    A 2 0 55 JA 5 40 Sp. NEIN
    A 3 0 80 NEIN 13 7 Sp. JA
    A 4 76 0 NEIN 9 15 Sp. NEIN
    A 5 0 69 NEIN 16 15 Sp. JA
    B 6 4 45 JA 11 40 0 NEIN
    B 7 0 55 JA 9 25 11 NEIN
    B 8 0 55 NEIN 16 29 0 JA
    B 9 0 78 NEIN 12 10 0 JA
    B 10 62 0 NEIN 18 5 5 NEIN
    B 11 0 79 NEIN 8 8 5 JA
    C 12 Sp. 55 JA 15 30 0 NEIN
    C 13 0 80 NEIN 11 9 0 JA
    C 14 0 75 NEIN 14 11 0 JA
    D 15 Sp. 45 JA 21 34 Sp. NEIN
    D 16 0 70 NEIN 18 12 Sp. JA
    D 17 0 56 NEIN 19 25 Sp. JA
    E 18 0 35 NEIN 24 41 Sp. JA
    E 19 0 60 NEIN 14 26 Sp. JA
    E 20 20 30 JA 9 21 20 NEIN
    E 21 0 50 NEIN 14 36 Sp. JA
    F 22 0 80 NEIN 13 7 0 JA
    F 23 17 65 NEIN 8 10 0 NEIN
    F 24 0 59 NEIN 16 25 0 JA
    F 25 0 80 NEIN 7 13 0 JA
    G 26 0 65 NEIN 12 23 0 JA
    G 27 0 80 NEIN 5 15 0 JA
    Sp. = Spuren
    Tabelle 4 (Teil 2)
    Stahl Versuch Nr. F [%] MT [%] Enthält überangelassenen Martensit? RA [%-] MN [%] B [%] Erfindungsgemäß?
    H 28 Sp. 50 NEIN 15 35 0 JA
    H 29 0 74 NEIN 11 15 0 JA
    H 30 Sp. 72 NEIN 18 10 0 JA
    H 31 Sp. 66 NEIN 14 20 0 JA
    H 32 0 75 JA 8 17 0 NEIN
    H 33 0 85 JA 8 7 0 NEIN
    H 34 Sp. 23 NEIN 17 60 0 JA
    H 35 Sp. 70 NEIN 10 20 0 NEIN
    I 36 Sp. 77 NEIN 18 5 0 JA
    I 37 Sp. 40 NEIN 19 41 0 JA
    I 38 Sp. 55 JA 6 39 0 NEIN
    I 39 Sp. 75 NEIN 12 13 0 JA
    J 40 0 51 NEIN 9 40 0 JA
    J 41 0 95 JA 3 2 0 NEIN
    J 42 0 80 NEIN 10 10 0 JA
    J 43 0 61 NEIN 14 25 0 JA
    K 44 0 67 NEIN 12 21 0 JA
    K 45 0 40 NEIN 17 43 0 JA
    K 46 0 48 JA 7 46 Sp. NEIN
    L 47 0 80 NEIN 11 9 0 JA
    L 48 0 64 NEIN 16 20 0 JA
    L 49 Sp. 51 NEIN 19 30 0 JA
    M 50 0 78 NEIN 13 9 0 JA
    M 51 0 65 NEIN 14 21 0 JA
    M 52 0 90 JA 5 5 0 NEIN
    N 53 0 45 NEIN 17 38 0 JA
    N 54 0 80 NEIN 11 9 0 JA
    N 55 0 70 NEIN 12 18 0 JA
    Sp. = Spuren

Claims (17)

  1. Stahlflachprodukt, das eine Zugfestigkeit Rm von mindestens 1200 MPa besitzt und aus einem Stahl besteht, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)
    C: 0,10 - 0,50 %,
    Si: 0,1 - 2,5 %,
    Mn: 1,0 - 3,5 %,
    Al: bis zu 2,5 %,
    P: bis zu 0,020 %,
    S: bis zu 0,003 %,
    N: bis zu 0,02 %,
    sowie optional eines oder mehrere der Elemente "Cr, Mo, V, Ti, Nb, B und Ca" in folgenden Gehalten:
    Cr: 0,1 - 0,5 %,
    Mo: 0,1 - 0,3 %,
    V: 0,01 - 0,1 %,
    Ti: 0,001 - 0,15 %,
    Nb: 0,02 - 0,05 %,
    wobei für die Summe Σ(V,Ti,Nb) der Gehalte an V,
    Ti und Nb gilt Σ(V,Ti,Nb) ≤ 0,2 %,
    B: 0,0005 - 0,005 %,
    Ca: bis zu 0,01 %
    enthält, und ein Gefüge mit (in Flächen-%) weniger als 5 % Ferrit, weniger als 10 % Bainit,
    5 - 70 unangelassenem Martensit, 5 - 30 % Restaustenit und 25 - 80 % angelassenem Martensit aufweist, wobei mindestens 99 % der im angelassenen Martensit enthaltenen Eisenkarbide eine Größe von weniger als 500 nm aufweisen.
  2. Stahlflachprodukt nach Anspruch 1, dadurch gekennzeichnet, dass (in Gew.-%) sein Al-Gehalt 0,01 - 1,5 %, sein Cr-Gehalt 0,20 - 0,35 Gew.-%, sein V-Gehalt 0,04 - 0,08 %, sein Ti-Gehalt 0,008 - 0,14 %, sein B-Gehalt 0,002 - 0,004 % oder sein Ca-Gehalt 0,0001 - 0,006 % beträgt.
  3. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass für das Kohlenstoff-Äquivalent CE seines Stahls gilt: 0 , 35 Gew . - % CE 1 , 2 Gew . - %
    Figure imgb0009

    mit CE = %C+(%Mn+%Si)/6+(%Cr+%Mo+%V)/5+(%Ni+%Cu)/15,
    %C: C-Gehalt des Stahls,
    %Mn: Mn-Gehalt des Stahls,
    %Si: Si-Gehalt des Stahls,
    %Cr: Cr-Gehalt des Stahls,
    %Mo: Mo-Gehalt des Stahls,
    %V: V-Gehalt des Stahls,
    %Ni: Ni-Gehalt des Stahls,
    %Cu: Cu-Gehalt des Stahls.
  4. Stahlflachprodukt nach Anspruch 3, dadurch gekennzeichnet, dass für das Kohlenstoff-Äquivalent CE gilt 0 , 5 Gew . - % CE 1 , 0 Gew . - %
    Figure imgb0010
  5. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass es mit einem durch Schmelztauchbeschichten aufgebrachten metallischen Schutzüberzug versehen ist.
  6. Verfahren zum Herstellen eines hochfesten Stahlflachprodukts, umfassend folgende Arbeitsschritte:
    - Bereitstellen eines unbeschichteten Stahlflachproduktes aus einem Stahl, der neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)
    C: 0,10 - 0,50 %,
    Si: 0,1 - 2,5 %,
    Mn: 1,0 - 3,5 %,
    Al: bis zu 2,5 %,
    P: bis zu 0,020 %,
    S: bis zu 0,003 %,
    N: bis zu 0,02 %,
    sowie optional eines oder mehrere der Elemente "Cr, Mo, V, Ti, Nb, B und Ca" in folgenden Gehalten:
    Cr: 0,1 - 0,5 %,
    Mo: 0,1 - 0,3 %,
    V: 0,01 - 0,1 %,
    Ti: 0,001 - 0,15 %,
    Nb: 0,02 - 0,05 %,
    wobei für die Summe Σ(V,Ti,Nb) der Gehalte an V, Ti und Nb gilt Σ(V,Ti,Nb) ≤ 0,2 %,
    B: 0,0005 - 0,005 %,
    Ca: bis zu 0,01 %
    enthält;
    - Erwärmen des Stahlflachproduktes auf eine oberhalb der Ac3-Temperatur des Stahls des Stahlflachprodukts liegende und höchstens 960 °C betragende Austenitisierungstemperatur THZ mit einer Erwärmungsgeschwindigkeit θH1H2 von mindestens 3 °C/s;
    - Halten des Stahlflachprodukts bei der Austenitisierungstemperatur über eine Austenitisierungsdauer tHZ von 20 - 180 s;
    - Abkühlen des Stahlflachprodukts auf eine Kühlstopptemperatur TQ, die größer als die Martensitstopptemperatur TMf und kleiner als die Martensitstarttemperatur TMs (TMf < TQ < TMs) ist, mit einer Abkühlungsgeschwindigkeit θQ für die gilt: θ Q θ Q min
    Figure imgb0011
    mit θ Q min °C / s = - 314 , 35 °C / s + ( 268 , 74 % C + 56 , 27 % Si + 58 , 50 % Al + 43 , 40 % Mn + 195 , 02 % Mo + 166 , 60 % Ti + 199 , 19 % Nb ) °C / Gew . - % s ,
    Figure imgb0012
    %C: C-Gehalt des Stahls,
    %Si: Si-Gehalt des Stahls,
    %Al: Al-Gehalt des Stahls,
    %Mn: Mn-Gehalt des Stahls,
    %Mo: Mo-Gehalt des Stahls,
    %Ti: Ti-Gehalt des Stahls,
    %Nb: Nb-Gehalt des Stahls;
    - Halten des Stahlflachprodukts auf der Kühlstopptemperatur TQ für eine Haltedauer tQ von 10 - 60 s;
    - von der Kühlstopptemperatur TQ ausgehendes Erwärmen des Stahlflachprodukts mit einer Erwärmungsgeschwindigkeit θP1 von 2 - 80 °C/s auf eine 400 - 500 °C betragende Partitioningtemperatur Tp;
    - optionales isothermes Halten des Stahlflachprodukts bei der Partitioningtemperatur TP über eine Haltedauer tPi von bis zu 500 s;
    - von der Partitioningtemperatur TP ausgehendes, mit einer -3 °C/s bis -25 °C/s betragenden Abkühlgeschwindigkeit θP2 erfolgendes Abkühlen des Stahlflachprodukts.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass bei dem von der Partitioningtemperatur TP ausgehenden, mit Abkühlgeschwindigkeit θP2 erfolgenden Abkühlen
    - das Stahlflachprodukt zunächst auf eine Schmelzbadeintrittstemperatur TB von 400°C bis <500 °C abgekühlt wird;
    - dann das auf die Schmelzbadeintrittstemperatur TB abgekühlte Stahlflachprodukt zum Schmelztauchbeschichten durch ein Schmelzenbad geleitet und die Dicke des auf dem Stahlflachprodukt erzeugten Schutzüberzugs eingestellt wird;
    - und schließlich das aus dem Schmelzenbad austretende, mit dem Schutzüberzug versehene Stahlflachprodukt mit der Abkühlgeschwindigkeit θP2 auf Raumtemperatur abgekühlt wird.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet,dass die Erwärmung auf die Austenitisierungstemperatur THZ in zwei unterbrechungsfrei aufeinander folgenden Stufen mit unterschiedlichen Erwärmungsgeschwindigkeiten θH1H2 durchgeführt wird.
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Erwärmungsgeschwindigkeit θH1 der erste Stufe 5 - 25 °C/s und die Erwärmungsgeschwindigkeit θH2 der zweiten Stufe 3 - 10 °C beträgt.
  10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass das Stahlflachprodukt mit der ersten Erwärmungsgeschwindigkeit θH1 auf eine Zwischentemperatur TW von 200 - 500 °C erwärmt wird und dass die Erwärmung anschließend mit der zweiten Erwärmungsgeschwindigkeit θH2 bis zur Austenitisierungstemperatur THz fortgesetzt wird.
  11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Abkühlungsgeschwindigkeit θQ -20 °C/s bis -120 °C/s beträgt.
  12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass die Kühlstopptemperatur TQ mindestens 200 °C beträgt.
  13. Verfahren nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, dass die Haltedauer tQ, über die das Stahlflachprodukt auf der Kühlstopptemperatur TQ gehalten wird, 12 - 40 s beträgt.
  14. Verfahren nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, dass die Erwärmungsgeschwindigkeit θP1 bei der von der Kühlstopptemperatur TQ ausgehenden Erwärmung 2 - 80 °C/s beträgt.
  15. Verfahren nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, dass das Aufheizen auf die Partitioningtemperatur TP innerhalb einer Aufheizzeit tA von 1 - 150 s erfolgt.
  16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass für die Dauer tPr des Partitionings während des Aufheizens auf die Partitioningtemperatur TP gilt t Pr s = 0 - t A .
    Figure imgb0013
  17. Verfahren nach einem der Ansprüche 6 bis 16, dadurch gekennzeichnet, dass für eine Diffusionslänge xD gilt: x D 1 , 0 μm
    Figure imgb0014

    mit x D = x Di + x Dr
    Figure imgb0015
    xDi : Im Zuge des isothermen Haltens erhaltener Beitrag zur Diffusionslänge xD, berechnet gemäß der Formel x Di = 6 * D * t Pi
    Figure imgb0016
    mit tPi = Zeit, über die das isotherme Halten durchgeführt worden ist, angegeben in Sekunden,
    D = Do * exp(-Q/RT), Do = 3,72*10-5 m2/s,
    Q = 148 kJ/mol, R = 8,314 J/(mol·K),
    T = Partitioningtemperatur TP in Kelvin
    und
    xDr:
    Im Zuge der Erwärmung auf die Partitioningtemperatur TP erhaltener Beitrag zur Diffusionslänge xD, berechnet gemäß der Formel x Dr = j 6 * D j * Δt Pr , j
    Figure imgb0017

    mit
    ΔtPr,j = Zeitschritt zwischen zwei Berechnungen angegeben in Sekunden,
    Dj = Do * exp(-Q/RTj), Do = 3,72*10-5 m2/s,
    Q = 148 kJ/mol, R = 8,314 J/(mol·K),
    Tj = jeweils aktuelle Partitioningtemperatur TP in Kelvin,
    wobei xDi oder xDr auch 0 sein können.
EP11166622A 2011-05-18 2011-05-18 Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung Withdrawn EP2524970A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP11166622A EP2524970A1 (de) 2011-05-18 2011-05-18 Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung
JP2014510785A JP6193219B2 (ja) 2011-05-18 2012-05-16 高強度鋼板製品及びその製造方法
KR1020137030555A KR102001648B1 (ko) 2011-05-18 2012-05-16 고강도 판상 강 제품 및 그 제조 방법
US14/117,711 US9650708B2 (en) 2011-05-18 2012-05-16 High-strength flat steel product and method for producing same
PL12721842T PL2710158T3 (pl) 2011-05-18 2012-05-16 Wysoko wytrzymały płaski produkt stalowy i sposób jego wytwarzania
ES12721842.8T ES2628409T3 (es) 2011-05-18 2012-05-16 Producto plano de acero, de alta resistencia, y procedimiento para su fabricación
PCT/EP2012/059076 WO2012156428A1 (de) 2011-05-18 2012-05-16 Hochfestes stahlflachprodukt und verfahren zu dessen herstellung
EP12721842.8A EP2710158B1 (de) 2011-05-18 2012-05-16 Hochfestes stahlflachprodukt und verfahren zu dessen herstellung
CN201280024105.XA CN103597100B (zh) 2011-05-18 2012-05-16 高强度的扁钢产品及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11166622A EP2524970A1 (de) 2011-05-18 2011-05-18 Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung

Publications (1)

Publication Number Publication Date
EP2524970A1 true EP2524970A1 (de) 2012-11-21

Family

ID=46124355

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11166622A Withdrawn EP2524970A1 (de) 2011-05-18 2011-05-18 Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung
EP12721842.8A Revoked EP2710158B1 (de) 2011-05-18 2012-05-16 Hochfestes stahlflachprodukt und verfahren zu dessen herstellung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12721842.8A Revoked EP2710158B1 (de) 2011-05-18 2012-05-16 Hochfestes stahlflachprodukt und verfahren zu dessen herstellung

Country Status (8)

Country Link
US (1) US9650708B2 (de)
EP (2) EP2524970A1 (de)
JP (1) JP6193219B2 (de)
KR (1) KR102001648B1 (de)
CN (1) CN103597100B (de)
ES (1) ES2628409T3 (de)
PL (1) PL2710158T3 (de)
WO (1) WO2012156428A1 (de)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160680A (zh) * 2013-04-03 2013-06-19 北京科技大学 一种制备30GPa%级复相钢的Q&PB热处理工艺
WO2014114159A1 (zh) * 2013-01-22 2014-07-31 宝山钢铁股份有限公司 一种具有低屈服比的超高强韧钢板及其制造方法
WO2014186722A3 (en) * 2013-05-17 2015-01-08 Ak Steel Properties, Inc. High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath
EP2905348A1 (de) * 2014-02-07 2015-08-12 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
CN104928590A (zh) * 2015-06-11 2015-09-23 北京交通大学 一种Mn-Si-Cr低碳贝氏体钢、钎杆及其制备方法
WO2015177615A1 (fr) * 2014-05-20 2015-11-26 Arcelormittal Tôle d'acier doublement recuite a hautes caracteristiques mecaniques de resistance et de ductilite, procede de fabrication et utilisation de telles tôles
WO2016001891A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength and ductility and obtained sheet
WO2016001700A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
WO2016001708A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
WO2016001702A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
WO2016001706A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
WO2016005615A1 (es) * 2014-07-08 2016-01-14 Gerdau Investigacion Y Desarrollo Europa, S.A. Acero microaleado para conformado en caliente de piezas de alta resistencia y alto limite elastico y procedimiento para obtener componentes de dicho acero
WO2016016683A1 (en) * 2014-07-30 2016-02-04 Arcelormittal A method for producing a high strength steel piece
EP1997923B1 (de) * 2006-03-20 2016-03-09 National Institute for Materials Science Ni-basierte superlegierung, verfahren zu deren herstellung und turbinenblatt- oder turbinenschaufelbauteil
DE102014017273A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017275A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
WO2016177420A1 (de) 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Stahlflachprodukt und verfahren zu seiner herstellung
EP2710158B1 (de) 2011-05-18 2017-03-15 ThyssenKrupp Steel Europe AG Hochfestes stahlflachprodukt und verfahren zu dessen herstellung
EP3128027A4 (de) * 2014-03-31 2017-04-19 JFE Steel Corporation Hochfestes kaltgewalztes stahlblech mit hohem streckgrenzenverhältnis und herstellungsverfahren dafür
DE102015119417B4 (de) * 2014-11-26 2017-10-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum presshärten einer galvanisierten stahllegierung
CN107429363A (zh) * 2015-04-08 2017-12-01 新日铁住金株式会社 热处理钢板构件以及其的制造方法
CN107922986A (zh) * 2015-07-24 2018-04-17 蒂森克虏伯钢铁欧洲股份公司 具有高最小屈服极限的高强度钢和这种钢的生产方法
DE102017130237A1 (de) * 2017-12-15 2019-06-19 Salzgitter Flachstahl Gmbh Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts
EP3511430A1 (de) * 2018-01-12 2019-07-17 SMS Group GmbH Verfahren für eine kontinuierliche wärmebehandlung eines stahlbands, und anlage zum schmelztauchbeschichten eines stahlbands
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
WO2020064096A1 (de) * 2018-09-26 2020-04-02 Thyssenkrupp Steel Europe Ag Verfahren zur herstellung eines beschichteten stahlflachprodukts und beschichtetes stahlflachprodukt
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
EP3390040B1 (de) 2015-12-15 2020-08-26 Tata Steel IJmuiden B.V. Hochfester feuerverzinkter bandstahl
WO2020169342A1 (de) 2019-02-21 2020-08-27 Thyssenkrupp Steel Europe Ag Verfahren zum herstellen eines bauteils mittels innenhochdruckumformen
US10822680B2 (en) 2015-04-08 2020-11-03 Nippon Steel Corporation Steel sheet for heat treatment
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
CN114250415A (zh) * 2021-12-10 2022-03-29 江苏沙钢集团有限公司 一种大壁厚塑料模具钢板的制造方法
EP3988679A4 (de) * 2019-08-20 2022-11-02 JFE Steel Corporation Hochfestes kaltgewalztes stahlblech und verfahren zur herstellung davon
CN115341142A (zh) * 2022-08-04 2022-11-15 钢铁研究总院有限公司 一种温成型用钢及其制备方法
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
US11613789B2 (en) 2018-05-24 2023-03-28 GM Global Technology Operations LLC Method for improving both strength and ductility of a press-hardening steel
WO2023233036A1 (en) * 2022-06-03 2023-12-07 Thyssenkrupp Steel Europe Ag High strength, cold rolled steel with reduced sensitivity to hydrogen embrittlement and method for the manufacture thereof
RU2812417C1 (ru) * 2023-07-18 2024-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) Способ получения высокопрочного стального листа
DE102022125128A1 (de) 2022-09-29 2024-04-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20115702L (fi) 2011-07-01 2013-01-02 Rautaruukki Oyj Menetelmä suurlujuuksisen rakenneteräksen valmistamiseksi ja suurlujuuksinen rakenneteräs
JP6017341B2 (ja) * 2013-02-19 2016-10-26 株式会社神戸製鋼所 曲げ性に優れた高強度冷延鋼板
US9869009B2 (en) * 2013-11-15 2018-01-16 Gregory Vartanov High strength low alloy steel and method of manufacturing
CN113215501B (zh) * 2014-01-24 2022-09-20 罗奇钢铁公司 热轧超高强度钢带产品
CN105132814B (zh) * 2014-06-09 2018-02-27 鞍钢股份有限公司 一种耙片用带钢及生产方法与耙片热处理方法
PL3492608T3 (pl) 2014-07-03 2020-08-24 Arcelormittal Sposób wytwarzania niepowlekanej blachy stalowej o ultrawysokiej wytrzymałości oraz wytworzona blacha
WO2016001704A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained
DE102014114365A1 (de) * 2014-10-02 2016-04-07 Thyssenkrupp Steel Europe Ag Mehrschichtiges Stahlflachprodukt und daraus hergestelltes Bauteil
WO2016079565A1 (en) * 2014-11-18 2016-05-26 Arcelormittal Method for manufacturing a high strength steel product and steel product thereby obtained
EP3187613B1 (de) 2014-12-12 2019-09-04 JFE Steel Corporation Hochfestes kaltgewalztes stahlblech und verfahren zur herstellung davon
JP2016153524A (ja) * 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
CN104831180B (zh) * 2015-05-15 2016-09-28 东北大学 一种深海用海洋软管铠装层用钢及其制备方法
DE102015111177A1 (de) * 2015-07-10 2017-01-12 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus
JP2018538440A (ja) 2015-11-16 2018-12-27 ベントラー スティール / チューブ ゲーエムベーハー 高エネルギー吸収能力を備えた合金鋼及び鋼管製品
DE102015119839A1 (de) * 2015-11-17 2017-05-18 Benteler Steel/Tube Gmbh Stahllegierung mit hohem Energieaufnahmevermögen und Stahlrohrprodukt
WO2017109542A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
SE539519C2 (en) * 2015-12-21 2017-10-03 High strength galvannealed steel sheet and method of producing such steel sheet
KR101714930B1 (ko) * 2015-12-23 2017-03-10 주식회사 포스코 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
BR112018013051B1 (pt) 2015-12-29 2021-01-26 Arcelormittal método para produzir uma chapa de aço recozida após galvanização e chapa de aço recozida após galvanização
US11473180B2 (en) * 2016-01-27 2022-10-18 Jfe Steel Corporation High-yield-ratio high-strength galvanized steel sheet and method for manufacturing the same
CN106244918B (zh) * 2016-07-27 2018-04-27 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法
EP3498876B1 (de) * 2016-08-10 2020-11-25 JFE Steel Corporation Kaltgewalztes hochfestes stahlblech und dessen herstellungsverfahren
KR101830538B1 (ko) * 2016-11-07 2018-02-21 주식회사 포스코 항복비가 우수한 초고강도 강판 및 그 제조방법
KR102477323B1 (ko) 2016-11-29 2022-12-13 타타 스틸 이즈무이덴 베.뷔. 열간 성형 물품 제조 방법 및 획득 물품
EP3555337A1 (de) * 2016-12-14 2019-10-23 ThyssenKrupp Steel Europe AG Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
KR101917472B1 (ko) * 2016-12-23 2018-11-09 주식회사 포스코 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
US10260121B2 (en) 2017-02-07 2019-04-16 GM Global Technology Operations LLC Increasing steel impact toughness
CN109280861A (zh) * 2017-07-21 2019-01-29 蒂森克虏伯钢铁欧洲股份公司 具有良好耐老化性的扁钢产品及其生产方法
US20210087662A1 (en) * 2017-07-25 2021-03-25 Thyssenkrupp Steel Europe Ag Metal Sheet Component, Manufactured by Hot Forming a Flat Steel Product and Method for Its Manufacture
US11535905B2 (en) * 2017-08-22 2022-12-27 Thyssenkrupp Ag Use of a Q and P steel for producing a shaped component for high-wear applications
WO2019063081A1 (de) * 2017-09-28 2019-04-04 Thyssenkrupp Steel Europe Ag Stahlflachprodukt und verfahren zu seiner herstellung
CN107904488B (zh) * 2017-11-06 2020-02-07 江阴兴澄特种钢铁有限公司 一种特厚高强高韧抗层状撕裂q550钢板及其制造方法
WO2019111029A1 (en) 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
EP3754043B1 (de) 2018-03-30 2022-01-19 JFE Steel Corporation Hochfestes verzinktes stahlblech, hochfestes element und verfahren zur herstellung desselben
DE102018207888A1 (de) * 2018-05-18 2019-11-21 Volkswagen Aktiengesellschaft Stahlmaterial und Verfahren zur Herstellung eines Stahlmaterials
CN112585284A (zh) * 2018-05-22 2021-03-30 蒂森克虏伯钢铁欧洲股份公司 由钢形成的具有高抗拉强度的板材成型件及其制造方法
EP3807429A1 (de) 2018-06-12 2021-04-21 ThyssenKrupp Steel Europe AG Stahlflachprodukt und verfahren zu seiner herstellung
WO2020128574A1 (en) * 2018-12-18 2020-06-25 Arcelormittal Cold rolled and heat-treated steel sheet and method of manufacturing the same
CN109868412A (zh) * 2019-02-18 2019-06-11 山东钢铁股份有限公司 一种焊前免预热大厚度低碳当量500MPa级高强钢及其制造方法
US20220205058A1 (en) * 2019-04-30 2022-06-30 Tata Steel Nederland Technology B.V. A high strength steel product and a process to produce a high strength steel product
KR20220016491A (ko) * 2019-06-03 2022-02-09 티센크루프 스틸 유럽 악티엔게젤샤프트 부식방지 코팅이 구비된 강판 제품으로부터 판금 부품을 제조하는 방법
PT3754035T (pt) 2019-06-17 2022-04-21 Tata Steel Ijmuiden Bv Método de tratamento térmico de uma tira de aço laminada a frio
PT3754037T (pt) 2019-06-17 2022-04-19 Tata Steel Ijmuiden Bv Método de tratamento térmico de uma tira de aço laminada a frio de alta resistência
CN112795852A (zh) * 2020-11-23 2021-05-14 唐山钢铁集团有限责任公司 1200MPa级高扩孔性能冷轧镀锌带钢及其生产方法
US20240110264A1 (en) * 2021-04-09 2024-04-04 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing same
CN113215493B (zh) * 2021-05-11 2022-01-07 北京理工大学 一种高强度榴弹弹钢及其制备方法
CN113862566A (zh) * 2021-09-18 2021-12-31 张家港广大特材股份有限公司 一种飞轮转子及其制备方法
WO2023246899A1 (zh) * 2022-06-22 2023-12-28 宝山钢铁股份有限公司 高扩孔钢及其制造方法
WO2024203604A1 (ja) * 2023-03-30 2024-10-03 株式会社神戸製鋼所 めっき鋼板およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693340A (ja) * 1992-09-14 1994-04-05 Kobe Steel Ltd 伸びフランジ性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法及び製造設備
WO2004022794A1 (en) * 2002-09-04 2004-03-18 Colorado School Of Mines Method for producing steel with retained austenite
CA2734976A1 (en) * 2008-09-10 2010-03-18 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
EP2267176A1 (de) 2008-02-08 2010-12-29 JFE Steel Corporation Hochfestes heissverzinktes stahlblech mit hervorragender verarbeitbarkeit und herstellungsverfahren dafür

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395108B2 (en) 1998-07-08 2002-05-28 Recherche Et Developpement Du Groupe Cockerill Sambre Flat product, such as sheet, made of steel having a high yield strength and exhibiting good ductility and process for manufacturing this product
JP5365216B2 (ja) * 2008-01-31 2013-12-11 Jfeスチール株式会社 高強度鋼板とその製造方法
JP4324225B1 (ja) 2008-03-07 2009-09-02 株式会社神戸製鋼所 伸びフランジ性に優れた高強度冷延鋼板
JP5400484B2 (ja) * 2009-06-09 2014-01-29 株式会社神戸製鋼所 伸び、伸びフランジ性および溶接性を兼備した高強度冷延鋼板
JP5333298B2 (ja) 2010-03-09 2013-11-06 Jfeスチール株式会社 高強度鋼板の製造方法
EP2524970A1 (de) 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693340A (ja) * 1992-09-14 1994-04-05 Kobe Steel Ltd 伸びフランジ性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法及び製造設備
WO2004022794A1 (en) * 2002-09-04 2004-03-18 Colorado School Of Mines Method for producing steel with retained austenite
EP2267176A1 (de) 2008-02-08 2010-12-29 JFE Steel Corporation Hochfestes heissverzinktes stahlblech mit hervorragender verarbeitbarkeit und herstellungsverfahren dafür
CA2734976A1 (en) * 2008-09-10 2010-03-18 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997923B1 (de) * 2006-03-20 2016-03-09 National Institute for Materials Science Ni-basierte superlegierung, verfahren zu deren herstellung und turbinenblatt- oder turbinenschaufelbauteil
EP2710158B1 (de) 2011-05-18 2017-03-15 ThyssenKrupp Steel Europe AG Hochfestes stahlflachprodukt und verfahren zu dessen herstellung
US10801090B2 (en) 2013-01-22 2020-10-13 Baoshan Iron & Steel Co., Ltd. Ultra high obdurability steel plate having low yield ratio and process of manufacturing same
WO2014114159A1 (zh) * 2013-01-22 2014-07-31 宝山钢铁股份有限公司 一种具有低屈服比的超高强韧钢板及其制造方法
CN103160680A (zh) * 2013-04-03 2013-06-19 北京科技大学 一种制备30GPa%级复相钢的Q&PB热处理工艺
JP2018178262A (ja) * 2013-05-17 2018-11-15 エイケイ・スティール・プロパティーズ・インコーポレイテッドAk Steel Properties, Inc. 鋼板の処理方法
WO2014186689A3 (en) * 2013-05-17 2015-01-22 Ak Steel Properties, Inc. High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath
JP2016524038A (ja) * 2013-05-17 2016-08-12 エイケイ・スティール・プロパティーズ・インコーポレイテッドAk Steel Properties, Inc. 良好な耐久性を示す高強度鋼、および焼入れと亜鉛浴による分配処理とによる製造方法
CN113151735A (zh) * 2013-05-17 2021-07-23 克利夫兰-克利夫斯钢铁资产公司 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法
EP2997172B1 (de) * 2013-05-17 2020-08-26 Ak Steel Properties, Inc. Herstellung eines hochfesten stahls mit guter duktilität mittels abschreck- und partitionierungsbehandlung durch ein zinkbad
WO2014186722A3 (en) * 2013-05-17 2015-01-08 Ak Steel Properties, Inc. High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath
CN105392906A (zh) * 2013-05-17 2016-03-09 Ak钢铁资产公司 表现出良好延展性的高强度钢及通过在熔融镀锌槽下游在线热处理的生产方法
CN105247090A (zh) * 2013-05-17 2016-01-13 Ak钢铁资产公司 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法
RU2632042C2 (ru) * 2013-05-17 2017-10-02 Ак Стил Пропертиз, Инк. Высокопрочная сталь, обладающая хорошей пластичностью, и способ получения посредством обработки методом закалки с распределением с помощью ванны для цинкования
US10724113B2 (en) 2014-02-07 2020-07-28 Thyssenkrupp Steel Europe Ag High-strength flat steel product having a bainitic-martensitic microstructure and method for producing such a flat steel product
WO2015117934A1 (de) * 2014-02-07 2015-08-13 Thyssenkrupp Steel Europe Ag Ag Hochfestes stahlflachprodukt mit bainitisch-martensitischem gefüge und verfahren zur herstellung eines solchen stahlflachprodukts
EP2905348A1 (de) * 2014-02-07 2015-08-12 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
US10435762B2 (en) 2014-03-31 2019-10-08 Jfe Steel Corporation High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
EP3128027A4 (de) * 2014-03-31 2017-04-19 JFE Steel Corporation Hochfestes kaltgewalztes stahlblech mit hohem streckgrenzenverhältnis und herstellungsverfahren dafür
CN106604999A (zh) * 2014-05-20 2017-04-26 安赛乐米塔尔公司 具有高机械强度和延展特性的经双重退火的钢板、该板的制造方法和用途
US10995386B2 (en) 2014-05-20 2021-05-04 Arcelormittal Double annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
CN106604999B (zh) * 2014-05-20 2018-04-10 安赛乐米塔尔公司 具有高机械强度和延展特性的经双重退火的钢板、该板的制造方法和用途
WO2015177582A1 (fr) * 2014-05-20 2015-11-26 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier doublement recuite à hautes caractéristiques mécaniques de résistance et ductilité, procédé de fabrication et utilisation de telles tôles
WO2015177615A1 (fr) * 2014-05-20 2015-11-26 Arcelormittal Tôle d'acier doublement recuite a hautes caracteristiques mecaniques de resistance et de ductilite, procede de fabrication et utilisation de telles tôles
WO2016001710A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel having improved strength and ductility and obtained sheet
CN106661701B (zh) * 2014-07-03 2018-09-04 安赛乐米塔尔公司 用于生产具有改进的强度和可成形性的高强度钢板的方法及获得的板
US11618931B2 (en) 2014-07-03 2023-04-04 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
US11555226B2 (en) 2014-07-03 2023-01-17 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
WO2016001898A3 (en) * 2014-07-03 2016-03-17 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
US11492676B2 (en) 2014-07-03 2022-11-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
WO2016001893A3 (en) * 2014-07-03 2016-03-17 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
WO2016001895A3 (en) * 2014-07-03 2016-03-17 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
CN106536782A (zh) * 2014-07-03 2017-03-22 安赛乐米塔尔公司 用于制造具有改进的强度和延展性的高强度经涂覆的钢板的方法以及获得的板
EP3663416A1 (de) * 2014-07-03 2020-06-10 ArcelorMittal Verfahren zur herstellung eines hochfesten stahlblechs mit verbesserter festigkeit und verformbarkeit und hergestelltes blech
WO2016001897A3 (en) * 2014-07-03 2016-03-10 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
CN106536782B (zh) * 2014-07-03 2020-04-03 安赛乐米塔尔公司 用于制造具有改进的强度和延展性的高强度经涂覆的钢板的方法以及获得的板
CN106661701A (zh) * 2014-07-03 2017-05-10 安赛乐米塔尔公司 用于生产具有改进的强度和可成形性的高强度钢板的方法及获得的板
US11718888B2 (en) 2014-07-03 2023-08-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
EP3831965A1 (de) * 2014-07-03 2021-06-09 ArcelorMittal Verfahren zur herstellung eines hochfesten beschichteten stahlblechs mit verbesserter festigkeit, dehnbarkeit und verformbarkeit
EP3663415A1 (de) * 2014-07-03 2020-06-10 ArcelorMittal Verfahren zur herstellung eines hochfesten stahlblechs mit verbesserter festigkeit, dehnbarkeit und verformbarkeit
WO2016001706A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
US10995383B2 (en) 2014-07-03 2021-05-04 Arcelormittal Method for producing a high strength coated steel sheet having improved strength and ductility and obtained sheet
WO2016001891A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength and ductility and obtained sheet
EP3164520B1 (de) 2014-07-03 2020-03-11 Arcelormittal Verfahren zur herstellung eines hochfesten stahlblech mit verbesserter festigkeit, duktilität und umformbarkeit
WO2016001702A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
RU2680042C2 (ru) * 2014-07-03 2019-02-14 Арселормиттал Способ производства высокопрочного стального листа, обладающего улучшенной прочностью, пластичностью и формуемостью
RU2686324C2 (ru) * 2014-07-03 2019-04-25 Арселормиттал Способ изготовления высокопрочного стального листа с покрытием, обладающего улучшенными прочностью, формуемостью, и полученный лист
RU2686729C2 (ru) * 2014-07-03 2019-04-30 Арселормиттал Способ производства высокопрочного стального листа с покрытием, обладающего высокой прочностью, пластичностью и формуемостью
RU2687284C2 (ru) * 2014-07-03 2019-05-13 Арселормиттал Способ получения высокопрочного стального листа с покрытием, имеющего улучшенную прочность и пластичность, и полученный лист
WO2016001700A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
EP3164522B1 (de) 2014-07-03 2021-03-03 Arcelormittal Verfahren zur herstellung eines hochfesten beschichteten stahlblech mit verbesserter festigkeit, duktilität und umformbarkeit
US10907232B2 (en) 2014-07-03 2021-02-02 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
EP3722445A1 (de) * 2014-07-03 2020-10-14 ArcelorMittal Ein hochfestes beschichtetes stahlblech mit verbesserter festigkeit und verformbarkeit
WO2016001708A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
WO2016005615A1 (es) * 2014-07-08 2016-01-14 Gerdau Investigacion Y Desarrollo Europa, S.A. Acero microaleado para conformado en caliente de piezas de alta resistencia y alto limite elastico y procedimiento para obtener componentes de dicho acero
US10415112B2 (en) 2014-07-30 2019-09-17 Arcelormittal Method for producing a high strength steel piece
RU2690851C2 (ru) * 2014-07-30 2019-06-06 Арселормиттал Способ изготовления высокопрочной стальной детали
CN108283003B (zh) * 2014-07-30 2019-11-01 安赛乐米塔尔公司 用于制造高强度钢件的方法
WO2016016779A3 (en) * 2014-07-30 2016-03-31 Arcelormittal A method for producing a high strength steel piece
CN108283003A (zh) * 2014-07-30 2018-07-13 安赛乐米塔尔公司 用于制造高强度钢件的方法
WO2016016683A1 (en) * 2014-07-30 2016-02-04 Arcelormittal A method for producing a high strength steel piece
KR20170041704A (ko) * 2014-07-30 2017-04-17 아르셀러미탈 고강도 강 피스를 제조하기 위한 방법
DE102014017273A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017275A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102015119417B4 (de) * 2014-11-26 2017-10-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum presshärten einer galvanisierten stahllegierung
US11041225B2 (en) 2015-04-08 2021-06-22 Nippon Steel Corporation Heat-treated steel sheet member and method for producing the same
US10822680B2 (en) 2015-04-08 2020-11-03 Nippon Steel Corporation Steel sheet for heat treatment
CN107429363B (zh) * 2015-04-08 2019-08-23 日本制铁株式会社 热处理钢板构件以及其的制造方法
CN107429363A (zh) * 2015-04-08 2017-12-01 新日铁住金株式会社 热处理钢板构件以及其的制造方法
WO2016177763A1 (de) 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Stahlflachprodukt und verfahren zu seiner herstellung
WO2016177420A1 (de) 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Stahlflachprodukt und verfahren zu seiner herstellung
CN104928590A (zh) * 2015-06-11 2015-09-23 北京交通大学 一种Mn-Si-Cr低碳贝氏体钢、钎杆及其制备方法
US10597746B2 (en) 2015-07-24 2020-03-24 Thyssenkrupp Steel Europe Ag High-strength steel having a high minimum yield limit and method for producing a steel of this type
CN107922986A (zh) * 2015-07-24 2018-04-17 蒂森克虏伯钢铁欧洲股份公司 具有高最小屈服极限的高强度钢和这种钢的生产方法
EP3390040B1 (de) 2015-12-15 2020-08-26 Tata Steel IJmuiden B.V. Hochfester feuerverzinkter bandstahl
EP3390040B2 (de) 2015-12-15 2023-08-30 Tata Steel IJmuiden B.V. Hochfester feuerverzinkter bandstahl
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
DE102017130237A1 (de) * 2017-12-15 2019-06-19 Salzgitter Flachstahl Gmbh Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts
US11584971B2 (en) 2017-12-15 2023-02-21 Salzgitter Flachstahl Gmbh High-strength, hot-rolled flat steel product with high edge cracking resistance and, at the same time, high bake-hardening potential, and method for producing such a flat steel product
EP3511430A1 (de) * 2018-01-12 2019-07-17 SMS Group GmbH Verfahren für eine kontinuierliche wärmebehandlung eines stahlbands, und anlage zum schmelztauchbeschichten eines stahlbands
US11613789B2 (en) 2018-05-24 2023-03-28 GM Global Technology Operations LLC Method for improving both strength and ductility of a press-hardening steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
US11951522B2 (en) 2018-06-19 2024-04-09 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
WO2020064096A1 (de) * 2018-09-26 2020-04-02 Thyssenkrupp Steel Europe Ag Verfahren zur herstellung eines beschichteten stahlflachprodukts und beschichtetes stahlflachprodukt
JP2021530624A (ja) * 2018-09-26 2021-11-11 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG コーティングされた平鋼生産物を製造する方法及びコーティングされた平鋼生産物
EP4083236A1 (de) * 2018-09-26 2022-11-02 ThyssenKrupp Steel Europe AG Verfahren zur herstellung eines beschichteten stahlflachprodukts und beschichtetes stahlflachprodukt
CN112789358A (zh) * 2018-09-26 2021-05-11 蒂森克虏伯钢铁欧洲股份公司 制造经涂覆的扁钢产品的方法和经涂覆的扁钢产品
JP7029574B2 (ja) 2018-09-26 2022-03-03 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト コーティングされた平鋼生産物を製造する方法及びコーティングされた平鋼生産物
WO2020169342A1 (de) 2019-02-21 2020-08-27 Thyssenkrupp Steel Europe Ag Verfahren zum herstellen eines bauteils mittels innenhochdruckumformen
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
EP3988679A4 (de) * 2019-08-20 2022-11-02 JFE Steel Corporation Hochfestes kaltgewalztes stahlblech und verfahren zur herstellung davon
US11926881B2 (en) 2019-08-20 2024-03-12 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
CN114250415A (zh) * 2021-12-10 2022-03-29 江苏沙钢集团有限公司 一种大壁厚塑料模具钢板的制造方法
WO2023233036A1 (en) * 2022-06-03 2023-12-07 Thyssenkrupp Steel Europe Ag High strength, cold rolled steel with reduced sensitivity to hydrogen embrittlement and method for the manufacture thereof
CN115341142A (zh) * 2022-08-04 2022-11-15 钢铁研究总院有限公司 一种温成型用钢及其制备方法
DE102022125128A1 (de) 2022-09-29 2024-04-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband
RU2812417C1 (ru) * 2023-07-18 2024-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный аграрный университет - МСХА имени К.А. Тимирязева" (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) Способ получения высокопрочного стального листа

Also Published As

Publication number Publication date
PL2710158T3 (pl) 2017-09-29
CN103597100B (zh) 2016-01-27
ES2628409T3 (es) 2017-08-02
EP2710158B1 (de) 2017-03-15
EP2710158A1 (de) 2014-03-26
KR102001648B1 (ko) 2019-10-01
US20140322559A1 (en) 2014-10-30
JP2014518945A (ja) 2014-08-07
CN103597100A (zh) 2014-02-19
US9650708B2 (en) 2017-05-16
JP6193219B2 (ja) 2017-09-06
KR20140024903A (ko) 2014-03-03
WO2012156428A1 (de) 2012-11-22

Similar Documents

Publication Publication Date Title
EP2710158B1 (de) Hochfestes stahlflachprodukt und verfahren zu dessen herstellung
EP2028282B1 (de) Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts
EP2031081B1 (de) Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts
EP2809819B1 (de) Höchstfester mehrphasenstahl mit verbesserten eigenschaften bei herstellung und verarbeitung
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP3655560B1 (de) Stahlflachprodukt mit guter alterungsbeständigkeit und verfahren zu seiner herstellung
EP2924141B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
EP2489748B1 (de) Aus einem Komplexphasenstahl hergestelltes warmgewalztes Stahlflachprodukt und Verfahren zu dessen Herstellung
EP3221484B1 (de) Verfahren zur herstellung eines hochfesten lufthärtenden mehrphasenstahls mit hervorragenden verarbeitungseigenschaften
WO2017009192A1 (de) Höchstfester mehrphasenstahl und verfahren zur herstellung eines kaltgewalzten stahlbandes hieraus
EP3688203B1 (de) Stahlflachprodukt und verfahren zu seiner herstellung
EP3221483B1 (de) Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP3692178B1 (de) Verfahren zur herstellung eines stahlbandes aus höchstfestem mehrphasenstahl
EP3724359B1 (de) Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential und verfahren zur herstellung eines solchen stahlflachprodukts
WO2015024903A1 (de) Verfahren zum herstellen eines stahlbauteils
EP3807429A1 (de) Stahlflachprodukt und verfahren zu seiner herstellung
EP3856936B1 (de) Verfahren zur herstellung eines beschichteten stahlflachprodukts und beschichtetes stahlflachprodukt
EP3658307B9 (de) Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung
EP3964591A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
WO2020038883A1 (de) Warmgewalztes unvergütetes und warmgewalztes vergütetes stahlflachprodukt sowie verfahren zu deren herstellung
WO2023025635A1 (de) Kaltgewalztes stahlflachprodukt und verfahren zu seiner herstellung
EP3872206B1 (de) Verfahren zur herstellung eines nachbehandelten, kaltgewalzten stahlflachprodukts und nachbehandeltes, kaltgewalztes stahlflachprodukt
EP4139492A1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130522