EP2507865B1 - Kompakter planarer vhf/uhf-leistungsimpedanztransformator - Google Patents

Kompakter planarer vhf/uhf-leistungsimpedanztransformator Download PDF

Info

Publication number
EP2507865B1
EP2507865B1 EP10787421.6A EP10787421A EP2507865B1 EP 2507865 B1 EP2507865 B1 EP 2507865B1 EP 10787421 A EP10787421 A EP 10787421A EP 2507865 B1 EP2507865 B1 EP 2507865B1
Authority
EP
European Patent Office
Prior art keywords
impedance
access
low
vhf
multilayer circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10787421.6A
Other languages
English (en)
French (fr)
Other versions
EP2507865A1 (de
Inventor
Pierre Bertram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2507865A1 publication Critical patent/EP2507865A1/de
Application granted granted Critical
Publication of EP2507865B1 publication Critical patent/EP2507865B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range

Definitions

  • the invention relates to radio frequency devices operating in the VHF and UHF frequency bands and in particular to an impedance transformer for a broadband RF amplifier.
  • RF amplifiers use impedance matching networks (or impedance transformers) to optimize power transfer between an RF source, RF amplifiers and a load.
  • impedance transformers are generally made using transmission lines that often take the form of interconnected coaxial cables.
  • broadband RF amplifiers use, especially in the case of high power, push-pull transistors, each having a signal input and a symmetric power RF output. Their RF inputs and outputs have much lower impedances than the usual 50 ⁇ transmission lines. The use of impedance transformers input and output of the amplifier transistor is therefore necessary to obtain optimal power transfer.
  • the figure 1 shows a schematic embodiment of a typical push-pull RF amplifier stage using such transformers.
  • the amplifier stage of the figure 1a comprises two amplifiers amplifiers A and B mounted in push-pull, an input transformer Te and an output transformer Ts with balanced inputs and outputs to adapt the respective impedances of the input and the output of the amplifier stage, by via an input balun Be and an output balum Bs, at the low input and output impedances of transistors A and B.
  • the input balun Be and the output balun Bs respectively perform a connection between the input E, the output S, asymmetric amplifier and the symmetrical access of the transformers.
  • a 50 ⁇ impedance generator applies an RF signal to be amplified to the asymmetric input E of the input balun Be forming the input of the amplifier.
  • the asymmetrical output S of the output balun Bs forming the output of the amplifier stage is applied to a load 50 ⁇ .
  • balun is a contraction of the English terms BALanced (balanced, balance) and UNbalanced (unbalanced, unbalanced).
  • the figure 2a shows a diagram of an exemplary principle of a state-of-the-art coaxial-line impedance transformer.
  • the transformer of the figure 2a performs an impedance transformation from a high impedance access Eh to a low impedance access Eb, in this example the impedance of the access Eh is 50 ⁇ and the impedance of the access Eb is 12.5 ⁇ .
  • the two lines L1, L2 are connected in series on the side of their high impedance access Eh and in parallel on the side of their low impedance access Eb.
  • the external conductors Ce of the two lines L1, L2 are connected together and possibly to a reference potential, for example a ground M.
  • the inner conductor Ci of one of the lines is connected to the outer conductor Ce of the other line and vice versa.
  • the RF signal input and output are symmetrically performed by the two inner conductors Ci of the coaxial lines.
  • the impedance transformation ratio remains fixed, theoretically equal to 4 in the case of the transformer of the figure 2a .
  • the figure 2b shows a simplified layout diagram of an RF amplifier stage.
  • the amplifier stage comprises, on a printed circuit 10, a housing 20 with two transistors for push-pull mounting, a transformer input T1 and a T2 output transformer according to the scheme of the figure 2a .
  • the input transformer T1 comprises two lines Le1 and Le2 connected in series on the side of its high impedance access Eh and in parallel on the side of its low impedance access Eb, as represented in FIG. figure 2b .
  • the internal conductors Ci of the two lines connect, via an adaptation block 24, the inputs e1, e2 of the two transistors of the housing 20.
  • the output transformer T2 made as the input transformer T1 has two coaxial lines Ls1 and Ls2 and is connected by its low impedance access Eb to the outputs s1, s2 of the transistors of the housing 20, its high impedance access Eh being intended to be connected to a load not shown in the figure.
  • the lines Le1, Le2, Ls1, Ls2 of the transformers T1, T2 are here wound to reduce their bulk in the amplifier.
  • FIGS. 3a and 3b represent cross-sectional and frontal cross-sectional views of an embodiment of a state of the art impedance transformer described in a publication by Georg Boeck, 0-7803-9342-2 / 05 / $ 20.00 ⁇ 2005 IEEE .
  • the impedance transformer of the figure 3a is made on a multilayer circuit board 30 with four metallized layers integrating rectangular lines of microstrip type.
  • the figure 3a shows a cross-sectional view of the four-layer printed circuit in an area having impedance lines Z L of 25 ⁇ and impedance lines Z L of 50 ⁇ .
  • These rectangular coaxial lines may have impedances Z L of 25 ⁇ or 50 ⁇ ohms depending on the arrangement chosen, thus allowing integration of the transformer which uses 25 ohm lines, within a 50 ohm circuit.
  • the figure 3b shows a top view of the impedance transformer of the figure 3a .
  • the micro-ribbons lines are intertwined in spiral in order to reduce the size, which forces many crossings lines detrimental to performance and power handling.
  • Vias 32 provide interconnection between the different metallizations of the printed circuit layers.
  • the figure 4a shows a perspective view of another embodiment of an impedance transformer of the state of the art.
  • the figure 4b a cross-sectional view of the transformer of the figure 4a .
  • the transformer of the Figures 4a and 4b comprises a double-sided substrate 40 having metallizations on its two faces forming micro-ribbon type lines L1, L2 interconnected by conductive transitions between faces.
  • the free ends of the conductors 308, 304 of the same face 44 of the substrate 40, of the two lines L1, L2 form the ports 5, 3 of serial input (high impedance access), the ends of the conductors 316, 312 of the other face 46 of the substrate 40 are connected together to form a port 4, or common point.
  • the end of the conductors 304 of the line L2 On the side of the other end of the substrate 52 opposite the first 50, the end of the conductors 304 of the line L2, the face 44 of the substrate 40 and the end of the conductors 316 of the line L1, the other face 46 of the substrate 40 are connected together to an output port 2 and the end of the conductor 312 of the line L2, the other face of the substrate 46 and the end of the conductor 308 of the line L1, the face of the substrate 44 are connected together to a port 1, the ports 1 and 2 forming the low parallel impedance access of the transformer of the figure 3a .
  • a document US 6,396,362 A1 discloses a Balun type impedance transformer in compact multilayer technology.
  • a document US 2006/145786 A1 presents a bandpass filter using a Balun-type converter.
  • a document WO 03/088410 A1 has an electrical matching network provided with an impedance transformation line.
  • a document US 5,497,137 A has a chip type impedance transformer.
  • the symmetrical microstrip lines comprise impedances gradually varying between their two ends from a low impedance to a strong impedance in order to modify the impedance transformation ratio.
  • the inner layer consists of two superimposed layers, to form a perfectly symmetrical four-layer multilayer circuit.
  • the electrical conductors of the micro-ribbon lines are at least partially in the form of a coil along the same axis XX 'parallel to the long side of the multilayer circuit having the high Eh and low Eb impedance accesses, to reduce the size of the multilayer circuit.
  • the widths of the outer and inner conductors vary progressively from one end to the other along the micro-ribbon lines, from a certain initial width to a final lower width to obtain the gradual variation of the low impedance towards the strong impedance of the micro-ribbon lines.
  • the long side of the multilayer circuit comprises a respective recess, on both sides of the high Eh and low Eb impedance accesses, P depth having parallel edges to the long side, said recesses being made to leave of the place, under the transformer, to potential components located on the printed circuit board (or motherboard) on which the transformer is intended to be connected.
  • the thickness of each of the outer layers is 100 ⁇ m, the thickness of the inner layer being 1600 ⁇ m.
  • the inner layer is formed by two superimposed internal layers 800 ⁇ m thick each.
  • the transformation ratio Rz between the impedance of the high impedance access Eh and that of the low impedance access Eb may be between 2 and 9.
  • FIGS. 5a and 5b respectively show a bottom view and a front view of an RF transformer, according to the invention, comprising a multilayer circuit.
  • the figure 5c shows a partial cross-sectional view of the multilayer circuit of the transformer of the figure 5a .
  • the processor of the Figures 5a to 5b comprises a multilayer substrate 60 of rectangular shape, of length L of height H and of thickness E, having two long sides 62, 64 parallel and two small sides 66, 68 perpendicular to the long sides.
  • the transformer comprises three superposed layers (see FIG. figure 5c ), a first outer layer Ce1 separated by a second outer layer Ce2, of the same thickness ex, by an inner layer Ci of ec thickness much greater than that of the outer layers.
  • an inner layer Ci of thickness that is much greater or substantially greater than the thickness of the outer layers Ce is produced when the thickness of this inner layer Ci is at least four times greater than the thickness of the outer layer.
  • the inner layer Ci may also be formed by two superposed internal layers of 800 .mu.m each.
  • the first outer layer Ce1 has two metallized faces, an inner face 70 having a metallization forming an inner conductor 72 and an outer face 74 having a metallization forming an outer conductor 76 vis-à-vis the inner conductor.
  • the two inner and outer conductors 72, 76 of the first outer layer Ce1 form a first line L1 microstrip type.
  • the second outer layer Ce2 has two metallized faces, an inner face 80 having a metallization forming an inner conductor 82 and an outer face 84 having a metallization forming an outer conductor 86 vis-à-vis the inner conductor.
  • the two conductors 82, 86 of the second outer layer Ce2 form a second line L2 of the micro-ribbon type symmetrical to the first with respect to a plane of symmetry PC of the multilayer circuit 60, parallel and equidistant from the outer faces 74, 84.
  • the electrical conductors 72, 76, 82, 86 of the outer layers are superimposed via the different layers Ce1, Ci, Ce2 of the multilayer circuit 60.
  • the metallizations of the outer layers Ce1, Ce2 are made to obtain a reduced length L of the multilayer substrate 60 but respecting a maximum height H not to be exceeded for integration or connection, to a printed circuit (or motherboard), on which the transformer will be connected to, as described later.
  • the multilayer circuit 60 comprises, on the side of the high Eh and low Eb impedance accesses of the transformer, a respective recess 110, 112 on either side of said accesses, of depth P, each of the recesses having edges parallel to the long sides 62 , 64.
  • the recesses 110, 112 are made to leave room, under the transformer, for any components wired on the printed circuit board (or motherboard) on which the transformer is intended to be connected.
  • the multilayer circuit 60 comprises interconnecting vias of the ends of the electrical conductors for making floating accesses, the high-impedance series access Eh at one end of the lines L1 and L2 and the low-impedance parallel access Eb at the other end. lines L1 and L2.
  • the Figures 5d and 5e show the interconnection between the transformer conductors of the Figures 5a, 5b and 5c .
  • the narrower end of an inner conductor 72 of one of the lines L1 is connected, via vias 114 through the central layer Ci of the substrate, to the end facing the inner conductor 82 of the other line L2, to achieve the access Eh high impedance series.
  • the wider end of the inner conductor 72 of the line L1 is connected by vias 116 to the end of the outer conductor 86 vis-à-vis the line L2 to form one of the two poles of the access Eb low impedance parallel, the other pole being formed by the connection, via vias 118, the widest end of the inner conductor 82 of the line L2 to the outer conductor 76, vis-à-vis the line L1.
  • the lines L1, L2 of the transformer have a variable width in order to obtain different Rz impedance (or transformation) ratios (generally, higher) to the ratio of 4 obtained by coaxial lines or micro-ribbon having a constant width .
  • the lines of variable width of the transformer according to the invention make it possible to obtain a transformation ratio Rz between the impedance of the high impedance access Eh and that of the low impedance access Eb which can be between 2 and 9.
  • the central substrate layer Ci is substantially thicker than the external substrate layers Ce1, Ce2 of the multilayer circuit (thickness ratio of the order of 16 in the embodiment presented).
  • the width of the inner electrical conductors 72, 82 is greater than the width of the external electrical conductors 76, 86 so as to obtain a better decoupling between the two lines L1 and L2.
  • the inner layer Ci can also be made by two bonded layers of the same thickness, which amounts to producing a multilayer substrate with four perfectly symmetrical layers of simple manufacture and giving a stable product over time.
  • the impedance of the serial high impedance access of the transformer is chosen to be slightly less than 50 ⁇ , for example 46 ⁇ , in order to have larger lines L1, L2 for better power handling of the transformer.
  • the input impedance Zf, on the strong impedance side, of each line L1 or L2 is 23 ⁇ .
  • the impedance Zb of the low impedance access of each line L1, L2 is chosen to be 17 ⁇ to obtain an impedance access impedance Eb low impedance of the 8.5 ⁇ transformer.
  • the variation in the width of the tracks (or metallizations) between the high impedance access Eh and the low impedance access Eb of the transformer makes it possible, in this embodiment, to go from 46 ohm to 8.5 ohm, ie an impedance ratio of the order 5.5.
  • An alternative embodiment of the transformer according to the invention consists in the use of ferrite material placed in a central part of the electrical conductors of the lines L1, L2 in order to extend the bandwidth towards the low frequencies, but this to the detriment of the cost.
  • the figure 6 shows a simplified perspective view of an RF amplifier stage comprising the transformer according to the invention as shown in FIG. figure 5b .
  • the transformer of the figure 6 is in the form of a daughter card 128.
  • the amplifier stage comprises a printed circuit (or motherboard) 130 on which is mounted a housing 132 comprising two transistors for push-pull mounting.
  • the daughter card 128 is plugged into the motherboard 130 and only 4 brazing points 150, 152 (only two points are shown on the figure) on the ends of the external electrical conductors 72, 76, external faces 74, 80 of the multilayer circuit 60 are required to connect the lines L1, L2 of the transformer to the motherboard. These patch points allow both the connection and the immobilization of the daughter card 128 on the motherboard 130, an asymmetrical shape of the daughter card 128 providing easy coding.
  • the embodiment of the transformer proposed as an example for Figures 5a and 5b is based on a circuit diagram allowing the use of a daughter card (multilayer circuit 60) to be carried vertically on the motherboard 130 amplifying the figure 6 .
  • the thickness of this daughter card is of the order of 2mm.
  • the design of pairs of tracks to connect the transformer according to the invention reduces the size of this daughter card to a minimum.
  • the high impedance Eh and low impedance Eb accesses of the transformer 128 are closely approximated in order to reduce the implantation length on the motherboard 130.
  • the length of the central portion of the substrate having the high Eh and low impedance Eb access is 8.5 mm while the length required for the connection of the Ls2 wound line transformer of the figure 2b is much larger (about 15 mm).
  • the asymmetrical shape of the daughter card 128 (the impedance transformer) is adapted to the arrangement of the elements implanted on the motherboard 130.
  • the daughter card 128 goes to above impedance matching elements 160, 162 of the soldered transistors 132 on the motherboard 130 while allowing access thereto.
  • the impedance transformer according to the invention is adapted to pass large powers, of the order of a few watts, with little radio frequency losses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Claims (10)

  1. Impedanztransformator, arbeitend in den Frequenzbändern VHF und UHF, besitzend einen niedrigimpedanten Zugang Eb und einem hochimpedanten Zugang Eh, bestimmt dazu, an eine gedruckte Leiterplatte (130) angeschlossen zu werden,
    wobei der Impedanztransformator mindestens Folgendes beinhaltet:
    - einen Multilayer-Kreislauf (60), beinhaltend eine große Seite (64) für dessen Anschluss an die gedruckte Leiterplatte, mindestens drei Layer, einen ersten äußeren Layer (Ce1), getrennt von einem zweiten äußeren Layer (Ce2) gleicher Stärke (ex) und von mindestens einem inneren Layer (Ci) einer Stärke (ec), die mindestens vier Mal größer ist als die Stärke (ex) der äußeren Layer, wobei jeder äußere Layer zwei metallisierte Seiten beinhaltet, um elektrische Leiter zu bilden, eine innere Seite (70, 80), beinhaltend einen inneren elektrischen Leiter (72, 82) und eine äußere Seite (74, 84), beinhaltend einen äußeren elektrischen Leiter (76, 86) gegenüber vom inneren elektrischen Leiter zum Bilden einer Mikrostreifen-Linie (L1, L2) auf jedem der äußeren Layer (Ce1, Ce2), wobei die beiden Mikrostreifen-Linien (L1, L2) symmetrisch zu einer mittleren Ebene (PC) vom Multilayer-Kreislauf (60) bis zu den äußeren Seiten (74, 84) sind, wobei der Multilayer-Kreislauf Folgendes beinhaltet:
    - einen elektrischen Anschluss (116, 118) zwischen dem Ende des inneren Leiters (72, 82) einer (L1) der Mikrostreifen-Linien und dem Ende des äußeren Leiters (76, 86) der anderen (L2) Mikrostreifen-Linie zur Schaffung des niedrigimpedanten Zugangs Eb, wobei die beiden Enden einander gegenüber liegen;
    - einen anderen elektrischen Anschluss (114) zwischen den beiden anderen Enden der inneren elektrischen Leiter (72, 82) der beiden Mikrostreifen-Linien (L1, L2) zur Schaffung des hochimpedanten Zugangs Eh, wobei die anderen Enden einander gegenüber liegen;
    wobei der niedrigimpedante Zugang Eb und der hochimpedante Zugang Eh auf der großen Seite (64) des Multilayer-Kreislaufs (60) und nahe beieinander liegen, um die Anschlussfläche mit der gedruckten Leiterplatte (130) zu verringern.
  2. VHF/UHF-Impedanztransformator nach Anspruch 1, dadurch gekennzeichnet, dass die symmetrischen Mikrostreifen-Linien (L1, L2) Impedanzen beinhalten, deren Wert progressiv zwischen ihren beiden Enden schwanken, von einer niedrigen Impedanz (Zb) bis zu einer hohen Impedanz (Zf), um das Impedanz-Transformationsverhältnis zu modifizieren.
  3. VHF/UHF-Impedanztransformator nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der innere Layer (Ci) aus technologischen Gründen aus zwei übereinander liegenden Layern gebildet ist, um einen Multilayer-Kreislauf mit vier Layern zu bilden, welcher vollkommen symmetrisch ist.
  4. VHF/UHF-Impedanztransformator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die elektrischen Leiter (72, 76, 82, 86) der Mikrostreifen-Linien (L1, L2) mindestens teilweise in Schlangenlinienform entlang einer gleichen Achse XX' parallel zur großen Seite (64) des Multilayer-Kreislaufs liegen, welcher den hochimpedanten Zugang Eh und den niedrigimpedanten Zugang Eb beinhaltet, um die Größe des Multilayer-Kreislaufs zu verringern.
  5. VHF/UHF-Impedanztransformator nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Breiten der äußeren und inneren Leiter progressiv von einem ihrer Enden zum anderen entlang der Mikrostreifen-Linien (L1, L2) schwanken, von einer bestimmten Anfangsbreite (Le) bis zu einer geringeren Endbreite (Lf), um die progressive Schwankung von der niedrigen Impedanz (Zb) bis zur hohen Impedanz (Zf) der Mikrostreifen-Linien (L1, L2) zu erzielen.
  6. VHF/UHF-Impedanztransformator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die elektrischen Leiter der Mikrostreifen-Linien (L1, L2) Folgendes beinhalten:
    - erste gerade Abschnitte (100, 102), welche rechtwinklig zur großen Seite (62) des Multilayer-Kreislaufs (60) liegen, beinhaltend die Enden der elektrischen Leiter, welche den hochimpedanten Zugang Eh und den niedrigimpedanten Zugang Eb bilden,
    - zweite Abschnitte (104, 106) beidseits des hochimpedanten Zugangs Eh und des niedrigimpedanten Zugangs Eb, in Schlangenlinienform entlang einer Achse XX', welche parallel zur großen Seite (62) des Multilayer-Kreislaufs (60) ist,
    - dritte gerade Abschnitte (108), welche parallel zur Achse XX' oberhalb der Abschnitte in Schlangenlinienform der elektrischen Leiter liegen.
  7. VHF/UHF-Impedanztransformator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die große Seite (64) des Multilayer-Kreislaufs (60) jeweils einen Rückschritt (110, 112) beidseits des hochimpedanten Zugangs Eh und des niedrigimpedanten Zugangs Eb beinhaltet, mit einer Tiefe P, mit Rändern, welche parallel zur großen Seite (62) sind, wobei die Rückschritte (110, 112) geschaffen sind, um Platz unterhalb des Transformators für eventuelle auf der gedruckten Leiterplatte (130) (oder Motherboard), zum Anschluss an welche der Transformator bestimmt ist, befindliche Bauteile zu lassen.
  8. VHF/UHF-Impedanztransformator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Dicke (ex) eines jeden der äußeren Layer 100 µm beträgt, wobei die Dicke (ec) des inneren Layers (Ci) 1600 µm beträgt.
  9. VHF/UHF-Impedanztransformator nach Anspruch 8, dadurch gekennzeichnet, dass der innere Layer (Ci) aus zwei übereinander liegenden inneren Layern einer Dicke von jeweils 800 µm gebildet ist.
  10. VHF/UHF-Impedanztransformator nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Transformationsverhältnis Rz zwischen der Impedanz des hochimpedanten Zugangs Eh und derjenigen des niedrigimpedanten Zugangs Eb zwischen 2 und 9 betragen kann.
EP10787421.6A 2009-12-04 2010-12-03 Kompakter planarer vhf/uhf-leistungsimpedanztransformator Not-in-force EP2507865B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0905875A FR2953650B1 (fr) 2009-12-04 2009-12-04 Trasformateur d'impedance de puissance vhf/uhf planaire compact
PCT/EP2010/068808 WO2011067368A1 (fr) 2009-12-04 2010-12-03 Transformateur d'impedance de puissance vhf/uhf planaire compact

Publications (2)

Publication Number Publication Date
EP2507865A1 EP2507865A1 (de) 2012-10-10
EP2507865B1 true EP2507865B1 (de) 2018-05-23

Family

ID=42299183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10787421.6A Not-in-force EP2507865B1 (de) 2009-12-04 2010-12-03 Kompakter planarer vhf/uhf-leistungsimpedanztransformator

Country Status (6)

Country Link
US (1) US8610529B2 (de)
EP (1) EP2507865B1 (de)
FR (1) FR2953650B1 (de)
MY (1) MY159930A (de)
SG (1) SG181171A1 (de)
WO (1) WO2011067368A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914066B (zh) * 2022-04-27 2024-09-27 昆山九华电子设备厂 一种采用印刷电路板连接的传输线变压器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035695A (en) * 1974-08-05 1977-07-12 Motorola, Inc. Microelectronic variable inductor
JP2773617B2 (ja) * 1993-12-17 1998-07-09 株式会社村田製作所 バルントランス
US5426404A (en) * 1994-01-28 1995-06-20 Motorola, Inc. Electrical circuit using low volume multilayer transmission line devices
US6278340B1 (en) * 1999-05-11 2001-08-21 Industrial Technology Research Institute Miniaturized broadband balun transformer having broadside coupled lines
US6396362B1 (en) * 2000-01-10 2002-05-28 International Business Machines Corporation Compact multilayer BALUN for RF integrated circuits
JP3780414B2 (ja) * 2001-04-19 2006-05-31 株式会社村田製作所 積層型バラントランス
JP2003087008A (ja) * 2001-07-02 2003-03-20 Ngk Insulators Ltd 積層型誘電体フィルタ
DE10217387B4 (de) * 2002-04-18 2018-04-12 Snaptrack, Inc. Elektrisches Anpassungsnetzwerk mit einer Transformationsleitung
TWI256194B (en) * 2004-12-30 2006-06-01 Delta Electronics Inc Filter assembly with unbalanced to balanced conversion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2953650A1 (fr) 2011-06-10
SG181171A1 (en) 2012-07-30
FR2953650B1 (fr) 2012-12-14
US8610529B2 (en) 2013-12-17
US20130169402A1 (en) 2013-07-04
WO2011067368A1 (fr) 2011-06-09
MY159930A (en) 2017-02-15
EP2507865A1 (de) 2012-10-10

Similar Documents

Publication Publication Date Title
EP2345104B1 (de) Differenz-dipolantennensystem mit einer koplanaren strahlungsstruktur und sender-/empfängereinrichtung
EP2184803B1 (de) Coplanare Differenzial-Zweiband-Verzögerunsleitung, Differenzialfilter höherer Ordnung und Filterantenne mit einer solchen Leitung
EP2510574B1 (de) Mikrowellenübergangsvorrichtung zwischen einer mikrostripleitung und einem rechteckigen wellenleiter
FR2938379A1 (fr) Dispositif de filtrage differentiel a resonateurs couples coplanaires et antenne filtrante munie d'un tel dispositif
EP2274753B1 (de) Leistungswandler für hochfrequenzsignale
FR2928066A1 (fr) Systeme d'interconnexion de deux substrats comportant chacun au moins une ligne de transmission
EP1601101B1 (de) BALUN Transformator und Tiefpassfilter
FR2778024A1 (fr) Structure de connexion pour lignes de guide d'ondes dielectrique
FR2730122A1 (fr) Carte de circuits imprimes multicouche et son procede de fabrication
EP1995740B1 (de) Ebene Induktionsstruktur
FR2997236A1 (fr) Antenne fente compacte
FR3049758A1 (fr) Transformateur de puissance du type symetrique-dissymetrique a topologie completement equilibree
FR2939270A1 (fr) Une classe de resonateurs bi-mode construits a partir d'un empilement multicouche de stratifies organiques ameliorant la performance et la compacite des composants passifs integres.
EP3136499B1 (de) Aufteilungs-/kombinationssystem für hyperfrequenzwelle
EP2507865B1 (de) Kompakter planarer vhf/uhf-leistungsimpedanztransformator
EP3671955B1 (de) Monopol-drahtplattenantenne für differentiellen anschluss
EP2147478B1 (de) Hyperfrequenzsignalkoppler mit mikrostreifentechnologie
EP2688137B1 (de) Hyperfrequenzresonator mit Impedanzsprung, insbesondere für Hyperfrequenz-Bandsperrfilter oder -Bandpassfilter
EP0373028B1 (de) Passives Bandpassfilter
FR2894078A1 (fr) Combineur/diviseur de puissance integree
EP2932555B1 (de) Mikrowellenfrequenzfilterungsstrukturen
FR2911998A1 (fr) Antenne large bande
FR3060864A1 (fr) Ligne de transmission a ondes lentes a meandres
EP3420643B1 (de) Mit uniplanarer technologie hergestellte leiterplatte
FR3114695A1 (fr) Transformateur à changement de mode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140722

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1002243

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010050796

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180824

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1002243

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010050796

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010050796

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101203

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180523

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180923