EP2668302B1 - Verfahren zur herstellung eines stahlbandes aus einem höherfesten mehrphasenstahl mit ausgezeichneten umformeigenschaften - Google Patents

Verfahren zur herstellung eines stahlbandes aus einem höherfesten mehrphasenstahl mit ausgezeichneten umformeigenschaften Download PDF

Info

Publication number
EP2668302B1
EP2668302B1 EP11822842.8A EP11822842A EP2668302B1 EP 2668302 B1 EP2668302 B1 EP 2668302B1 EP 11822842 A EP11822842 A EP 11822842A EP 2668302 B1 EP2668302 B1 EP 2668302B1
Authority
EP
European Patent Office
Prior art keywords
content
temperature
cooling
steel
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11822842.8A
Other languages
English (en)
French (fr)
Other versions
EP2668302A1 (de
Inventor
Andreas WEDEMEIER
Thomas Schulz
Michael Pohl
Philipp WÜLLNER
Jörg HEINECKE
Christian Schlegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP2668302A1 publication Critical patent/EP2668302A1/de
Application granted granted Critical
Publication of EP2668302B1 publication Critical patent/EP2668302B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a method for producing a cold-rolled or hot-rolled steel strip from a high-strength multiphase steel having excellent forming properties according to claim 1.
  • the hotly contested automotive market is forcing manufacturers to constantly seek solutions to reduce fleet consumption while maintaining maximum comfort and occupant safety.
  • the weight saving of all vehicle components plays a decisive role, on the other hand, but also a most favorable behavior of the individual components with high static and dynamic stress during operation as well as in the event of a crash.
  • the suppliers of raw materials are trying to meet this need by providing high-strength and ultra-high-strength steels that can reduce the thickness of the vehicle while at the same time improving forming and component behavior during production and operation.
  • These steels must therefore meet comparatively high demands with regard to their strength and ductility, energy absorption and during their processing, for example during stamping, hot and cold forming, welding and / or surface finishing (eg metallically finished, organically coated).
  • dual-phase steels consist of a ferritic basic structure in which a martensitic second phase and possibly a further phase with bainite and retained austenite are incorporated.
  • the steel grades determining processing characteristics of dual-phase steels such as a very low yield ratio and at the same time very high tensile strength, a strong work hardening and a good cold workability, are well known.
  • Multiphase steels are also used with increasing tendency, such as complex-phase steels, ferritic-bainitic steels, bainitic steels and martensitic steels, which are characterized by different microstructural compositions.
  • Hot or cold rolled complex-phase steels are steels which contain small amounts of martensite, retained austenite and / or pearlite in a ferritic / bainitic matrix, whereby extreme grain refinement is caused by retarded recrystallization or precipitation of micro-alloying elements.
  • Hot-rolled ferritic-bainitic steels are steels that contain bainite or solidified bainite in a matrix of ferrite and / or solidified ferrite.
  • the solidification of the matrix is effected by a high dislocation density, by grain refining and the excretion of micro-alloying elements.
  • Hot rolled or cold rolled bainitic steels are steels characterized by a very high yield strength and tensile strength at a sufficiently high elongation for cold forming processes. Due to the chemical composition a good weldability is given.
  • the microstructure typically consists of bainite. Occasionally, small amounts of other phases, such as. As martensite and ferrite.
  • Hot-rolled martensitic steels are steels that contain small amounts of ferrite and / or bainite in a matrix of martensite due to thermomechanical rolling.
  • the steel grade is characterized by a very high yield strength and tensile strength at a sufficiently high elongation for cold forming processes.
  • the martensitic steels have the highest tensile strength values.
  • T Ailor R olled B lank lightweight technology allows a significant weight reduction by the load customized choice of thickness greater than the length of the component.
  • TRB®s with multi-phase structure is not without limitations with today's known alloys and available continuous annealing plants for widely varying sheet thicknesses such. B. for the heat treatment before cold rolling, possible. In areas with different sheet thicknesses, a homogeneous multi-phase microstructure in cold- as well as hot-rolled steel strips can not be set due to a temperature gradient occurring in the common process windows.
  • cold-rolled steel strips are annealed by recrystallization in a continuous annealing process to form a thin sheet which is easy to form.
  • the process parameters such as throughput speed, annealing temperatures and cooling rate, are set according to the required mechanical and technological properties with the necessary structure.
  • the hot or cold strip is heated in a continuous annealing furnace to a temperature such that the required microstructure formation occurs during cooling.
  • a continuous annealing furnace to a temperature such that the required microstructure formation occurs during cooling.
  • the annealing treatment is usually carried out in a continuous annealing furnace upstream of the galvanizing bath.
  • the required microstructure of the hot strip may also be adjusted in the continuous furnace during the annealing treatment, in order to achieve the required mechanical properties.
  • a narrow process window means that, depending on the cross section of the strip to be annealed, the process parameters have to be adjusted in order to achieve the required microstructure and homogeneity through homogeneous temperature distribution in the strip and during cooling achieve mechanical and technological properties.
  • the required strip properties are possible with the same process parameters even with different cross sections of the strips to be annealed.
  • a homogeneous temperature distribution is difficult to achieve, especially at different thicknesses in the transition region from one belt to another. This can lead to alloy compositions with too small process windows in the continuous annealing that z. B. the thinner strip is either driven too slowly through the oven and thereby productivity is lowered, or that the thicker strip is driven too fast through the oven and the required annealing temperature and thus the required structure is not achieved. The consequences are increased rejects or even customer complaints.
  • the decisive process parameter is thus the setting of the speed in the continuous annealing, since the phase transformation is temperature- and time-controlled.
  • a method for producing a steel strip with different thickness over the strip length is z. B. in the DE 100 37 867 A1 described.
  • the goal of achieving the final mechanical-technological properties in a narrow range over bandwidth and strip length by the controlled adjustment of the volume fractions of the structural phases has the highest priority and is therefore only possible through an enlarged process window.
  • the known alloy concepts for multiphase steels are characterized by too narrow a process window and therefore unsuitable for solving the present problem, in particular in flexibly rolled strips.
  • the invention is therefore based on the object to provide a different alloy concept for a high-strength multiphase steel with different microstructural compositions, with which the process window for the continuous annealing of hot or cold strips can be extended so that in addition to bands with different cross sections and steel bands with over tape length and, if necessary Bandwidth varying thickness can be produced with the most homogeneous mechanical and technological properties. Furthermore, an alloy concept is to be specified, with which different strength classes can be served.
  • this object is achieved by a steel with the following contents in% by weight: C 0.060 to ⁇ 0.115 al 0.020 to ⁇ 0.060 Si 0.100 to ⁇ 0.500 Mn 1,300 to ⁇ 2,500 P ⁇ 0.025 S ⁇ 0.0100 Cr 0.280 to ⁇ 0.480 Not a word ⁇ 0.150 Ti ⁇ 0.005 to ⁇ 0.050 Nb ⁇ 0.005 to ⁇ 0.050 B ⁇ 0.0005 to ⁇ 0.0060 N ⁇ 0.0100
  • the rest of the iron including standard steel-accompanying elements not mentioned above.
  • the steel according to the invention offers the advantage of a significantly enlarged process window in comparison to the known steels. This results in an increased process reliability in the continuous annealing of cold and hot strip with multi-phase structure. Thus, homogenized mechanical-technological properties in the strip can be ensured for pass-annealed hot or cold strips even with different cross sections and otherwise identical process parameters.
  • stress-optimized components can advantageously be produced by deformation from this material.
  • the material produced can be produced both as a cold strip and as a hot strip via a hot-dip galvanizing line or a pure continuous annealing plant in the dressed and undressed and also in the heat-treated state (intermediate annealing).
  • the steel strips produced with the alloy composition according to the invention are characterized in the production of a multi-phase or bainitic steel by a significantly wider process window in terms of temperature and flow rate at the intercritical annealing between A c1 and A c3 or austenitizing annealing over A c3 with final controlled cooling compared to the known alloy concepts.
  • Annealing temperatures of 700 to 950 ° C. and cooling rates of 15 to 100 ° C./s have been found to be advantageous up to a temperature of 420 to 470 ° C. with holding at an intermediate temperature of 200 to 250 ° C. and also with optional reheating upstream, with which the required multiphase structures can be set uniformly over the strip length.
  • This has a particularly advantageous effect in the annealing of flexibly rolled strips or in the successive annealing of strips of different cross sections, so that very uniform material properties are thereby achieved.
  • the basis for achieving a broad process window is the inventive combination of the micro-alloying elements titanium, niobium and boron with optional addition of molybdenum.
  • Fine titanium precipitates work in the same way as niobium carbides and together enhance the effect. Titanium binds off the nitrogen, which is therefore no longer available for the formation of boron nitride, whereby the boron alloy can act. In this case, the addition of boron, which is free, causes an increase in the hardenability.
  • Boron is one of the elements that is characterized not only by a high degree of hardening but also by a high hardening effect.
  • the microstructure becomes more isotropic, because differences in the cooling rates caused by the process control or the geometry of the strip have less influence, which also leads to a larger process window
  • the free boron is capable of producing a relatively homogeneous microstructure (same microstructural proportions) over the sheet thickness. The same applies to the less pronounced influence of temperature gradients that occur over the length of the strip or in relation to its width.
  • the proportions of ferrite are more or less reduced by increased amounts of bainite.
  • the combination of the three micro-alloying elements enables the material diversity described above.
  • the carbon equivalent can be reduced, thereby improving weldability and avoiding too much hardening during welding. In resistance spot welding, moreover, the electrode life can be significantly increased.
  • Vanadium thus has hardly any grain refining effect due to the small number of precipitates present in austenite. Even austenite grain growth is not inhibited by the late release of the vanadium carbides. Thus, the strength-enhancing effect is almost entirely due to precipitation hardening.
  • vanadium is the high solubility in austenite and the large volume fraction of fine precipitates caused by the low precipitation temperature.
  • the effect of the elements in the alloy according to the invention is described in more detail below.
  • the multiphase steels are typically chemically designed to combine alloying elements with and without micro-alloying elements. Accompanying elements complete the analysis concept.
  • Hydrogen (H) can be the only element that can diffuse through the iron lattice without creating lattice strains. As a result, the hydrogen in the iron grid is relatively mobile and can be absorbed relatively easily during production. Hydrogen can only be taken up in atomic (ionic) form in the iron lattice.
  • Hydrogen has a strong embrittlement and preferably diffuses to energy-favorable sites (defects, grain boundaries, etc.). In this case, defects act as hydrogen traps and can significantly increase the residence time of the hydrogen in the material.
  • the hydrogen content in the steel should be as low as possible.
  • Oxygen (O) In the molten state, the steel has a relatively high absorption capacity for gases, but at room temperature, oxygen is only soluble in very small quantities. Similar to hydrogen, oxygen can only diffuse into the material in atomic form. Due to the strong embrittling effect and the negative effects on the aging resistance, as much as possible is attempted during production to reduce the oxygen content.
  • the oxygen content in the steel should be as low as possible.
  • Nitrogen (N) is also a companion element of steelmaking. Steels with free nitrogen tend to have a strong aging effect. The nitrogen already diffuses at low temperatures at dislocations and blocks them. It causes an increase in strength combined with a rapid loss of toughness. Nitrogen bonding in the form of nitrides is possible by alloying aluminum or titanium.
  • the nitrogen content is limited to ⁇ 0.0100%, advantageously ⁇ 0.0090% or optimally ⁇ 0.0070% or unavoidable steel-accompanying amounts.
  • sulfur is bound as a trace element in iron ore. It is undesirable in steel (except free-cutting steels), as it tends to segregate severely and has a strong embrittlement. It is therefore attempted to achieve the lowest possible amounts of sulfur in the melt (for example, by a deep vacuum treatment). Furthermore, the existing sulfur is converted by adding manganese into the relatively harmless compound manganese sulfide (MnS).
  • the manganese sulfides are often rolled in rows during the rolling process and act as nucleation sites for the transformation. With diffusion-controlled transformation, this leads to a line-shaped structure and can lead to impaired mechanical properties in the case of pronounced bristleness (eg pronounced martensite parts instead of distributed martensite islands, no isotropic material behavior, reduced elongation at break).
  • the sulfur content is limited to ⁇ 0.0100% or unavoidable steel-accompanying quantities.
  • Phosphorus (P) is a trace element from iron ore and is dissolved in the iron lattice as a substitution atom . Phosphorus increases hardness by solid solution strengthening and improves hardenability.
  • phosphorus is also used in part as a strength carrier.
  • the phosphorus content is limited to ⁇ 0.025% or unavoidable steel-accompanying amounts.
  • Alloying elements are usually added to the steel in order to specifically influence certain properties.
  • An alloying element in different steels can influence different properties. The effect generally depends strongly on the amount and the solution state in the material.
  • chromium in dissolved form can significantly increase the hardenability of steel even in small quantities.
  • it can bring about a direct increase in strength through particle hardening.
  • the hardenability is reduced.
  • Carbon (C) is considered the most important alloying element in steel. Its presence turns the iron into steel. Despite this fact, the carbon content is drastically lowered during steelmaking. For dual-phase steels for continuous hot-dip finishing, its proportion according to DIN EN 10346 is 0.23% depending on the quality, a minimum value is not specified.
  • Carbon is also required to form carbides.
  • a representative occurring almost in every steel is the cementite (Fe3C).
  • significantly harder special carbides with other metals such as chromium, titanium, niobium, vanadium can form.
  • the minimum C content is set to 0.060% and the maximum C content to 0.115%.
  • Silicon (Si) binds oxygen during casting, thus reducing segregation and impurities in the steel.
  • silicon increases the strength and the yield strength ratio of the ferrite with solid solution hardening with only a slightly decreasing elongation at break.
  • Another important effect is that silicon shifts the formation of ferrite to shorter times, thus allowing the formation of sufficient ferrite before quenching.
  • the ferrite formation enriches the austenite with carbon and stabilizes it.
  • silicon stabilizes austenite in the lower temperature range, especially in the area of bainite formation, by preventing carbide formation (no depletion of carbon).
  • silicon can diffuse to the surface during annealing and lead to silicon oxides there.
  • silicon oxides can interfere with the formation of a closed adhesion layer between steel and zinc (inhibiting layer). This manifests itself in a poor zinc adhesion and undigested places.
  • the minimum Si content is set at 0.100% and the maximum Si content at 0.500%.
  • Manganese (Mn) is added to almost all steels for desulfurization to convert the harmful sulfur into manganese sulphides.
  • manganese increases the strength of the ferrite by solid solution strengthening and shifts the ⁇ / ⁇ conversion to lower temperatures.
  • Manganese similar to silicon, can lead to manganese oxides at high surface concentrations, which can adversely affect zinc adhesion and surface appearance.
  • the Mn content is therefore set at 1,300 to 2,500%.
  • Chromium (Cr) In dual-phase steels, the addition of chromium mainly improves the hardenability. Chromium, when dissolved, shifts perlite and bainite transformation to longer times, while decreasing the martensite start temperature.
  • Chromium is also a carbide former. If chromium is in carbide form, the austenitizing temperature must be high enough before curing to dissolve the chromium carbides. Otherwise, the increased germ count may lead to a deterioration of the hardenability.
  • the Cr content is therefore set at values of 0.280 to 0.480%.
  • Molybdenum (Mo) The addition of molybdenum is similar to chromium to improve hardenability. The perlite and bainite transformation is pushed to longer times and the martensite start temperature is lowered.
  • molybdenum considerably increases the tempering resistance, so that no loss of strength is to be expected in the zinc bath and, as a result of solid solution hardening, increases the strength of the ferrite.
  • the Mo content is optionally added depending on the size, the equipment configuration and the microstructure setting, in which case the minimum addition should be 0.050% in order to have an effect. For cost reasons, the Mo content is limited to max. 0.150% set.
  • Copper (Cu) The addition of copper can increase the tensile strength and hardenability. In combination with nickel, chromium and phosphorus, copper can form a protective oxide layer on the surface, which can significantly reduce the corrosion rate.
  • copper When combined with oxygen, copper can form harmful oxides at the grain boundaries, which can be detrimental to hot working processes in particular.
  • the content of copper is therefore limited to unavoidable steel-accompanying quantities.
  • Ni nickel
  • Sn tin
  • Microalloying elements are usually added only in very small amounts ( ⁇ 0.1%). They act in contrast to the alloying elements mainly by excretion formation but can also affect the properties in a dissolved state. Despite the small quantity additions, micro-alloying elements strongly influence the production conditions as well as the processing and final properties.
  • micro-alloying elements carbide and nitride formers which are generally soluble in the iron lattice are used. Formation of carbonitrides is also possible because of the complete solubility of nitrides and carbides in one another. The tendency to form oxides and sulfides is usually the most pronounced among the micro-alloying elements.
  • This property can be used positively by binding the generally harmful elements sulfur and oxygen.
  • the setting may also have negative effects, if there are not enough micro-alloying elements for the formation of carbides available.
  • Typical micro-alloying elements are aluminum, vanadium, titanium, niobium and boron. These elements can be dissolved in the iron lattice and form carbides or nitrides with carbon and nitrogen because of a decrease in the free enthalpy.
  • Aluminum (Al) is usually added to the steel to bind the dissolved oxygen in the iron and nitrogen.
  • the oxygen and nitrogen is thus converted into aluminum oxides and aluminum nitrides. These precipitations can cause a grain refining by increasing the germination sites and thus increase the toughness properties and strength values.
  • Titanium nitrides have a lower formation enthalpy and are therefore formed at higher temperatures.
  • the Al content is therefore limited to 0.020 to a maximum of 0.060%.
  • Titanium (Ti) forms very stable nitrides (TiN) and sulfides (TiS2) even at high temperatures. These dissolve depending on the nitrogen content in part only in the melt. If the resulting precipitates are not removed with the slag, they form very coarse particles in the material due to the high formation temperature and are generally not conducive to the mechanical properties.
  • a positive effect on the toughness results from the setting of the free nitrogen and oxygen.
  • titanium protects other micro-alloying elements, such as niobium, from binding with nitrogen. These can then develop their effect optimally.
  • Nitrides which are formed by lowering the oxygen and nitrogen content only at lower temperatures, can also effectively inhibit austenite grain growth.
  • Unbonded titanium forms titanium carbides at temperatures above 1150 ° C and can thus effect grain refinement (inhibition of austenite grain growth, grain refinement by delayed recrystallization and / or increase in the number of nuclei in the case of ⁇ / ⁇ transformation) and precipitation hardening.
  • the Ti content therefore has values of more than 0.005 and less than 0.050%.
  • Ti is limited to contents of ⁇ 0.045 or ⁇ 0.040%.
  • Niobium (Nb ) causes a strong grain refining because it most effectively retards recrystallization of all the micro-alloying elements and also inhibits austenite grain growth.
  • the strength-increasing effect is qualitatively higher than that of titanium due to the increased grain refining effect and the larger amount of strength-increasing particles (setting of the titanium to TiN at high temperatures).
  • Niobium carbides form from about 1200 ° C. In conjunction with titanium, which sets the nitrogen as already described, niobium can increase its strength-increasing effect by carbide formation in the lower temperature range (smaller carbide sizes).
  • niobium Another effect of niobium is the retardation of the ⁇ / ⁇ conversion and the lowering of the martensite start temperature in the dissolved state. On the one hand this happens through the solute drag effect and on the other hand through the grain refining. This causes an increase in the strength of the structure and thus a higher resistance to expansion in the formation of martensite.
  • Precipitation hardening can thus become effective especially for steels with a low C content (greater supersaturation possible) and during hot forming processes (deformation-induced precipitation).
  • the Nb content is therefore limited to values between 0.005 and 0.050%, the maximum contents being advantageously restricted to ⁇ 0.045 or ⁇ 0.040%.
  • Vanadium (V) The carbide as well as the nitride formation of vanadium starts only at temperatures of around 1000 ° C or even after the ⁇ / ⁇ transformation, which is much later than for titanium and niobium. Vanadium thus has hardly any grain refining effect due to the small number of precipitates present in austenite. Even austenite grain growth is not inhibited by the late release of vanadium carbides.
  • vanadium is the high solubility in austenite and the large volume fraction of fine precipitates caused by the low precipitation temperature.
  • vanadium content is limited to unavoidable steel accompanying amounts.
  • Nitrogen is in ascending order more affine to beryllium, aluminum, cerium, titanium and zirconium. Especially titanium can guarantee the setting of the entire nitrogen. Aluminum is less suitable.
  • boron in the dissolved state in very small amounts leads to a significant improvement in hardenability.
  • the mechanism of action of boron can be described as boron atoms preferentially attach to the grain boundaries and, by lowering the grain boundary energy, hinder diffusion and grain boundary slippage.
  • the nucleation sites are reduced by reducing precipitation formation at the grain boundaries.
  • Boron has a very high affinity for oxygen, which can lead to a lowering of the boron content in areas near the surface (up to 0.5 mm).
  • annealing at over 1000 ° C is not recommended. This is also recommended because boron can lead to a strong coarse grain formation at annealing temperatures above 1000 ° C.
  • the B content is limited to values of 0.0005 to 0.0060%. However, these values are advantageously below 0.0050 or 0.0040%.
  • the annealing temperatures are between 700 and 950 ° C. for the steel according to the invention, so that a partially austenitic (two-phase area) or a fully austenitic structure (austenite area) is achieved, depending on the structure to be achieved (complex phase structure).
  • the hot-dip coated material can be produced both as a hot strip, as a cold rolled hot strip or cold strip in the dressed (cold rolled) or stretch bent state (undressed).
  • Steel strips in the present case as hot strip, cold-rolled hot strip or cold strip made of the alloy composition according to the invention, are further characterized by a high resistance to edge-near crack formation during further processing.
  • the hot strip is produced according to the invention with final rolling temperatures in the austenitic region above A c3 and reeling temperatures above the recrystallization temperature.
  • FIG. 1 shows schematically the process chain for the production of the steels according to the invention. Shown are the different process routes relating to the invention. Up to position 5 (pickling), the process route is the same for all steels according to the invention, after which the corresponding processing takes place according to the desired results.
  • the pickled hot strip can be galvanized or cold rolled and galvanized. Or it can be annealed cold-rolled and galvanized.
  • FIG. 2 shows results of the hole expansion test (relative values in comparison). Shown are the results of the hole widening tests for a steel according to the invention compared to the standard grades. All materials have a sheet thickness of 2.00mm.
  • the left panel shows the results for the test ISO TS 16630, right the results for the KWI test (Kaiser Wilhelm Institut). It can be seen that regardless of the type of processing, the steels according to the invention achieve the best expansion values for punched holes.
  • Process 1 here corresponds to annealing, for example, on a hot-dip galvanizing with a combined directly fired furnace and radiant tube furnace.
  • Process 2 corresponds, for example, to process control in a continuous annealing plant.
  • a reheating of the steel can optionally be achieved directly in front of the zinc bath by means of an induction furnace. Due to the different sensed temperature guides within the specified range, different characteristic values or also different hole expansion results result, which are significantly improved for both processes compared to the standard grades. The basic difference is thus the temperature-time parameters during the heat treatment and the subsequent cooling.
  • FIG. 3 shows the relevant alloying elements of the steel according to the invention compared to steels of the same quality which correspond to the prior art.
  • the main difference lies in the Carbon content that is in the overperature range.
  • steels that are individually micro-alloyed with Nb, Ti and B, but not in this combination are individually micro-alloyed with Nb, Ti and B, but not in this combination.
  • FIG. 4 shows the mechanical characteristics of the steel according to the invention in comparison with those of the prior art. All characteristic values correspond to the normative specification.
  • FIG. 5 schematically shows the time-temperature curve of the process steps hot rolling and continuous annealing of strips of the alloy composition according to the invention. Shown is the time- and temperature-dependent conversion for the hot rolling process as well as for a heat treatment after cold rolling. Of particular interest here is the shift of the ferrite nose at later times. This opens up the potential for complex-phase steels and bainitic steels.
  • FIG. 6 shows a ZTU diagram for a steel according to the invention.
  • the determined ZTU diagram with the corresponding chemical composition and the A c1 and A c3 temperature is shown.
  • FIG. 7 shows the mechanical characteristics with the same parameters of continuously annealed strips with varying degrees of rolling or different workpiece thickness. Shown are the characteristics of tensile strength, yield strength and elongation at break depending on selected degrees of reduction. Only the tensile strength increases slightly with increasing Abwalzgrad. All values are in the range of the standard for a HCT780XD and show that even with different sheet thicknesses after the continuous annealing practically identical mechanical properties are present.
  • FIG. 8 shows an overview of the adjustable with the alloy concept of strength classes.
  • the alloy composition used corresponds to that in the FIG. 4 shown. Shown are the differently processed steel strips with their characteristic values and microstructural compositions. This makes clear the wide range of adjustable strength classes for hot and cold strip with the resulting structural components depending on the process steps performed and the set process parameters.
  • FIG. 9 shows schematically the temperature-time profiles in the annealing and cooling with 3 different variants.
  • Variant 1 shows the annealing and cooling of the produced cold or hot rolled steel strip in a continuous annealing system.
  • the annealed steel strip is then cooled from the annealing temperature at a cooling rate between 15 and 100 ° C / s to an intermediate temperature of 200 to 250 ° C.
  • the steel strip is cooled at a cooling rate of 2 and 30 ° C / s until it reaches room temperature in air or the cooling at a cooling rate between 15 and 100 ° C / s is maintained up to room temperature, ie, the intermediate temperature corresponds to room temperature ,
  • Variant 2 ( FIG. 9b ) shows the process according to variant 1, however, the cooling of the steel strip for the purpose of hot dipping is briefly interrupted when passing through the hot dipping vessel, then the cooling at a cooling rate between 15 and 100 ° C / s up to an intermediate temperature of 200 to 250 ° C. continue. Subsequently, the steel strip is cooled at a cooling rate of 2 and 30 ° C / s until it reaches room temperature in air.
  • Variant 3 ( FIG. 9c ) also shows the process according to variant 1 in a hot dipping refinement, but the cooling of the steel strip is interrupted by a short pause (1 to 20 s) at an intermediate temperature of 200 to 250 ° C and up to the temperature necessary for hot dipping ( approx. 420-470 ° C). Subsequently, the steel strip is cooled to an intermediate temperature of 200 to 250 ° C. At a cooling rate of 2 and 30 ° C / s, the final cooling of the steel strip takes place until air reaches the room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Kalt-oder warmgewalzten Stahlbandes aus einem höherfesten Mehrphasenstahl mit ausgezeichneten Umformeigenschaften gemäß Anspruch 1.
  • Der heiß umkämpfte Automobilmarkt zwingt die Hersteller ständig nach Lösungen zur Senkung des Flottenverbrauches unter Beibehaltung eines größtmöglichen Komforts und Insassenschutzes zu suchen. Dabei spielt einerseits die Gewichtsersparnis aller Fahrzeugkomponenten eine entscheidende Rolle andererseits aber auch ein möglichst günstiges Verhalten der einzelnen Bauteile bei hoher statischer und dynamischer Beanspruchung im Betrieb wie auch im Crashfall. Dieser Notwendigkeit versuchen die Vormaterial-Lieferanten dadurch Rechnung zu tragen, dass durch die Bereitstellung hochfester und höchstfester Stähle die Blechdicke der Fahrzeuge reduziert werden kann bei gleichzeitig verbessertem Umform- und Bauteilverhalten bei der Fertigung und im Betrieb. Diese Stähle müssen daher vergleichsweise hohen Anforderungen hinsichtlich ihrer Festigkeit und Duktilität, Energieaufnahme und bei ihrer Verarbeitung, wie beispielsweise beim Stanzen, der Warm- und Kaltumformung, dem Schweißen und/oder der Oberflächenveredelung (z. B. metallisch veredelt, organisch beschichtet) genügen.
  • Neu entwickelte Stähle müssen somit neben der geforderten Gewichtsreduzierung den hohen Materialanforderungen bezüglich Dehngrenze, Zugfestigkeit und Bruchdehnung bei guter Umformbarkeit genügen wie auch den Bauteilanforderungen nach hoher Zähigkeit, Kantenrissunempfindlichkeit, Energieabsorption sowie Festigkeit über den Work-Hardening-Effekt und den Bake-Hardening-Effekt.
  • Im Fahrzeugbau finden daher zunehmend Dualphasenstähle Anwendung, die aus einem ferritischen Grundgefüge bestehen, in das eine martensitische Zweitphase und möglicherweise eine weitere Phase mit Bainit und Restaustenit eingelagert ist.
  • Die die Stahlsorten bestimmenden Verarbeitungseigenschaften der Dualphasenstähle, wie ein sehr niedriges Streckgrenzenverhältnis bei gleichzeitig sehr hoher Zugfestigkeit, eine starke Kaltverfestigung und eine gute Kaltumformbarkeit, sind hinreichend bekannt.
  • Mit steigender Tendenz finden auch Mehrphasenstähle Anwendung, wie Complexphasenstähle, ferritisch-bainitische Stähle, bainitische Stähle sowie martensitische Stähle, die durch unterschiedliche Gefügezusammensetzungen charakterisiert sind.
  • Complexphasenstähle in warm- bzw. kaltgewalzter Ausführung sind Stähle, die kleine Anteile von Martensit, Restaustenit und/oder Perlit in einem ferritisch/bainitischen Grundgefüge enthalten, wobei durch eine verzögerte Rekristallisation oder durch Ausscheidungen von Mikrolegierungselementen eine extreme Kornverfeinerung bewirkt wird.
  • Ferritisch-bainitische Stähle in warmgewalzter Ausführung sind Stähle, die Bainit oder verfestigten Bainit in einer Matrix aus Ferrit und/oder verfestigten Ferrit enthalten.
  • Die Verfestigung der Matrix wird durch eine hohe Versetzungsdichte, durch Kornfeinung und die Ausscheidung von Mikrolegierungselementen bewirkt.
  • Bainitische Stähle in warmgewalzter bzw. kaltgewalzter Ausführung sind Stähle, die sich durch eine sehr hohe Streckgrenze und Zugfestigkeit bei einer ausreichend hohen Dehnung für Kaltumformprozesse auszeichnen. Aufgrund der chemischen Zusammensetzung ist eine gute Schweißbarkeit gegeben. Das Gefüge besteht typischerweise aus Bainit. Vereinzelt können geringe Anteile anderer Phasen, wie z. B. Martensit und Ferrit, enthalten sein.
  • Martensitische Stähle in warmgewalzter Ausführung sind Stähle, die durch thermomechanisches Walzen kleine Anteile von Ferrit und/oder Bainit in einem Grundgefüge aus Martensit enthalten. Die Stahlsorte zeichnet sich durch eine sehr hohe Streckgrenze und Zugfestigkeit bei einer ausreichend hohen Dehnung für Kaltumformprozesse aus. Innerhalb der Gruppe der Mehrphasenstähle weisen die martensitischen Stähle die höchsten Zugfestigkeitswerte auf.
  • Zum Einsatz kommen diese Stähle u. a. in Struktur-, Fahrwerks- und crashrelevanten Bauteilen, sowie als flexibel kaltgewalzte Bänder. Diese Tailor Rolled Blank Leichtbau-Technologie (TRB®) ermöglicht eine signifikante Gewichtsreduktion durch die belastungsangepasste Wahl der Blechdicke über die Bauteillänge.
  • Die Herstellung von TRB®s mit Mehrphasengefüge ist mit heute bekannten Legierungen und verfügbaren kontinuierlichen Glühanlagen für stark variierende Blechdicken allerdings nicht ohne Einschränkungen, wie z. B. für die Wärmebehandlung vor dem Kaltwalzen, möglich. In Bereichen unterschiedlicher Blechdicke kann aufgrund eines bei den gängigen Prozessfenstern auftretenden Temperaturgefälles kein homogenes mehrphasiges Gefüge in kalt- wie auch warmgewalzten Stahlbändern eingestellt werden.
  • Üblicherweise werden kaltgewalzte Stahlbänder aus wirtschaftlichen Gründen im Durchlaufglühverfahren rekristallisierend zu gut umformbarem Feinblech geglüht. Abhängig von der Legierungszusammensetzung und dem Bandquerschnitt werden die Prozessparameter, wie Durchlaufgeschwindigkeit, Glühtemperaturen und Abkühlgeschwindigkeit, entsprechend den geforderten mechanisch-technologischen Eigenschaften mit dem dafür notwendigen Gefüge eingestellt.
  • Zur Einstellung des Dualphasengefüges wird das Warm- oder Kaltband im Durchlaufglühofen auf eine solche Temperatur aufgeheizt, dass sich während der Abkühlung die geforderte Gefügeausbildung einstellt. Gleiches gilt für die Einstellung eines Stahls mit Complexphasengefüge, martensitischem, ferritisch-bainitischem sowie rein bainitischem Gefüge.
  • Wenn aufgrund hoher Korrosionsschutzanforderungen die Oberfläche des Warm- oder Kaltbandes schmelztauchverzinkt werden soll, erfolgt die Glühbehandlung üblicherweise in einem dem Verzinkungsbad vorgeschalteten Durchlaufglühofen.
  • Auch beim Warmband wird fallweise je nach Legierungskonzept das geforderte Gefüge erst bei der Glühbehandlung im Durchlaufofen eingestellt, um die geforderten mechanischen Eigenschaften zu realisieren.
  • Beim Durchlaufglühen von warm- oder kaltgewalzten Stahlbändern mit z. B. aus den Schriften EP 0 152 665 B1 , EP 0691 415 B1 , EP 0510 718 B1 EP 1154028A1 oder WO 2010/126161A1 bekannten Legierungskonzepten für Dualphasenstähle besteht das Problem, dass nur ein enges Prozessfenster für die Glühparameter vorhanden ist, um bei Querschnittssprüngen ohne Anpassung der Prozessparameter gleichmäßige mechanische Eigenschaften über die Bandlänge zu gewährleisten.
  • Enges Prozessfenster bedeutet hier, dass je nach Querschnitt des zu glühenden Bandes die Prozessparameter angepasst werden müssen, um durch eine homogene Temperaturverteilung im Band und bei der Abkühlung das geforderte Gefüge und die mechanisch-technologischen Eigenschaften zu erreichen. Bei vergrößerten Prozessfenstern sind bei gleichen Prozessparametern die geforderten Bandeigenschaften auch bei unterschiedlichen Querschnitten der zu glühenden Bänder möglich.
  • Neben flexibel gewalzten Bändern mit unterschiedlichen Blechdicken über die Bandlänge müssen oftmals auch Bänder mit unterschiedlicher Dicke, z. B. mit 1,5 und 2,0 mm und/oder unterschiedlicher Breite, wie z. B. 900 und1400 mm, nacheinander geglüht werden.
  • Eine homogene Temperaturverteilung ist gerade bei unterschiedlichen Dicken im Übergangsbereich von einem Band zum anderen nur schwierig zu erreichen. Dies kann bei Legierungszusammensetzungen mit zu kleinen Prozessfenstern bei der Durchlaufglühung dazu führen, dass z. B. das dünnere Band entweder zu langsam durch den Ofen gefahren wird und dadurch die Produktivität gesenkt wird, oder dass das dickere Band zu schnell durch den Ofen gefahren wird und die geforderte Glühtemperatur und damit das geforderte Gefüge nicht erreicht wird. Die Folgen sind vermehrter Ausschuss oder sogar Reklamationen durch den Kunden.
  • Der entscheidende Prozessparameter ist somit die Einstellung der Geschwindigkeit bei der Durchlaufglühung, da die Phasenumwandlung temperatur- und zeitgesteuert abläuft. Je unempfindlicher der Stahl in Bezug auf die Gleichmäßigkeit der mechanischen Eigenschaften bei Änderungen im Temperatur- und Zeitverlauf bei der Durchlaufglühung ist, desto größer ist das Prozessfenster.
  • Besonders gravierend wird das Problem eines zu engen Prozessfensters bei der Glühbehandlung, wenn belastungsoptimierte Bauteile aus Warm- oder Kaltband hergestellt werden sollen, die über die Bandlänge und Bandbreite variierende Blechdicken aufweisen, z. B. flexibel gewalzt worden sind.
  • Ein Verfahren zur Herstellung eines Stahlbandes mit unterschiedlicher Dicke über die Bandlänge wird z. B. in der DE 100 37 867 A1 beschrieben.
  • Bei Anwendung der bekannten Legierungskonzepte für die Gruppe der Mehrphasenstähle ist es aufgrund des engen Prozessfensters schon beim Durchlaufglühen unterschiedlich dicker Bänder nur schwer möglich, über die gesamte Bandlänge des Bandes gleichmäßige mechanische Eigenschaften zu erreichen. Complexphasenstähle weisen zudem ein noch engeres Prozessfenster auf als Dualphasenstähle.
  • Bei flexibel gewalzten Kaltbändern aus Stählen bekannter Zusammensetzungen weisen wegen des zu kleinen Prozessfensters die Bereiche mit geringerer Blechdicke aufgrund der Umwandlungsvorgänge bei der Abkühlung entweder zu hohe Festigkeiten durch zu große Martensitanteile auf oder die Bereiche mit größerer Blechdicke erreichen zu geringe Festigkeiten durch zu geringe Martensitanteile. Homogene mechanisch-technologische Eigenschaften über die Bandlänge oder -breite sind mit den bekannten Legierungskonzepten beim Durchlaufglühen praktisch nicht zu erreichen.
  • Das Ziel, die finalen mechanisch-technologischen Eigenschaften in einem engen Bereich über Bandbreite und Bandlänge durch die gesteuerte Einstellung der Volumenanteile der Gefügephasen zu erreichen, hat oberste Priorität und ist deshalb nur durch ein vergrößertes Prozessfenster möglich. Die bekannten Legierungskonzepte für Mehrphasenstähle sind durch ein zu enges Prozessfenster charakterisiert und deshalb zur Lösung der vorliegenden Problematik, insbesondere bei flexibel gewalzten Bändern, ungeeignet. Mit den bekannten Legierungskonzepten sind derzeit nur Stähle einer Festigkeitsklasse mit definierten Querschnittsbereichen darstellbar, so dass für unterschiedliche Festigkeitsklassen und oder Querschnittsbereiche veränderte Legierungskonzepte notwendig sind.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein anderes Legierungskonzept für einen höherfesten Mehrphasenstahl mit unterschiedlichsten Gefügezusammensetzungen anzugeben, mit dem das Prozessfenster für die Durchlaufglühung von Warm- oder Kaltbändern so erweitert werden kann, dass neben Bändern mit unterschiedlichen Querschnitten auch Stahlbänder mit über Bandlänge und ggf. Bandbreite variierender Dicke mit möglichst homogenen mechanisch-technologischen Eigenschaften erzeugt werden können. Des Weiteren soll ein Legierungskonzept angegeben werden, mit dem auch unterschiedliche Festigkeitsklassen bedient werden können.
  • Nach der Lehre der Erfindung wird diese Aufgabe gelöst durch einen Stahl mit folgenden Gehalten in Gewichts-%:
    C 0,060 bis ≤ 0,115
    Al 0,020 bis ≤ 0,060
    Si 0,100 bis ≤ 0,500
    Mn 1,300 bis ≤ 2,500
    P ≤ 0,025
    S ≤ 0,0100
    Cr 0,280 bis ≤ 0,480
    Mo ≤ 0,150
    Ti ≥ 0,005 bis ≤ 0,050
    Nb ≥ 0,005 bis ≤ 0,050
    B ≥ 0,0005 bis ≤ 0,0060
    N ≦ 0,0100
    Rest Eisen, einschließlich üblicher stahlbegleitender oben nicht erwähnter Elemente.
  • Der erfindungsgemäße Stahl bietet den Vorteil eines deutlich vergrößerten Prozessfensters im Vergleich zu den bekannten Stählen. Daraus resultiert eine erhöhte Prozesssicherheit beim Durchlaufglühen von Kalt- und Warmband mit Mehrphasengefüge. Somit können für durchlaufgeglühte Warm- oder Kaltbänder homogenere mechanisch-technologische Eigenschaften im Band auch bei unterschiedlichen Querschnitten und sonst gleichen Prozessparametern gewährleistet werden.
  • Dies gilt für das Durchlaufglühen aufeinander folgender Bänder mit unterschiedlichen Bandquerschnitten wie auch für Bänder mit variierender Blechdicke über Bandlänge bzw. Bandbreite. Z. B. ist damit eine Prozessierung in ausgewählten Dickenbereichen, wie kleiner 1 mm Banddicke, 1 bis 2 mm Banddicke und größer 2 mm Banddicke möglich.
  • Werden erfindungsgemäß im Durchlaufglühverfahren erzeugte höherfeste Warm- oder Kaltbänder aus Mehrphasenstahl mit variierenden Blechdicken erzeugt, können aus diesem Material vorteilhaft belastungsoptimierte Bauteile umformtechnisch hergestellt werden.
  • Das erzeugte Material kann sowohl als Kalt- wie auch als Warmband über eine Feuerverzinkungslinie oder eine reine Durchlaufglühanlage erzeugt werden im dressierten und undressierten und auch im wärmebehandelten Zustand (Zwischenglühen).
  • Gleichzeitig besteht die Möglichkeit, durch gezielte Variierung der Prozessparameter die Gefügeanteile so einzustellen, dass Stähle in unterschiedlichen Festigkeitsklassen herstellbar sind.
  • Die mit der erfindungsgemäßen Legierungszusammensetzung erzeugten Stahlbänder zeichnen sich bei der Fertigung eines Mehrphasen bzw. bainitischen Stahles durch ein im Vergleich deutlich breiteres Prozessfenster hinsichtlich Temperatur und Durchlaufgeschwindigkeit bei der interkritischen Glühung zwischen Ac1 und Ac3 bzw. bei einer austenitisierenden Glühung über Ac3 mit abschließender gesteuerter Abkühlung im Vergleich zu den bekannten Legierungskonzepten aus.
  • Als vorteilhaft haben sich Glühtemperaturen von 700 bis 950°C und Abkühlgeschwindigkeiten von 15 bis 100°C/s bis auf eine Temperatur von 420 bis 470°C mit Halten bei einer Zwischentemperatur von 200 bis 250°C und auch mit vorgeschalteter optionaler Wiedererwärmung herausgestellt, mit denen sich die geforderten Mehrphasengefüge über die Bandlänge gleichmäßig einstellen lassen. Dies wirkt sich besonders vorteilhaft bei der Glühung flexibel gewalzter Bänder oder bei der nacheinander erfolgenden Glühung von Bändern unterschiedlicher Querschnitte aus, so dass hierdurch sehr gleichmäßige Werkstoffeigenschaften erreicht werden.
  • Die Grundlage für das Erreichen eines breiten Prozessfensters ist die erfindungsgemäße Kombination der Mikrolegierungselemente Titan, Niob und Bor mit optionaler Zugabe von Molybdän.
  • Feine Titanausscheidungen wirken in gleicher Weise wie Niob-Carbide und verstärken gemeinsam den Effekt. Titan bindet den Stickstoff ab, der deshalb nicht mehr für die Bildung von Bor-Nitrid zur Verfügung steht, wodurch die Bor-Legierung wirken kann. In diesem Fall bewirkt die Zugabe von Bor, welches frei vorliegt, eine Erhöhung der Härtbarkeit.
  • Bor ist eines der Elemente, das sich neben einer hohen Aufhärtung auch durch eine hohe Einhärtungswirkung auszeichnet. Die Mikrostruktur wird isotroper, weil Unterschiede in den Abkühlraten, die durch die Prozessführung oder die Geometrie des Bandes hervorgerufen werden, weniger starken Einfluss haben, was auch zu einem größeren Prozessfenster führt
  • Das freie Bor ist in der Lage eine verhältnismäßig homogene Mikrostruktur (gleiche Gefügeanteile) über die Blechdicke gesehen zu erzeugen. Gleiches gilt auch für den weniger stark ausgeprägten Einfluss von Temperaturgradienten, die über die Länge des Bandes oder im Bezug auf dessen Breite auftreten.
  • Bei klassischen Dualphasenstählen ist neben Mangan, Chrom und Silizium auch der Kohlenstoff für die Umwandlung von Austenit zu Martensit verantwortlich. Durch Bor kann man deshalb einen Teil des Kohlenstoffs substituieren. Dies wirkt sich ebenfalls positiv auf die Mikrostruktur aus, da der Kohlenstoff eines der am stärksten seigernden Elemente im Stahl ist. Dadurch sind Seigerungen, die zu lokal unterschiedlichen thermodynamischen Triebkräften führen, weniger stark ausgeprägt, wodurch wiederum eine höhere Robustheit gegenüber prozess- oder geometriebedingten Temperaturschwankungen erreicht wird. Werkstoffcharakteristisch ist, dass die zusätzliche Zugabe von Titan und Bor neben Niob sehr deutlich das Ferritgebiet zu späteren Zeiten während der Abkühlung verschiebt. Dadurch wird das Potenzial für Complexphasenstähle und bainitische Stähle ermöglicht.
  • Die Anteile von Ferrit werden dabei durch erhöhte Anteile von Bainit je nach Prozessparameter mehr oder weniger stark reduziert. Durch die Kombination der drei Mikrolegierungselemente wird die zuvor beschriebene Werkstoffvielfalt ermöglicht.
  • Bei Versuchen hat sich gezeigt, dass allein die Mikrolegierungselemente-Kombination Niob und Bor nicht ausreichend ist, um ein breites Prozessfenster und den typischerweise hierfür geforderten Zugfestigkeitsbereich von mindestens 750MPa für Warmband und mindestens 780MPa für kaltnachgewalztes Warmband und Kaltband zu erreichen. Erst durch die Zugabe von Titan in den angegebenen Gehalten wurde dies möglich.
  • Durch die Einstellung eines niedrigen Kohlenstoffgehaltes von ≤ 0,115% kann das Kohlenstoffäquivalent reduziert werden, wodurch die Schweißbarkeit verbessert und zu große Aufhärtungen beim Schweißen vermieden werden. Beim Widerstandspunktschweißen kann darüber hinaus die Elektrodenstandzeit deutlich erhöht werden.
  • Die Karbid- und auch die Nitridbildung von Vanadium setzt erst ab Temperaturen um 1000°C bzw. noch nach der α/β-Umwandlung ein, also wesentlich später als bei Titan und Niob. Vanadium hat somit durch die geringe Anzahl der im Austenit vorhandenen Ausscheidungen kaum eine kornverfeinernde Wirkung. Auch das Austenitkornwachstum wird durch die erst späte Ausscheidung der Vanadiumkarbide nicht gehemmt. Somit beruht die festigkeitssteigernde Wirkung fast allein auf der Ausscheidungshärtung.
  • Ein Vorteil des Vanadiums ist die hohe Löslichkeit im Austenit und der durch die tiefe Ausscheidungstemperatur verursachte große Volumenanteil an feinen Ausscheidungen.
  • Nachfolgend wird die Wirkung der Elemente in der erfindungsgemäßen Legierung näher beschrieben. Die Mehrphasenstähle sind typischerweise chemisch so aufgebaut, dass Legierungselemente mit und auch ohne Mikrolegierungselementen kombiniert werden. Begleitelemente runden das Analysenkonzept ab.
  • Begleitelemente sind Elemente, die bereits im Eisenerz vorhanden sind bzw. herstellungsbedingt in den Stahl gelangen. Aufgrund ihrer überwiegend negativen Einflüsse sind sie in der Regel unerwünscht. Es wird versucht, sie bis zu einem tolerierbaren Gehalt zu entfernen bzw. in unschädlichere Formen zu überführen.
  • Wasserstoff (H) kann als einziges Element ohne Gitterverspannungen zu erzeugen durch das Eisengitter diffundieren. Dies führt dazu, dass der Wasserstoff im Eisengitter relativ beweglich ist und während der Fertigung verhältnismäßig leicht aufgenommen werden kann. Wasserstoff kann dabei nur in atomarer (ionischer) Form ins Eisengitter aufgenommen werden.
  • Wasserstoff wirkt stark versprödend und diffundiert bevorzugt zu energetisch günstigen Stellen (Fehlstellen, Korngrenzen etc.). Dabei fungieren Fehlstellen als Wasserstofffallen und können die Verweildauer des Wasserstoffes im Werkstoff erheblich erhöhen.
  • Durch eine Rekombination zu molekularem Wasserstoff können Kaltrisse entstehen. Dieses Verhalten tritt bei der Wasserstoffversprödung oder wasserstoffinduzierter Spannungsrisskorrosion auf. Auch beim verzögerten Riss, dem sogenannten Delayed-Fracture, der ohne äußere Spannungen auftritt, wird Wasserstoff oft als Grund genannt.
  • Daher sollte der Wasserstoffgehalt im Stahl so gering wie möglich sein.
  • Sauerstoff (O): Im schmelzflüssigen Zustand hat der Stahl eine verhältnismäßig große Aufnahmefähigkeit für Gase, bei Raumtemperatur ist Sauerstoff jedoch nur in sehr geringen Mengen löslich. Analog zum Wasserstoff kann Sauerstoff nur in atomarer Form in den Werkstoff diffundieren. Wegen der stark versprödenden Wirkung sowie der negativen Auswirkungen auf die Alterungsbeständigkeit wird während der Herstellung so weit wie möglich versucht, den Sauerstoffgehalt zu reduzieren.
  • Zur Verringerung des Sauerstoffs existieren zum Einen verfahrenstechnische Ansätze wie eine Vakuumbehandlung und zum Anderen analytische Ansätze. Durch Zugabe von bestimmten Legierungselementen kann der Sauerstoff in ungefährlichere Zustände überführt werden. So ist ein Abbinden des Sauerstoffes über Mangan, Silizium und/oder Aluminium in der Regel üblich. Die dadurch entstehenden Oxide können jedoch als Fehlstellen im Werkstoff negative Eigenschaften hervorrufen. Bei einer feinen Ausscheidung, speziell von Aluminiumoxiden, kann jedoch auch eine Kornfeinung erfolgen.
  • Aus vorgenannten Gründen sollte deshalb der Sauerstoffgehalt im Stahl so gering wie möglich sein.
  • Stickstoff (N) ist ebenfalls ein Begleitelement aus der Stahlherstellung. Stähle mit freiem Stickstoff neigen zu einem starken Alterungseffekt. Der Stickstoff diffundiert schon bei geringen Temperaturen an Versetzungen und blockiert diese. Er bewirkt damit einen Festigkeitsanstieg verbunden mit einem rapiden Zähigkeitsverlust. Ein Abbinden des Stickstoffes in Form von Nitriden ist durch Zulegieren von Aluminium oder Titan möglich.
  • Aus vorgenannten Gründen ist der Stickstoffgehalt auf ≤ 0,0100%, vorteilhaft auf ≤ 0,0090% bzw. optimal auf ≤ 0,0070% bzw. auf unvermeidbare, stahlbegleitende Mengen begrenzt.
  • Schwefel (S) ist wie Phosphor als Spurenelement im Eisenerz gebunden. Er ist im Stahl unerwünscht (Ausnahme Automatenstähle), da er zu starker Seigerung neigt und stark versprödend wirkt. Es wird deshalb versucht, möglichst geringe Mengen an Schwefel in der Schmelze zu erreichen (z. B. durch eine Tiefvakuumbehandlung). Des Weiteren wird der vorhandene Schwefel durch Zugabe von Mangan in die relativ ungefährliche Verbindung Mangansulfid (MnS) überführt.
  • Die Mangansulfide werden während des Walzprozesses oft zeilenartig ausgewalzt und fungieren als Keimstellen für die Umwandlung. Dies führt vor allem bei diffusionsgesteuerter Umwandlung zu einem zeilig ausgeprägten Gefüge und kann bei stark ausgeprägter Zeiligkeit zu verschlechterten mechanischen Eigenschaften führen (z. B. ausgeprägte Martensitzeilen statt verteilte Martensitinseln, kein isotropes Werkstoffverhalten, verminderte Bruchdehnung).
  • Aus vorgenannten Gründen ist der Schwefelgehalt auf ≤ 0,0100% bzw. auf unvermeidbare, stahlbegleitende Mengen begrenzt.
  • Phosphor (P) ist ein Spurenelement aus dem Eisenerz und wird im Eisengitter als Substitutionsatom gelöst. Phosphor steigert durch Mischkristallverfestigung die Härte und verbessert die Härtbarkeit.
  • Es wird allerdings in der Regel versucht, den Phosphorgehalt soweit wie möglich abzusenken, da er unter anderem durch seine geringe Diffusionsgeschwindigkeit stark seigerungsanfällig ist und im hohen Maße die Zähigkeit vermindert. Durch die Anlagerung von Phosphor an den Korngrenzen treten in der Regel Korngrenzenbrüche auf. Zudem setzt Phosphor die Übergangstemperatur von zähem zu sprödem Verhalten bis zu 300°C herauf. Während des Warmwalzens können oberflächennahe Phosphoroxide an den Korngrenzen zu Bruchaufreißungen führen.
  • In einigen Stählen wird er allerdings aufgrund der niedrigen Kosten und der hohen Festigkeitssteigerung in geringen Mengen (<0,1 %) als Mikrolegierungselement eingesetzt. So wird auch in Dualphasenstählen Phosphor teilweise als Festigkeitsträger eingesetzt.
  • Aus vorgenannten Gründen ist der Phosphorgehalt auf ≤ 0,025% bzw. auf unvermeidbare, stahlbegleitende Mengen begrenzt.
  • Legierungselemente werden dem Stahl in der Regel zugegeben, um gezielt bestimmte Eigenschaften zu beeinflussen. Dabei kann ein Legierungselement in verschiedenen Stählen unterschiedliche Eigenschaften beeinflussen. Die Wirkung hängt im Allgemeinen stark von der Menge und dem Lösungszustand im Werkstoff ab.
  • So kann zum Beispiel Chrom in gelöster Form schon in geringen Mengen die Härtbarkeit von Stahl erheblich steigern. In Form von Chromcarbiden kann er durch eine Teilchenverfestigung eine direkte Festigkeitssteigerung bewirken. Durch eine Erhöhung der Keimstellen sowie durch Senkung des gelösten Kohlenstoffgehaltes wird dabei allerdings die Härtbarkeit herabgesetzt.
  • Die Zusammenhänge können demnach durchaus vielseitig und komplex sein. Im Folgenden soll auf die Wirkung der Legierungselemente näher eingegangen werden.
  • Kohlenstoff (C) gilt als das wichtigste Legierungselement im Stahl. Durch seine Anwesenheit wird das Eisen erst zum Stahl. Trotz dieser Tatsache wird während der Stahlherstellung der Kohlenstoffanteil drastisch abgesenkt. Bei Dualphasenstählen für eine kontinuierliche Schmelztauchveredelung beträgt sein Anteil nach DIN EN 10346 je nach Güte maximal 0,23%, ein Mindestwert ist nicht vorgegeben.
  • Kohlenstoff wird aufgrund seines kleinen Atomradius interstitiell im Eisengitter gelöst. Die Löslichkeit ist dabei im α-Eisen maximal 0,02% und im β-Eisen maximal 2,06%. Kohlenstoff steigert in gelöster Form die Härtbarkeit von Stahl erheblich.
  • Durch die hervorgerufenen Gitterverspannungen im gelösten Zustand werden Diffusionsvorgänge behindert und somit Umwandlungsvorgänge verzögert. Zudem begünstigt Kohlenstoff die Bildung von Austenit, erweitert also das Austenitgebiet zu niedrigeren Temperaturen. Mit steigendem zwangsgelösten Kohlenstoffgehalt steigen die Gitterverzerrungen und damit die Festigkeitswerte des Martensits.
  • Kohlenstoff ist zudem erforderlich um Carbide zu bilden. Ein nahezu in jedem Stahl vorkommender Vertreter ist der Zementit (Fe3C). Es können sich jedoch auch wesentlich härtere Sondercarbide mit anderen Metallen wie zum Beispiel Chrom, Titan, Niob, Vanadium bilden. Dabei ist nicht nur die Art sondern auch die Verteilung und Größe der Ausscheidungen von entscheidender Bedeutung für die resultierende Festigkeitssteigerung. Um einerseits eine ausreichende Festigkeit und andererseits eine gute Schweißbarkeit sicherzustellen, werden deshalb der minimale C-Gehalt auf 0,060% und der maximale C-Gehalt auf 0,115% festgelegt.
  • Silizium (Si) bindet beim Vergießen Sauerstoff und vermindert somit Seigerungen sowie Verunreinigungen im Stahl. Zudem erhöht Silizium durch Mischkristallverfestigung die Festigkeit und das Streckgrenzenverhältnis des Ferrits bei nur geringfügig absinkender Bruchdehnung. Ein weiterer wichtiger Effekt ist, dass Silizium die Bildung von Ferrit zu kürzeren Zeiten verschiebt und somit die Entstehung von ausreichend Ferrit vor der Abschreckung ermöglicht. Durch die Ferritbildung wird der Austenit mit Kohlenstoff angereichert und stabilisiert. Zusätzlich stabilisiert Silizium im unteren Temperaturbereich speziell im Bereich der Bainitbildung durch Verhinderung von Carbidbildung den Austenit (keine Verarmung an Kohlenstoff).
  • Beim kontinuierlichen Verzinken kann Silizium während des Glühens an die Oberfläche diffundieren und dort zu Siliziumoxiden führen. Während der Eintauchphase im Zinkbad können Siliziumoxide die Ausbildung einer geschlossenen Haftschicht zwischen Stahl und Zink (Hemmschicht) stören. Dies äußert sich in einer schlechten Zinkhaftung und unverzinkten Stellen.
  • Zudem kann sich bei hohen Siliziumgehalten während des Warmwalzens stark haftender Zunder bilden, der die Weiterverarbeitung beeinträchtigen kann.
  • Aus den vorgenannten Gründen werden der minimale Si-Gehalt auf 0,100% und der maximale Si-Gehalt auf 0,500% festgelegt.
  • Mangan (Mn) wird fast allen Stählen zur Entschwefelung zugegeben, um den schädlichen Schwefel in Mangansulfide zu überführen. Zudem erhöht Mangan durch Mischkristallverfestigung die Festigkeit des Ferrits und verschiebt die α-/β-Umwandlung zu niedrigeren Temperaturen.
  • Ein Hauptgrund für das Zulegieren von Mangan in Dualphasenstählen ist die deutliche Verbesserung der Einhärtbarkeit. Aufgrund der Diffusionsbehinderung wird die Perlit- und Bainitumwandlung zu längeren Zeiten verschoben und die Martensitstarttemperatur gesenkt.
  • Mangan kann, analog zum Silizium, bei hohen Konzentrationen an der Oberfläche zu Manganoxiden führen, die das Zinkhaftungsverhalten und das Oberflächenaussehen negativ beeinflussen können.
  • Der Mn-Gehalt wird deshalb auf 1,300 bis 2,500% festgelegt.
  • Chrom (Cr): In Dualphasenstählen wird durch die Zugabe von Chrom hauptsächlich die Einhärtbarkeit verbessert. Chrom verschiebt im gelösten Zustand die Perlit- und Bainitumwandlung zu längeren Zeiten und senkt dabei gleichzeitig die Martensitstarttemperatur.
  • Ein weiterer wichtiger Effekt ist, dass Chrom die Anlassbeständigkeit erheblich steigert, so dass es im Zinkbad zu fast keinen Festigkeitsverlusten kommt.
  • Chrom ist zudem ein Carbidbildner. Sollte Chrom in Carbidform vorliegen, muss die Austenitisierungstemperatur vor dem Härten hoch genug gewählt werden, um die Chromcarbide zu lösen. Ansonsten kann es durch die erhöhte Keimzahl zu einer Verschlechterung der Einhärtbarkeit kommen.
  • Der Cr-Gehalt wird deshalb auf Werte von 0,280 bis 0,480% festgelegt.
  • Molybdän (Mo): Die Zugabe von Molybdän erfolgt ähnlich wie bei Chrom zur Verbesserung der Härtbarkeit. Die Perlit- und Bainitumwandlung wird zu längeren Zeiten geschoben und die Martensitstarttemperatur gesenkt.
  • Molybdän erhöht zudem die Anlassbeständigkeit erheblich, so dass im Zinkbad keine Festigkeitsverluste zu erwarten sind und bewirkt durch Mischkristallverfestigung eine Festigkeitssteigerung des Ferrits.
  • Der Mo-Gehalt wird in Abhängigkeit von der Abmessung, der Anlagenkonfiguration und der Gefügeeinstellung optional zulegiert, wobei dann die Mindestzugabe 0,050% sein sollte, um eine Wirkung zu erzielen. Aus Kostengründen wird der Mo-Gehalt auf max. 0,150% festgelegt. Kupfer (Cu): Der Zusatz von Kupfer kann die Zugfestigkeit sowie die Einhärtbarkeit steigern. In Verbindung mit Nickel, Chrom und Phosphor kann Kupfer eine schützende Oxidschicht an der Oberfläche bilden, die die Korrosionsrate deutlich reduzieren kann.
  • In Verbindung mit Sauerstoff kann Kupfer an den Korngrenzen schädliche Oxide bilden, die besonders für Warmumformprozesse negative Auswirkungen hervorrufen können. Der Gehalt an Kupfer ist deshalb bis auf unvermeidbare, stahlbegleitende Mengen begrenzt.
  • Andere Legierungselemente wie z. B. Nickel (Ni) oder Zinn (Sn) sind in ihren Gehalten auf unvermeidbare, stahlbegleitende Mengen begrenzt.
  • Mikrolegierungselemente werden in der Regel nur in sehr geringen Mengen zugegeben (< 0,1%). Sie wirken im Gegensatz zu den Legierungselementen hauptsächlich durch Ausscheidungsbildung können aber auch in gelöstem Zustand die Eigenschaften beeinflussen. Trotz der geringen Mengenzugaben beeinflussen Mikrolegierungselemente die Herstellungsbedingungen sowie die Verarbeitungs- und Endeigenschaften stark.
  • Als Mikrolegierungselemente kommen in der Regel im Eisengitter lösliche Carbid- und Nitridbildner zum Einsatz. Eine Bildung von Carbonitriden ist aufgrund der vollständigen Löslichkeit von Nitriden und Carbiden ineinander ebenfalls möglich. Die Neigung, Oxide und Sulfide zu bilden ist bei den Mikrolegierungselementen in der Regel am stärksten ausgeprägt.
  • Diese Eigenschaft kann positiv genutzt werden, indem die im Allgemeinen schädlichen Elemente Schwefel und Sauerstoff abgebunden werden können. Die Abbindung kann aber auch negative Auswirkungen haben, wenn dadurch nicht mehr genügend Mikrolegierungselemente für die Bildung von Carbiden zur Verfügung stehen.
  • Typische Mikrolegierungselemente sind Aluminium, Vanadium, Titan, Niob und Bor. Diese Elemente können im Eisengitter gelöst werden und bilden mit Kohlenstoff und Stickstoff wegen einer Abnahme der freien Enthalpie Carbide bzw. Nitride.
  • Aluminium (Al) wird in der Regel dem Stahl zulegiert, um den im Eisen gelösten Sauerstoff und Stickstoff zu binden. Der Sauerstoff und Stickstoff wird so in Aluminiumoxide und Aluminiumnitride überführt. Diese Ausscheidungen können über eine Erhöhung der Keimstellen eine Kornfeinung bewirken und so die Zähigkeitseigenschaften sowie Festigkeitswerte steigern.
  • Aluminiumnitrid wird nicht ausgeschieden, wenn Titan in ausreichenden Mengen vorhanden ist. Titannitride haben eine geringere Bildungsenthalpie und werden deshalb bei höheren Temperaturen gebildet.
  • In gelöstem Zustand verschiebt Aluminium wie das Silizium die Ferritbildung zu kürzeren Zeiten und ermöglicht so die Bildung von ausreichend Ferrit im Dualphasenstahl. Es unterdrückt zudem die Carbidbildung und führt so zu einer Stabilisierung des Austenits.
  • Der Al-Gehalt wir deshalb auf 0,020 bis maximal 0,060% begrenzt.
  • Titan (Ti) bildet schon bei hohen Temperaturen sehr stabile Nitride (TiN) und Sulfide (TiS2). Diese lösen sich in Abhängigkeit des Stickstoffgehaltes zum Teil erst in der Schmelze auf. Wenn die so entstandenen Ausscheidungen nicht mit der Schlacke entfernt werden, bilden sie im Werkstoff durch die hohe Entstehungstemperatur recht grobe Partikel aus und sind in der Regel nicht förderlich für die mechanischen Eigenschaften.
  • Ein positiver Effekt auf die Zähigkeit entsteht durch die Abbindung des freien Stickstoffes und Sauerstoffs. So schützt Titan andere Mikrolegierungselemente wie Niob vor der Abbindung durch Stickstoff. Diese können ihre Wirkung dann optimal entfalten. Nitride, die durch das Absinken des Sauerstoff- und Stickstoffgehalts erst bei tieferen Temperaturen entstehen, können zudem eine effektive Behinderung des Austenitkornwachstums bewirken.
  • Nicht abgebundenes Titan formt bei Temperaturen ab 1150°C Titancarbide und kann so eine Kornverfeinerung (Hemmung des Austenitkornwachstums, Kornverfeinerung durch verzögerte Rekristallisation und/oder Erhöhung der Keimzahl bei α/β-Umwandlung) sowie eine Ausscheidungshärtung bewirken.
  • Der Ti-Gehalt weist deshalb Werte von mehr als 0,005 und weniger als 0,050% auf. Vorteilhaft ist Ti auf Gehalte von ≤ 0,045 bzw. ≤ 0,040% begrenzt.
  • Niob (Nb) bewirkt eine starke Kornfeinung, da es am effektivsten von allen Mikrolegierungselementen eine Verzögerung der Rekristallisation bewirkt und zudem das Austenitkornwachstum hemmt.
  • Die festigkeitssteigernde Wirkung ist qualitativ aber durch den erhöhten Kornfeinungseffekt und die größere Menge an festigkeitssteigernden Teilchen (Abbindung des Titans zu TiN bei hohen Temperaturen) höher als die von Titan einzuschätzen.
  • Niobcarbide bilden sich ab etwa 1200°C. In Verbindung mit Titan, das wie bereits beschrieben den Stickstoff abbindet, kann Niob durch Carbidbildung im unteren Temperaturbereich (kleinere Carbidgrößen) seine festigkeitssteigernde Wirkung erhöhen.
  • Ein weiterer Effekt des Niobs ist die Verzögerung der α/β-Umwandlung und das Herabsenken der Martensitstarttemperatur im gelösten Zustand. Zum Einen geschieht dies durch den Solute-Drag-Effekt und zum Anderen durch die Kornfeinung. Diese bewirkt eine Festigkeitssteigerung des Gefüges und somit auch einen höheren Widerstand gegen die Ausdehnung bei der Martensitbildung.
  • Begrenzt ist der Einsatz von Niob durch die recht geringe Löslichkeitsgrenze. Diese begrenzt zwar die Menge an Ausscheidungen bewirkt aber vor allem eine frühe Ausscheidungsbildung mit recht groben Partikeln.
  • Die Ausscheidungshärtung kann somit vor allem bei Stählen mit geringem C-Gehalt (größere Übersättigung möglich) und bei Warmumformprozessen (verformungsinduzierte Ausscheidung) effektiv wirksam werden,
  • Der Nb-Gehalt wird deshalb auf Werte zwischen 0,005 und 0,050% begrenzt, wobei die max.-Gehalte vorteilhaft auf ≤ 0,045 bzw. ≤ 0,040% eingeschränkt sind.
  • Vanadium (V): Die Carbid- und auch die Nitridbildung von Vanadium setzt erst ab Temperaturen um 1000°C bzw. noch nach der α/β-Umwandlung ein, also wesentlich später als bei Titan und Niob. Vanadium hat somit durch die geringe Anzahl der im Austenit vorhandenen Ausscheidungen kaum eine kornverfeinernde Wirkung. Auch das Austenitkornwachstum wird durch die erst späte Ausscheidung der Vanadiumcarbide nicht gehemmt.
  • Somit beruht die festigkeitssteigernde Wirkung fast allein auf der Ausscheidungshärtung. Ein Vorteil des Vanadiums ist die hohe Löslichkeit im Austenit und der durch die tiefe Ausscheidungstemperatur verursachte große Volumenanteil an feinen Ausscheidungen.
  • Da bei dem vorliegenden Legierungskonzept eine Zugabe von Vanadium nicht notwendig ist, wird der Gehalt an Vanadium bis auf unvermeidbare, stahlbegleitende Mengen begrenzt.
  • Bor (B) bildet mit Stickstoff wie auch mit Kohlenstoff Nitride bzw. Carbide; in der Regel wird dies jedoch nicht angestrebt. Zum Einen bildet sich durch die geringe Löslichkeit nur eine kleine Menge an Ausscheidungen und zum Anderen werden diese zumeist an den Korngrenzen ausgeschieden. Eine Härtesteigerung an der Oberfläche wird nicht erreicht (Ausnahme Borieren mit Bildung von FeB(2) an der Oberfläche).
  • Um eine Nitridbildung zu verhindern, wird in der Regel versucht, den Stickstoff durch affinere Elemente abzubinden. Stickstoff ist dabei in aufsteigender Reihenfolge affiner zu Beryllium, Aluminium, Cer, Titan und Zirkonium. Besonders Titan kann dabei die Abbindung des gesamten Stickstoffes gewährleisten. Aluminium ist dazu weniger geeignet.
  • Bor führt im gelösten Zustand in sehr geringen Mengen zu einer deutlichen Verbesserung der Einhärtbarkeit. Der Wirkungsmechanismus von Bor kann so beschrieben werden, dass sich Boratome bevorzugt an den Korngrenzen anlagern und dort, indem sie die Korngrenzenenergie senken, die Diffusion und das Korngrenzengleiten behindern. Zusätzlich werden durch Reduzierung der Ausscheidungsbildung an den Korngrenzen die Keimstellen reduziert.
  • Die Wirksamkeit von Bor wird mit steigender Korngröße und steigendem Kohlenstoffgehalt (> 0,8%) herabgesetzt. Eine Menge über 60 ppm verursacht zudem eine sinkende Härtbarkeit, da Borcarbide auf den Korngrenzen als Keime fungieren.
  • Bor hat eine sehr hohe Affinität zu Sauerstoff, was zu einem Herabsetzen des Borgehaltes in Bereichen nahe der Oberfläche (bis zu 0,5 mm) führen kann. In diesem Zusammenhang wird von einer Glühung bei über 1000°C abgeraten. Dies ist zudem zu empfehlen, da Bor bei Glühtemperaturen über 1000°C zu einer starken Grobkornbildung führen kann.
  • Aus vorgenannten Gründen wird der B-Gehalt auf Werte von 0,0005 bis 0,0060% begrenzt. Vorteilhaft liegen diese Werte jedoch unter 0,0050 bzw. 0,0040%.
  • Außerdem wurde bei den Versuchen herausgefunden, dass durch eine austenitisierende Glühung eines Warmbandes über Ac3 ein Complexphasenstahl mit einer Mindestzugfestigkeit von 750MPa erreicht werden kann.
  • Mit einer interkritischen Glühung zwischen Ac1 und Ac3 bzw. einer austenitisierenden Glühung über Ac3 mit abschließender gesteuerter Abkühlung wurde ein Mehrphasenstahlband mit einer Dicke von 1 und 3mm erzeugt, welches sich durch eine große Toleranz gegenüber Prozessschwankungen auszeichnete und sehr gleichmäßige Eigenschaften bei gleichen Prozessparametern aufwies.
  • Damit liegt ein deutlich aufgeweitetes Prozessfenster für die erfindungsgemäße Legierungszusammensetzung im Vergleich zu bekannten Legierungskonzepten vor.
  • Die Glühtemperaturen liegen für den erfindungsgemäßen Stahl zwischen 700 und 950°C, damit wird ein teilaustenitisches (Zweiphasengebiet) bzw. ein vollaustenitisches Gefüge (Austenitgebiet) erreicht, abhängig von dem zu erzielenden Gefüge (Complexphasengefüge).
  • Die Versuche zeigten, dass die eingestellten Gefügeanteile nach der interkritischen Glühung zwischen Ac1 und Ac3 bzw. der austenitisierenden Glühung über Ac3 mit abschließender gesteuerter Abkühlung, auch nach dem Prozessschritt "Schmelztauchveredelung" bei Temperaturen zwischen 420 bis 470°C beispielsweise bei Z (Zink) und ZM (Zink-Magnesium) erhalten blieben.
  • Das schmelztauchveredelte Material kann sowohl als Warmband, als kalt nachgewalztes Warmband bzw. Kaltband im dressierten (kaltnachgewalzten) bzw. streckbiegegerichteten Zustand (undressiert) gefertigt werden.
  • Stahlbänder, vorliegend als Warmband, kaltnachgewalztes Warmband bzw. Kaltband aus der erfindungsgemäßen Legierungszusammensetzung zeichnen sich weiterhin bei der Weiterverarbeitung durch einen hohen Widerstand gegen kantennahe Rissbildung aus.
  • Durch eine Quasiisotropie des Stahlbandes ist darüber hinaus vorteilhaft ein Materialeinsatz quer, längs und diagonal zur Walzrichtung möglich.
  • Um die Kaltwalzbarkeit eines aus dem erfindungsgemäßen Stahl erzeugten Warmbandes zu gewährleisten, wird das Warmband erfindungsgemäß mit Endwalztemperaturen im austenitischen Gebiet oberhalb Ac3 und Haspeltemperaturen oberhalb der Rekristallisationstemperatur erzeugt.
  • Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von in einer Zeichnung dargesteilten Ausführungsbeispielen. Es zeigen:
  • Figur 1:
    schematisch die Prozesskette für die Herstellung der erfindungsgemäßen Stähle,
    Figur 2:
    Ergebnisse des Lochaufweitungsversuches,
    Figur 3:
    Beispiele für analytische Unterschiede des erfindungsgemäßen Stahls gegenüber dem Stand der Technik,
    Figur 4:
    Beispiele für mechanische Kennwerte des erfindungsgemäßen Stahls im Vergleich mit dem Stand der Technik (Blechdicke t=2,0mm),
    Figur 5:
    schematisch den Zeit-Temperaturverlauf der Prozessschritte Warmwalzen und Durchlaufglühen,
    Figur 6:
    ZTU-Diagramm für einen erfindungsgemäßen Stahl,
    Figur 7:
    mechanische Kennwerte bei Variation der Abwalzgrade,
    Figur 8:
    Übersicht über die mit dem erfindungsgemäßen Legierungskonzept einstellbaren Festigkeitsklassen,
    Figur 9:
    Temperatur-Zeit-Kurve (schematisch).
  • Figur 1 zeigt schematisch die Prozesskette für die Herstellung der erfindungsgemäßen Stähle. Dargestellt sind die unterschiedlichen die Erfindung betreffenden Prozessrouten. Bis zur Position 5 (Beize) ist die Prozessroute für alle erfindungsgemäßen Stähle gleich, danach erfolgt nach den gewünschten Ergebnissen die entsprechende Prozessierung. Beispielsweise kann das gebeizte Warmband verzinkt werden oder kaltgewalzt und verzinkt werden. Oder es kann weichgeglüht kaltgewalzt und verzinkt werden.
  • Figur 2 zeigt Ergebnisse des Lochaufweitungsversuches (relative Werte im Vergleich). Dargestellt sind die Ergebnisse der Lochaufweitungstests für einen erfindungsgemäßen Stahl im Vergleich zu den Standardgüten. Alle Werkstoffe haben eine Blechdicke von 2,00mm. Im linken Teilbild sind die Ergebnisse für den Test ISO TS 16630 dargestellt, rechts die Ergebnisse für den KWI-Test (Kaiser Wilhelm Institut). Es ist zu sehen, dass die erfindungsgemäßen Stähle unabhängig von der Art der Prozessierung die besten Aufweitungswerte bei gestanzten Löchern erzielen. Der Prozess 1 entspricht hierbei einer Glühung beispielsweise an einer Feuerverzinkung mit kombiniertem direkt befeuertem Ofen und Strahlrohrofen. Der Prozess 2 entspricht beispielsweise einer Prozessführung in einer Durchlaufglühanlage. Zudem kann hier mittels Induktionsofen ein Wiederaufheizen des Stahls optional direkt vor dem Zinkbad erreicht werden. Durch die unterschiedlichen empfindungsgemäßen Temperaturführungen innerhalb der genannten Spannbreite ergeben sich voneinander unterschiedliche Kennwerte bzw. auch unterschiedliche Lochaufweitungsergebnisse, die für beide Prozesse im Vergleich zu den Standardgüten deutlich verbessert sind. Prinzipieller Unterschied sind also die Temperatur-Zeit-Parameter bei der Wärmebehandlung und der nachgeschalteten Abkühlung.
  • Figur 3 zeigt die maßgeblichen Legierungselemente des erfindungsgemäßen Stahls im Vergleich zu Stählen der gleichen Güte die dem Stand der Technik entsprechen. Bei den Stählen, die dem Stand der Technik entsprechen, liegt der hauptsächliche Unterschied im Kohlenstoffgehalt, der im überperitektischen Bereich liegt. Vereinzelt gibt es Stähle, die mit Nb, Ti und B einzeln mikrolegiert sind, aber nicht in dieser Kombination.
  • Figur 4 zeigt die mechanischen Kennwerte des erfindungsgemäßen Stahls im Vergleich mit denen des Stands der Technik. Alle Kennwerte entsprechen der normativen Vorgabe.
  • Figur 5 zeigt schematisch den Zeit-Temperaturverlauf der Prozessschritte Warmwalzen und Durchlaufglühen von Bändern aus der erfindungsgemäßen Legierungszusammensetzung. Dargestellt ist die zeit- und temperatur-abhängige Umwandlung für den Warmwalzprozess als auch für eine Wärmebehandlung nach dem Kaltwalzen. Besonderes Interesse liegt hierbei auf der Verschiebung der Ferritnase zu späteren Zeiten. Hierdurch wird das Potenzial für Complexphasenstähle und bainitische Stähle ermöglicht.
  • Figur 6 zeigt ein ZTU-Diagramm für einen erfindungsgemäßen Stahl. Hierin ist das ermittelte ZTU Diagramm mit der entsprechenden chemischen Zusammensetzung und der Ac1 und Ac3 Temperatur dargestellt. Durch Einstellung entsprechender Temperatur-Zeit-Verläufe bei der Abkühlung lässt sich vorteilhaft ein breites Spektrum an Gefügezusammensetzungen im Stahlwerkstoff einstellen.
  • Figur 7 zeigt die mechanischen Kennwerte mit gleichen Parametern durchlaufgeglühter Bänder bei Variation der Abwalzgrade bzw. unterschiedlicher Werkstückdicke. Dargestellt sind die Kennwerte Zugfestigkeit, Dehngrenze und Bruchdehnung in Abhängigkeit ausgewählter Abwalzgrade. Allein die Zugfestigkeit steigt mit zunehmendem Abwalzgrad gering an. Alle Werte liegen im Bereich der Norm für einen HCT780XD und zeigen, dass auch bei unterschiedlichen Blechdicken nach dem Durchlaufglühen praktisch gleiche mechanische Eigenschaften vorliegen.
  • Figur 8 zeigt eine Übersicht über die mit dem erfindungsgemäßen Legierungskonzept einstellbaren Festigkeitsklassen. Die eingesetzte Legierungszusammensetzung entspricht der in der Figur 4 gezeigten. Dargestellt sind die unterschiedlich prozessierten Stahlbänder mit ihren Kennwerten und Gefügezusammensetzungen. Deutlich wird hieraus die große Bandbreite an einstellbaren Festigkeitsklassen für Warm- und Kaltband mit den sich ergebenden Gefügebestandteilen abhängig von den durchgeführten Prozessschritten und den eingestellten Prozessparametern.
  • Figur 9 zeigt schematisch die Temperatur-Zeit-Verläufe bei der Glühbehandlung und Abkühlung mit 3 verschiedenen Varianten.
  • Die Variante 1 (Figur 9a) zeigt die Glühung und Abkühlung vom erzeugten kalt- oder warmgewalzten Stahlband in einer Durchlaufglühanlage. Zuerst wir das Band auf eine Temperatur im Bereich von 700 bis 950°C aufgeheizt. Das geglühte Stahlband wird anschließend von der Glühtemperatur mit einer Abkühlgeschwindigkeit zwischen 15 und 100°C/s bis zu einer Zwischentemperatur von 200 bis 250°C abgekühlt. Anschließend wird das Stahlband mit einer Abkühlgeschwindigkeit von 2 und 30°C/s bis zum Erreichen der Raumtemperatur an Luft abgekühlt bzw. die Kühlung mit einer Abkühlgeschwindigkeit zwischen 15 und 100°C/s wird bis auf Raumtemperatur beibehalten, d.h. die Zwischentemperatur entspricht der Raumtemperatur.
  • Die Variante 2 (Figur 9b) zeigt den Prozess gemäß Variante 1, jedoch wird die Kühlung des Stahlbandes zum Zwecke einer Schmelztauchveredelung kurzzeitig beim Durchlaufen des Schmelztauchgefäßes unterbrochen, um anschließend die Kühlung mit einer Abkühlgeschwindigkeit zwischen 15 und 100°C/s bis zu einer Zwischentemperatur von 200 bis 250°C fortzusetzen. Anschließend wird das Stahlband mit einer Abkühlgeschwindigkeit von 2 und 30°C/s bis zum Erreichen der Raumtemperatur an Luft abgekühlt.
  • Die Variante 3 (Figur 9c) zeigt ebenfalls den Prozess gemäß Variante 1 bei einer Schmelztauchveredelung, jedoch wird die Kühlung des Stahlbandes durch eine kurze Pause (1 bis 20 s) bei einer Zwischentemperatur von 200 bis 250°C unterbrochen und bis auf die Temperatur, die zum Schmelztauchveredeln notwendig ist (ca. 420-470°C) wieder erwärmt. Anschließend wird das Stahlband bis zu einer Zwischentemperatur von 200 bis 250°C gekühlt. Mit einer Abkühlgeschwindigkeit von 2 und 30°C/s erfolgt bis zum Erreichen der Raumtemperatur an Luft die abschließende Kühlung des Stahlbandes.

Claims (17)

  1. Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höherfesten Mehrphasenstahl mit ausgezeichneten Umformeigenschaften, insbesondere für den Fahrzeugleichtbau,
    bestehend aus den Elementen (Gehalte in Masse-%): C 0,060 bis ≤ 0,115 Al 0,020 bis ≤ 0,060 Si 0,100 bis ≤ 0,500 Mn 1,300 bis ≤ 2,500 P ≤ 0,025 S ≤ 0,0100 Cr 0,280 bis ≤ 0,480 Mo ≤ 0,150 Ti ≥ 0,005 bis ≤ 0,050 Nb ≥ 0,005 bis ≤ 0,050 B ≥ 0,0005 bis ≤ 0,0060 N ≤ 0,0100
    Rest Eisen, einschließlich üblicher stahlbegleitender oben nicht erwähnter Elemente,
    bei dem das geforderte Mehrphasengefüge während einer Durchlaufglühung erzeugt wird wobei
    das kalt- oder warmgewalzte Stahlband in dem Durchlaufglühofen auf eine Temperatur im Bereich von 700 bis 950°C, aufgeheizt wird und dass das geglühte Stahlband anschließend von der Glühtemperatur mit einer Abkühlgeschwindigkeit zwischen 15 und 100°C/s bis zu einer Zwischentemperatur von 200 bis 250°C abgekühlt wird, anschließend das Stahlband mit einer Abkühlgeschwindigkeit von 2 bis 30°C/s bis zum Erreichen der Raumtemperatur an Luft abgekühlt oder die Kühlung wird mit einer Abkühlgeschwindigkeit zwischen 15 und 100°C/s von der Zwischentemperatur bis auf Raumtemperatur beibehalten.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Mo-Gehalt ≤ 0,100% beträgt.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass der Mo-Gehalt ≥ 0,050% beträgt.
  4. Verfahren nach den Ansprüchen 1 - 3,
    dadurch gekennzeichnet,
    dass der Nb-Gehalt ≤ 0,045% beträgt.
  5. Verfahren nach den Ansprüchen 1 - 3,
    dadurch gekennzeichnet,
    dass der Nb-Gehalt ≤ 0,040% beträgt.
  6. Verfahren nach einem der Ansprüche 1 - 5,
    dadurch gekennzeichnet,
    dass der Ti-Gehalt ≤ 0,045% beträgt.
  7. Verfahren nach einem der Ansprüche 1 - 5,
    dadurch gekennzeichnet,
    dass der Ti-Gehalt ≤ 0,040% beträgt.
  8. Verfahren nach einem der Ansprüche 1 - 7,
    dadurch gekennzeichnet,
    dass der B-Gehalt ≤ 0,0050% beträgt.
  9. Verfahren nach einem der Ansprüche 1 - 7,
    dadurch gekennzeichnet,
    dass der B-Gehalt ≤ 0,0040% beträgt.
  10. Verfahren nach einem der Ansprüche 1 - 9,
    dadurch gekennzeichnet,
    dass der N-Gehalt ≤ 0,0090% beträgt
  11. Verfahren nach einem der Ansprüche 1 - 9,
    dadurch gekennzeichnet,
    dass der N-Gehalt ≤ 0,0070% beträgt
  12. Verfahren nach einem der Ansprüche 1 - 11,
    dadurch gekennzeichnet,
    dass der Summengehalt Ti, Nb und B ≤ 0,106% beträgt
  13. Verfahren nach einem der Ansprüche 1 - 12,
    dadurch gekennzeichnet,
    dass der Summengehalt Ti, Nb, B und Mo ≤ 0,256% beträgt
  14. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass bei einer Schmelztauchveredelung nach dem Aufheizen und anschließenden Kühlen die Kühlung vor dem Eintreten in das Schmelzbad angehalten wird und nach der Schmelztauchveredelung die Kühlung mit einer Abkühlgeschwindigkeit zwischen 15 und 100°C/s bis zu einer Zwischentemperatur von 200 bis 250°C fortgesetzt wird, anschließend wird das Stahlband mit einer Abkühlgeschwindigkeit von 2 und 30°C/s bis zum Erreichen der Raumtemperatur an Luft abgekühlt.
  15. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass bei einer Schmelztauchveredelung nach dem Aufheizen und anschließenden Kühlen auf die Zwischentemperatur von 200 bis 250°C vor dem Eintreten in das Schmelzbad die Temperatur für 1 bis 20s gehalten wird und anschließend das Stahlband auf die Temperatur von 420 bis 470°C wieder erwärmt wird und nach erfolgter Schmelztauchveredlung eine Kühlung mit einer Abkühlgeschwindigkeit zwischen 15 und 100°C/s bis zur Zwischentemperatur von 200 bis 250°C erfolgt, anschließend mit einer Abkühlgeschwindigkeit von 2 und 30°C/s an Luft bis die Raumtemperatur abgekühlt wird.
  16. Verfahren nach einem der Ansprüche 1,14 und 15,
    dadurch gekennzeichnet,
    dass das Stahlband anschließend dressiert wird.
  17. Verfahren nach mindestens einem der Ansprüche 1,14 bis 16,
    dadurch gekennzeichnet,
    dass das Stahlband anschließend streckbiegegerichtet wird.
EP11822842.8A 2011-01-26 2011-11-30 Verfahren zur herstellung eines stahlbandes aus einem höherfesten mehrphasenstahl mit ausgezeichneten umformeigenschaften Active EP2668302B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011010256 2011-01-26
DE102011117572A DE102011117572A1 (de) 2011-01-26 2011-10-25 Höherfester Mehrphasenstahl mit ausgezeichneten Umformeigenschaften
PCT/DE2011/002094 WO2012100762A1 (de) 2011-01-26 2011-11-30 Höherfester mehrphasenstahl mit ausgezeichneten umformeigenschaften

Publications (2)

Publication Number Publication Date
EP2668302A1 EP2668302A1 (de) 2013-12-04
EP2668302B1 true EP2668302B1 (de) 2018-06-06

Family

ID=46579740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11822842.8A Active EP2668302B1 (de) 2011-01-26 2011-11-30 Verfahren zur herstellung eines stahlbandes aus einem höherfesten mehrphasenstahl mit ausgezeichneten umformeigenschaften

Country Status (6)

Country Link
US (1) US20140034196A1 (de)
EP (1) EP2668302B1 (de)
KR (1) KR101845321B1 (de)
DE (1) DE102011117572A1 (de)
RU (1) RU2581940C2 (de)
WO (1) WO2012100762A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012006017A1 (de) * 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017273A1 (de) 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102015111177A1 (de) * 2015-07-10 2017-01-12 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus
DE202015104790U1 (de) 2015-07-17 2015-12-04 Salzgitter Flachstahl Gmbh Warmband aus einem bainitischen Mehrphasenstahl mit einer Zn-Mg-Al-Beschichtung
KR102207969B1 (ko) 2015-07-17 2021-01-26 잘쯔기터 플래시슈탈 게엠베하 Zn-Mg-Al 코팅을 구비한 베이나이트 다중상 강으로 이루어져 있는 열간 스트립을 제조하기 위한 방법 및 상응하는 열간 스트립
CN110283972B (zh) * 2019-07-02 2021-06-25 天津市琨泰机械制造有限公司 一种钢带热镀锌及多条扁铁热镀锌综合连续生产线
CN110527795B (zh) * 2019-07-02 2021-06-25 天津市琨泰机械制造有限公司 一种多条扁铁热镀锌连续生产线
EP3816319B1 (de) 2019-10-29 2022-09-14 Salzgitter Flachstahl GmbH Verfahren zur herstellung eines hochfesten stahlbandes mit verbesserter haftung zinkbasierter schmelztauchüberzüge
CN111218614B (zh) * 2020-02-11 2022-03-18 山东钢铁股份有限公司 一种易切削连杆用钢及其制造方法
DE102020203564A1 (de) 2020-03-19 2021-09-23 Sms Group Gmbh Verfahren zum Herstellen eines gewalzten Mehrphasenstahlbandes mit Sondereigenschaften
DE102020110319A1 (de) 2020-04-15 2021-10-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit einem Mehrphasengefüge und Stahlband hinzu
KR20230045648A (ko) * 2021-09-27 2023-04-05 주식회사 포스코 구멍확장성 및 연성이 우수한 고강도 후물 강판 및 이의 제조방법
DE102023106692A1 (de) 2023-03-17 2024-09-19 Thyssenkrupp Steel Europe Ag Bauteilgruppe mit strukturellen Verklebungen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1154028A1 (de) * 2000-05-12 2001-11-14 Corus Staal BV Mehrphasiger Stahl und Herstellungsverfahren

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806376A (en) * 1969-12-30 1974-04-23 Nippon Steel Corp Method for producing low-carbon cold rolled steel sheet having excellent cold working properties and an apparatus for continuous treatment thereof
AU530384B2 (en) * 1979-06-28 1983-07-14 Nippon Kokan Kabushiki Kaisha Controlled cooling of steel strip to effect continuous annealing
JPS60174852A (ja) 1984-02-18 1985-09-09 Kawasaki Steel Corp 深絞り性に優れる複合組織冷延鋼板とその製造方法
JP3365632B2 (ja) 1991-03-15 2003-01-14 新日本製鐵株式会社 成形性の良好な高強度冷延鋼板と溶融亜鉛メッキ高強度冷延鋼板およびそれらの製造方法
CA2067043C (en) 1991-04-26 1998-04-28 Susumu Okada High strength cold rolled steel sheet having excellent non-aging property at room temperature and suitable for drawing and method of producing the same
DE19520541C2 (de) * 1995-06-03 1999-01-14 Bwg Bergwerk Walzwerk Verfahren und Vorrichtung zum Korrigieren eines gewalzten, in der Bandebene horizontal gebogenen Metallbandes, insbesondere eines Metallbandes mit einer Banddicke von 0,5 mm bis 2,0 mm
DE69821954T2 (de) * 1997-07-28 2004-12-09 Exxonmobil Upstream Research Co., Houston Ultra-hochfeste, schweissbare, borenthaltende stähle mit ausgezeichneter zähigkeit
DE19936151A1 (de) * 1999-07-31 2001-02-08 Thyssenkrupp Stahl Ag Höherfestes Stahlband oder -blech und Verfahren zu seiner Herstellung
DE10037867A1 (de) 1999-08-06 2001-06-07 Muhr & Bender Kg Verfahren zum flexiblen Walzen eines Metallbandes
JP2001140022A (ja) * 1999-08-27 2001-05-22 Nippon Steel Corp プレス成形性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法
EP1288322A1 (de) * 2001-08-29 2003-03-05 Sidmar N.V. Ultrahochfester Stahl, Produkt aus diesem Stahl und Verfahren zu seiner Herstellung
RU2256707C1 (ru) * 2004-07-15 2005-07-20 Липецкий государственный технический университет Способ производства стали с однородными свойствами
CN100473741C (zh) * 2005-06-29 2009-04-01 宝山钢铁股份有限公司 软质镀锡板及其制造方法
ATE432376T1 (de) * 2006-10-30 2009-06-15 Thyssenkrupp Steel Ag Verfahren zum herstellen von stahl-flachprodukten aus einem mit bor mikrolegierten mehrphasenstahl
US20100139816A1 (en) 2007-02-23 2010-06-10 David Neal Hanlon Cold rolled and continuously annealed high strength steel strip and method for producing said steel
KR100928788B1 (ko) * 2007-12-28 2009-11-25 주식회사 포스코 용접성이 우수한 고강도 박강판과 그 제조방법
JP4924730B2 (ja) * 2009-04-28 2012-04-25 Jfeスチール株式会社 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1154028A1 (de) * 2000-05-12 2001-11-14 Corus Staal BV Mehrphasiger Stahl und Herstellungsverfahren

Also Published As

Publication number Publication date
WO2012100762A1 (de) 2012-08-02
RU2581940C2 (ru) 2016-04-20
RU2013139431A (ru) 2015-03-10
KR101845321B1 (ko) 2018-04-04
US20140034196A1 (en) 2014-02-06
KR20140014140A (ko) 2014-02-05
EP2668302A1 (de) 2013-12-04
DE102011117572A1 (de) 2012-08-16

Similar Documents

Publication Publication Date Title
EP2809819B1 (de) Höchstfester mehrphasenstahl mit verbesserten eigenschaften bei herstellung und verarbeitung
EP2668302B1 (de) Verfahren zur herstellung eines stahlbandes aus einem höherfesten mehrphasenstahl mit ausgezeichneten umformeigenschaften
EP2836614B1 (de) Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl
EP3027784B1 (de) Siliziumhaltiger, mikrolegierter hochfester mehrphasenstahl mit einer mindestzugfestigkeit von 750 mpa und verbesserten eigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP2864517B1 (de) Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl mit einer mindestzugfestigkeit von 580mpa
EP3221484B1 (de) Verfahren zur herstellung eines hochfesten lufthärtenden mehrphasenstahls mit hervorragenden verarbeitungseigenschaften
EP3221483B1 (de) Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP3221478B1 (de) Warm- oder kaltband aus einem hochfesten lufthärtenden mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines warm- oder kaltgewalzten stahlbandes aus dem hohfesten lufthärtenden mehrphasenstahl
WO2017009192A1 (de) Höchstfester mehrphasenstahl und verfahren zur herstellung eines kaltgewalzten stahlbandes hieraus
EP2855717A1 (de) Stahl, stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts
EP3692178B1 (de) Verfahren zur herstellung eines stahlbandes aus höchstfestem mehrphasenstahl
WO2024068957A1 (de) Verfahren zur herstellung eines stahlbandes aus einem hochfesten mehrphasenstahl und entsprechendes stahlband
WO2022207913A1 (de) Stahlband aus einem hochfesten mehrphasenstahl und verfahren zur herstellung eines derartigen stahlbandes
WO2021209503A1 (de) Verfahren zur herstellung eines stahlbandes mit einem mehrphasengefüge und stahlband hierzu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHULZ, THOMAS

Inventor name: SCHLEGEL, CHRISTIAN

Inventor name: WUELLNER, PHILIPP

Inventor name: WEDEMEIER, ANDREAS

Inventor name: POHL, MICHAEL

Inventor name: HEINECKE, JOERG

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/04 20060101ALI20180108BHEP

Ipc: C22C 38/32 20060101ALI20180108BHEP

Ipc: C22C 38/26 20060101ALI20180108BHEP

Ipc: C21D 8/02 20060101ALI20180108BHEP

Ipc: C22C 38/06 20060101ALI20180108BHEP

Ipc: C22C 38/02 20060101ALI20180108BHEP

Ipc: C22C 38/28 20060101ALI20180108BHEP

Ipc: C21D 1/18 20060101AFI20180108BHEP

INTG Intention to grant announced

Effective date: 20180131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1006147

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014307

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180606

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180907

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014307

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1006147

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 13

Ref country code: DE

Payment date: 20231121

Year of fee payment: 13