EP3221483B1 - Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl - Google Patents

Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl Download PDF

Info

Publication number
EP3221483B1
EP3221483B1 EP15821018.7A EP15821018A EP3221483B1 EP 3221483 B1 EP3221483 B1 EP 3221483B1 EP 15821018 A EP15821018 A EP 15821018A EP 3221483 B1 EP3221483 B1 EP 3221483B1
Authority
EP
European Patent Office
Prior art keywords
steel strip
steel
hot
content
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15821018.7A
Other languages
English (en)
French (fr)
Other versions
EP3221483A1 (de
Inventor
Thomas Schulz
Joachim SCHÖTTLER
Sascha KLUGE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP3221483A1 publication Critical patent/EP3221483A1/de
Application granted granted Critical
Publication of EP3221483B1 publication Critical patent/EP3221483B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/58Continuous furnaces for strip or wire with heating by baths
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2241/00Treatments in a special environment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the invention relates to a method for producing a cold-rolled or hot-rolled steel strip from an air-hardenable multiphase steel according to claim 1, and advantageous developments according to claims 2 to 20.
  • the invention relates to steels with a tensile strength in the range of at least 950 MPa in the non-tempered state for the production of components which have improved formability (such as increased hole expansion and increased bending angle) and improved welding properties.
  • a tempering treatment of these steels according to the invention can increase the yield strength and tensile strength, for example by air hardening with optional subsequent tempering.
  • the weight of the vehicles can be reduced with improved forming and component behavior during production and operation.
  • High-strength to ultra-high-strength steels must therefore have comparatively high requirements with regard to their strength and ductility, energy absorption and processing, such as punching, hot and cold forming, thermal hardening (e.g. air hardening, press hardening), welding and / or surface treatment, e.g. metallic finishing, organic coating or painting are sufficient.
  • energy absorption and processing such as punching, hot and cold forming, thermal hardening (e.g. air hardening, press hardening), welding and / or surface treatment, e.g. metallic finishing, organic coating or painting are sufficient.
  • Newly developed steels must therefore face the increasing weight requirements due to reduced sheet thickness, the increasing material requirements for yield strength, tensile strength, strengthening behavior and elongation at break with good processing properties such as formability and weldability.
  • high-strength, high-strength steel with a single-phase or multi-phase structure must be used to ensure sufficient strength of the motor vehicle components and to meet the high component requirements with regard to toughness, edge crack resistance, improved bending angle and bending radius, energy absorption as well as strengthening and bake hardening Effect to suffice.
  • the hole expansion capacity is a material property that describes the resistance of the material to crack initiation and crack propagation during forming operations in areas close to edges, such as when pulling a collar.
  • the hole expansion test is regulated, for example, in ISO 16630. Then prefabricated holes punched into a sheet, for example, are expanded using a mandrel. The measured variable is the change in the hole diameter in relation to the initial diameter at which the first crack through the sheet occurs at the edge of the hole.
  • Improved edge crack resistance means an increased formability of the sheet edges and can be described by an increased hole expansion capacity. This situation is known under the synonyms “L ow E dge C rack” (LEC) or under “H igh E H ole xpansion” (HHE) and xpand®.
  • the bending angle describes a material property that gives conclusions about the material behavior during forming operations with dominant bending components (e.g. when folding) or also in the event of crash loads. Increased bending angles thus increase passenger compartment safety.
  • the determination of the bending angle ( ⁇ ) is e.g. normatively regulated via the plate bending test in VDA 238-100.
  • the above-mentioned properties are important for components that e.g. can be formed into very complex components by air hardening with optional tempering.
  • High-strength components must be sufficiently resistant to embrittlement of hydrogen.
  • Test of resistance of A dvanced H igh S trength S Teels (AHSS) for the automotive industry with respect to hydrogen-induced production-related brittle fractures is regulated in the SEP1970 and tested on the sample and the bracket Lochzugprobe.
  • Dual-phase steels are increasingly being used in vehicle construction, which consist of a ferritic basic structure in which a martensitic second phase is embedded. It has been found that, in the case of low-carbon, micro-alloyed steels, portions of further phases such as bainite and residual austenite are advantageous, for example on the hole expansion behavior, the bending behavior and the affect hydrogen-induced brittle fracture behavior.
  • the bainite can be present in different forms, such as upper and lower bainite.
  • Multi-phase steels include e.g. Complex phase steels, ferritic-bainitic steels, TRIP steels, as well as the previously described dual phase steels, which are characterized by different structural compositions.
  • these complex phase steels Compared to dual-phase steels, these complex phase steels have higher yield strengths, a greater yield strength ratio, less strain hardening and a higher hole expansion capacity.
  • ferritic-bainitic steels are steels which contain bainite or solidified bainite in a matrix of ferrite and / or solidified ferrite.
  • the strength of the matrix is brought about by a high dislocation density, grain refinement and the excretion of microalloying elements.
  • dual-phase steels are steels with a ferritic basic structure in which a martensitic second phase is embedded in the form of an island, sometimes also with parts of bainite as the second phase. With high tensile strength, dual-phase steels show a low yield ratio and strong strain hardening.
  • TRIP steels are, according to EN 10346, steels with a predominantly ferritic structure, in which bainite and residual austenite is embedded, which can convert to martensite during the forming (TRIP effect). Due to its strong strain hardening, the steel achieves high values of uniform elongation and tensile strength. In connection with the bake hardening effect high component strengths can be achieved. These steels are suitable for both stretch drawing and deep drawing. However, higher sheet metal holder forces and press forces are required for material forming. A comparatively strong springback must be taken into account.
  • the high-strength steels with a single-phase structure include e.g. bainitic and martensitic steels.
  • Bainitic steels are, according to EN 10346, steels which are characterized by a very high yield strength and tensile strength with sufficient elongation for cold forming processes. Due to the chemical composition, it is easy to weld.
  • the structure typically consists of bainite.
  • the structure may occasionally contain small amounts of other phases, such as martensite and ferrite.
  • martensitic steels are steels that contain small amounts of ferrite and / or bainite in a basic structure of martensite through thermomechanical rolling. This steel grade is characterized by a very high yield strength and tensile strength with sufficient elongation for cold forming processes. Within the group of multi-phase steels, the martensitic steels have the highest tensile strength values. The suitability for deep drawing is limited. The martensitic steels are primarily suitable for bending forming processes, such as roll forming.
  • High and high-strength multi-phase steels are used, among others. in structural, chassis and crash-relevant components, as sheet metal blanks, tailored blanks (welded blanks) and as flexible cold-rolled strips, so-called TRB®s or tailored strips.
  • T ailor R olled B lank lightweight technology enables a significant weight reduction through a load-adjusted sheet thickness over the component length and / or steel grade.
  • a special heat treatment takes place for the defined structure adjustment, where e.g. due to comparatively soft components such as ferrite or bainitic ferrite, the steel has its low yield strength and due to its hard components such as martensite or carbon-rich bainite, its strength.
  • cold-rolled high-strength steel strips are usually recrystallized in a continuous annealing process to form sheet metal that is easy to form.
  • the process parameters such as throughput speed, annealing temperatures and cooling speed (cooling gradients), are set according to the required mechanical-technological properties with the necessary structure.
  • the pickled hot strip in typical thicknesses between 1.50 to 4.00 mm or cold strip in typical thicknesses from 0.50 to 3.00 mm is heated to a temperature in the continuous annealing furnace that during recrystallization and cooling sets the required structure formation.
  • a constant temperature is difficult to achieve, especially with different thicknesses in the transition area from one belt to another belt.
  • this can lead to e.g. the thinner strip is either passed through the furnace too slowly, which reduces productivity, or the thicker strip is passed through the furnace too quickly and the necessary annealing temperatures and cooling gradients are not achieved to achieve the desired structure.
  • the consequences are increased waste and high costs of errors.
  • TRB®s with a multi-phase structure is not without additional effort with today's known alloys and available continuous annealing systems for widely varying strip thicknesses, e.g. an additional heat treatment before cold rolling (hot strip soft annealing).
  • strip thicknesses e.g. an additional heat treatment before cold rolling (hot strip soft annealing).
  • hot strip soft annealing e.g. an additional heat treatment before cold rolling
  • a homogeneous multi-phase structure cannot be set in cold as well as hot-rolled steel strips due to a temperature gradient occurring in the usual alloy-specific narrow process windows.
  • a method for producing a steel strip with different thickness over the length of the strip is described, for example, in DE 100 37 867 A1 described.
  • the annealing treatment is usually carried out in a continuous annealing furnace upstream of the hot-dip bath.
  • the required structure is only set during the annealing treatment in the continuous annealing furnace in order to achieve the required mechanical properties.
  • Decisive process parameters are therefore the setting of the annealing temperature and the speed, as well as the cooling rate (cooling gradient) in continuous annealing, since the phase change takes place depending on the temperature and time.
  • the areas with a smaller strip thickness due to the conversion processes during cooling either have too high strengths due to excessively high martensite contents, or the areas with greater strip thickness achieve insufficient strengths due to insufficiently low martensite contents due to the process window being too small. Homogeneous mechanical-technological properties across the strip length or width can practically not be achieved with the known alloy concepts for continuous annealing.
  • the goal of achieving the resulting mechanical-technological properties in a narrow range across the bandwidth and strip length through the controlled adjustment of the volume fractions of the structural components has top priority and is only possible through an enlarged process window.
  • the known alloy concepts are characterized by an excessively narrow process window and are therefore unsuitable for solving the present problem, particularly in the case of flexibly rolled strips. With the known alloy concepts, only steels of a strength class with defined cross-sectional areas (strip thickness and bandwidth) can currently be produced, so that different alloy classes are necessary for different strength classes and / or cross-sectional areas.
  • the lowering of the carbon equivalent due to lower carbon and manganese contents is to be compensated for by increasing the silicon content.
  • the edge crack resistance and the weldability are improved with the same strength.
  • a low yield strength ratio (Re / Rm) in a strength range above 950 MPa in the initial state is typical for a dual-phase steel and is primarily used for the formability during stretching and deep-drawing processes. It gives the designer information about the distance between the onset of plastic deformation and failure of the material under quasi-static stress. Accordingly, lower yield strength ratios represent a greater safety margin from component failure.
  • a higher yield strength ratio (Re / Rm), as is typical for complex phase steels, is also characterized by a high resistance to edge cracks. This can be attributed to the smaller differences in the strength and hardness of the individual structural components and the finer structure, which has a favorable effect on a homogeneous deformation in the area of the cut edge.
  • the analytical landscape for achieving multi-phase steels with a minimum tensile strength of 950 MPa is very diverse and shows very large alloy ranges for the strength-increasing elements carbon, silicon, manganese, phosphorus, nitrogen, aluminum as well as chromium and / or molybdenum as well as in the addition of micro alloys such as Titanium, niobium, vanadium and boron.
  • the range of dimensions in this strength range is wide and lies in the thickness range from approximately 0.50 to approximately 4.00 mm for strips which are intended for continuous annealing.
  • Hot strip, cold-rolled hot strip and cold strip can be used as primary material. Tapes up to about 1600 mm wide are mainly used, but also Slit strip dimensions that result from slitting the strips lengthways. Sheets or sheets are made by cross-cutting the strips.
  • the structure of the steel is transferred to the austenitic area by heating, preferably to temperatures above 950 ° C. in a protective gas atmosphere. Subsequent cooling in air or protective gas leads to the formation of a martensitic structure for a high-strength component.
  • the subsequent tempering enables the reduction of residual stresses in the hardened component. At the same time, the hardness of the component is reduced so that the required toughness values are achieved.
  • the invention is therefore based on the object of creating a new cost-effective alloy concept for a high-strength air-hardenable multiphase steel with excellent processing properties and with a minimum tensile strength of 950 MPa in the non-tempered state, lengthways and crosswise to the rolling direction, preferably with a dual-phase structure, with which the process window for continuous annealing of hot or cold rolled strips has been expanded so that in addition to strips with different cross-sections, steel strips with a thickness and strip width that varies over the strip length and the correspondingly varying degrees of cold rolling with the most homogeneous mechanical and technological properties can be produced.
  • the hot-dip coating of the steel is to be guaranteed and a method for producing a strip made from this steel is to be specified.
  • the structure consists of the main phases ferrite and martensite and the secondary phase bainite, which determines the improved mechanical properties of the steel.
  • the steel is characterized by low carbon equivalents and, with the carbon equivalent CEV (IIW), is dependent on the sheet thickness for the addition of max. 0.66% limited, so that excellent weldability and the further specific properties described below can be achieved.
  • the steel Due to its chemical composition, the steel can be manufactured in a wide range of hot rolling parameters, for example with reel temperatures above the bainite start temperature (variant A).
  • a microstructure can be set which then allows the steel according to the invention to be cold rolled without prior soft annealing, with cold rolling degrees of between 10 and 40% being used per cold rolling pass.
  • the steel is very well suited as a primary material for hot-dip coating and, due to the sum-related amount of Mn, Si and Cr added according to the invention depending on the strip thickness to be produced, has a significantly enlarged process window compared to the known steels.
  • load-optimized components can advantageously be produced therefrom.
  • the steel strip according to the invention can be produced as cold and hot strip and as cold-rolled hot strip by means of a hot-dip galvanizing line or a pure continuous annealing system in the trained and undressed, in the stretch-bend-oriented and non-stretch-bend-oriented and also in the heat-treated (aged) state.
  • steel strips can be produced by an intercritical annealing between A c1 and A c3 or in the case of an austenitizing annealing over A c3 with a final controlled cooling, which leads to a dual or multi-phase structure.
  • Annealing temperatures of approximately 700 to 950 ° C. have proven to be advantageous. Depending on the overall process (only continuous annealing or additional hot-dip coating), there are different approaches to heat treatment.
  • the strip is cooled from the annealing temperature with a cooling rate of approx. 15 to 100 ° C / s to an intermediate temperature of approx. 160 to 250 ° C.
  • the cooling is stopped, as described above, before entering the molten bath and is continued only after the bath has exited until the intermediate temperature of about 200 to 250 ° C. has been reached.
  • the holding temperature in the molten bath is approximately 400 up to 470 ° C. Cooling down to room temperature takes place again at a cooling rate of approx. 2 to 30 ° C./s (see also method 2, Figure 6b ).
  • the second variant of the temperature control for hot-dip coating includes maintaining the temperature for approx. 1 to 20 s at the intermediate temperature of approx. 200 to 350 ° C and then reheating to the temperature required for hot-dip coating of approx. 400 to 470 ° C. After finishing, the strip is cooled again to approx. 200 to 250 ° C. The cooling to room temperature again takes place at a cooling rate of approx. 2 to 30 ° C./s (see also method 3, Figure 6c ).
  • manganese, chromium and silicon are responsible for the conversion of austenite to martensite in addition to carbon.
  • the carbon equivalent can be reduced, which improves the weldability and prevents excessive hardening during welding. In the case of resistance spot welding, the electrode service life can also be significantly increased.
  • Instruction elements are elements that are already present in the iron ore or, due to the manufacturing process, get into the steel. Because of their predominantly negative influences, they are usually undesirable. An attempt is made to remove them to a tolerable level or to convert them into harmless forms.
  • Hydrogen (H) is the only element that can diffuse through the iron lattice without generating lattice strain. This means that the hydrogen in the iron lattice is relatively mobile and can be absorbed relatively easily during the processing of the steel. Hydrogen can only be absorbed into the iron lattice in an atomic (ionic) form.
  • Hydrogen has a strong embrittlement effect and diffuses preferentially to energetically favorable places (defects, grain boundaries etc.). Defects act as hydrogen traps and can significantly increase the length of time that hydrogen remains in the material.
  • a more uniform structure which among other things in the steel according to the invention. achieved through its widened process window also reduces the susceptibility to hydrogen embrittlement.
  • Oxygen (O) In the molten state, the steel has a relatively high absorption capacity for gases. At room temperature, however, oxygen is only soluble in very small amounts. Analogous to hydrogen, oxygen can only diffuse into the material in an atomic form. Due to the strong embrittlement effect and the negative effects on the aging resistance, attempts are made to reduce the oxygen content as much as possible during manufacture.
  • the oxygen content in the steel should therefore be as low as possible.
  • Phosphorus (P) is a trace element from iron ore and is dissolved in the iron lattice as a substitute atom . Phosphorus increases hardness through solid-solution hardening and improves hardenability. However, attempts are generally made to lower the phosphorus content as much as possible, since, among other things, due to its low solubility in the solidifying medium, it tends to segregate and to a large extent reduces the toughness. Due to the accumulation of phosphorus at the grain boundaries, grain boundary breaks occur. In addition, phosphorus increases the transition temperature from tough to brittle behavior up to 300 ° C. During hot rolling, near-surface phosphorus oxides can cause tearing at the grain boundaries.
  • phosphorus is used in small quantities ( ⁇ 0.1% by weight) as a microalloying element due to the low cost and the high increase in strength, for example in high-strength IF steels (interstitial free), bake hardening steels or in some alloy concepts for dual phase steels.
  • the steel according to the invention differs from known analysis concepts which use phosphorus as a solid solution, inter alia in that phosphorus is not alloyed but is set as low as possible.
  • the phosphorus content in the steel according to the invention is limited to amounts which are unavoidable in the production of steel.
  • sulfur is bound as a trace element in iron ore.
  • Sulfur is undesirable in steel (with the exception of free-cutting steels) because it tends to segregate and has a strong embrittlement effect. An attempt is therefore made to achieve the lowest possible sulfur content in the melt, for example by means of a vacuum treatment.
  • the sulfur present is converted into the relatively harmless compound manganese sulfide (MnS) by adding manganese.
  • MnS manganese sulfide
  • the manganese sulfides are often rolled out in rows during the rolling process and act as germination points for the conversion. This leads to a stratified structure, especially in the case of diffusion-controlled conversion, and can lead to deteriorated mechanical properties in the case of pronounced stringency (e.g. pronounced marten seat lines instead of distributed martensite islands, anisotropic material behavior, reduced elongation at break).
  • the sulfur content in the steel according to the invention is limited to ⁇ 0.0030% by weight, advantageously to ⁇ 0.0025% by weight or optimally to ⁇ 0.0020% by weight or to quantities unavoidable in the production of steel .
  • Alloy elements are usually added to the steel in order to influence certain properties.
  • An alloy element in different steels can influence different properties. The effect generally depends strongly on the amount and the state of the solution in the material.
  • Carbon (C) is the most important alloying element in steel. Due to its targeted introduction of up to 2.06% by weight, iron only becomes steel. The carbon content is often drastically reduced during steel production. In the case of dual-phase steels for continuous hot-dip coating, its proportion according to EN 10346 or VDA 239-100 is a maximum of 0.230% by weight, a minimum value is not specified.
  • carbon is dissolved interstitially in the iron lattice.
  • the solubility is a maximum of 0.02% in ⁇ -iron and a maximum of 2.06% in ⁇ -iron.
  • carbon significantly increases the hardenability of steel and is therefore essential for the formation of a sufficient amount of martensite. Too high a carbon content, however, increases the difference in hardness between ferrite and martensite and limits weldability.
  • the steel according to the invention contains carbon contents of less than or equal to 0.115% by weight.
  • Silicon (Si) binds oxygen during casting and is therefore used for calming during the deoxidation of the steel. It is important for the later steel properties that the segregation coefficient is significantly lower than, for example, that of manganese (0.16 compared to 0.87). Segregations generally lead to a line arrangement of the structural components, which deteriorate the forming properties, for example the widening of the holes and the ability to bend.
  • the latter is due, among other things, to the fact that silicon reduces the solubility of carbon in the ferrite and increases the activity of carbon in the ferrite, thus preventing the formation of carbides, which, as brittle phases, reduce ductility, which in turn improves the formability.
  • the low strength-increasing effect of silicon within the range of the steel according to the invention creates the basis for a wide process window.
  • silicon in the range according to the invention has led to further surprising effects described below.
  • the delay in carbide formation described above could e.g. can also be brought about by aluminum.
  • aluminum forms stable nitrides, so that insufficient nitrogen is available for the formation of carbonitrides with microalloying elements.
  • This problem does not exist due to the alloying with silicon, since silicon forms neither carbides nor nitrides.
  • Silicon thus has an indirect positive effect on the formation of precipitates through microalloys, which in turn have a positive effect on the strength of the material. Since the increase in the transition temperatures due to silicon tends to favor grain coarsening, a microalloy with niobium, titanium and boron is particularly expedient, as is the targeted adjustment of the nitrogen content in the steel according to the invention.
  • the atmospheric conditions during the annealing treatment in a continuous hot-dip coating system result in a reduction in iron oxide, which is found, for example, in the Cold rolling or as a result of storage at room temperature on the surface.
  • the gas atmosphere is oxidizing, with the result that segregation and selective oxidation of these elements can occur.
  • the selective oxidation can take place both externally, that is to say on the substrate surface, and internally within the metallic matrix.
  • the internal oxidation of the alloying elements can be influenced in a targeted manner by adjusting the oxygen partial pressure of the furnace atmosphere (N 2 -H 2 protective gas atmosphere).
  • the set oxygen partial pressure must satisfy the following equation, the furnace temperature being between 700 and 950 ° C. - 12th > log pO 2nd ⁇ - 5 * Si - 0.25 - 3rd * Mn - 0.25 - 0.1 Cr - 0.5 - 7 * - ln B 0.5
  • Si, Mn, Cr, B denote the corresponding alloy proportions in the steel in% by weight and pO 2 the oxygen partial pressure in mbar.
  • the selective oxidation of the alloy elements can also be influenced via the gas atmospheres of the furnace areas.
  • the oxygen partial pressure and thus the oxidation potential for iron and the alloying elements can be set via the combustion reaction in the NOF. This must be set so that the oxidation of the alloy elements takes place internally below the steel surface and, if necessary, a thin iron oxide layer forms on the steel surface after the passage through the NOF area. This is achieved e.g. by reducing the CO value below 4% by volume.
  • the iron oxide layer that may be formed is reduced under an N2-H2 protective gas atmosphere and, likewise, the alloy elements are further oxidized internally.
  • the oxygen partial pressure set in this furnace area must satisfy the following equation, the furnace temperature being between 700 and 950 ° C. - 18th > log pO 2nd ⁇ - 5 * Si - 0.3 - 2.2 * Mn - 0.45 - 0.1 * Cr - 0.4 - 12.5 * - ln B 0.25
  • Si, Mn, Cr, B denote the corresponding alloy proportions in the steel in% by weight and pO 2 the oxygen partial pressure in mbar.
  • the dew point of the gas atmosphere N 2 -H 2 protective gas atmosphere
  • the oxygen partial pressure must be set so that oxidation of the strip before immersion in the molten bath is avoided. Dew points in the range of -30 to -40 ° C have proven to be advantageous.
  • hot-dip coating here, for example, hot-dip galvanizing
  • the process route is selected via continuous annealing with subsequent electrolytic galvanizing (see process 1 in Figure 6a )
  • electrolytic galvanizing pure zinc is deposited directly on the strip surface.
  • pure zinc is deposited directly on the strip surface.
  • it In order not to hinder the flow of electrons between the steel strip and the zinc ions and thus the galvanizing, it must be ensured that there is no surface-covering oxide layer on the strip surface. This condition is usually guaranteed by a standard reducing atmosphere during annealing and pre-cleaning before electrolysis.
  • the minimum silicon content is set at 0.400% by weight and the maximum silicon content at 0.500% by weight.
  • Manganese (Mn) is added to almost all steels for desulfurization in order to convert the harmful sulfur into manganese sulfides.
  • manganese increases the strength of the ferrite through solidification of the crystal and shifts the ⁇ - / ⁇ -conversion to lower temperatures.
  • the addition of manganese increases the hardness ratio between martensite and ferrite.
  • the structure of the structure is strengthened. A high difference in hardness between the phases and the formation of marten seat lines result in a lower hole expansion capacity, which is synonymous with increased sensitivity to edge cracking.
  • manganese tends to form oxides on the steel surface during the annealing treatment.
  • manganese oxides eg MnO
  • Mn mixed oxides eg Mn 2 SiO 4
  • Si / Mn or Al / Mn ratio manganese is to be regarded as less critical, since globular oxides form rather than oxide films.
  • high manganese levels can have a negative impact on the appearance of the zinc layer and the zinc adhesion.
  • the above-mentioned measures for setting the furnace areas during continuous hot dip coating reduce the formation of Mn oxides or Mn mixed oxides on the steel surface after annealing.
  • the manganese content is set at 1,900 to 2,350% by weight for the reasons mentioned.
  • the manganese content is preferably in a range between 1,9 1,900 and 2,2 2,200% by weight, with strip thicknesses of 1.00 to 2.00 mm between 2,0 2,050 and 50 2,250% by weight and for strip thicknesses over 2.00 mm between ⁇ 2,100% by weight and ⁇ 2,350% by weight.
  • Another special feature of the invention is that the variation in the manganese content can be compensated for by simultaneously changing the silicon content.
  • the coefficients of manganese and silicon are approximately the same for both the yield strength and the tensile strength, which makes it possible to replace manganese with silicon.
  • Chromium (Cr) on the one hand, can significantly increase the hardenability of steel in small quantities in dissolved form.
  • Cr Cr
  • chromium carbides causes particle solidification.
  • the associated increase in the number of germ sites with a simultaneously reduced carbon content leads to a reduction in the hardenability.
  • chromium In dual-phase steels, the addition of chromium mainly improves hardenability. When dissolved, chromium shifts the pearlite and bainite transformation for longer times and at the same time lowers the martensite start temperature.
  • Chromium is also a carbide former. If chromium-iron mixed carbides are present, the austenitizing temperature before hardening must be selected high enough to dissolve the chromium carbides. Otherwise, the increased number of bacteria can lead to a deterioration in the hardenability.
  • Chromium also tends to form oxides on the steel surface during the annealing treatment, which can degrade the hot dip quality.
  • the above-mentioned measures for setting the furnace areas during continuous hot dip coating reduce the formation of Cr oxides or Cr mixed oxides on the steel surface after annealing.
  • the chromium content is therefore set at contents of 0.200 to 0.500% by weight.
  • Molybdenum (Mo) The addition of molybdenum leads to an improvement in hardenability, similar to that of chromium and manganese. The pearlite and bainite transformation is shifted to longer times and the martensite start temperature is lowered. At the same time, molybdenum is a strong chalk former, which produces finely divided mixed carbides, including with titanium. Molybdenum also significantly increases the tempering resistance, so that no loss of strength is to be expected in the hot-dip bath. Molybdenum also works through mixed crystal hardening, but is less effective than manganese and silicon.
  • the molybdenum content is therefore set between 0.200 to 0.300% by weight. Ranges between 0.200 and 0.250% by weight are advantageous.
  • Copper (Cu) The addition of copper can increase tensile strength and hardenability. In combination with nickel, chromium and phosphorus, copper can form a protective oxide layer on the surface, which can significantly reduce the rate of corrosion.
  • copper In combination with oxygen, copper can form harmful oxides at the grain boundaries, which can have negative effects especially for hot forming processes.
  • the copper content is therefore set at ⁇ 0.050% by weight and is therefore limited to the amounts that are unavoidable in steel production.
  • the nickel content is therefore set at ⁇ 0.050% by weight and is therefore limited to the amounts that are unavoidable in steel production.
  • Vanadium (V) Since the addition of vanadium is not necessary in the present alloy concept, the vanadium content is limited to inevitable amounts accompanying the steel.
  • Aluminum (Al) is usually alloyed to the steel in order to bind the oxygen and nitrogen dissolved in the iron. Oxygen and nitrogen are thus converted into aluminum oxides and aluminum nitrides. These excretions can cause grain refinement by increasing the number of germs and thus increase the toughness properties and strength values.
  • Titanium nitrides have a lower enthalpy of formation and are formed at higher temperatures.
  • the aluminum content is therefore limited to 0.005 to a maximum of 0.060% by weight and is added to calm the steel.
  • Niobium acts in steel in different ways. When hot rolling in the finishing train, it delays recrystallization due to the formation of very finely divided precipitates, which increases the density of germination points and results in a finer grain after conversion. The proportion of dissolved niobium also inhibits recrystallization. The excretions increase strength in the final product. These can be carbides or carbonitrides. Often it is mixed carbides, in which titanium is also incorporated. This effect starts from 0.005% by weight and is most evident from 0.010% by weight of niobium. The precipitates also prevent grain growth during (partial) austenitization in hot-dip galvanizing. No additional effect is to be expected above 0.060% by weight of niobium. Contents of 0.025 to 0.045% by weight have proven to be advantageous.
  • Titanium (Ti) Due to its high affinity for nitrogen, titanium is primarily excreted as TiN during solidification. It also occurs together with niobium as a mixed carbide. TiN is of great importance for grain size stability in the pusher furnace. The Excretions have a high temperature stability, so that, in contrast to the mixed carbides at 1200 ° C, they are mostly present as particles that hinder grain growth. Titanium also retards recrystallization during hot rolling, but is less effective than niobium. Titan works through precipitation hardening. The larger TiN particles are less effective than the more finely distributed mixed carbides. The best effectiveness is achieved in the range from 0.005 to 0.060% by weight of titanium, which is why this represents the alloy range according to the invention. For this, contents of 0.025 to 0.045% by weight have been found to be advantageous.
  • Boron (B) Boron is an extremely effective alloying agent to increase hardenability, which is effective even in very small amounts (from 5 ppm). The martensite start temperature remains unaffected.
  • boron must be in solid solution. Since it has a high affinity for nitrogen, the nitrogen must first be set, preferably by the stoichiometrically necessary amount of titanium. Due to its low solubility in iron, the dissolved boron preferentially attaches to the austenite grain boundaries. There it partially forms Fe-B carbides, which are coherent and reduce the grain boundary energy. Both effects delay the formation of ferrite and pearlite and thus increase the hardenability of the steel.
  • the boron content for the alloy concept according to the invention is set at values from 5 to 30 ppm, advantageously at ⁇ 25 or optimally at ⁇ 20 ppm.
  • Nitrogen (N) can be an alloying element as well as an accompanying element from steel production. Too high levels of nitrogen lead to an increase in strength combined with a rapid loss of toughness and aging effects.
  • fine grain hardening can be achieved using titanium nitride and niobium (carbo) nitride. Coarse grain formation is also suppressed when reheating before hot rolling.
  • the N content is therefore set to values of 0,00 0.0020 to ⁇ 0.0120% by weight.
  • the nitrogen content should be maintained at values of ⁇ 20 to ⁇ 90 ppm.
  • nitrogen contents of ⁇ 40 to ⁇ 120 ppm have proven to be advantageous.
  • niobium and titanium contents of ⁇ 0.100% by weight have proven to be advantageous and because of the principle interchangeability of niobium and titanium up to a minimum niobium content of 10 ppm and, for reasons of cost, particularly advantageous of ⁇ 0.090% by weight.
  • total contents of 0 0.102% by weight have proven to be advantageous and particularly advantageous ⁇ 0.092% by weight. Higher contents no longer have an improvement in the sense of the invention.
  • Calcium (Ca) An addition of calcium in the form of calcium-silicon mixed compounds causes a deoxidation and desulfurization of the molten phase during the production of steel. In this way, reaction products are transferred to the slag and the steel is cleaned. The increased purity leads to better properties according to the invention in the end product.
  • the annealing temperatures for the dual-phase structure to be achieved for the steel according to the invention are between approximately 700 and 950 ° C., so that depending on the temperature range, a partially austenitic (two-phase area) or a fully austenitic structure (austenite area) is achieved.
  • the continuously annealed and, in some cases, hot-dip coated material can be manufactured both as hot strip and as cold-rolled hot strip or cold strip in the trained (cold-rolled) or undressed state and / or in the stretch-oriented or non-stretch-bent state and also in the heat-treated state (aging). This state is referred to below as the initial state.
  • Steel strips in the present case as hot strip, cold-rolled hot strip or cold strip, from the alloy composition according to the invention are also distinguished by a high resistance to edge cracking during further processing.
  • the hot strip is produced according to the invention with finish rolling temperatures in the austenitic region above A r3 and at reel temperatures above the bainite start temperature (variant A).
  • the hot strip is produced according to the invention with finish rolling temperatures in the austenitic region above A r3 and coiling temperatures below the bainite start temperature (variant B).
  • Figure 1 shows schematically the process chain for the production of a strip from the steel according to the invention.
  • the different process routes relating to the invention are shown.
  • the process route is the same for all steels according to the invention until hot rolling (final rolling temperature), after which process routes differ depending on the desired results.
  • the pickled hot strip can be galvanized or cold rolled and galvanized with different degrees of rolling.
  • Soft-annealed hot strip or soft-annealed cold strip can also be cold-rolled and galvanized.
  • material can also be processed without hot-dip coating, i.e. only in the context of continuous annealing with and without subsequent electrolytic galvanizing.
  • a complex component can now be produced from the optionally coated material. This is followed by the hardening process, in which the air is cooled in accordance with the invention.
  • a tempering stage can complete the thermal treatment of the component.
  • Figure 2 shows schematically the time-temperature profile of the process steps hot rolling and continuous annealing of strips from the alloy composition according to the invention. It shows the time and temperature-dependent conversion for the hot rolling process as well as for heat treatment after cold rolling, component production, tempering and optional tempering.
  • Figure 3 shows the chemical composition of the investigated steels in the upper half of the table. Alloys LH®1100 according to the invention were compared with the reference grades LH®800 / LH®900.
  • the alloys according to the invention in particular have significantly higher Si contents and lower Cr contents and no V alloy.
  • Figure 4 shows the mechanical parameters along the rolling direction of the investigated steels, with target values to be achieved for the air-hardened state ( Figure 4a ), the determined Values in the non-air-hardened initial state ( Figure 4b ) and in air-hardened condition ( Figure 4c ). The specified values to be achieved are safely achieved.
  • Figure 5 shows results of hole expansion tests according to ISO 16630 (absolute values).
  • the results of the hole expansion tests for variant A are shown for method 2 ( Figure 6b , 1 , 2nd mm) and method 3 ( Figure 6c , 2.0 mm).
  • the investigated materials have a sheet thickness of 1.2 or 2.0 mm.
  • the results apply to the test according to ISO 16630.
  • Method 2 corresponds to annealing, for example on hot-dip galvanizing with a combined direct-fired furnace and radiant tube furnace, as described in Figure 6b is described.
  • the method 3 corresponds, for example, to a process control in a continuous annealing system as shown in Figure 6c is described.
  • the steel can optionally be reheated directly in front of the zinc bath using an induction furnace.
  • the Figure 6 shows schematically three variants of the temperature-time profiles according to the invention in the annealing treatment and cooling and in each case different austenitizing conditions.
  • Procedure 1 shows the annealing and cooling of the cold or hot-rolled or cold-rolled steel strip produced in a continuous annealing plant.
  • the tape is heated to a temperature in the range of about 700 to 950 ° C (Ac1 to Ac3).
  • the annealed steel strip is then cooled from the annealing temperature with a cooling rate between approx. 15 and 100 ° C / s to an intermediate temperature (ZT) of approx. 200 to 250 ° C.
  • ZT intermediate temperature
  • This schematic representation does not show a second intermediate temperature (approx. 300 to 500 ° C).
  • the steel strip is cooled at a cooling rate of between about 2 and 30 ° C / s until reaching the R aum t emperature (RT) in air or cooling at a cooling rate between about 15 and 100 ° C / s up maintain at room temperature.
  • RT R aum t emperature
  • Procedure 2 shows the process according to method 1, however, the cooling of the steel strip is temporarily interrupted for the purpose of hot-dip coating when it passes through the hot-dip tank, in order to then cool at a cooling rate between approx. 15 and 100 ° C / s up to an intermediate temperature of approx. 200 continue up to 250 ° C.
  • the steel strip is then cooled in air at a cooling rate between approx. 2 and 30 ° C / s until room temperature is reached.
  • Procedure 3 ( Figure 6c ) also shows the process according to method 1 for hot-dip coating, but the cooling of the steel strip is interrupted by a short pause (approx. 1 to 20 s) at an intermediate temperature in the range of approx. 200 to 400 ° C and up to the temperature ( ST), which is necessary for hot-dip coating (approx. 400 to 470 ° C), reheated.
  • the steel strip is then cooled again to an intermediate temperature of approx. 200 to 250 ° C.
  • the final cooling of the steel strip takes place at a cooling rate of approx. 2 and 30 ° C / s until the room temperature is reached in air.
  • Example 1 (cold strip) (alloy composition in% by weight)
  • the material was previously hot-rolled at a final rolling set temperature of 910 ° C and coiled at a reel set temperature of 650 ° C with a thickness of 2.30 mm and after Pickling without additional heat treatment (such as hood annealing) cold rolled twice with an intermediate thickness of 1.49 mm.
  • the steel according to the invention After tempering, the steel according to the invention has a structure which consists of martensite, bainite and residual austenite.
  • This steel shows the following characteristic values after air hardening (initial values in brackets, unrefined condition): - yield strength (Rp0.2) 921 MPa (768 MPa) - tensile strength (Rm) 1198 MPa (984 MPa) - elongation at break (A80) 5.5% (10.7%) - A5 stretch 9.5% (-) - Bake hardening index (BH2) 52 MPa - Hole expansion ratio according to ISO 16630 - (49%) - Bending angle according to VDA 238-100 (lengthways, crossways) - (122 ° / 112 °) longitudinal to the rolling direction and would correspond to an LH®1100, for example.
  • the yield point ratio Re / Rm in the longitudinal direction was 78% in the initial state.
  • Example 2 (cold strip) (alloy composition in% by weight)
  • This steel shows the following characteristic values after air hardening (initial values in brackets, unrefined condition): - yield strength (Rp0.2) 903 MPa (708 MPa) - tensile strength (Rm) 1186 MPa (983 MPa) - elongation at break (A80) 7.1% (11.7%) - A5 stretch 9.1% (-) - Bake hardening index (BH2) 48 MPa - Hole expansion ratio according to ISO 16630 - (32%) - Bending angle according to VDA 238-100 (lengthways, crossways) - (104 ° / 88 °) longitudinal to the rolling direction and would correspond to an LH®1100, for example. The yield point ratio Re / Rm in the longitudinal direction was 72% in the initial state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines kalt-oder warmgewalzten Stahlbandes aus einem luftvergütbaren Mehrphasenstahl gemäß Anspruch 1, sowie vorteilhafte Weiterbildungen gemäß der Ansprüche 2 bis 20.
  • Insbesondere betrifft die Erfindung Stähle mit einer Zugfestigkeit im Bereich von mindestens 950 MPa im nicht vergüteten Zustand zur Herstellung von Bauteilen, die eine verbesserte Umformbarkeit (wie zum Beispiel erhöhte Lochaufweitung und erhöhter Biegewinkel) und verbesserte Schweißeigenschaften aufweisen.
  • Durch eine erfindungsgemäße Vergütungsbehandlung dieser Stähle kann ein Anstieg der Dehngrenze und Zugfestigkeit beispielsweise durch Lufthärten mit optional anschließendem Anlassen erreicht werden.
  • Der heiß umkämpfte Automobilmarkt zwingt die Hersteller stetig Lösungen zur Senkung des Flottenverbrauches und CO2-Abgasausstoßes unter Beibehaltung eines größtmöglichen Komforts und Insassenschutzes zu finden. Dabei spielt einerseits die Gewichtsreduktion aller Fahrzeugkomponenten eine entscheidende Rolle andererseits aber auch ein möglichst günstiges Verhalten der einzelnen Bauteile bei hoher statischer und dynamischer Beanspruchung sowohl während der Nutzung als auch im Crashfall.
  • Durch die Bereitstellung hochfester bis höchstfester Stähle und die Verringerung der Blechdicke kann das Gewicht der Fahrzeuge bei gleichzeitig verbessertem Umform- und Bauteilverhalten bei der Fertigung und im Betrieb reduziert werden.
  • Hoch- bis höchstfeste Stähle müssen daher vergleichsweise hohen Anforderungen hinsichtlich ihrer Festigkeit und Duktilität, Energieaufnahme und bei ihrer Verarbeitung, wie beispielsweise beim Stanzen, Warm- und Kaltumformen, beim thermischen Vergüten (z.B. Lufthärten, Presshärten), Schweißen und/oder einer Oberflächenbehandlung, z.B. einer metallischen Veredelung, organischen Beschichtung oder Lackierung, genügen.
  • Neu entwickelte Stähle müssen sich daher neben der verlangten Gewichtsreduzierung durch verringerte Blechdicken den zunehmenden Materialanforderungen an Dehngrenze, Zugfestigkeit, Verfestigungsverhalten und Bruchdehnung bei guten Verarbeitungseigenschaften, wie Umformbarkeit und Schweißbarkeit, stellen.
  • Für eine solche Blechdickenverringerung muss daher ein hoch- bis höchstfester Stahl mit ein- oder mehrphasigem Gefüge verwendet werden, um ausreichende Festigkeit der Kraftfahrzeugbauteile sicherzustellen und um den hohen Bauteilanforderungen hinsichtlich Zähigkeit, Kantenrissunempfindlichkeit, verbessertem Biegewinkel und Biegeradius, Energieabsorption sowie Verfestigungsvermögen und dem Bake-Hardening-Effekt zu genügen.
  • Auch wird zunehmend eine verbesserte Fügeeignung in Form von besserer allgemeiner Schweißbarkeit, wie einem größeren nutzbaren Schweißbereich beim Widerstandspunktschweißen und ein verbessertes Versagensverhalten der Schweißnaht (Bruchbild) unter mechanischer Beanspruchung , sowie eine ausreichende Resistenz gegenüber verzögerter Wasserstoffversprödung (d.h. delayed fracture free) gefordert. Gleiches gilt für die Schweißeignung höchstfester Stähle bei der Herstellung von Rohren, die zum Beispiel mittels des H och f requenz- I nduktionsschweißverfahrens (HFI) hergestellt werden.
  • Das Lochaufweitvermögen ist eine Materialeigenschaft, welche die Beständigkeit des Materials gegen Risseinleitung und Rissausbreitung bei Umformoperationen in kantennahen Bereichen, wie zum Beispiel beim Kragenziehen, beschreibt.
  • Der Lochaufweiteversuch ist beispielsweise in der ISO 16630 normativ geregelt. Danach werden vorgefertigte zum Beispiel in ein Blech gestanzte Löcher mittels eines Dorns aufgeweitet. Die Messgröße ist die auf den Ausgangsdurchmesser bezogene Änderung des Lochdurchmessers bei der am Rand des Lochs der erste Riss durch das Blech auftritt.
  • Eine verbesserte Kantenrissunempfindlichkeit bedeutet ein erhöhtes Umformvermögen der Blechkanten und kann durch ein erhöhtes Lochaufweitvermögen beschrieben werden. Dieser Sachverhalt ist unter den Synonymen " L ow E dge C rack" (LEC) bzw. unter " H igh H ole E xpansion" (HHE) sowie xpand® bekannt.
  • Der Biegewinkel beschreibt eine Materialeigenschaft, die Rückschlüsse auf das Materialverhalten bei Umformoperationen mit dominanten Biegeanteilen (z.B. beim Falzen) oder auch bei Crashbelastungen gibt. Vergrößerte Biegewinkel erhöhen somit die Fahrgastzellensicherheit. Die Bestimmung des Biegewinkels (α) wird z.B. über den Plättchen-Biegeversuch in der VDA 238-100 normativ geregelt.
  • Die oben genannten Eigenschaften sind wichtig für Bauteile, die vor dem Vergüten z.B. durch Lufthärten mit optionalem Anlassen zu sehr komplexen Bauteilen umgeformt werden.
  • Verbesserte Schweißbarkeit wird bekanntermaßen u.a. durch ein abgesenktes Kohlenstoffäquivalent erreicht. Dafür stehen Synonyme wie " u nter p eritektisch" (UP) bzw. das bereits bekannte " L ow C arbon E quivalent" (LCE). Dabei ist der Kohlenstoffgehalt üblicherweise kleiner 0,120 Gew.-%. Weiterhin kann das Versagensverhalten bzw. das Bruchbild der Schweißnaht über eine Zulegierung mit Mikrolegierungselementen verbessert werden.
  • Bauteile hoher Festigkeit müssen gegenüber Wasserstoff eine ausreichende Resistenz gegenüber einer Materialversprödung aufweisen. Die Prüfung der Beständigkeit von A dvanced H igh S trength S teels (AHSS) für den Automobilbau gegenüber fertigungsbedingten wasserstoffinduzierten Sprödbrüchen ist in der SEP1970 geregelt und über die Bügelprobe und die Lochzugprobe getestet. Im Fahrzeugbau finden zunehmend Dualphasenstähle Anwendung, die aus einem ferritischen Grundgefüge bestehen, in das eine martensitische Zweitphase eingelagert ist. Es hat sich herausgestellt, dass sich bei kohlenstoffarmen, mikrolegierten Stählen Anteile weiterer Phasen wie Bainit und Restaustenit sich vorteilhaft z.B. auf das Lochaufweitverhalten, das Biegeverhalten und das wasserstoffinduzierte Sprödbruchverhalten auswirken. Der Bainit kann hierbei in unterschiedlichen Erscheinungsformen, wie z.B. oberer und unterer Bainit, vorliegen.
  • Die spezifischen Materialeigenschaften der Dualphasenstähle, wie z.B. niedriges Streckgrenzenverhältnis bei gleichzeitig sehr hoher Zugfestigkeit, starker Kaltverfestigung und guter Kaltumformbarkeit, sind hinreichend bekannt, reichen aber bei immer komplexeren Bauteilgeometrien oft nicht mehr aus.
  • Allgemein findet die Gruppe der Mehrphasenstähle immer mehr Anwendung. Zu den Mehrphasenstählen zählen z.B. Komplexphasenstähle, ferritisch-bainitische Stähle, TRIP-Stähle, sowie die vorher beschriebenen Dualphasenstähle, die durch unterschiedliche Gefügezusammensetzungen charakterisiert sind.
  • Komplexphasenstähle sind nach EN 10346 Stähle, die geringe Anteile von Martensit, Restaustenit und/oder Perlit in einem ferritisch/bainitischen Grundgefüge enthalten, wobei durch eine verzögerte Rekristallisation oder durch Ausscheidungen von Mikrolegierungselementen eine starke Kornfeinung bewirkt wird.
  • Diese Komplexphasenstähle besitzen im Vergleich zu Dualphasenstählen höhere Streckgrenzen, ein größeres Streckgrenzenverhältnis, eine geringere Kaltverfestigung und ein höheres Lochaufweitvermögen.
  • Ferritisch-bainitische Stähle sind nach EN 10346 Stähle, die Bainit oder verfestigten Bainit in einer Matrix aus Ferrit und/oder verfestigtem Ferrit enthalten. Die Festigkeit der Matrix wird durch eine hohe Versetzungsdichte, durch Kornfeinung und die Ausscheidung von Mikrolegierungselementen bewirkt.
  • Dualphasenstähle sind nach EN 10346 Stähle mit einem ferritischen Grundgefüge, in dem eine martensitische Zweitphase inselförmig eingelagert ist, fallweise auch mit Anteilen von Bainit als Zweitphase. Bei hoher Zugfestigkeit zeigen Dualphasenstähle ein niedriges Streckgrenzenverhältnis und eine starke Kaltverfestigung.
  • TRIP-Stähle sind nach EN 10346 Stähle mit einem überwiegend ferritischen Grundgefüge, in dem Bainit und Restaustenit eingelagert ist, der während der Umformung zu Martensit umwandeln kann (TRIP-Effekt). Wegen seiner starken Kaltverfestigung erreicht der Stahl hohe Werte der Gleichmaßdehnung und Zugfestigkeit. In Verbindung mit dem Bake-Hardening-Effekt sind hohe Bauteilfestigkeiten erreichbar. Diese Stähle eignen sich sowohl zum Streckziehen als auch zum Tiefziehen. Bei der Materialumformung sind jedoch höhere Blechhalterkräfte und Pressenkräfte erforderlich. Eine vergleichsweise starke Rückfederung ist zu berücksichtigen.
  • Zu den hochfesten Stählen mit einphasigem Gefüge zählen z.B. bainitische und martensitische Stähle.
  • Bainitische Stähle sind nach EN 10346 Stähle, die sich durch eine sehr hohe Streckgrenze und Zugfestigkeit bei einer ausreichend hohen Dehnung für Kaltumformprozesse auszeichnen. Aufgrund der chemischen Zusammensetzung ist eine gute Schweißbarkeit gegeben. Das Gefüge besteht typischerweise aus Bainit. Es können im Gefüge vereinzelt geringe Anteile anderer Phasen, wie z.B. Martensit und Ferrit, enthalten sein.
  • Martensitische Stähle sind nach EN 10346 Stähle, die durch thermomechanisches Walzen kleine Anteile von Ferrit und/oder Bainit in einem Grundgefüge aus Martensit enthalten. Diese Stahlsorte zeichnet sich durch eine sehr hohe Streckgrenze und Zugfestigkeit bei einer ausreichend hohen Dehnung für Kaltumformprozesse aus. Innerhalb der Gruppe der Mehrphasenstähle weisen die martensitischen Stähle die höchsten Zugfestigkeitswerte auf. Die Eignung zum Tiefziehen ist beschränkt. Die martensitischen Stähle eignen sich vorwiegend für biegende Umformverfahren, wie Rollformen.
  • Vergütungsstähle sind nach EN 10083 Stähle, die durch Vergüten (=Härten und Anlassen) eine hohe Zug- und Dauerfestigkeit erhalten. Führt die Abkühlung beim Härten an Luft zu Bainit oder Martensit, wird das Verfahren "Lufthärten" genannt. Über ein nach dem Härten erfolgendes Anlassen kann gezielt Einfluss auf das Festigkeits-/Zähigkeitsverhältnis genommen werden.
  • Anwendungsbereiche und Fertigungsverfahren
  • Zum Einsatz kommen hoch- und höchstfeste Mehrphasenstähle u.a. in Struktur-, Fahrwerks- und crashrelevanten Bauteilen, als Blechplatinen, Tailored Blanks (geschweißte Platinen) sowie als flexibel kaltgewalzte Bänder, sogenannte TRB®s bzw. Tailored Strips.
  • Die T ailor R olled B lank Leichtbau-Technologie (TRB®) ermöglicht eine signifikante Gewichtsreduktion durch eine belastungsangepasste Blechdicke über die Bauteillänge und/oder Stahlsorte.
  • In der kontinuierlichen Glühanlage findet eine spezielle Wärmebehandlung zur definierten Gefügeeinstellung statt, wo z.B. durch vergleichsweise weiche Bestandteile, wie Ferrit bzw. bainitischer Ferrit, der Stahl seine geringe Streckgrenze und durch seine harten Bestandteile, wie Martensit bzw. kohlenstoffreichen Bainit, seine Festigkeit erhält.
  • Üblicherweise werden kaltgewalzte hoch- bis höchstfeste Stahlbänder aus wirtschaftlichen Gründen im Durchlaufglühverfahren rekristallisierend zu gut umformbarem Feinblech geglüht. Abhängig von der Legierungszusammensetzung und dem Bandquerschnitt werden die Prozessparameter, wie Durchlaufgeschwindigkeit, Glühtemperaturen und Abkühlgeschwindigkeit (Kühlgradienten), entsprechend den geforderten mechanisch-technologischen Eigenschaften mit dem dafür notwendigen Gefüge eingestellt.
  • Zur Einstellung eines Dualphasengefüges wird das gebeizte Warmband in typischen Dicken zwischen 1,50 bis 4,00 mm oder Kaltband in typischen Dicken von 0,50 bis 3,00 mm im Durchlaufglühofen auf eine solche Temperatur aufgeheizt, dass sich während der Rekristallisation und der Abkühlung die geforderte Gefügeausbildung einstellt.
  • Eine Konstanz der Temperatur ist gerade bei unterschiedlichen Dicken im Übergangsbereich von einem Band zum anderen Band nur schwierig zu erreichen. Dies kann bei Legierungszusammensetzungen mit zu kleinen Prozessfenstern bei der Durchlaufglühung dazu führen, dass z.B. das dünnere Band entweder zu langsam durch den Ofen gefahren wird, wodurch die Produktivität gesenkt wird, oder dass das dickere Band zu schnell durch den Ofen gefahren wird und die notwendigen Glühtemperaturen und Kühlgradienten zur Erreichung des gewünschten Gefüges nicht erreicht werden. Die Folgen sind vermehrter Ausschuss und hohe Fehlleistungskosten.
  • Aufgeweitete Prozessfenster sind notwendig, damit bei gleichen Prozessparametern die geforderten Bandeigenschaften auch bei größeren Querschnittsänderungen der zu glühenden Bänder möglich sind.
  • Besonders gravierend wird das Problem eines sehr engen Prozessfensters bei der Glühbehandlung, wenn belastungsoptimierte Bauteile aus Warmband oder Kaltband hergestellt werden sollen, die über die Bandlänge und Bandbreite (z.B. durch flexibles Walzen) variierende Banddicken aufweisen.
  • Die Herstellung von TRB®s mit Mehrphasengefüge ist mit heute bekannten Legierungen und verfügbaren kontinuierlichen Glühanlagen für stark variierende Banddicken allerdings nicht ohne Mehraufwand, wie z.B. einer zusätzlichen Wärmebehandlung vor dem Kaltwalzen (Warmbandweichglühen), möglich. In Bereichen unterschiedlicher Banddicke, d.h. bei Vorliegen unterschiedlicher Kaltabwalzgrade kann aufgrund eines bei den gängigen legierungsspezifisch engen Prozessfenstern auftretenden Temperaturgefälles kein homogenes mehrphasiges Gefüge in kalt- wie auch warmgewalzten Stahlbändern eingestellt werden.
  • Ein Verfahren zur Herstellung eines Stahlbandes mit unterschiedlicher Dicke über die Bandlänge wird z.B. in der DE 100 37 867 A1 beschrieben.
  • Wenn aufgrund hoher Korrosionsschutzanforderungen die Oberfläche des Warm- oder Kaltbandes schmelztauchveredelt werden soll, erfolgt die Glühbehandlung üblicherweise in einem dem Schmelztauchbad vorgeschalteten Durchlaufglühofen.
  • Auch bei Warmband wird fallweise je nach Legierungskonzept das geforderte Gefüge erst bei der Glühbehandlung im Durchlaufglühofen eingestellt, um die geforderten mechanischen Eigenschaften zu realisieren.
  • Entscheidende Prozessparameter sind somit die Einstellung der Glühtemperatur und der Geschwindigkeit, wie auch der Abkühlgeschwindigkeit (Kühlgradient) bei der Durchlaufglühung, da die Phasenumwandlung temperatur- und zeitabhängig abläuft. Je unempfindlicher der Stahl in Bezug auf die Gleichmäßigkeit der mechanischen Eigenschaften bei Änderungen im Temperatur- und Zeitverlauf bei der Durchlaufglühung ist, desto größer ist das Prozessfenster.
  • Beim Durchlaufglühen von warm- oder kaltgewalzten Stahlbändern unterschiedlicher Dicke mit den zum Beispiel aus den Offenlegungsschriften EP 2 028 282 A1 , WO 2013/113304 A2 oder EP 2 031 081 A1 bekannten Legierungskonzepten für einen Dualphasenstahl besteht das Problem, dass mit diesen Legierungszusammensetzungen zwar die geforderten mechanischen Eigenschaften erfüllt werden, jedoch nur ein enges Prozessfenster für die Glühparameter vorhanden ist, um bei Querschnittssprüngen, z.B. bei Breiten- oder Dickenänderungen, ohne Anpassung der Prozessparameter gleichmäßige mechanische Eigenschaften über die Bandlänge einstellen zu können.
  • Bei Anwendung der bekannten Legierungskonzepte ist es aufgrund des engen Prozessfensters schon beim Durchlaufglühen unterschiedlich dicker Bänder nur schwer möglich über die gesamte Bandlänge und Bandbreite gleichmäßige mechanische Eigenschaften zu erreichen.
  • Bei flexibel gewalzten Kaltbändern aus bekannten Stahllegierungen weisen wegen des zu kleinen Prozessfensters die Bereiche mit geringerer Banddicke aufgrund der Umwandlungsvorgänge bei der Abkühlung entweder zu hohe Festigkeiten durch zu große Martensitanteile auf, oder die Bereiche mit größerer Banddicke erreichen zu geringe Festigkeiten durch zu geringe Martensitanteile. Homogene mechanisch-technologische Eigenschaften über die Bandlänge oder -breite sind mit den bekannten Legierungskonzepten beim Durchlaufglühen praktisch nicht zu erreichen.
  • Das Ziel, die resultierenden mechanisch-technologischen Eigenschaften in einem engen Bereich über Bandbreite und Bandlänge durch die gesteuerte Einstellung der Volumenanteile der Gefügebestandteile zu erreichen, hat oberste Priorität und ist nur durch ein vergrößertes Prozessfenster möglich. Die bekannten Legierungskonzepte sind durch ein zu enges Prozessfenster charakterisiert und deshalb zur Lösung der vorliegenden Problematik, insbesondere bei flexibel gewalzten Bändern, ungeeignet. Mit den bekannten Legierungskonzepten sind derzeit nur Stähle einer Festigkeitsklasse mit definierten Querschnittsbereichen (Banddicke und Bandbreite) darstellbar, so dass für unterschiedliche Festigkeitsklassen und/oder Querschnittsbereiche veränderte Legierungskonzepte notwendig sind.
  • Bei der Stahlherstellung zeigt sich ein Trend zur Reduzierung des Kohlenstoffäquivalents, um eine verbesserte Kaltverarbeitung (Kaltwalzen, Kaltumformen) sowie bessere Gebrauchseigenschaften zu erreichen.
  • Aber auch die Schweißeignung charakterisiert unter anderem durch das Kohlenstoffäquivalent ist eine wichtige Beurteilungsgröße.
  • Beispielsweise werden in den nachfolgenden Kohlenstoffäquivalenten
    • CEV(IIW) = C + Mn/6 + (Cu + Ni)/15 + (Cr + Mo + V)/5
    • CET = C + (Mn + Mo)/10 + (Cr + Cu)/20 + Ni/40
    • PCM = C + (Mn + Cu + Cr)/20 + Ni/60 + Mo/15 + V/10 + 5 B
    die charakteristischen Standardelemente, wie Kohlenstoff und Mangan, sowie Chrom bzw. Molybdän und Vanadium berücksichtigt (Gehalte in Gew.-%).
  • Silizium spielt bei der Berechnung des Kohlenstoffäquivalents nur eine untergeordnete Rolle. Dies ist in Bezug auf die Erfindung von entscheidender Bedeutung. Die Absenkung des Kohlenstoffäquivalents durch geringere Gehalte an Kohlenstoff sowie von Mangan soll durch die Anhebung des Silizium-Gehalts kompensiert werden. Somit werden bei gleichen Festigkeiten die Kantenrissunempfindlichkeit sowie die Schweißeignung verbessert.
  • Ein niedriges Streckgrenzenverhältnis (Re/Rm) in einem Festigkeitsbereich über 950 MPa im Ausgangszustand ist typisch für einen Dualphasenstahl und dient vor allem der Umformbarkeit bei Streck- und Tiefziehvorgängen. Es gibt dem Konstrukteur Auskunft über den Abstand zwischen einsetzender plastischer Deformation und Versagen des Werkstoffes bei quasistatischer Beanspruchung. Dementsprechend stellen niedrigere Streckgrenzenverhältnisse einen größeren Sicherheitsabstand zum Bauteilversagen dar.
  • Ein höheres Streckgrenzenverhältnis (Re/Rm), wie es für Komplexphasenstähle typisch ist, zeichnet sich auch durch einen hohen Widerstand gegen Kantenrisse aus. Dies lässt sich auf die geringeren Unterschiede in den Festigkeiten und Härten der einzelnen Gefügebestandteile und das feinere Gefüge zurückführen, was sich günstig auf eine homogene Verformung im Bereich der Schnittkante auswirkt.
  • Bezüglich der Streckgrenze gibt es in den Normen einen Überlappungsbereich, wie auch beim Streckgrenzenverhältnis (Re/Rm), in dem eine Zuordnung sowohl zu Komplex- als auch zu Dualphasenstählen möglich ist und zu verbesserten Materialeigenschaften führt.
  • Die analytische Landschaft zur Erreichung von Mehrphasenstählen mit Mindestzugfestigkeiten von 950 MPa ist sehr vielfältig und zeigt sehr große Legierungsbereiche bei den festigkeitssteigernden Elementen Kohlenstoff, Silizium, Mangan, Phosphor, Stickstoff, Aluminium sowie Chrom und/oder Molybdän wie auch in der Zugabe von Mikrolegierungen, wie Titan, Niob, Vanadium und Bor.
  • Das Abmessungsspektrum in diesem Festigkeitsbereich ist breit und liegt im Dickenbereich von etwa 0,50 bis etwa 4,00 mm für Bänder, die zur Durchlaufglühung vorgesehen sind. Als Vormaterial kann Warmband, kaltnachgewalztes Warmband und Kaltband zum Einsatz kommen. Es finden überwiegend Bänder bis etwa 1600 mm Breite Anwendung, aber auch Spaltbandabmessungen, die durch Längsteilen der Bänder entstehen. Bleche bzw. Tafeln werden durch Querteilen der Bänder gefertigt.
  • Die zum Beispiel aus den Schriften EP 1 807 544 B1 , WO 2011/000351 und EP 2 227 574 B1 bekannten lufthärtbaren Stahlsorten mit Mindestzugfestigkeiten von 800 (LH®800) bzw. 900 MPa (LH®900) in warm- oder kaltgewalzter Ausführung zeichnen sich besonders durch ihre sehr gute Umformbarkeit im weichen Zustand (Tiefzieheigenschaften) und durch ihre hohe Festigkeit nach der Wärmebehandlung (Vergüten) aus.
  • Beim Härten wird das Gefüge des Stahles durch Aufheizen in den austenitischen Bereich überführt, vorzugsweise auf Temperaturen über 950°C unter Schutzgasatmosphäre. Beim anschließenden Abkühlen an der Luft bzw. an Schutzgas erfolgt die Ausbildung einer martensitischen Gefügestruktur für ein hochfestes Bauteil.
  • Das anschließende Anlassen ermöglicht den Abbau von Eigenspannungen im gehärteten Bauteil. Gleichzeitig wird die Härte des Bauteiles so verringert, dass die geforderten Zähigkeitswerte erreicht werden.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein neues kostengünstiges Legierungskonzept für einen höchstfesten lufthärtbaren Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und mit einer Mindestzugfestigkeit von 950 MPa im nicht vergüteten Zustand, längs und quer zur Walzrichtung, vorzugsweise mit einem Dualphasengefüge, zu schaffen, mit dem das Prozessfenster für die Durchlaufglühung von Warm- oder Kaltbändern so erweitert ist, dass neben Bändern mit unterschiedlichen Querschnitten auch Stahlbänder mit über Bandlänge und ggf. Bandbreite variierender Dicke und den damit entsprechend variierenden Kaltabwalzgraden mit möglichst homogenen mechanisch-technologischen Eigenschaften erzeugt werden können.
  • Außerdem soll die Schmelztauchveredelung des Stahls gewährleistet sein und ein Verfahren zur Herstellung eines aus diesem Stahl hergestellten Bandes angegeben werden.
  • Auch sollen ein ausreichendes Umformvermögen, die HFI-Schweißbarkeit, eine hervorragende allgemeine Schweißbarkeit sowie Schmelztauch- und Anlassbeständigkeit sichergestellt sein.
  • Nach der Lehre der Erfindung wird diese Aufgabe durch einen Stahl mit folgender chemischen Zusammensetzung in Gew.-% gelöst:
    • C ≥ 0,075 bis ≤ 0,115
    • Si ≥ 0,400 bis ≤ 0,500
    • Mn ≥ 1,900 bis ≤ 2,350
    • Cr ≥ 0,200 bis ≤ 0,500
    • Al ≥ 0,005 bis ≤ 0,060
    • N ≥ 0,0020 bis ≤ 0,0120
    • S ≤ 0,0030
    • Nb ≥ 0,005 bis ≤ 0,060
    • Ti ≥ 0,005 bis ≤ 0,060
    • B ≥ 0,0005 bis ≤ 0,0030
    • Mo ≥ 0,200 bis ≤ 0,300
    • Ca ≥ 0,0005 bis ≤ 0,0060
    • Cu ≤ 0,050
    • Ni ≤ 0,050
  • Rest Eisen, einschließlich üblicher stahlbegleitender, erschmelzungsbedingter Verunreinigungen, bei dem im Hinblick auf ein möglichst breites Prozessfenster bei der Durchlaufglühung von Warm- oder Kaltbändern aus diesem Stahl, der Summengehalt von Mn+Si+Cr abhängig von der erzeugten Banddicke, wie folgt eingestellt ist:
    • bis 1,00 mm: Summe aus Mn+Si+Cr ≥ 2,800 und ≤ 3,000%
    • über 1,00 bis 2,00 mm: Summe aus Mn+Si+Cr ≥ 2,850 und ≤ 3,100%
    • über 2,00 mm: Summe aus Mn+Si+Cr ≥ 2,900 und ≤ 3,200%
  • Durch die in den Verfahrensansprüchen 24 und 25 beschriebene Möglichkeit einer Schmelztauchveredelung (z.B. Feuerverzinken) von Stahlbändern aus dem erfindungsgemäßen Stahl mit hohen Siliziumgehalten bis 0,500% kann auf eine Zugabe von Vanadium zur Sicherstellung der Anlassbeständigkeit verzichtet werden.
  • Erfindungsgemäß besteht das Gefüge aus den Hauptphasen Ferrit und Martensit und der die verbesserten mechanische Eigenschaften des Stahls bestimmenden Nebenphase Bainit.
  • Der Stahl zeichnet sich durch niedrige Kohlenstoffäquivalente aus und ist beim Kohlenstoffäquivalent CEV (IIW) blechdickenabhängig auf die Zugabe von max. 0,66% begrenzt, damit eine hervorragende Schweißbarkeit und die nachfolgend beschriebenen weiteren spezifischen Eigenschaften erzielt werden können. Als vorteilhaft hat sich bei Blechdicken bis 1,00 mm ein CEV(IIW)-Wert von max. 0,62%, bei Blechdicken bis 2,00 mm ein Wert von max. 0,64% und oberhalb von 2,00 mm ein Wert von max. 0,66% herausgestellt.
    Durch seine chemische Zusammensetzung lässt sich der Stahl in einem breiten Warmwalzparameterspektrum herstellen, beispielsweise mit Haspeltemperaturen oberhalb der Bainitstarttemperatur (Variante A). Zusätzlich kann durch eine gezielte Prozesssteuerung eine Gefügestruktur eingestellt werden, die es erlaubt, den erfindungsgemäßen Stahl anschließend ohne vorheriges Weichglühen kaltzuwalzen, wobei Kaltwalzgrade zwischen 10 bis 40% pro Kaltwalzdurchgang Anwendung finden.
  • Der Stahl ist als Vormaterial sehr gut geeignet für eine Schmelztauchveredelung und weist durch die erfindungsgemäß in Abhängigkeit von der zu erzeugenden Banddicke zugegebenen summenbezogenen Menge an Mn, Si und Cr ein deutlich vergrößertes Prozessfenster im Vergleich zu den bekannten Stählen auf.
  • Bei Versuchen hat sich überraschend herausgestellt, dass ein breites Prozessfenster mit den geforderten mechanischen Eigenschaften eingehalten werden kann, wenn der Gesamtgehalt von Mn+Si+Cr blechdickenabhängig eingestellt wird.
    Für einen Stahl geringerer Mindestzugfestigkeit wird eine entsprechende Abhängigkeit in der DE 10 2012 013 113 A1 beschrieben.
  • Daraus resultiert eine erhöhte Prozesssicherheit beim Durchlaufglühen von Kalt- und Warmband mit Dual- bzw. Mehrphasengefüge. Daher können für durchlaufgeglühte Warm- oder Kaltbänder homogenere mechanisch-technologische Eigenschaften im Band auch bei unterschiedlichen Querschnitten und sonst gleichen Prozessparametern eingestellt werden. Dies gilt für das Durchlaufglühen aufeinander folgender Bänder mit unterschiedlichen Bandquerschnitten, wie auch für Bänder mit variierender Banddicke über Bandlänge bzw. Bandbreite. Beispielsweise ist damit eine Prozesssierung in ausgewählten Dickenbereichen möglich (z.B. unter 1,00 mm Banddicke, 1,00 mm bis 2,00 mm Banddicke und über 2,00 mm Banddicke).
  • Werden erfindungsgemäß im Durchlaufglühverfahren höherfeste Warm- oder Kaltbänder aus Mehrphasenstahl mit variierenden Banddicken erzeugt, können aus daraus vorteilhaft belastungsoptimierte Bauteile hergestellt werden.
  • Das erfindungsgemäße Stahlband kann als Kalt- und Warmband sowie als kaltnachgewalztes Warmband mittels einer Feuerverzinkungslinie oder einer reinen Durchlaufglühanlage erzeugt werden im dressierten und undressierten, im streckbiegegerichteten und nicht streckbiegegerichteten und auch im wärmebehandelten (überalterten) Zustand.
  • Mit der erfindungsgemäßen Legierungszusammensetzung können Stahlbänder durch eine interkritische Glühung zwischen Ac1 und Ac3 bzw. bei einer austenitisierenden Glühung über Ac3 mit abschließender gesteuerter Abkühlung erzeugt werden, die zu einem Dual- bzw. Mehrphasengefüge führt.
  • Als vorteilhaft haben sich Glühtemperaturen von etwa 700 bis 950°C herausgestellt. Abhängig vom Gesamtprozess (nur Durchlaufglühen oder zusätzliche Schmelztauchveredelung) gibt es unterschiedliche Ansätze für eine Wärmebehandlung.
  • Bei einer Durchlaufglühanlage ohne anschließende Schmelztauchveredelung wird das Band ausgehend von der Glühtemperatur mit einer Abkühlgeschwindigkeit von ca. 15 bis 100°C/s auf eine Zwischentemperatur von ca. 160 bis 250°C abgekühlt. Optional kann vorab mit einer Abkühlgeschwindigkeit von ca. 15 bis 100°C/s auf eine vorherige Zwischentemperatur von 300 bis 500°C abgekühlt werden. Die Abkühlung bis zur Raumtemperatur erfolgt abschließend mit einer Abkühlgeschwindigkeit von ca. 2 bis 30°C/s (s.a. Verfahren 1, Figur 6a ).
  • Bei einer Wärmebehandlung im Rahmen einer Schmelztauchveredelung gibt es zwei Möglichkeiten der Temperaturführung. Die Kühlung wird wie oben beschrieben vor dem Eintritt in das Schmelzbad angehalten und erst nach dem Austritt aus dem Bad bis zum Erreichen der Zwischentemperatur von ca. 200 bis 250°C fortgesetzt. Abhängig von der Schmelzbadtemperatur ergibt sich dabei eine Haltetemperatur im Schmelzbad von ca. 400 bis 470°C. Die Abkühlung bis zur Raumtemperatur erfolgt wieder mit einer Abkühlgeschwindigkeit von ca. 2 bis 30°C/s (s.a. Verfahren 2, Figur 6b ).
  • Die zweite Variante der Temperaturführung bei der Schmelztauchveredelung beinhaltet das Halten der Temperatur für ca. 1 bis 20 s bei der Zwischentemperatur von ca. 200 bis 350°C und ein anschließendes Wiedererwärmen auf die zur Schmelztauchveredelung benötigte Temperatur von ca. 400 bis 470°C. Das Band wird nach der Veredelung wieder auf ca. 200 bis 250°C abgekühlt. Die Abkühlung auf Raumtemperatur erfolgt wieder mit einer Abkühlgeschwindigkeit von ca. 2 bis 30°C/s (s.a. Verfahren 3, Figur 6c ).
    Bei bekannten Dualphasenstählen sind neben Kohlenstoff auch Mangan, Chrom und Silizium für die Umwandlung von Austenit zu Martensit verantwortlich. Erst die erfindungsgemäße Kombination der in den angegebenen Grenzen zulegierten Elemente Kohlenstoff, Silizium, Mangan, Stickstoff, Molybdän und Chrom sowie Niob, Titan und Bor sichert einerseits die geforderten mechanischen Eigenschaften wie Mindestzugfestigkeiten von 950 MPa bei gleichzeitig deutlich verbreitertem Prozessfenster bei der Durchlaufglühung.
  • Werkstoffcharakteristisch ist auch, dass durch die Zugabe von Mangan mit ansteigenden Gewichtsprozenten das Ferritgebiet zu längeren Zeiten und tieferen Temperaturen während der Abkühlung verschoben wird. Die Anteile von Ferrit werden dabei durch erhöhte Anteile von Bainit je nach Prozessparameter mehr oder weniger stark reduziert.
  • Durch die Einstellung eines niedrigen Kohlenstoffgehaltes von ≤ 0,115 Gew.-% kann das Kohlenstoffäquivalent reduziert werden, wodurch die Schweißeignung verbessert und zu große Aufhärtungen beim Schweißen vermieden werden. Beim Widerstandspunktschweißen kann darüber hinaus die Elektrodenstandzeit deutlich erhöht werden.
  • Nachfolgend wird die Wirkung der Elemente in der erfindungsgemäßen Legierung näher beschrieben. Begleitelemente sind unvermeidlich und werden im Analysenkonzept hinsichtlich ihrer Wirkung, wenn notwendig, berücksichtigt.
  • Bealeitelemente sind Elemente, die bereits im Eisenerz vorhanden sind, bzw. herstellungsbedingt in den Stahl gelangen. Aufgrund ihrer überwiegend negativen Einflüsse sind sie in der Regel unerwünscht. Es wird versucht, sie bis zu einem tolerierbaren Gehalt zu entfernen bzw. in unschädlichere Formen zu überführen.
  • Wasserstoff (H) kann als einziges Element ohne Gitterverspannungen zu erzeugen durch das Eisengitter diffundieren. Dies führt dazu, dass der Wasserstoff im Eisengitter relativ beweglich ist und während der Verarbeitung des Stahls verhältnismäßig leicht aufgenommen werden kann. Wasserstoff kann dabei nur in atomarer (ionischer) Form ins Eisengitter aufgenommen werden.
  • Wasserstoff wirkt stark versprödend und diffundiert bevorzugt zu energetisch günstigen Stellen (Fehlstellen, Korngrenzen etc.). Dabei fungieren Fehlstellen als Wasserstofffallen und können die Verweildauer des Wasserstoffes im Werkstoff erheblich erhöhen.
  • Durch eine Rekombination zu molekularem Wasserstoff können Kaltrisse entstehen. Dieses Verhalten tritt bei der Wasserstoffversprödung oder bei wasserstoffinduzierter Spannungsrisskorrosion auf. Auch beim verzögerten Riss, dem sogenannten Delayed-Fracture, der ohne äußere Spannungen auftritt, wird Wasserstoff oft als auslösender Grund genannt. Daher sollte der Wasserstoffgehalt im Stahl so gering wie möglich sein.
  • Ein gleichmäßigeres Gefüge, das bei dem erfindungsgemäßen Stahl u.a. durch sein aufgeweitetes Prozessfenster erzielt wird, vermindert zudem die Anfälligkeit gegenüber einer Wasserstoffversprödung.
  • Sauerstoff (O): Im schmelzflüssigen Zustand hat der Stahl eine verhältnismäßig große Aufnahmefähigkeit für Gase. Bei Raumtemperatur ist Sauerstoff jedoch nur in sehr geringen Mengen löslich. Analog zum Wasserstoff kann Sauerstoff nur in atomarer Form in den Werkstoff diffundieren. Wegen der stark versprödenden Wirkung sowie der negativen Auswirkungen auf die Alterungsbeständigkeit wird während der Herstellung so weit wie möglich versucht, den Sauerstoffgehalt zu reduzieren.
  • Zur Verringerung des Sauerstoffs existieren zum einen verfahrenstechnische Ansätze wie eine Vakuumbehandlung und zum anderen analytische Ansätze. Durch Zugabe von bestimmten Legierungselementen kann der Sauerstoff in ungefährlichere Zustände überführt werden. So ist ein Abbinden des Sauerstoffes im Zuge einer Desoxidation des Stahls mit Mangan, Silizium und/oder Aluminium in der Regel üblich. Die dadurch entstehenden Oxide können jedoch als Fehlstellen im Werkstoff negative Eigenschaften hervorrufen.
  • Aus vorgenannten Gründen sollte deshalb der Sauerstoffgehalt im Stahl so gering wie möglich sein.
  • Phosphor (P) ist ein Spurenelement aus dem Eisenerz und wird im Eisengitter als Substitutionsatom gelöst. Phosphor steigert durch Mischkristallverfestigung die Härte und verbessert die Härtbarkeit. Es wird allerdings im Allgemeinen versucht, den Phosphorgehalt soweit wie möglich abzusenken, da dieser unter anderem durch seine geringe Löslichkeit im erstarrenden Medium stark zur Seigerung neigt und im hohen Maße die Zähigkeit vermindert. Durch die Anlagerung von Phosphor an den Korngrenzen treten Korngrenzenbrüche auf. Zudem setzt Phosphor die Übergangstemperatur von zähem zu sprödem Verhalten bis zu 300°C herauf. Während des Warmwalzens können oberflächennahe Phosphoroxide an den Korngrenzen zu Bruchaufreißungen führen.
  • In einigen Stählen wird Phosphor allerdings aufgrund der niedrigen Kosten und der hohen Festigkeitssteigerung in geringen Mengen (< 0,1 Gew.%) als Mikrolegierungselement verwendet beispielsweise in höherfesten IF-Stählen (interstitial free), Bake-Hardening-Stählen oder auch in einigen Legierungskonzepten für Dualphasenstähle. Der erfindungsgemäße Stahl unterscheidet sich von bekannten Analysenkonzepten, die Phosphor als Mischkristallbildner verwenden unter anderem dadurch, dass Phosphor nicht zulegiert sondern möglichst niedrig eingestellt wird.
  • Aus vorgenannten Gründen ist der Phosphorgehalt beim erfindungsgemäßen Stahl auf bei der Stahlherstellung unvermeidbare Mengen begrenzt.
  • Schwefel (S) ist wie Phosphor als Spurenelement im Eisenerz gebunden. Schwefel ist im Stahl unerwünscht (Ausnahme Automatenstähle), da er zu starker Seigerung neigt und stark versprödend wirkt. Es wird deshalb versucht, einen möglichst geringen Gehalt an Schwefel in der Schmelze, z.B. durch eine Vakuumbehandlung, zu erreichen. Des Weiteren wird der vorhandene Schwefel durch Zugabe von Mangan in die relativ ungefährliche Verbindung Mangansulfid (MnS) überführt. Die Mangansulfide werden während des Walzprozesses oft zeilenartig ausgewalzt und fungieren als Keimstellen für die Umwandlung. Dies führt vor allem bei diffusionsgesteuerter Umwandlung zu einem zeilig ausgeprägten Gefüge und kann bei stark ausgeprägter Zeiligkeit zu verschlechterten mechanischen Eigenschaften führen (z.B. ausgeprägte Martensitzeilen statt verteilter Martensitinseln, anisotropes Werkstoffverhalten, verminderte Bruchdehnung).
  • Aus vorgenannten Gründen ist der Schwefelgehalt beim erfindungsgemäßen Stahl auf ≤ 0,0030 Gew.-%, vorteilhaft auf ≤ 0,0025 Gew.-% bzw. optimal auf ≤ 0,0020 Gew.-% bzw. auf bei der Stahlherstellung unvermeidbare Mengen begrenzt.
  • Legierungselemente werden dem Stahl in der Regel zugegeben, um gezielt bestimmte Eigenschaften zu beeinflussen. Dabei kann ein Legierungselement in verschiedenen Stählen unterschiedliche Eigenschaften beeinflussen. Die Wirkung hängt im Allgemeinen stark von der Menge und dem Lösungszustand im Werkstoff ab.
  • Die Zusammenhänge können demnach durchaus vielseitig und komplex sein. Im Folgenden soll auf die Wirkung der Legierungselemente näher eingegangen werden.
  • Kohlenstoff (C) gilt als das wichtigste Legierungselement im Stahl. Durch seine gezielte Einbringung von bis zu 2,06 Gew.-% wird Eisen erst zum Stahl. Oft wird während der Stahlherstellung der Kohlenstoffanteil drastisch abgesenkt. Bei Dualphasenstählen für eine kontinuierliche Schmelztauchveredelung beträgt sein Anteil gemäß EN 10346 bzw. VDA 239-100 maximal 0,230 Gew.-%, ein Mindestwert ist nicht vorgegeben.
  • Kohlenstoff wird aufgrund seines vergleichsweise kleinen Atomradius interstitiell im Eisengitter gelöst. Die Löslichkeit beträgt dabei im α-Eisen maximal 0,02% und im γ-Eisen maximal 2,06%. Kohlenstoff steigert in gelöster Form die Härtbarkeit von Stahl erheblich und ist damit unerlässlich für die Bildung einer ausreichenden Menge an Martensit. Zu hohe Kohlenstoffgehalte erhöhen jedoch den Härteunterschied zwischen Ferrit und Martensit und schränken die Schweißbarkeit ein.
  • Um die Anforderungen z.B. an hohe Lochaufweitung und Biegewinkel zu erfüllen, enthält der erfindungsgemäße Stahl Kohlenstoffgehalte von kleiner gleich 0,115 Gew.-%.
  • Durch die unterschiedliche Löslichkeit des Kohlenstoffs in den Phasen werden ausgeprägte Diffusionsvorgänge bei der Phasenumwandlung notwendig, die zu sehr verschiedenen kinetischen Bedingungen führen können. Zudem erhöht Kohlenstoff die thermodynamische Stabilität des Austenits, was sich im Phasendiagramm in einer Erweiterung des Austenitgebietes zu niedrigeren Temperaturen zeigt. Mit steigendem zwangsgelöstem Kohlenstoffgehalt im Martensit steigen die Gitterverzerrungen und damit verbunden die Festigkeit der diffusionslos entstandenen Phase.
  • Kohlenstoff bildet zudem Karbide. Eine nahezu in jedem Stahl vorkommende Gefügephase ist der Zementit (Fe3C). Es können sich jedoch auch wesentlich härtere Sonderkarbide mit anderen Metallen wie zum Beispiel Chrom, Titan, Niob, Vanadium bilden. Dabei ist nicht nur die Art sondern auch die Verteilung und Größe der Ausscheidungen von entscheidender Bedeutung für die resultierende Festigkeitssteigerung. Um einerseits eine ausreichende Festigkeit und andererseits eine gute Schweißbarkeit, eine verbesserte Lochaufweitung, einen verbesserten Biegewinkel und einen ausreichenden Widerstand gegen wasserstoffinduzierte Rissbildung (d.h. Delayed fracture free) sicherzustellen, werden deshalb der minimale C-Gehalt auf 0,075 Gew.-% und der maximale C-Gehalt auf 0,115 Gew.-% festgelegt, vorteilhaft sind Gehalte mit einer querschnittsabhängigen Differenzierung, wie:
    • Materialdicke unter 1,00 mm (C von ≤ 0,100 Gew.-%)
    • Materialdicken zwischen 1,00 bis 2,00 mm (C ≤ 0,105 Gew.-%)
    • Materialdicken über 2,00 mm (C ≤ 0,115 Gew.-%).
  • Silizium (Si) bindet beim Vergießen Sauerstoff und wird daher zur Beruhigung im Zuge der Desoxidation des Stahls verwendet. Wichtig für die späteren Stahleigenschaften ist, dass der Seigerungskoeffizient deutlich geringer ist als z.B. der von Mangan (0,16 im Vergleich zu 0,87). Seigerungen führen allgemein zu einer zeiligen Anordnung der Gefügebestandteile, welche die Umformeigenschaften, z.B. die Lochaufweitung und Biegefähigkeit, verschlechtern.
  • Werkstoffcharakteristisch bewirkt die Zugabe von Silizium eine starke Mischkristallverfestigung. Überschlägig bewirkt eine Zugabe von 0,1% Silizium eine Erhöhung der Zugfestigkeit um ca. 10 MPa, wobei sich bei einer Zugabe bis zu 2,2% Silizium die Dehnung nur geringfügig verschlechtert. Dies wurde für unterschiedliche Blechdicken und Glühtemperaturen untersucht. Die Steigerung von 0,2% auf 0,5% Silizium bewirkte eine Festigkeitszunahme von ca. 20 MPa in der Streckgrenze und ca. 70 MPa in der Zugfestigkeit. Die Bruchdehnung nimmt dabei um etwa 2% ab. Letzteres liegt unter anderem daran, dass Silizium die Löslichkeit von Kohlenstoff im Ferrit herabsetzt und die Aktivität von Kohlenstoff im Ferrit erhöht, somit die Bildung von Karbiden verhindert, welche als spröde Phasen die Duktilität mindern, was wiederum die Umformbarkeit verbessert. Durch die geringe festigkeitssteigernde Wirkung von Silizium innerhalb der Spanne des erfindungsgemäßen Stahles wird die Grundlage für ein breites Prozessfenster geschaffen.
  • Ein weiterer wichtiger Effekt ist, dass Silizium die Bildung von Ferrit zu kürzeren Zeiten und Temperaturen verschiebt und somit die Entstehung von ausreichend Ferrit vor der Abschreckung ermöglicht. Beim Warmwalzen wird dadurch eine Grundlage für eine verbesserte Kaltwalzbarkeit geschaffen. Beim Schmelztauchveredeln wird durch die beschleunigte Ferritbildung der Austenit mit Kohlenstoff angereichert und so stabilisiert. Da Silizium die Karbidbildung behindert, wird der Austenit zusätzlich stabilisiert. Somit lässt sich bei der beschleunigten Abkühlung die Bildung von Bainit zugunsten von Martensit unterdrücken.
  • Die Zugabe von Silizium in der erfindungsgemäßen Spanne hat zu weiteren im Folgenden beschriebenen überraschenden Effekten geführt. Die oben beschriebene Verzögerung der Karbidbildung könnte z.B. auch durch Aluminium herbeigeführt werden. Aluminium bildet jedoch stabile Nitride, so dass nicht ausreichend Stickstoff für die Bildung von Karbonitriden mit Mikrolegierungselementen zur Verfügung steht. Durch die Legierung mit Silizium besteht dieses Problem nicht, da Silizium weder Karbide noch Nitride bildet. Somit wirkt sich Silizium indirekt positiv auf die Ausscheidungsbildung durch Mikrolegierungen aus, die sich wiederum positiv auf die Festigkeit des Werkstoffs auswirken. Da die Erhöhung der Umwandlungstemperaturen durch Silizium tendenziell Kornvergröberung begünstigt, ist eine Mikrolegierung mit Niob, Titan und Bor besonders zweckmäßig, wie auch die gezielte Einstellung des Stickstoffgehaltes im erfindungsgemäßen Stahl.
  • Beim Warmwalzen soll es bekanntermaßen bei höher siliziumlegierten Stählen zur Bildung von stark haftendem roten Zunder und zu erhöhter Gefahr von Zundereinwalzungen kommen, was Einfluss auf das anschließende Beizergebnis und die Beizproduktivität haben kann. Dieser Effekt konnte beim erfindungsgemäßen Stahl mit 0,400 bis 0,500% Silizium nicht festgestellt werden, wenn die Beizung vorteilhaft mit Salzsäure statt mit Schwefelsäure durchgeführt wird.
  • Bezüglich der Verzinkbarkeit siliziumhaltiger Stähle wird u.a. in der DE 196 10 675 C1 ausgeführt, dass Stähle mit bis zu 0,800 Gew.-% Silizium bzw. bis zu 2,000 Gew.-% Silizium nicht feuerverzinkbar seien aufgrund der sehr schlechten Benetzbarkeit der Stahloberfläche mit dem flüssigen Zink.
  • Neben der Rekristallisation des walzharten Bandes bewirken die atmosphärischen Bedingungen während der Glühbehandlung in einer kontinuierlichen Schmelztauchbeschichtungsanlage eine Reduktion von Eisenoxid, das sich z.B. beim Kaltwalzen oder infolge der Lagerung bei Raumtemperatur auf der Oberfläche ausbilden kann. Für sauerstoffaffine Legierungsbestandteile, wie z.B. Silizium, Mangan, Chrom, Bor ist die Gasatmosphäre jedoch oxidierend mit der Folge, dass eine Segregation und selektive Oxidation dieser Elemente auftreten kann. Die selektive Oxidation kann sowohl extern, das heißt auf der Substratoberfläche, als auch intern innerhalb der metallischen Matrix stattfinden.
  • Es ist bekannt, dass insbesondere Silizium während des Glühens an die Oberfläche diffundiert und allein oder zusammen mit Mangan Oxide an der Stahloberfläche bildet. Diese Oxide können den Kontakt zwischen Substrat und Schmelze unterbinden und die Benetzungsreaktion verhindern bzw. deutlich verschlechtern. Hierdurch können unverzinkte Stellen, so genannte "Bare Spots", oder sogar großflächige Bereiche ohne Beschichtung auftreten. Desweiteren kann durch eine verschlechterte Benetzungsreaktion mit der Folge einer unzureichenden Hemmschichtausbildung die Adhäsion der Zink- bzw. Zinklegierungsschicht auf dem Stahlsubstrat vermindert werden. Die oben genannten Mechanismen können auch bei gebeiztem Warmband bzw. kaltnachgewalztem Warmband zutreffen.
  • Entgegen dieses allgemeinen Fachwissens wurde im Rahmen von Versuchen überraschend festgestellt, dass allein durch eine geeignete Ofenfahrweise beim Rekristallisationsglühen und beim Durchlaufen des Schmelztauchbades eine gute Schmelztauchveredelung des Stahlbandes und eine gute Haftung des Überzuges erreicht werden kann.
  • Hierzu ist zunächst sicherzustellen, dass die Bandoberfläche durch eine chemischmechanische bzw. thermisch-hydromechanische Vorreinigung frei von Zunderresten, Beiz- bzw. Walzöl oder anderen Schmutzpartikeln ist. Um zu verhindern, dass Siliziumoxide an die Bandoberfläche gelangen, sind ferner Methoden zu ergreifen, die die innere Oxidation der Legierungselemente unterhalb der Werkstoffoberfläche fördern. Abhängig von der Anlagenkonfiguration kommen hier unterschiedliche Maßnahmen zur Anwendung.
  • Bei einer Anlagenkonfiguration, bei der der Glühprozessschritt ausschließlich in einem Strahlrohrofen ( r adiant t ube f urnace: RTF) durchgeführt wird (siehe Verfahren 3 in Figur 6c ), kann die innere Oxidation der Legierungselemente durch Einstellung des Sauerstoffpartialdrucks der Ofenatmosphäre (N2-H2-Schutzgasatmosphäre) gezielt beeinflusst werden. Der eingestellte Sauerstoffpartialdruck muss dabei nachfolgender Gleichung genügen, wobei die Ofentemperatur zwischen 700 und 950°C liegt. 12 > Log pO 2 5 * Si 0,25 3 * Mn 0,25 0,1 Cr 0,5 7 * ln B 0,5
    Figure imgb0001
  • Hierbei bezeichnen Si, Mn, Cr, B die entsprechenden Legierungsanteile im Stahl in Gew.-% und pO2 den Sauerstoffpartialdruck in mbar.
  • Bei einer Anlagenkonfiguration, in der der Ofenbereich aus einer Kombination von einem direkt befeuerten Ofen ( d irect f ired f urnace: DFF bzw. n on- o xidizing f urnace: NOF) und einem nachfolgenden Strahlrohrofen besteht (siehe Verfahren 2 in Figur 6b ), lässt sich die selektive Oxidation der Legierungselemente ebenfalls über die Gasatmosphären der Ofenbereiche beeinflussen.
  • Über die Verbrennungsreaktion im NOF lassen sich der Sauerstoffpartialdruck und damit das Oxidationspotential für Eisen und die Legierungselemente einstellen. Dieses ist so einzustellen, dass die Oxidation der Legierungselemente intern unterhalb der Stahloberfläche stattfindet und sich ggfs. eine dünne Eisenoxidschicht auf der Stahloberfläche nach dem Durchlauf des NOF-Bereichs ausbildet. Erreicht wird dies z.B. durch Reduzierung des CO-Werts unter 4 Vol.-%.
  • Im nachfolgenden Strahlrohrofen werden unter N2-H2-Schutzgasatmosphäre die ggfs. gebildete Eisenoxidschicht reduziert und gleichermaßen die Legierungselemente weiter intern oxidiert. Der eingestellte Sauerstoffpartialdruck in diesem Ofenbereich muss dabei nachfolgender Gleichung genügen, wobei die Ofentemperatur zwischen 700 und 950°C liegt. 18 > Log pO 2 5 * Si 0,3 2,2 * Mn 0,45 0,1 * Cr 0,4 12,5 * ln B 0,25
    Figure imgb0002
  • Hierbei bezeichnen Si, Mn, Cr, B die entsprechenden Legierungsanteile im Stahl in Gew.-% und pO2 den Sauerstoffpartialdruck in mbar.
  • Im Übergangsbereich zwischen Ofen → Zinkpott (Rüssel) ist der Taupunkt der Gasatmosphäre (N2-H2-Schutzgasatmosphäre) und damit der Sauerstoffpartialdruck so einzustellen, dass eine Oxidation des Bandes vor dem Eintauchen in das Schmelzbad vermieden wird. Als vorteilhaft haben sich Taupunkte im Bereich von -30 bis -40°C herausgestellt.
  • Durch die oben beschriebenen Maßnahmen im Ofenbereich der kontinuierlichen Schmelztauchbeschichtungsanlage wird die oberflächliche Ausbildung von Oxiden verhindert und eine gleichmäßige, gute Benetzbarkeit der Bandoberfläche mit der flüssigen Schmelze erzielt.
  • Wird anstelle der Schmelztauchveredelung (hier z.B. das Feuerverzinken) die Verfahrensroute über ein kontinuierliches Glühen mit nachfolgender elektrolytischer Verzinkung gewählt (siehe Verfahren 1 in Figur 6a ), sind keine besonderen Vorkehrungen notwendig um die Verzinkbarkeit zu gewährleisten. Es ist bekannt, dass die Verzinkung höherlegierter Stähle wesentlich einfacher durch elektrolytische Abscheidung als durch kontinuierliche Schmelztauchverfahren realisierbar ist. Beim elektrolytischen Verzinken wird reines Zink direkt an der Bandoberfläche abgeschieden. Um den Elektronenstrom zwischen Stahlband und den Zink-Ionen und damit die Verzinkung nicht zu behindern, muss gewährleistet sein, dass keine flächendeckende Oxidschicht auf der Bandoberfläche vorhanden ist. Diese Bedingung wird in der Regel durch eine standardmäßige reduzierende Atmosphäre während der Glühung und eine Vorreinigung vor der Elektrolyse gewährleistet.
  • Um ein möglichst breites Prozessfenster bei der Glühung und eine ausreichende Verzinkbarkeit sicherzustellen, werden der minimale Silizium-Gehalt auf 0,400 Gew.-% und der maximale Silizium-Gehalt auf 0,500 Gew.-% festgelegt.
  • Mangan (Mn) wird fast allen Stählen zur Entschwefelung zugegeben, um den schädlichen Schwefel in Mangansulfide zu überführen. Zudem erhöht Mangan durch Mischkristallverfestigung die Festigkeit des Ferrits und verschiebt die α-/γ-Umwandlung zu niedrigeren Temperaturen.
  • Ein Hauptgrund für das Zulegieren von Mangan in Mehrphasenstählen, wie z.B. bei Dualphasenstählen, ist die deutliche Verbesserung der Einhärtbarkeit. Aufgrund der Diffusionsbehinderung wird die Perlit- und Bainitumwandlung zu längeren Zeiten verschoben und die Martensitstarttemperatur gesenkt.
  • Gleichzeitig wird jedoch durch die Zugabe von Mangan das Härteverhältnis zwischen Martensit und Ferrit erhöht. Außerdem wird die Zeiligkeit des Gefüges verstärkt. Ein hoher Härteunterschied zwischen den Phasen und die Ausbildung von Martensitzeilen haben ein niedrigeres Lochaufweitvermögen zur Folge, was gleichbedeutend mit einer erhöhten Kantenrissempfindlichkeit ist.
  • Mangan neigt wie Silizium zur Bildung von Oxiden auf der Stahloberfläche während der Glühbehandlung. In Abhängigkeit von den Glühparametern und den Gehalten an anderen Legierungselementen (insbesondere Silizium und Aluminium) können Manganoxide (z.B. MnO) und/oder Mn-Mischoxide (z.B. Mn2SiO4) auftreten. Allerdings ist Mangan bei einem geringen Si/Mn bzw. Al/Mn Verhältnis als weniger kritisch zu betrachten, da sich eher globulare Oxide statt Oxidfilme ausbilden. Dennoch können hohe Mangangehalte das Erscheinungsbild der Zinkschicht und die Zinkhaftung negativ beeinflussen. Durch die oben genannten Maßnahmen zur Einstellung der Ofenbereiche beim kontinuierlichen Schmelztauchbeschichten wird die Ausbildung von Mn-Oxiden bzw. Mn-Mischoxiden an der Stahloberfläche nach dem Glühen reduziert.
  • Der Mangan-Gehalt wird aus den genannten Gründen auf 1,900 bis 2,350 Gew.-% festgelegt.
  • Zur Erreichung der geforderten Mindestfestigkeiten ist es vorteilhaft eine banddickenabhängige Differenzierung des Mangangehaltes einzuhalten.
  • Bei einer Banddicke unter 1,00 mm liegt der Mangan-Gehalt bevorzugt in einem Bereich zwischen ≥ 1,900 und ≤ 2,200 Gew.-%, bei Banddicken von 1,00 bis 2,00 mm zwischen ≥ 2,050 und ≤ 2,250 Gew.-% und bei Banddicken über 2,00 mm zwischen ≥ 2,100 Gew.-% und ≤ 2,350 Gew.-%.
  • Eine weitere Besonderheit der Erfindung ist, dass die Variation des Mangan-Gehalts durch gleichzeitige Veränderung des Silizium-Gehalts kompensiert werden kann. Die Festigkeitssteigerung (hier die Streckgrenze, engl. y ield s trength, YS) durch Mangan und Silizium wird im Allgemeinen gut durch die Pickering-Gleichung beschrieben: YS MPa = 53,9 + 32,34 Gew . % Mn + 83,16 Gew . % Si + 354,2 Gew . % N + 17,402 d 1 / 2
    Figure imgb0003
  • Diese beruht jedoch vorrangig auf dem Effekt der Mischkristallhärtung, der nach dieser Gleichung für Mangan schwächer ist als für Silizium. Gleichzeitig erhöht Mangan jedoch, wie oben erwähnt, die Härtbarkeit deutlich, wodurch sich bei Mehrphasenstählen der Anteil an festigkeitssteigernder Zweitphase signifikant erhöht. Daher ist die Zugabe von 0,1% Silizium in erster Näherung mit der Zugabe von 0,1% Mangan im Sinne der Festigkeitserhöhung gleichzusetzen. Für einen Stahl der erfindungsgemäßen Zusammensetzung und einer Glühung, die die erfindungsgemäßen Zeit-Temperatur-Parameter einschließt, hat sich auf empirischer Grundlage folgender Zusammenhang für die Streckgrenze und die Zugfestigkeit (engl. t ensile s trength, TS) ergeben: YS MPa = 160,7 + 147,9 Gew . % Si + 161,1 Gew . % Mn
    Figure imgb0004
    TS MPa = 324,8 + 189,4 Gew . % Si + 174,1 Gew . % Mn
    Figure imgb0005
  • Im Vergleich zur Pickering-Gleichung sind die Koeffizienten von Mangan und Silizium sowohl für die Streckgrenze als auch für die Zugfestigkeit annähernd gleich, wodurch die Möglichkeit der Substitution von Mangan durch Silizium gegeben ist.
  • Chrom (Cr) kann einerseits in gelöster Form schon in geringen Mengen die Härtbarkeit von Stahl erheblich steigern. Andererseits bewirkt Chrom bei entsprechender Temperaturführung in Form von Chromkarbiden eine Teilchenverfestigung. Die damit verbundene Erhöhung der Anzahl von Keimstellen bei gleichzeitig gesenktem Gehalt an Kohlenstoff führt zu einer Herabsetzung der Härtbarkeit.
  • In Dualphasenstählen wird durch die Zugabe von Chrom hauptsächlich die Einhärtbarkeit verbessert. Chrom verschiebt im gelösten Zustand die Perlit- und Bainitumwandlung zu längeren Zeiten und senkt dabei gleichzeitig die Martensitstarttemperatur.
  • Ein weiterer wichtiger Effekt ist, dass Chrom die Anlassbeständigkeit erheblich steigert, so dass es im Schmelztauchbad zu fast keinen Festigkeitsverlusten kommt.
  • Chrom ist zudem ein Karbidbildner. Sollten Chrom-Eisen-Mischkarbide vorliegen, muss die Austenitisierungstemperatur vor dem Härten hoch genug gewählt werden, um die Chromkarbide zu lösen. Ansonsten kann es durch die erhöhte Keimzahl zu einer Verschlechterung der Einhärtbarkeit kommen.
  • Chrom neigt ebenfalls dazu, während der Glühbehandlung Oxide auf der Stahloberfläche zu bilden, wodurch sich die Schmelztauchqualität verschlechtern kann. Durch die oben genannten Maßnahmen zur Einstellung der Ofenbereiche beim kontinuierlichen Schmelztauchbeschichten wird die Ausbildung von Cr-Oxiden bzw. Cr-Mischoxiden an der Stahloberfläche nach dem Glühen reduziert.
  • Der Chrom-Gehalt wird deshalb auf Gehalte von 0,200 bis 0,500 Gew.-% festgelegt.
  • Molybdän (Mo): Die Zugabe von Molybdän führt ähnlich wie der von Chrom und Mangan zur Verbesserung der Härtbarkeit. Die Perlit- und Bainitumwandlung wird zu längeren Zeiten verschoben und die Martensitstarttemperatur gesenkt. Gleichzeitig ist Molybdän ein starker Karbildbildner, der fein verteilte Mischkarbide, u.a. auch mit Titan, entstehen lässt. Molybdän erhöht zudem die Anlassbeständigkeit erheblich, so dass im Schmelztauchbad keine Festigkeitsverluste zu erwarten sind. Molybdän wirkt außerdem über Mischkristallhärtung, ist dabei allerdings weniger effektiv als Mangan und Silizium.
  • Der Gehalt an Molybdän wird daher zwischen 0,200 bis 0,300 Gew.-% eingestellt. Vorteilhaft sind Bereiche zwischen 0,200 und 0,250 Gew.-%.
  • Als Kompromiss zwischen den geforderten mechanischen Eigenschaften und Schmelztauchbarkeit hat sich als vorteilhaft für das erfindungsgemäße Legierungskonzept ein Summengehalt von Mo+Cr von ≤ 0,725 Gew.-% herausgestellt.
  • Kupfer (Cu): Der Zusatz von Kupfer kann die Zugfestigkeit sowie die Einhärtbarkeit steigern. In Verbindung mit Nickel, Chrom und Phosphor kann Kupfer eine schützende Oxidschicht an der Oberfläche bilden, die die Korrosionsrate deutlich reduzieren kann.
  • In Verbindung mit Sauerstoff kann Kupfer an den Korngrenzen schädliche Oxide bilden, die besonders für Warmumformprozesse negative Auswirkungen hervorrufen können. Der Gehalt an Kupfer ist deshalb auf ≤ 0,050 Gew.-% festgelegt und somit bis auf bei der Stahlherstellung unvermeidbare Mengen begrenzt.
  • Nickel (Ni): In Verbindung mit Sauerstoff kann Nickel an den Korngrenzen schädliche Oxide bilden, die besonders für Warmumformprozesse negative Auswirkungen hervorrufen können. Der Gehalt an Nickel ist deshalb auf ≤ 0,050 Gew.-% festgelegt und somit bis auf bei der Stahlherstellung unvermeidbare Mengen begrenzt.
  • Vanadium (V): Da bei dem vorliegenden Legierungskonzept eine Zugabe von Vanadium nicht notwendig ist, wird der Gehalt an Vanadium bis auf unvermeidbare stahlbegleitende Mengen begrenzt.
  • Aluminium (Al) wird in der Regel dem Stahl zulegiert, um den im Eisen gelösten Sauerstoff und Stickstoff zu binden. Sauerstoff und Stickstoff werden so in Aluminiumoxide und Aluminiumnitride überführt. Diese Ausscheidungen können über eine Erhöhung der Keimstellen eine Kornfeinung bewirken und so die Zähigkeitseigenschaften sowie Festigkeitswerte steigern.
  • Aluminiumnitrid wird nicht ausgeschieden, wenn Titan in ausreichenden Mengen vorhanden ist. Titannitride haben eine geringere Bildungsenthalpie und werden bei höheren Temperaturen gebildet.
  • In gelöstem Zustand verschieben Aluminium wie Silizium die Ferritbildung zu kürzeren Zeiten und ermöglicht so die Bildung von ausreichend Ferrit im Dualphasenstahl. Es unterdrückt zudem die Karbidbildung und führt so zu einer verzögerten Umwandlung des Austenits. Aus diesem Grund wird Aluminium auch als Legierungselement in Restaustenitstählen (TRIP-Stählen) verwendet, um einen Teil des Siliziums zu substituieren. Der Grund für diese Vorgehensweise liegt darin, dass Aluminium etwas weniger kritisch für die Verzinkungsreaktion ist als Silizium.
  • Der Aluminium-Gehalt wird deshalb auf 0,005 bis maximal 0,060 Gew.-% begrenzt und wird zur Beruhigung des Stahles zugegeben.
  • Niob (Nb): Niob wirkt im Stahl auf unterschiedliche Weise. Beim Warmwalzen in der Fertigstraße verzögert es durch die Bildung von feinstverteilten Ausscheidungen die Rekristallisation, wodurch die Keimstellendichte erhöht wird und nach der Umwandlung ein feineres Korn entsteht. Auch der Anteil an gelöstem Niob wirkt rekristallisationshemmend. Die Ausscheidungen wirken im finalen Produkt festigkeitssteigernd. Diese können Karbide oder Karbonitride sein. Häufig handelt es sich um Mischkarbide, in die auch Titan eingebaut wird. Dieser Effekt beginnt ab 0,005 Gew.-% und wird ab 0,010 Gew.-% Niob am deutlichsten. Die Ausscheidungen verhindern außerdem das Kornwachstum während der (Teil-) Austenitisierung in der Feuerverzinkung. Oberhalb von 0,060 Gew.-% Niob ist kein zusätzlicher Effekt zu erwarten. Als vorteilhaft haben sich Gehalte von 0,025 bis 0,045 Gew.-% herausgestellt.
  • Titan (Ti): Aufgrund seiner hohen Affinität zu Stickstoff wird Titan bei der Erstarrung vorrangig als TiN ausgeschieden. Außerdem tritt es zusammen mit Niob als Mischkarbid auf. TiN kommt eine hohe Bedeutung für die Korngrößenstabilität im Stoßofen zu. Die Ausscheidungen besitzen eine hohe Temperaturstabilität, so dass sie im Gegensatz zu den Mischkarbiden bei 1200°C größtenteils als Partikel vorliegen, die das Kornwachstum behindern. Auch Titan wirkt verzögernd auf die Rekristallisation während des Warmwalzens, ist dabei jedoch weniger effektiv als Niob. Titan wirkt durch Ausscheidungshärtung. Die größeren TiN-Partikel sind dabei weniger effektiv als die feiner verteilten Mischkarbide. Die beste Wirksamkeit wird im Bereich von 0,005 bis 0,060 Gew.-% Titan erzielt, daher stellt dies die erfindungsgemäße Legierungsspanne dar. Hierfür haben sich Gehalte von 0,025 bis 0,045 Gew.-% als vorteilhaft herausgestellt.
  • Bor (B): Bor ist ein extrem effektives Legierungsmittel zur Härtbarkeitssteigerung, das bereits in sehr geringen Mengen (ab 5 ppm) wirksam wird. Die Martensitstarttemperatur bleibt dabei unbeeinflusst. Um wirksam zu werden, muss Bor in fester Lösung vorliegen. Da es eine hohe Affinität zu Stickstoff hat, muss der Stickstoff zunächst abgebunden werden, vorzugsweise durch die stöchiometrisch notwendige Menge an Titan. Aufgrund seiner geringen Löslichkeit in Eisen lagert sich das gelöste Bor bevorzugt an den Austenitkorngrenzen an. Dort bildet es teilweise Fe-B-Karbide, die kohärent sind und die Korngrenzenenergie herabsetzen. Beide Effekte wirken verzögernd auf die Ferrit- und Perlitbildung und erhöhen somit die Härtbarkeit des Stahls. Zu hohe Gehalte an Bor sind allerdings schädlich, da sich Eisenborid bilden kann, das sich negativ auf die Härtbarkeit, die Umformbarkeit und die Zähigkeit des Materials auswirkt. Bor neigt außerdem dazu, beim Glühen während der kontinuierlichen Schmelztauchbeschichtung Oxide bzw. Mischoxide zu bilden, die die Verzinkungsqualität verschlechtern. Durch die oben genannten Maßnahmen zur Einstellung der Ofenbereiche beim kontinuierlichen Schmelztauchbeschichten wird die Ausbildung von Oxiden an der Stahloberfläche reduziert.
  • Aus vorgenannten Gründen wird der Bor-Gehalt für das erfindungsgemäße Legierungskonzept auf Werte von 5 bis 30 ppm festgelegt, vorteilhaft auf ≤ 25 bzw. optimal auf ≤ 20 ppm.
  • Stickstoff (N) kann sowohl Legierungselement als auch Begleitelement aus der Stahlherstellung sein. Zu hohe Gehalte an Stickstoff bewirken einen Festigkeitsanstieg verbunden mit einem rapiden Zähigkeitsverlust sowie Alterungseffekte. Andererseits kann durch eine gezielte Zulegierung von Stickstoff in Verbindung mit den Mikrolegierungselementen Titan und Niob eine Feinkornhärtung über Titannitride und Niob(karbo)nitride erreicht werden. Außerdem wird die Grobkornbildung beim Wiedererwärmen vor dem Warmwalzen unterdrückt.
  • Erfindungsgemäß wird der N-Gehalt deshalb auf Werte von ≥ 0,0020 bis ≤ 0,0120 Gew.-% festgelegt.
  • Als vorteilhaft hat sich für die Einhaltung der geforderten Eigenschaften des Stahls herausgestellt, wenn der Gehalt an Stickstoff in Abhängigkeit von der Summe aus Ti+Nb+B zugegeben wird.
  • Bei einem Summengehalt von Ti+Nb+B von ≥ 0,010 bis ≤ 0,070 Gew.-% sollte der Gehalt an Stickstoff auf Werte von ≥ 20 bis ≤ 90 ppm eingehalten werden. Für einen Summengehalt aus Ti+Nb+B von > 0,070 Gew.-% haben sich Gehalte an Stickstoff von ≥ 40 bis ≤ 120 ppm als vorteilhaft erwiesen.
  • Für die Summengehalte an Niob und Titan haben sich Gehalte von ≤ 0,100 Gew.-% als vorteilhaft und wegen der prinzipiellen Austauschbarkeit von Niob und Titan bis zu einem minimalen Niobgehalt von 10 ppm sowie aus Kostengründen besonders vorteilhaft von ≤ 0,090 Gew.-% erwiesen.
  • Beim Zusammenspiel der Mikrolegierungselemente Niob sowie Titan mit Bor haben sich Summengehalte von ≤ 0,102 Gew.-% als vorteilhaft und besonders vorteilhaft von ≤ 0,092 Gew.-% erwiesen. Höhere Gehalte wirken sich nicht mehr verbessernd im Sinne der Erfindung aus.
  • Als Summengehalte von Ti+Nb+V+Mo+B haben sich desweiteren maximale Gehalte von ≤ 0,365 Gew.-% aus vorgenannten Gründen erwiesen.
  • Kalzium (Ca): Eine Zugabe von Kalzium in Form von Kalzium-Silizium-Mischverbindungen bewirkt bei der Stahlerzeugung eine Desoxidation und Entschwefelung der schmelzflüssigen Phase. So werden Reaktionsprodukte in die Schlacke überführt und der Stahl gereinigt. Die erhöhte Reinheit führt zu besseren erfindungsgemäßen Eigenschaften im Endprodukt.
  • Aus den genannten Gründen wird ein Ca-Gehalt von ≥ 0,005 bis ≤ 0,0060 Gew.-% eingestellt.
  • Bei mit dem erfindungsgemäßen Stahl durchgeführten Versuchen wurde herausgefunden, dass bei einer interkritischen Glühung zwischen Ac1 und Ac3 bzw. einer austenitisierenden Glühung über Ac3 mit abschließender gesteuerten Abkühlung ein Dualphasenstahl mit einer Mindestzugfestigkeit von 950 MPa in einer Dicke von 0,50 bis 3,00 mm (beispielsweise für Kaltband) erzeugt werden kann, der sich durch eine ausreichende Toleranz gegenüber Prozessschwankungen auszeichnet.
  • Damit liegt ein deutlich aufgeweitetes Prozessfenster für die erfindungsgemäße Legierungszusammensetzung im Vergleich zu bekannten Legierungskonzepten vor.
  • Die Glühtemperaturen für das zu erzielende Dualphasengefüge liegen für den erfindungsgemäßen Stahl zwischen ca. 700 und 950°C, damit wird je nach Temperaturbereich ein teilaustenitisches (Zweiphasengebiet) bzw. ein vollaustenitisches Gefüge (Austenitgebiet) erreicht.
  • Die Versuche zeigten außerdem, dass die eingestellten Gefügeanteile nach der interkritischen Glühung zwischen Ac1 und Ac3 bzw. der austenitisierenden Glühung über Ac3 mit anschließender gesteuerter Abkühlung auch nach einem weiteren Prozessschritt der Schmelztauchveredelung bei Temperaturen zwischen 400 bis 470°C beispielsweise mit Zink oder Zink-Magnesium erhalten bleiben.
  • Das durchlaufgeglühte und fallweise schmelztauchveredelte Material kann sowohl als Warmband, als auch als kalt nachgewalztes Warmband bzw. Kaltband im dressierten (kaltnachgewalzten) bzw. undressierten Zustand und/oder im streckbiegegerichteten bzw. nicht streckbiegerichteten Zustand und auch im wärmebehandelten Zustand (Überalterung) gefertigt werden. Dieser Zustand wird im Folgenden als Ausgangszustand bezeichnet.
  • Stahlbänder, vorliegend als Warmband, kaltnachgewalztes Warmband bzw. Kaltband, aus der erfindungsgemäßen Legierungszusammensetzung, zeichnen sich außerdem bei der Weiterverarbeitung durch eine hohe Kantenrissunempfindlichkeit aus.
  • Die sehr geringen Kennwertunterschiede des Stahlbandes längs und quer zu seiner Walzrichtung sind vorteilhaft beim späteren Materialeinsatz. So kann das Schneiden von Platinen aus einem Band unabhängig von der Walzrichtung (beispielsweise quer, längs und diagonal bzw. in einem Winkel zur Walzrichtung) erfolgen und der Verschnitt minimiert werden.
  • Um die Kaltwalzbarkeit eines aus dem erfindungsgemäßen Stahl erzeugten Warmbandes zu gewährleisten, wird das Warmband erfindungsgemäß mit Endwalztemperaturen im austenitischen Gebiet oberhalb Ar3 und bei Haspeltemperaturen oberhalb der Bainitstarttemperatur erzeugt (Variante A).
  • Bei Warmband bzw. kaltnachgewalztem Warmband, zum Beispiel mit ca. 10% Kaltwalzgrad wird das Warmband erfindungsgemäß mit Endwalztemperaturen im austenitischen Gebiet oberhalb Ar3 und Haspeltemperaturen unterhalb der Bainitstarttemperatur erzeugt (Variante B).
  • Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von in einer Zeichnung dargestellten Ausführungsbeispielen.
  • Es zeigen:
  • Figur 1:
    Prozesskette (schematisch) für die Herstellung eines Bandes aus dem erfindungsgemäßen Stahl
    Figur 2:
    Zeit-Temperatur-Verlauf (schematisch) der Prozessschritte Warmwalzen und Kaltwalzen (optional) sowie Durchlaufglühen, Bauteilfertigung, Vergüten (Lufthärten) und Anlassen (optional) beispielhaft für den erfindungsgemäßen Stahl
    Figur 3:
    Chemische Zusammensetzung der untersuchten Stähle
    Figur 4a:
    Mechanische Kennwerte (längs zur Walzrichtung) als Zielwerte, luftgehärtet und nicht angelassen
    Figur 4b:
    Mechanische Kennwerte (längs zur Walzrichtung) der untersuchten Stähle im Ausgangszustand
    Figur 4c:
    Mechanische Kennwerte (längs zur Walzrichtung) der untersuchten Stähle im luftgehärteten, nicht angelassenen Zustand
    Figur 5:
    Ergebnisse der Lochaufweitungsversuche nach ISO 16630 und des Plättchenbiegeversuchs nach VDA 238-100 an erfindungsgemäßen Stählen
    Figur 6a:
    Verfahren 1, Temperatur-Zeit-Kurven (Glühvarianten schematisch)
    Figur 6b:
    Verfahren 2, Temperatur-Zeit-Kurven (Glühvarianten schematisch)
    Figur 6c:
    Verfahren 3, Temperatur-Zeit-Kurven (Glühvarianten schematisch)
  • Figur 1 zeigt schematisch die Prozesskette für die Herstellung eines Bandes aus dem erfindungsgemäßen Stahl. Dargestellt sind die unterschiedlichen die Erfindung betreffenden Prozessrouten. Bis zum Warmwalzen (Endwalztemperatur) ist die Prozessroute für alle erfindungsgemäßen Stähle gleich, danach erfolgen je nach den gewünschten Ergebnissen abweichende Prozessrouten. Beispielsweise kann das gebeizte Warmband verzinkt werden oder mit unterschiedlichen Abwalzgraden kaltgewalzt und verzinkt werden. Auch kann weichgeglühtes Warmband bzw. weichgeglühtes Kaltband kaltgewalzt und verzinkt werden.
  • Es kann Material auch optional ohne Schmelztauchveredelung prozessiert werden, d.h. nur im Rahmen einer Durchlaufglühung mit und ohne anschließender elektrolytischen Verzinkung. Aus dem optional beschichteten Werkstoff kann nun ein komplexes Bauteil hergestellt werden. Im Anschluss daran findet der Härteprozess statt, beim dem erfindungsgemäß an Luft abgekühlt wird. Optional kann eine Anlassstufe die thermische Behandlung des Bauteils abschließen.
  • Figur 2 zeigt schematisch den Zeit-Temperaturverlauf der Prozessschritte Warmwalzen und Durchlaufglühen von Bändern aus der erfindungsgemäßen Legierungszusammensetzung. Dargestellt ist die zeit- und temperaturabhängige Umwandlung für den Warmwalzprozess als auch für eine Wärmebehandlung nach dem Kaltwalzen, die Bauteilfertigung, Vergütung und optionales Anlassen.
  • Figur 3 zeigt in der oberen Tabellenhälfte die chemische Zusammensetzung der untersuchten Stähle. Verglichen wurden erfindungsgemäße Legierungen LH®1100 mit den Referenzgüten LH®800/LH®900.
  • Gegenüber den Referenzgüten weisen die erfindungsgemäßen Legierungen insbesondere deutlich erhöhte Gehalte an Si und geringere Gehalte an Cr und keine Zulegierung von V auf.
  • In der unteren Tabellenhälfte der Figur 3 sind die Summengehalte verschiedener Legierungskomponenten in Gew.-% und das jeweils ermittelte Kohlenstoffäquivalent CEV(IIW) aufgeführt.
  • Figur 4 zeigt die mechanischen Kennwerte längs zur Walzrichtung der untersuchten Stähle, mit zu erreichenden Zielkennwerten für den luftgehärteten Zustand ( Figur 4a ), die ermittelten Werte im nicht luftgehärteten Ausgangszustand ( Figur 4b ) und im luftgehärteten Zustand ( Figur 4c ). Die vorgegebenen zu erreichenden Werte werden sicher erreicht.
  • Figur 5 zeigt Ergebnisse der Lochaufweitungsversuche nach ISO 16630 (absolute Werte). Dargestellt sind die Ergebnisse der Lochaufweitungsversuche für Variante A (Haspeltemperatur oberhalb Bainitstarttemperatur) jeweils für Verfahren 2 ( Figur 6b , 1,2 mm) und Verfahren 3 ( Figur 6c , 2,0 mm).
  • Die untersuchten Werkstoffe haben eine Blechdicke von 1,2 bzw. 2,0 mm. Die Ergebnisse gelten für den Test nach ISO 16630.
  • Das Verfahren 2 entspricht einer Glühung beispielsweise an einer Feuerverzinkung mit kombiniertem direkt befeuertem Ofen und Strahlrohrofen, wie er in Figur 6b beschrieben ist.
  • Das Verfahren 3 entspricht beispielsweise einer Prozessführung in einer Durchlaufglühanlage, wie sie in Figur 6c beschrieben ist. Zudem kann hier mittels Induktionsofen ein Wiederaufheizen des Stahls optional direkt vor dem Zinkbad erreicht werden.
  • Durch die unterschiedlichen erfindungsgemäßen Temperaturführungen innerhalb der genannten Spannbreite ergeben sich voneinander unterschiedliche Kennwerte bzw. auch unterschiedliche Lochaufweitungsergebnisse sowie Biegewinkel. Prinzipieller Unterschied sind also die Temperatur-Zeit-Parameter bei der Wärmebehandlung und der nachgeschalteten Abkühlung.
  • Die Figur 6 zeigt schematisch drei Varianten der erfindungsgemäßen Temperatur-ZeitVerläufe bei der Glühbehandlung und Abkühlung und jeweils verschiedene Austenitisierungsbedingungen.
  • Das Verfahren 1 ( Figur 6a ) zeigt die Glühung und Abkühlung vom erzeugten kalt- oder warmgewalzten oder kaltnachgewalztem Stahlband in einer Durchlaufglühanlage. Zuerst wird das Band auf eine Temperatur im Bereich von etwa 700 bis 950°C (Ac1 bis Ac3) aufgeheizt. Das geglühte Stahlband wird anschließend von der Glühtemperatur mit einer Abkühlgeschwindigkeit zwischen ca. 15 und 100°C/s bis zu einer Zwischentemperatur (ZT) von ca. 200 bis 250°C abgekühlt. Auf die Darstellung einer zweiten Zwischentemperatur (ca. 300 bis 500°C) wird in dieser schematischen Darstellung verzichtet.
  • Anschließend wird das Stahlband mit einer Abkühlgeschwindigkeit zwischen ca. 2 und 30°C/s bis zum Erreichen der R aum t emperatur (RT) an Luft abgekühlt bzw. die Kühlung mit einer Abkühlgeschwindigkeit zwischen ca. 15 und 100°C/s wird bis auf Raumtemperatur beibehalten.
  • Das Verfahren 2 ( Figur 6b ) zeigt den Prozess gemäß Verfahren 1, jedoch wird die Kühlung des Stahlbandes zum Zwecke einer Schmelztauchveredelung kurzzeitig beim Durchlaufen des Schmelztauchgefäßes unterbrochen, um anschließend die Kühlung mit einer Abkühlgeschwindigkeit zwischen ca. 15 und 100°C/s bis zu einer Zwischentemperatur von ca. 200 bis 250°C fortzusetzen. Anschließend wird das Stahlband mit einer Abkühlgeschwindigkeit zwischen ca. 2 und 30°C/s bis zum Erreichen der Raumtemperatur an Luft abgekühlt.
  • Das Verfahren 3 ( Figur 6c ) zeigt ebenfalls den Prozess gemäß Verfahren 1 bei einer Schmelztauchveredelung, jedoch wird die Kühlung des Stahlbandes durch eine kurze Pause (ca. 1 bis 20 s) bei einer Zwischentemperatur im Bereich von ca. 200 bis 400°C unterbrochen und bis auf die Temperatur (ST), die zum Schmelztauchveredeln notwendig ist (ca. 400 bis 470°C), wieder erwärmt. Anschließend wird das Stahlband wieder bis zu einer Zwischentemperatur von ca. 200 bis 250°C gekühlt. Mit einer Abkühlgeschwindigkeit von ca. 2 und 30°C/s erfolgt bis zum Erreichen der Raumtemperatur an Luft die abschließende Kühlung des Stahlbandes.
  • Für die industrielle Fertigung für das Feuerverzinken nach Verfahren 2 nach Figur 6b und nach Verfahren 3 nach Figur 6c mit laborbasierendem Vergütungsprozess stehen die nachfolgenden Beispiele:
  • Beispiel 1 (Kaltband) (Legierungszusammensetzung in Gew.-%) Variante A/1,2 mm/Verfahren 2 nach Figur 6b
  • Ein erfindungsgemäßer Stahl mit 0,099% C; 0,461 % Si; 2,179% Mn; 0,009% P; 0,001% S; 0,0048% N; 0,040 AI; 0,312% Cr; 0,208% Mo; 0,0292% Ti; 0,0364% Nb; 0,0012% B; 0,0015% Ca nach Verfahren 2 entsprechend Figur 6b schmelztauchveredelt, das Material wurde zuvor bei einer Endwalzsolltemperatur von 910°C warmgewalzt und bei einer Haspelsolltemperatur von 650°C mit einer Dicke von 2,30 mm gehaspelt und nach dem Beizen ohne zusätzliche Wärmebehandlung (wie z.B. Haubenglühen) mit einer Zwischendicke von 1,49 mm zweimal kaltgewalzt.
  • In einem Glühsimulator wurde ein schmelztauchveredeltes, luftgehärtetes Stahlband mit nachfolgenden Parametern prozessiert.
    • Glühtemperatur 870°C
    • Haltezeit 120 s
    • Transportzeit max. 5 s (ohne Energiezufuhr)
    • anschließende Abkühlung an Luft
  • Der erfindungsgemäße Stahl besitzt nach der Vergütung ein Gefüge, welches aus Martensit, Bainit und Restaustenit besteht.
  • Dieser Stahl zeigt nachfolgende Kennwerte nach Lufthärtung (Ausgangswerte in Klammern, unvergüteter Zustand):
    - Dehngrenze (Rp0,2) 921 MPa (768 MPa)
    - Zugfestigkeit (Rm) 1198 MPa (984 MPa)
    - Bruchdehnung (A80) 5,5% (10,7%)
    - A5 Dehnung 9,5% (-)
    - Bake-Hardening-Index (BH2) 52 MPa
    - Lochaufweitungsverhältnis nach ISO 16630 - (49%)
    - Biegewinkel nach VDA 238-100 (längs, quer) - (122°/112°)
    längs zur Walzrichtung und würde beispielsweise einem LH®1100 entsprechen.
  • Das Streckgrenzenverhältnis Re/Rm in Längsrichtung lag im Ausgangszustand bei 78%.
  • Beispiel 2 (Kaltband) (Legierungszusammensetzung in Gew.-%) Variante B/2,0 mm/Verfahren 3 nach Figur 6c
  • Ein erfindungsgemäßer Stahl mit 0,100% C; 0,456% Si; 2,139% Mn; 0,010% P; 0,001% S; 0,0050% N; 0,058 AI; 0,313% Cr; 0,202% Mo; 0,0289% Ti; 0,0337% Nb; 0,0009% B; 0,0021 % Ca nach Verfahren 3 entsprechend Figur 6c schmelztauchveredelt, das Material wurde zuvor bei einer Endwalzsolltemperatur von 910°C warmgewalzt und bei einer Haspelsolltemperatur von 650°C mit einer Dicke von 2,30 mm gehaspelt und nach dem Beizen ohne zusätzliche Wärmebehandlung (wie z.B. Haubenglühen) kaltgewalzt.
  • In einem Glühsimulator wurde der schmelztauchveredelte Stahl analog eines Vergütungsprozesses (Lufthärten) mit nachfolgenden Parametern prozessiert.
    • Glühtemperatur 870°C
    • Haltezeit 120 s
    • Transportzeit: max. 5 s (ohne Energiezufuhr)
    • Anschließende Abkühlung an Luft
    Der erfindungsgemäße Stahl besitzt nach der Vergütung ein Gefüge, welches aus Martensit, Bainit und Restaustenit besteht.
  • Dieser Stahl zeigt nachfolgende Kennwerte nach Lufthärtung (Ausgangswerte in Klammern, unvergüteter Zustand):
    - Dehngrenze (Rp0,2) 903 MPa (708 MPa)
    - Zugfestigkeit (Rm) 1186 MPa (983 MPa)
    - Bruchdehnung (A80) 7,1% (11,7%)
    - A5 Dehnung 9,1% (-)
    - Bake-Hardening-Index (BH2) 48 MPa
    - Lochaufweitungsverhältnis nach ISO 16630 - (32%)
    - Biegewinkel nach VDA 238-100 (längs, quer) - (104°/88°)
    längs zur Walzrichtung und würde beispielsweise einem LH®1100 entsprechen. Das Streckgrenzenverhältnis Re/Rm in Längsrichtung lag im Ausgangszustand bei 72%.

Claims (30)

  1. Kalt- oder warmgewalztes Stahlband aus einem luftvergütbaren Mehrphasenstahl mit einer Mindestzugfestigkeit in Längs-und Querrichtung zur Walzrichtung von 950 MPa vor der Lutvergütung, mit hervorragenden Verarbeitungseigenschaften bestehend aus den Elementen (Gehalte in Gew.-%):
    C ≥ 0,075 bis ≤ 0,115
    Si ≥ 0,400 bis ≤ 0,500
    Mn ≥ 1,900 bis ≤ 2,350
    Cr ≥ 0,200 bis ≤ 0,500
    Al ≥ 0,005 bis ≤ 0,060
    N ≥ 0,0020 bis ≤ 0,0120
    S ≤ 0,0030
    Nb ≥ 0,005 bis ≤ 0,060
    Ti ≥ 0,005 bis 0,060
    B ≥ 0,0005 bis ≤ 0,0030
    Mo ≥ 0,200 bis ≤ 0,300
    Ca ≥ 0,0005 bis ≤ 0,0060
    Cu ≤ 0,050
    Ni ≤ 0,050
    Rest Eisen, einschließlich üblicher stahlbegleitender erschmelzungsbedingter Verunreinigungen, bei dem im Hinblick auf ein möglichst breites Prozessfenster bei der Durchlaufglühung von Warm- oder Kaltbändern aus diesem Stahl der Summengehalt von Mn+Si+Cr abhängig von der zu erzeugenden Banddicke wie folgt eingestellt wird:
    bis 1,00 mm: Summe aus Mn+Si+Cr ≥ 2,800 und ≤ 3,000 Gew.-%
    über 1,00 bis 2,00 mm: Summe aus Mn+Si+Cr ≥ 2,850 und ≤ 3,100 Gew.-%
    über 2,00 mm: Summe aus Mn+Si+Cr ≥ 2,900 und ≤ 3,200 Gew.-%
  2. Stahlband nach Anspruch 1,
    dadurch gekennzeichnet,
    dass bei Banddicken bis 1,00 mm der C-Gehalt ≤ 0,100% und das Kohlenstoffäquivalent CEV (IIW) ≤ 0,62% betragen.
  3. Stahlband nach Anspruch 1,
    dadurch gekennzeichnet,
    dass bei Banddicken über 1,00 bis 2,00 mm der C-Gehalt ≤ 0,105% und das Kohlenstoffäquivalent CEV(IIW) ≤ 0,64% betragen.
  4. Stahlband nach Anspruch 1,
    dadurch gekennzeichnet,
    dass bei Banddicken über 2,00 mm der C-Gehalt ≤ 0,115% und das Kohlenstoffäquivalent CEV(IIW) ≤ 0,66% betragen.
  5. Stahlband nach Anspruch 1 und 2,
    dadurch gekennzeichnet,
    dass bei Banddicken bis 1,00 mm der Mn-Gehalt ≥ 1,900 bis ≤ 2,200% beträgt.
  6. Stahlband nach Anspruch 1 und 3,
    dadurch gekennzeichnet,
    dass bei Banddicken über 1,00 bis 2,00 mm der Mn-Gehalt ≥ 2,050 bis ≤ 2,250% beträgt.
  7. Stahlband nach Anspruch 1 und 4,
    dadurch gekennzeichnet,
    dass bei Banddicken über 2,00 mm der Mn-Gehalt ≥ 2,100 bis ≤ 2,350% beträgt.
  8. Stahlband nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass bei einer Summe aus Ti+Nb+B von ≥ 0,010 bis ≤ 0,070% der N-Gehalt ≥ 0,0020 bis ≤ 0,0090% beträgt.
  9. Stahlband nach Anspruch 8,
    dadurch gekennzeichnet,
    dass bei der Summe aus Ti+Nb+B von > 0,070% der N-Gehalt ≥ 0,0040 bis ≤ 0,0120% beträgt.
  10. Stahlband nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass der S-Gehalt ≤ 0,0025% beträgt.
  11. Stahlband nach Anspruch 10,
    dadurch gekennzeichnet,
    dass der S-Gehalt ≤ 0,0020% beträgt.
  12. Stahlband nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass der Mo-Gehalt ≤ 0,250% beträgt.
  13. Stahlband nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet,
    dass der Ti-Gehalt ≥ 0,025 ≤ 0,045% beträgt.
  14. Stahlband nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet,
    dass der Nb-Gehalt ≥ 0,025 bis ≤ 0,045% beträgt.
  15. Stahlband nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet,
    dass die Summe Nb+Ti ≤ 0,100% beträgt.
  16. Stahlband nach Anspruch 15,
    dadurch gekennzeichnet,
    dass die Summe Nb+Ti ≤ 0,090% beträgt.
  17. Stahlband nach einem der Ansprüche 1 bis 16,
    dadurch gekennzeichnet,
    dass die Summe Cr+Mo ≤ 0,725% beträgt.
  18. Stahlband nach einem der Ansprüche 1 bis 17,
    dadurch gekennzeichnet,
    dass die Summe Ti+Nb+B ≤ 0,102% beträgt.
  19. Stahlband nach Anspruch 18,
    dadurch gekennzeichnet,
    dass die Summe Ti+Nb+B ≤ 0,092% beträgt.
  20. Stahlband nach einem der Ansprüche 1 bis 19,
    dadurch gekennzeichnet,
    dass der Ca-Gehalt ≤ 0,0030% beträgt.
  21. Wärmebehandlung eines kalt-oder warmgewalzten Stahlbande aus einem luftvergütbaren Mehrphasenstahl nach einem der Ansprüche 1 bis 20,
    dadurch gekennzeichnet,
    dass das kalt- oder warmgewalzte Stahlband während der Durchlaufglühung auf eine Temperatur im Bereich von ca. 700 bis 950°C aufgeheizt und dass das geglühte Stahlband anschließend von der Glühtemperatur mit einer Abkühlgeschwindigkeit zwischen ca. 15 und 100°C/s bis zu einer ersten Zwischentemperatur von ca. 300 bis 500°C, folgend mit einer Abkühlgeschwindigkeit zwischen ca. 15 und 100°C/s bis zu einer zweiten Zwischentemperatur von ca. 160 bis 250°C abkühlt wird, anschließend das Stahlband mit einer Abkühlgeschwindigkeit von ca. 2 bis 30°C/s bis zum Erreichen der Raumtemperatur an Luft abkühlt oder die Kühlung mit einer Abkühlgeschwindigkeit zwischen ca. 15 und 100°C/s von der ersten Zwischentemperatur bis auf Raumtemperatur beibehalten wird.
  22. Wärmebehandlung nach Anspruch 21,
    dadurch gekennzeichnet,
    dass bei einer Schmelztauchveredelung nach dem Aufheizen und anschließendem Kühlen die Kühlung vor dem Eintreten in das Schmelzbad angehalten und nach der Schmelztauchveredelung die Kühlung mit einer Abkühlgeschwindigkeit zwischen ca. 15 und 100°C/s bis zu einer Zwischentemperatur von ca. 200 bis 250°C fortgesetzt und anschließend das Stahlband mit einer Abkühlgeschwindigkeit von ca. 2 und 30°C/s bis zum Erreichen der Raumtemperatur an Luft abgekühlt wird.
  23. Wärmebehandlung nach Anspruch 21,
    dadurch gekennzeichnet,
    dass bei einer Schmelztauchveredelung nach dem Aufheizen und anschließendem Kühlen auf die Zwischentemperatur von ca. 200 bis 250°C vor dem Eintreten in das Schmelzbad die Temperatur für ca. 1 bis 20 s gehalten und anschließend das Stahlband auf eine Temperatur von ca. 400 bis 470°C wieder erwärmt wird und nach erfolgter Schmelztauchveredlung eine Kühlung mit einer Abkühlgeschwindigkeit zwischen ca. 15 und 100°C/s bis zu einer Zwischentemperatur von ca. 200 bis 250°C erfolgt und anschließend mit einer Abkühlgeschwindigkeit von ca. 2 und 30°C/s an Luft bis zur Raumtemperatur abgekühlt wird.
  24. Wärmebehandlung nach einem der Ansprüche 22 bis 23,
    dadurch gekennzeichnet,
    dass bei der Durchlaufglühung das Oxidationspotential bei einer Glühung mit einer Anlagenkonfiguration, bestehend aus direkt befeuertem Ofenbereich (NOF) und einem Strahlrohrofen (RTF) durch einen CO-Gehalt im NOF von unter 4 Vol.-% gesteigert wird, wobei im RTF der Sauerstoffpartialdruck der für Eisen reduzierenden Ofenatmosphäre gemäß nachfolgender Gleichung eingestellt wird, 18 > Log pO 2 5 * Si 0,3 2,2 * Mn 0,45 0,1 * Cr 0,4 12,5 * ln B 0,25
    Figure imgb0006
    wobei Si, Mn, Cr, B die entsprechenden Legierungsanteile im Stahl in Gew.-% und pO2 den Sauerstoffpartialdruck in mbar bezeichnen und zur Vermeidung der Oxidation des Bandes direkt vor dem Eintauchen in das Schmelzbad der Taupunkt der Gasatmosphäre bei -30°C oder darunter eingestellt wird.
  25. Wärmebehandlung nach einem der Ansprüche 22 bis 23,
    dadurch gekennzeichnet,
    dass bei einer Glühung nur mit einem Strahlrohrofen der Sauerstoffpartialdruck der Ofenatmosphäre nachfolgender Gleichung genügt, 12 > Log pO 2 5 * Si 0,25 3 * Mn 0,5 0,1 * Cr 0,5 7 * ln B 0,5
    Figure imgb0007
    wobei Si, Mn, Cr, B die entsprechenden Legierungsanteile im Stahl in Gew.-% und pO2 den Sauerstoffpartialdruck in mbar bezeichnen und zur Vermeidung der Oxidation des Bandes direkt vor dem Eintauchen in das Schmelzbad der Taupunkt der Gasatmosphäre bei -30°C oder darunter eingestellt wird.
  26. Verfahren nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet,
    dass das Stahlband im Anschluss an die Wärmebehandlung oder Schmelztauchveredelung dressiert wird.
  27. Verfahren nach mindestens einem der Ansprüche 21 bis 26, dadurch gekennzeichnet,
    dass das Stahlband im Anschluss an die Wärmebehandlung oder Schmelztauchveredelung streckbiegegerichtet wird.
  28. Stahlband hergestellt durch das Verfahren nach mindestens einem der Ansprüche 21 bis 27, aufweisend einen Mindestlochaufweitungswert nach ISO 16630 von 25%.
  29. Stahlband hergestellt durch das Verfahren nach mindestens einem der Ansprüche 21 bis 27, aufweisend einen Mindestbiegewinkel nach VDA 238-100 von 65° in Längsrichtung bzw. Querrichtung.
  30. Stahlband hergestellt durch das Verfahren nach mindestens einem der Ansprüche 21 bis 27, aufweisend einen Mindestproduktwert Rm x α (Zugfestigkeit x Biegewinkel nach VDA 238-100) von 100000 MPa.
EP15821018.7A 2014-11-18 2015-11-06 Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl Active EP3221483B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014017274.0A DE102014017274A1 (de) 2014-11-18 2014-11-18 Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
PCT/DE2015/100474 WO2016078644A1 (de) 2014-11-18 2015-11-06 Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl

Publications (2)

Publication Number Publication Date
EP3221483A1 EP3221483A1 (de) 2017-09-27
EP3221483B1 true EP3221483B1 (de) 2020-05-06

Family

ID=55077320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15821018.7A Active EP3221483B1 (de) 2014-11-18 2015-11-06 Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl

Country Status (8)

Country Link
US (1) US10626478B2 (de)
EP (1) EP3221483B1 (de)
KR (1) KR20170084210A (de)
CN (1) CN107208232B (de)
DE (1) DE102014017274A1 (de)
MX (1) MX2017006374A (de)
RU (1) RU2721767C2 (de)
WO (1) WO2016078644A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825433B1 (de) * 2018-08-22 2023-02-15 JFE Steel Corporation Hochfestes stahlblech und herstellungsverfahren dafür
EP3950994B1 (de) * 2019-03-28 2024-01-24 Nippon Steel Corporation Hochfestes stahlblech

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111177A1 (de) * 2015-07-10 2017-01-12 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus
ES2906276T3 (es) * 2017-01-20 2022-04-18 thyssenkrupp Hohenlimburg GmbH Producto plano de acero laminado en caliente que está constituido por un acero de fase compleja con estructura predominantemente bainítica y procedimiento para la fabricación de un producto plano de acero de este tipo
DE102017123236A1 (de) * 2017-10-06 2019-04-11 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines Stahlbandes aus diesem Mehrphasenstahl
DE102017131253A1 (de) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
WO2020039697A1 (ja) 2018-08-22 2020-02-27 Jfeスチール株式会社 高強度鋼板及びその製造方法
CN112912186B (zh) * 2018-10-24 2023-04-07 日本制铁株式会社 无取向电磁钢板和使用其的层叠铁芯的制造方法
DE102020110319A1 (de) 2020-04-15 2021-10-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit einem Mehrphasengefüge und Stahlband hinzu

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012013113A1 (de) * 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578124A (en) * 1984-01-20 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho High strength low carbon steels, steel articles thereof and method for manufacturing the steels
JP3347151B2 (ja) * 1991-11-18 2002-11-20 日新製鋼株式会社 耐食性に優れた低降伏比冷延高張力鋼板の製造方法
EP0565066B1 (de) * 1992-04-06 1997-07-02 Kawasaki Steel Corporation Schwarz- oder Weissblech für die Fertigung von Dosen und Herstellungsverfahren
DE19610675C1 (de) 1996-03-19 1997-02-13 Thyssen Stahl Ag Mehrphasenstahl und Verfahren zu seiner Herstellung
DE10037867A1 (de) 1999-08-06 2001-06-07 Muhr & Bender Kg Verfahren zum flexiblen Walzen eines Metallbandes
DE60125253T2 (de) * 2000-02-29 2007-04-05 Jfe Steel Corp. Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften
US6962631B2 (en) * 2000-09-21 2005-11-08 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
JP2002173742A (ja) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd 形状平坦度に優れた高強度オーステナイト系ステンレス鋼帯およびその製造方法
FR2847273B1 (fr) * 2002-11-19 2005-08-19 Usinor Piece d'acier de construction soudable et procede de fabrication
JP4005517B2 (ja) * 2003-02-06 2007-11-07 株式会社神戸製鋼所 伸び、及び伸びフランジ性に優れた高強度複合組織鋼板
KR100698395B1 (ko) * 2003-04-28 2007-03-23 제이에프이 스틸 가부시키가이샤 디스크브레이크용 마르텐사이트계 스테인레스강
AU2003235443A1 (en) * 2003-05-27 2005-01-21 Nippon Steel Corporation High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet
JP4443910B2 (ja) * 2003-12-12 2010-03-31 Jfeスチール株式会社 自動車構造部材用鋼材およびその製造方法
DE102004053620A1 (de) 2004-11-03 2006-05-04 Salzgitter Flachstahl Gmbh Hochfester, lufthärtender Stahl mit ausgezeichneten Umformeigenschaften
US7442268B2 (en) * 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
EP1867748A1 (de) * 2006-06-16 2007-12-19 Industeel Creusot Duplex-Edelstahl
EP2042615A4 (de) * 2006-10-05 2011-08-03 Jfe Steel Corp Bremsscheiben mit hervorragender beständigkeit gergenüber tempererweichung und zähigkeit
KR100851189B1 (ko) * 2006-11-02 2008-08-08 주식회사 포스코 저온인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법
EP1990431A1 (de) * 2007-05-11 2008-11-12 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten und geglühten Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
ES2367713T3 (es) 2007-08-15 2011-11-07 Thyssenkrupp Steel Europe Ag Acero de fase dual, producto plano de un acero de fase dual tal y procedimiento para la fabricación de un producto plano.
EP2028282B1 (de) 2007-08-15 2012-06-13 ThyssenKrupp Steel Europe AG Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts
DE102007058222A1 (de) 2007-12-03 2009-06-04 Salzgitter Flachstahl Gmbh Stahl für hochfeste Bauteile aus Bändern, Blechen oder Rohren mit ausgezeichneter Umformbarkeit und besonderer Eignung für Hochtemperatur-Beschichtungsverfahren
JP4894863B2 (ja) * 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2010013848A1 (ja) * 2008-07-31 2010-02-04 Jfeスチール株式会社 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
EP2163659B1 (de) * 2008-09-11 2016-06-08 Outokumpu Nirosta GmbH Nichtrostender Stahl, aus diesem Stahl hergestelltes Kaltband und Verfahren zur Herstellung eines Stahlflachprodukts aus diesem Stahl
JP5438302B2 (ja) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
US20120018056A1 (en) * 2009-01-30 2012-01-26 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
JP4924730B2 (ja) * 2009-04-28 2012-04-25 Jfeスチール株式会社 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
DE102009030489A1 (de) * 2009-06-24 2010-12-30 Thyssenkrupp Nirosta Gmbh Verfahren zum Herstellen eines warmpressgehärteten Bauteils, Verwendung eines Stahlprodukts für die Herstellung eines warmpressgehärteten Bauteils und warmpressgehärtetes Bauteil
DE102010024664A1 (de) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Verfahren zum Herstellen eines Bauteils aus einem lufthärtbaren Stahl und ein damit hergestelltes Bauteil
WO2011076383A1 (en) * 2009-12-21 2011-06-30 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
MX2012004650A (es) * 2010-01-13 2012-05-08 Nippon Steel Corp Lamina de acero de alta traccion, superior en capacidad de conformacion y metodo de manufactura de la misma.
JP5434960B2 (ja) * 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
ES2455222T5 (es) * 2010-07-02 2018-03-05 Thyssenkrupp Steel Europe Ag Acero de resistencia superior, conformable en frío y producto plano de acero compuesto de un acero de este tipo
JP5306418B2 (ja) * 2010-07-09 2013-10-02 日新製鋼株式会社 銅被覆鋼箔、負極用電極及び電池
US9896736B2 (en) * 2010-10-22 2018-02-20 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall
BR112013009515B1 (pt) * 2010-10-22 2018-08-07 Nippon Steel & Sumitomo Metal Corporation Método de fabricação de corpo estampado a quente que tem uma parede vertical e corpo estampado a quente que tem uma parede vertical
WO2012053636A1 (ja) * 2010-10-22 2012-04-26 新日本製鐵株式会社 ホットスタンプ成形体の製造方法及びホットスタンプ成形体
DE102011000089A1 (de) * 2011-01-11 2012-07-12 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts
DE102011117572A1 (de) * 2011-01-26 2012-08-16 Salzgitter Flachstahl Gmbh Höherfester Mehrphasenstahl mit ausgezeichneten Umformeigenschaften
MX338912B (es) * 2011-03-28 2016-05-05 Nippon Steel & Sumitomo Metal Corp Placa de acero laminada en caliente y metodo de produccion para la misma.
EP2524970A1 (de) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung
US20140205858A1 (en) * 2011-09-13 2014-07-24 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
US9540720B2 (en) * 2011-09-30 2017-01-10 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and small material anisotropy with ultimate tensile strength of 980 MPa or more
JP5610094B2 (ja) * 2011-12-27 2014-10-22 Jfeスチール株式会社 熱延鋼板およびその製造方法
DE102012002079B4 (de) 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
DE102012006017A1 (de) 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102013004905A1 (de) 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl
KR102060522B1 (ko) * 2012-03-30 2019-12-30 뵈스트알파인 스탈 게엠베하 고강도 냉연 강판 및 그의 제조 방법
US10227683B2 (en) * 2012-03-30 2019-03-12 Voestalpine Stahl Gmbh High strength cold rolled steel sheet
ES2648415T5 (es) * 2012-03-30 2021-02-15 Voestalpine Stahl Gmbh Chapa de acero de alta resistencia laminada en frío y procedimiento de fabricación de dicha chapa de acero
MX366776B (es) * 2012-04-06 2019-07-23 Nippon Steel Corp Lamina de acero, laminada en caliente, recocida y galvanizada por inmersion en caliente, y proceso para producir la misma.
KR101660149B1 (ko) * 2012-04-12 2016-09-26 제이에프이 스틸 가부시키가이샤 건축 구조 부재용 각형 강관용 두꺼운 열연 강판 및 그 제조 방법
KR102073441B1 (ko) * 2012-06-05 2020-02-04 티센크루프 스틸 유럽 악티엔게젤샤프트 강, 강판 제품 및 강판 제품을 제조하기 위한 방법
BR112015000178B1 (pt) * 2012-08-03 2020-03-17 Tata Steel Ijmuiden Bv Processo para produzir tira de aço laminado a quente e tira de aço laminado a quente
RU2507297C1 (ru) * 2012-10-05 2014-02-20 Леонид Михайлович Клейнер Стали со структурой пакетного мартенсита
EP2767601B1 (de) * 2013-02-14 2018-10-10 ThyssenKrupp Steel Europe AG Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung
ES2625754T3 (es) * 2013-03-11 2017-07-20 Tata Steel Ijmuiden Bv Fleje de acero de fase compleja galvanizado por inmersión en caliente de alta resistencia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012013113A1 (de) * 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825433B1 (de) * 2018-08-22 2023-02-15 JFE Steel Corporation Hochfestes stahlblech und herstellungsverfahren dafür
EP3950994B1 (de) * 2019-03-28 2024-01-24 Nippon Steel Corporation Hochfestes stahlblech

Also Published As

Publication number Publication date
US10626478B2 (en) 2020-04-21
DE102014017274A1 (de) 2016-05-19
WO2016078644A1 (de) 2016-05-26
EP3221483A1 (de) 2017-09-27
CN107208232A (zh) 2017-09-26
RU2017120860A (ru) 2018-12-19
RU2017120860A3 (de) 2019-07-26
CN107208232B (zh) 2019-02-26
RU2721767C2 (ru) 2020-05-22
MX2017006374A (es) 2018-02-16
KR20170084210A (ko) 2017-07-19
US20190316222A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
EP2864517B1 (de) Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl mit einer mindestzugfestigkeit von 580mpa
EP3027784B1 (de) Siliziumhaltiger, mikrolegierter hochfester mehrphasenstahl mit einer mindestzugfestigkeit von 750 mpa und verbesserten eigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
DE102012002079B4 (de) Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
EP3221483B1 (de) Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP3221484B1 (de) Verfahren zur herstellung eines hochfesten lufthärtenden mehrphasenstahls mit hervorragenden verarbeitungseigenschaften
EP3221478B1 (de) Warm- oder kaltband aus einem hochfesten lufthärtenden mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines warm- oder kaltgewalzten stahlbandes aus dem hohfesten lufthärtenden mehrphasenstahl
EP2836614B1 (de) Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl
EP2855717B1 (de) Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts
WO2017009192A1 (de) Höchstfester mehrphasenstahl und verfahren zur herstellung eines kaltgewalzten stahlbandes hieraus
EP2668302B1 (de) Verfahren zur herstellung eines stahlbandes aus einem höherfesten mehrphasenstahl mit ausgezeichneten umformeigenschaften
EP3692178B1 (de) Verfahren zur herstellung eines stahlbandes aus höchstfestem mehrphasenstahl
EP4301885A1 (de) Stahlflachprodukt, verfahren zu seiner herstellung und verwendung eines solchen stahlflachprodukts
EP3749469B1 (de) Verfahren zur herstellung eines bauteils durch warmumformen eines vorproduktes aus manganhaltigem stahl und ein warmumgeformtes stahlbauteil
EP3964591A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
DE102022125128A1 (de) Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband
EP4174207A1 (de) Stahlflachprodukt mit verbesserten verarbeitungseigenschaften

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015012551

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038020000

Ipc: C21D0001840000

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/58 20060101ALI20190924BHEP

Ipc: C22C 38/22 20060101ALI20190924BHEP

Ipc: C22C 38/32 20060101ALI20190924BHEP

Ipc: C21D 9/56 20060101ALI20190924BHEP

Ipc: C21D 1/26 20060101ALI20190924BHEP

Ipc: C22C 38/06 20060101ALI20190924BHEP

Ipc: C21D 9/48 20060101ALI20190924BHEP

Ipc: C21D 8/04 20060101ALI20190924BHEP

Ipc: C23C 2/00 20060101ALI20190924BHEP

Ipc: C22C 38/28 20060101ALI20190924BHEP

Ipc: C21D 1/74 20060101ALI20190924BHEP

Ipc: C22C 38/02 20060101ALI20190924BHEP

Ipc: C21D 1/84 20060101AFI20190924BHEP

Ipc: C22C 38/04 20060101ALI20190924BHEP

Ipc: C22C 38/26 20060101ALI20190924BHEP

Ipc: C21D 1/28 20060101ALI20190924BHEP

Ipc: C22C 38/38 20060101ALI20190924BHEP

Ipc: C21D 1/76 20060101ALI20190924BHEP

Ipc: C21D 9/46 20060101ALI20190924BHEP

Ipc: C21D 8/02 20060101ALI20190924BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1266803

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012551

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012551

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1266803

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 9

Ref country code: DE

Payment date: 20231121

Year of fee payment: 9