EP2513631A1 - Procédé pour mesurer la concentration d'au moins un composant gazeux dans un gaz de mesure - Google Patents

Procédé pour mesurer la concentration d'au moins un composant gazeux dans un gaz de mesure

Info

Publication number
EP2513631A1
EP2513631A1 EP10792881A EP10792881A EP2513631A1 EP 2513631 A1 EP2513631 A1 EP 2513631A1 EP 10792881 A EP10792881 A EP 10792881A EP 10792881 A EP10792881 A EP 10792881A EP 2513631 A1 EP2513631 A1 EP 2513631A1
Authority
EP
European Patent Office
Prior art keywords
gas
concentration
gas component
measuring
substitute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10792881A
Other languages
German (de)
English (en)
Inventor
Kai-Uwe Pleban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2513631A1 publication Critical patent/EP2513631A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the invention relates to a method for measuring the concentration of at least one gas component in a sample gas.
  • the measuring gas with the gas component to be determined therein is guided through a measuring volume in the form of a measuring cuvette or, in the case of in-situ measurements, in the form of a pipe or another gas-carrying part of a system.
  • the measuring volume has two windows with an optical measuring path of predetermined length in between.
  • a wavelength-tunable light source for example a diode laser, generates a light beam whose wavelength is matched to an absorption line of the gas component to be determined and which is directed through the measurement volume onto a detector.
  • the signal generated by the detector is dependent on the absorption of the light in the measurement volume, so that from the signal, taking into account the specific absorption coefficient of the gas component and the known measurement path length, the concentration of the gas component can be calculated.
  • a rinsing gas which is suitable for many cases is, for example, nitrogen.
  • the permanent flushing with fresh purge gas is associated with relatively high operating costs.
  • the reference volume contains the sample gas component, for example ⁇ oxygen, with a certain isotope, z. B. 18 C> 2, in a certain frequency ratio 18 C> 2: 16 C> 2, which is higher than the known natural frequency ratio of these isotopes of the gas component in the measurement volume.
  • the concentration of the gas component in the measurement volume is calculated on the basis of the Lambert's law and Be ⁇ account the known isotope abundance ratios from the ratio of the detector signals at the peaks of the Ab ⁇ sorptionslinien.
  • the wavelength can be fixed to the absorption line of the 18 02 ⁇ isotope.
  • the problem of disturbing absorptions due to components of the ambient air in the areas of the light path outside the measuring volume and reference volume is not the subject of EP 2 000 792 AI and is not addressed there.
  • the invention is based on the object with simple With ⁇ stuffs and effort to ensure that the bene easilyge- measurement result is not affected by interfering components of the other ⁇ ambient air in the filled with substitute gas regions of the light ⁇ consistently outside the measurement volume.
  • the invention thus relates to a method for measuring the concentration of at least one gas component in a sample gas, wherein
  • the light of a light source is guided along a light path through a measurement volume containing the measurement gas to a detector unit and the concentration of the gas component is determined from the wavelength-dependent absorption of the light detected there,
  • the area of the light path runs outside the measuring volume by means of a closed volume in which a spare ⁇ gas is maintained without continuous gas supply and discharge,
  • a substitute gas is used with a substitute gas component in pre give ⁇ ner concentration, wherein the substitute gas component in the atmosphere and in the measurement gas does not, in WE ⁇ sentlich lower concentration than the given concentration, or in a known relationship to the to measuring gas component is present, and
  • the invention makes use of the fact that to the extent that such ambient air ⁇ penetrates into the enclosed volume, escapes replacement gas from the volume, and therefore provides a predefined, so known concentration of a exclusively chosen substitute gas component in the enclosed volume to monitor. In the case of a predetermined amount over-writing ⁇ Tenden concentration decrease an error message is generated, indicating that the measurement result of the concentration of the gas component in the measurement gas disturbed, but at least is not trusted.
  • the determination of the concentration of the gas component and the monitoring of the concentration of the substitute gas component with one and the same detector at different wavelengths When using a wavelength-tunable light source (eg laser spectrometer), the determination of the concentration of the gas component and the monitoring of the concentration of the substitute gas component with one and the same detector at different wavelengths.
  • a wavelength-tunable light source eg laser spectrometer
  • the concentration of the gas component and the monitoring of the concentration of the substitute gas component with one and the same detector at different wavelengths.
  • other optical methods eg. B. NDIR gas analysis
  • the selected substitute gas component it may be one of several components of the replacing gas or the replacing gas itself but with the measured Gaskompo ⁇ component is not included in the substitute gas so as not to interfere with the measurement.
  • An exception is the case that in the measuring volume the substitute gas component in a knew relationship to the gas component to be measured ⁇ vorhan ⁇ is. This can be especially true for isotopes.
  • the concentration of the oxygen isotope 16 02 is preferably determined for measuring the oxygen concentration in the measurement gas and the oxygen isotope 18 C> 2 is used as replacement gas component.
  • oxygen concentration is then calculated from the measured concentration of oxygen isotope 16 C> 2, and calculates the known natural abundance of the isotope behaves ⁇ nis 16 02 and 18 02 and calibrated in at CALIBRATORS tion.
  • the monitored concentration of He ⁇ offset gas component, here the isotope 18 C> 2 is corrected by the calculated from the measured 16 02 concentration with the inclusion of the natural isotope abundance ratio ⁇ ( ⁇ - ⁇ concentration in the sample gas.
  • a substitute gas component which does not occur in the atmosphere and the measurement gas or only in a much lower concentration than the predetermined concentration in the closed volume.
  • Substantially lower concentration is to be understood as one which is negligible in comparison to the concentration decrease of the replacement gas component in the closed volume leading to the error message.
  • the substitute gas component to be monitored can advantageously be used for wavelength stabilization of the be used by adjusting the wavelength fixed to the absorption line of the substitute gas component, as known from EP 2 000 792 AI.

Abstract

Pour mesurer la concentration d'au moins un composant gazeux dans un gaz de mesure la lumière d'une source lumineuse est conduite le long d'un chemin optique à travers un volume de mesure, contenant du gaz de mesure, vers une unité de détection, et là on détermine la concentration du composant gazeux à partir de l'absorbtion, dépendante de la longueur d'onde, de la lumière qui y est détectée. Ce faisant le chemin optique est conduit en dehors du volume de mesure à travers un gaz de remplacement, contenu dans un volume fermé. Pour garantir avec des moyens simples et en peu de temps que le résultat de mesure affiché n'est pas influencé par l'air ambiant qui pénètre les zones, remplies du gaz de remplacement, du chemin optique, on utilise un gaz de remplacement avec un composant de gaz de remplacement dans une concentration définie, où le composant de gaz de remplacement ne se trouve pas dans l'atmosphère et dans le gaz de mesure, dans une concentration nettement moindre que la concentration définie ou dans une proportion connue par rapport au composant gazeux à mesurer, où le gaz de remplacement est gardé dans le volume fermé sans alimentation et évacuation de gaz permanente, et qui surveille, en s'appuyant sur l'absorbtion, dépendante de la longueur d'onde de la lumière qui est détectée, la concentration du composant du gaz de remplacement et qui génère un message d'erreur si la baisse de la concencentration dépasse une valeur définie.
EP10792881A 2009-12-15 2010-12-08 Procédé pour mesurer la concentration d'au moins un composant gazeux dans un gaz de mesure Withdrawn EP2513631A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009058394A DE102009058394B3 (de) 2009-12-15 2009-12-15 Verfahren zur Messung der Konzentration mindestens einer Gaskomponente in einem Messgas
PCT/EP2010/069137 WO2011082925A1 (fr) 2009-12-15 2010-12-08 Procédé pour mesurer la concentration d'au moins un composant gazeux dans un gaz de mesure

Publications (1)

Publication Number Publication Date
EP2513631A1 true EP2513631A1 (fr) 2012-10-24

Family

ID=43430364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10792881A Withdrawn EP2513631A1 (fr) 2009-12-15 2010-12-08 Procédé pour mesurer la concentration d'au moins un composant gazeux dans un gaz de mesure

Country Status (5)

Country Link
US (1) US8830470B2 (fr)
EP (1) EP2513631A1 (fr)
CN (1) CN102656440B (fr)
DE (1) DE102009058394B3 (fr)
WO (1) WO2011082925A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618446B2 (en) 2014-01-28 2017-04-11 Schlumberger Technology Corporation Fluidic speed of sound measurement using photoacoustics
CN115575337B (zh) * 2022-12-07 2023-03-07 中国气象局气象探测中心 高精度大气co2浓度观测数据标较方法、系统及设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732017A (en) * 1970-10-23 1973-05-08 Bendix Corp Gas analyzer utilizing a tunable laser with a reference substance in the laser cavity
US3788742A (en) * 1971-06-24 1974-01-29 Westinghouse Electric Corp Gas monitoring system
US3812330A (en) * 1972-08-18 1974-05-21 Dasibi Corp Automatic calibration circuit for gas analyzers
US3899252A (en) * 1974-06-28 1975-08-12 Nasa Ndir gas analyzer based on absorption modulation ratios for known and unknown samples
US3970430A (en) * 1974-10-17 1976-07-20 E. I. Du Pont De Nemours And Company Method and apparatus for nox analysis
US4027972A (en) * 1976-03-31 1977-06-07 Andros Incorporated Gas analyzer method and apparatus
US4410273A (en) * 1981-03-09 1983-10-18 Laser Analytics, Inc. Scanning laser spectrometer
JP2611296B2 (ja) * 1987-12-29 1997-05-21 アイシン精機株式会社 超音波モータ
US4937448A (en) * 1988-05-26 1990-06-26 Spectra-Physics, Inc. Self-normalizing single-beam laser spectrometer
JP2520212B2 (ja) * 1992-09-07 1996-07-31 倉敷紡績株式会社 濃度測定装置
CA2402303C (fr) * 1995-10-09 2006-07-11 Otsuka Pharmaceutical Co., Ltd. Procede et appareil pour mesurer un gaz isotopique au moyen d'un spectro metre
US5747809A (en) 1996-06-11 1998-05-05 Sri International NDIR apparatus and method for measuring isotopic ratios in gaseous samples
ATE526573T1 (de) * 1997-01-14 2011-10-15 Otsuka Pharma Co Ltd Verfahren zur messung stabiler isotope mittels spektroskopie
DE10202918C1 (de) 2002-01-25 2003-10-16 Siemens Ag Gassensor
DE10345507A1 (de) * 2003-09-30 2005-05-04 Siemens Ag Diodenlaser-Spektrometer
DE602005011398D1 (de) 2005-02-22 2009-01-15 Siemens Ag Verfahren und Vorrichtung zum Nachweis von Spurengasen
EP2000792B1 (fr) * 2007-06-06 2011-08-03 Siemens Aktiengesellschaft Procédé de mesure de la concentration d'un composant gazeux dans un gaz de mesure
US8089046B2 (en) * 2008-09-19 2012-01-03 Applied Materials, Inc. Method and apparatus for calibrating mass flow controllers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011082925A1 *

Also Published As

Publication number Publication date
US8830470B2 (en) 2014-09-09
US20130145813A1 (en) 2013-06-13
CN102656440B (zh) 2015-04-29
CN102656440A (zh) 2012-09-05
DE102009058394B3 (de) 2011-02-10
WO2011082925A1 (fr) 2011-07-14

Similar Documents

Publication Publication Date Title
DE102009055320B4 (de) Messvorrichtung und Verfahren zur Untersuchung eines Probegases mittels Infrarot-Absorptionsspektroskopie
DE2727976C3 (de) Vorrichtung zur Messung der Konzentration mindestens einer Komponente eines Gasgemisches und Verfahren zum Eichen derselben
DE102008009189B4 (de) Nichtdispersiver Infrarot-Gasanalysator
DE102006018862A1 (de) Vorrichtung zur spektroskopischen Analyse eines Gases
WO2006002740A1 (fr) Analyseur de gaz a infrarouge non dispersif
DE60223961T2 (de) Verfahren und Vorrichtung zur Messung von Stickstoff in einem Gas
DE10392663T5 (de) Foto-akustisches Erfassungsverfahren zum Messen der Konzentration von Nicht-Kolenwasserstoff-Komponenten einer methanhaltigen Gasmischung
EP2726830B1 (fr) Chromatographe en phase gazeuse avec spectromètre d'absorption et méthode d'analyse d'un mélange gazeux par chromatographie en phase gazeuse
EP2482057A1 (fr) Analyseur de gaz destiné à la mesure de la teneur en mercure d'un gaz
DE102009058394B3 (de) Verfahren zur Messung der Konzentration mindestens einer Gaskomponente in einem Messgas
DE2927156A1 (de) Vorrichtung zum messen der sauerstoffkonzentration
DE3116344C2 (fr)
EP1005635A2 (fr) Photometre a spectroscopie d'absorption non dispersive dans l'infrarouge (ndir) pour la mesure de plusieurs constituants
DE102005028557A1 (de) Verfahren zum Kalibrieren eines spektrometrischen Schnüffellecksuchers
DE102016108545B4 (de) NDIR-Gassensor und Verfahren zu dessen Kalibrierung
WO2022199928A1 (fr) Dispositif de mesure en ligne ou in situ permettant de mesurer la concentration d'un gaz
AT515495B1 (de) Verfahren und Vorrichtung zur Bestimmung einer Partikelkonzentration eines mit Partikel geladenen Messgases
DE19714903A1 (de) Verfahren zur Kalibrierung von NDIR-Spektrometern
DE19841491A1 (de) Opto-pneumatischer Detektor für ein nichtdispersives Infrarot-Gasanalysegerät
DE19523599A1 (de) Verfahren und Vorrichtung zum Erfassen des Massenstromverlaufs mindestens einer Emissionskomponente eines Verbrennungsabgases
DE3830834A1 (de) Verfahren und einrichtung zur dispersiven, spektral voll aufgeloesten optischen gasanalyse mit unterdrueckter querempfindlichkeit
DE102022205596A1 (de) Verfahren zur Kalibrierung einer Vorrichtung zur Raman-Spektroskopie mit Laserdioden
DE102014106748A1 (de) Messvorrichtung und Verfahren zur Bestimmung einer Stoffkonzentration
DE10337114A1 (de) Verfahren zum Überprüfen einer Analyseeinrichtung für Gase
DE202007015866U1 (de) Vorrichtung zur Analyse eines in einem Behälter aufgenommenen Gases oder Gasgemisches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160809

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/39 20060101ALI20170419BHEP

Ipc: G01N 21/31 20060101AFI20170419BHEP

Ipc: G01N 21/25 20060101ALI20170419BHEP

Ipc: G01N 21/27 20060101ALI20170419BHEP

Ipc: G01N 21/3504 20140101ALI20170419BHEP

INTG Intention to grant announced

Effective date: 20170522

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20171006

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180217