EP2470678B1 - Vorrichtung zur entgasung einer stahlschmelze mit einem verbesserten auslaufrüssel - Google Patents

Vorrichtung zur entgasung einer stahlschmelze mit einem verbesserten auslaufrüssel Download PDF

Info

Publication number
EP2470678B1
EP2470678B1 EP10759802.1A EP10759802A EP2470678B1 EP 2470678 B1 EP2470678 B1 EP 2470678B1 EP 10759802 A EP10759802 A EP 10759802A EP 2470678 B1 EP2470678 B1 EP 2470678B1
Authority
EP
European Patent Office
Prior art keywords
outlet nozzle
millimetres
spout
steel
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10759802.1A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2470678A1 (de
Inventor
Hans-Jürgen ODENTHAL
Dieter Tembergen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP2470678A1 publication Critical patent/EP2470678A1/de
Application granted granted Critical
Publication of EP2470678B1 publication Critical patent/EP2470678B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • C22B9/055Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ while the metal is circulating, e.g. combined with filtration
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Definitions

  • the present invention relates to a device for degassing a molten steel with an improved spout.
  • the present invention relates to a particular form of spout for avoiding dead water regions in a steel ladle.
  • the present invention further relates to a method of degassing the liquid steel with the improved spout.
  • the process for degassing liquid steel is an RH process (Ruhrstahl-Heraeus process).
  • RH process the liquid steel is conveyed from a ladle in a riser to an evacuation vessel.
  • a conveying gas, in particular argon is introduced into the riser above the steel bath level.
  • the injected into the riser through several nozzles argon stream breaks down into a variety of argon bubbles that rise in the immediate vicinity of the wall.
  • the conveyance of the liquid steel is made possible by the volume increase by argon in the riser and by the pressure difference between the external air pressure and the negative pressure in the evacuation vessel.
  • the argon bubbles entrain the melt and ensure a uniform melt circulation.
  • the partial pressure is lowered at the same time and the decarburization reaction is accelerated.
  • the steel sucked into the evacuation vessel is sprayed. This results in a strong increase in surface area and good degassing of the liquid steel.
  • Oxygen which is simultaneously introduced throughout the treatment period and replenished, among other things, from the slag, leads to the formation of carbon monoxide (CO). CO gas in the vacuum vessel, resulting in the desired decarburization is reached.
  • the fine decarburization can be optimized to the lowest possible values by additionally injected oxygen. A high rotational speed of the melt and thus an increase in the flow of carrier gas and an increase in the diameter of the bowl of the vacuum system lead to a faster decarburization process.
  • Out DE 19511640 C1 is a trunk for a degassing vessel with a refractory lining and arranged therein a gas purging device with multiple channels known.
  • the channels are distributed over the circumference of the trunk and extend, based on the central longitudinal axis of the trunk, through the refractory lining in the radial direction.
  • the channels can be connected to at least one gas supply line on the outside.
  • the channels are circumferentially arranged to form a nearly continuous gas curtain along the inner wall of the trunk in close succession.
  • a steady stream of liquid steel is reached into the vacuum vessel.
  • the distributed over the entire circumference, preferably fine-bubble gas supply allows a particularly fine distribution of the treatment gas at the same time greatly increased reaction volume between the treatment gas and molten steel. In this way, a higher and faster decarburization performance can be achieved, so that smaller amounts of reduction media are necessary.
  • Out JP 6299227 A there is known a method of producing very low carbon steel with a degassing apparatus, wherein the inlet trunk is positioned so that the distance between the axis of the inlet trunk and the axis of the metal bath is at least 10% of the inner diameter of the metal bath.
  • Out JP 1198418 A a device and a method for the vacuum degassing of molten steel is known, wherein both introduced into the inlet and outlet spout gas and alternately the function of the trunk can be changed.
  • Out JP 3271315 A is a RH vacuum decarburization of stainless steel known, the degassing and decarburization is achieved in a short time and the loss of chromium is reduced. The result is achieved by using low silicon steel and repeated degassing and decarburization with an RH vacuum vessel.
  • JP 2173204 A For example, a vacuum vessel for an RH degassing apparatus is known wherein an ultrasonic oscillator is installed at a contact point with the liquid steel in the vacuum vessel to destroy bubbles generated by the gas injection and to improve the reaction surface on the phase reaction.
  • Out JP 3107412 A discloses a method of producing very low carbon steel, wherein argon is injected at the same time during decarburization into both the inlet and outlet tubes.
  • JP 01275715 a degassing device is described, in whose outlet pipe gas supply openings are provided, by means of which an inert gas in the Molten steel can be blown in order to prevent the ingress of slag into the molten steel.
  • a dead water area is usually formed between the spout and the refractory wall of the ladle. Due to the downward stream of melt from the spout little material from the immediate vicinity is sucked in around the spout. As a result, the overall carbon concentration remains high due to the delayed homogenization. The dead water area mixes poorly with the rest of the melt because the average flow rate is low. Because of the low mass, momentum and energy exchange between the high carbon concentration dead water zone and the remainder of the low carbon concentration melt, the ladle melt often has to be recirculated until the desired final carbon content is achieved. Since the ladle melt has to circulate frequently, the treatment time is high.
  • the invention has for its object to provide an apparatus for degassing a molten steel with an improved spout, which reduces the formation of dead water areas.
  • the invention has for its object to provide an improved and reliable method for degassing and / or decarburization of molten steel, wherein the formation of dead water areas is reduced.
  • the object of the present invention is achieved by a device comprising at least one degassing vessel, a Stahlg screenpfanne, an inlet trunk and a gas purging device arranged therein and a spout.
  • the spout has at least one bore at the lower edge in the radial direction, relative to the central longitudinal axis of the spout, for sucking a carbonaceous melt from a dead water zone between the spout and the socket delivery and directing it into the downflow of the spout.
  • the device is preferably an RH plant.
  • the carbonaceous melt is drawn in from the dead water zone between the spout and the pan feed and directed into the downflow of the spout.
  • the size and number of holes at the bottom of the spout are dependent on the RH method and must be adjusted accordingly.
  • the main parameters are the geometry and immersion depth of the inlet and outlet probes and the negative pressure in the RH vacuum vessel.
  • the inventive device in particular the new shape of the spout, the local dead water area is reduced in size.
  • the treatment and circulation time of the melt can be advantageously shortened. This leads to the advantageous reduction of argon consumption and further cost reduction.
  • the productivity of the RH plant is increased.
  • a preferred embodiment of the invention is an outlet spout having a plurality of bores within a radius of 360 °.
  • the outlet trunk particularly preferably has several holes within a radius of 180 ° in the direction of the refractory wall the ladle. Due to the inventive design of the spout, the local dead water areas are effectively reduced.
  • the size and number of holes depends on the geometry and immersion depth of the spout and the vacuum in the evacuation vessel.
  • Another preferred embodiment of the invention is a spout, wherein the holes have a diameter of 10 mm to 50 mm, preferably 25 mm to 35 mm. With these diameters for the holes good results are achieved in the Totwasserreduzi für a spout.
  • a further preferred embodiment of the invention is a spout whose immersion depth in the molten steel of the ladle is from 300 mm to 1200 mm, preferably 400 mm to 1000 mm. In this range for the immersion depth good results are achieved in the Totwasserreduzi für spout.
  • a further preferred embodiment of the invention is a spout, wherein one or more holes 50 mm to 900 mm, preferably 100 mm to 700 mm, are arranged above the lower edge of the spout.
  • a further preferred embodiment of the invention is a spout, wherein holes in a row of holes or in several superposed rows of holes are on the spout. Preference is given to one or two superimposed rows of holes on the outlet trunk.
  • the object of the present invention is further achieved by the use of the spout according to the invention in a RH plant for reducing local dead water areas in a ladle.
  • a RH plant for reducing local dead water areas in a ladle.
  • RH plant I has a steel cistern 3 with a volume of 200 t.
  • the immersion depth of the spout 1 and the inlet trunk 4 was 600 mm.
  • the process time was 85 s.
  • the following process steps were carried out in the RH plant.
  • Argon 5 was introduced over the mirror of the steel bath 10 into the inlet trunk 4.
  • the liquid steel 10 was sucked from the ladle 3 into the inlet trunk 4.
  • the liquid steel 10 was conveyed from the inlet trunk 4 into the evacuation vessel 2 located above.
  • the liquid steel 10 was degassed in the evacuation vessel 2.
  • the liquid steel 10 was conveyed via the spout 1 back into the ladle 3.
  • a local Totwasser 9 formed between the spout 4 and the refractory wall 8 of the ladle 3 from. Due to the downwardly directed melt stream from the spout 4 little molten steel 10 was sucked in from the immediate vicinity of the spout 1 ago. As a result, the carbon concentration in the dead water area 9 remained high at a high level due to the delayed homogenization. The dead water area 9 mixed poorly with the remainder of the melt 10 because the average flow rate was low. The duration of the proceedings was high.
  • Fig. 2 shows a cross section through an inventive RH plant I with holes 7 in the spout 1 and with greatly reduced local Totwasser which 9 between the spout 1 and refractory wall 8 of the ladle 3.
  • the procedure was as in the example in Fig. 1 with the following differences.
  • the spout 1 had several holes 7 in the radial direction, based on the central longitudinal axis 6 of the spout 1 on the side towards the refractory wall 8 of the ladle 3.
  • the holes 7 were 150 mm above the lower edge of the spout 1 is arranged.
  • the immersion depth of the spout H snorkel was 400 mm.
  • Molten steel 10 was sucked in from the immediate vicinity around the spout 1 ago. The homogenization in the molten steel 10 was faster. Consequently, the carbon concentration in the dead water region 9 dropped. The process time was thereby greatly reduced.
  • FIGS. 3 and 4 illustrate the following example. First, the geometry of an RH plant in Table 1 and the physical quantities in Table 2 are explained.
  • Table 1 Geometry of the RH plant Measurement unit H melt Distance from the lower edge of the degassing vessel to the gas inlet 1350 meter D 1 Diameter of the degassing vessel 2200 meter D 2a Outer diameter of the inlet spout and the spout 1294 meter D 2i Inner diameter of the inlet spout and the spout 0650 meter D 3 Diameter of the ladle 3396 meter H snorkel Immersion depth of the spout 0.6 meter h nozzel Distance of the hole from the lower edge of the spout 0275 meter Physical sizes Measurement unit P 0 Pressure in the ladle at rest 100000 Pa P RH Pressure in the degassing vessel 200 Pa r ho Density of the melt 6930 - 7050 Kg / m 3 T Temperature of the melt 1600 ° C
  • the negative pressure in the RH vessel is gradually reduced, for example, from initially 250 mbar down to 2 mbar within about 6 min.
  • the pressure of 2 mbar is then also the lowest pressure in the RH vessel, in particular directly above the melt surface in the RH vessel.
  • the cycle time in an RH plant is about 10 minutes to 50 minutes.
  • the homogenization time in the melt at a spout without holes about 90 s to 480 s.
  • the homogenization time in the melt is approximately 85 s to 456 s for a spout with holes. This means a reduction in the cycle time of about 5%.
  • the number n of holes is preferably 3 to 9.
  • the number is preferably odd, since central hole should lie on the axis, therefore in the narrowest gap between Pfannenausmautation and proboscis.
  • the preferred bore diameter is 10 mm to 50 mm.
  • the row of holes should be positioned no more than 300 mm above the exit opening of the spout .
  • the row of holes in the vertical direction should not be closer than 300 mm below the melt surface in the steel ladle, otherwise there is a risk that slag will be sucked in from the surface.
  • two or more rows of holes can be arranged one above the other, see Table 2.
  • the holes in the spout can also be arranged between the two trunks, as it also collects in this area calmed melting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
EP10759802.1A 2009-08-28 2010-08-20 Vorrichtung zur entgasung einer stahlschmelze mit einem verbesserten auslaufrüssel Active EP2470678B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009039260A DE102009039260A1 (de) 2009-08-28 2009-08-28 Vorrichtung zur Entgasung einer Stahlschmelze mit einem verbesserten Auslaufrüssel
PCT/EP2010/005124 WO2011023337A1 (de) 2009-08-28 2010-08-20 Vorrichtung zur entgasung einer stahlschmelze mit einem verbesserten auslaufrüssel

Publications (2)

Publication Number Publication Date
EP2470678A1 EP2470678A1 (de) 2012-07-04
EP2470678B1 true EP2470678B1 (de) 2016-10-12

Family

ID=43303941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10759802.1A Active EP2470678B1 (de) 2009-08-28 2010-08-20 Vorrichtung zur entgasung einer stahlschmelze mit einem verbesserten auslaufrüssel

Country Status (7)

Country Link
US (1) US9181602B2 (zh)
EP (1) EP2470678B1 (zh)
BR (1) BR112012004433B1 (zh)
DE (1) DE102009039260A1 (zh)
RU (1) RU2473704C1 (zh)
TW (1) TWI454579B (zh)
WO (1) WO2011023337A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801627A1 (de) 2013-05-06 2014-11-12 Siemens VAI Metals Technologies GmbH Vakuumbehandlungsgefäß zum Behandeln einer Metallschmelze, insbesondere für eine RH-Anlage
KR101890903B1 (ko) * 2014-05-21 2018-08-24 노벨리스 인크. 혼합 이덕터 노즐 및 흐름 제어 디바이스
DE202015003235U1 (de) * 2015-04-30 2016-08-02 Beck U. Kaltheuner Feuerfeste Erzeugnisse Gmbh & Co. Kg RH-Vakuumentgasungsanlage und Rüssel einer RH-Vakuumentgasungsanlage
WO2020011951A1 (de) 2018-07-12 2020-01-16 Sms Mevac Gmbh Ruhrstahl-heraeus-verfahren ohne pfannentransportwagen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200514A (en) 1981-06-03 1982-12-08 Nippon Kokan Kk <Nkk> Method for degassing molten steel
SU1060690A1 (ru) * 1982-07-02 1983-12-15 Московский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Институт Стали И Сплавов Устройство дл циркул ционного вакуумировани металла
JPH01198418A (ja) 1988-02-01 1989-08-10 Sumitomo Metal Ind Ltd 溶鋼の真空脱ガス設備および真空脱ガス方法
JPH01275715A (ja) * 1988-04-27 1989-11-06 Kawasaki Steel Corp Rh式脱ガス装置による溶鋼の真空脱ガス処理方法
CA1337846C (en) * 1988-06-21 1996-01-02 Hiroshi Nishikawa Process for vacuum degassing and decarbonization with temperature drop compensating feature
JPH02173204A (ja) 1988-12-27 1990-07-04 Nippon Steel Corp Rh脱ガス装置の真空槽
JPH03107412A (ja) 1989-09-22 1991-05-07 Kawasaki Steel Corp 極低炭素鋼の溶製方法
JPH03271315A (ja) 1990-03-22 1991-12-03 Sumitomo Metal Ind Ltd ステンレス鋼のrh真空脱炭方法
JP3107412B2 (ja) 1990-07-20 2000-11-06 三井化学株式会社 ジアルジミンを含有する湿気硬化性ポリウレタン組成物
JP3539740B2 (ja) * 1992-02-05 2004-07-07 Jfeスチール株式会社 環流式真空脱ガス槽での溶鋼脱硫方法および真空脱ガス槽
CN2126624Y (zh) * 1992-06-05 1993-01-27 冶金工业部钢铁研究总院 薄板坯连铸用特种水口
JP3271315B2 (ja) 1992-08-06 2002-04-02 栗田工業株式会社 廃水の処理方法
JPH06299227A (ja) 1993-04-14 1994-10-25 Kawasaki Steel Corp Rh式脱ガス装置による極低炭素鋼の製造方法
DE19511557C2 (de) * 1994-07-26 1996-07-11 Veitsch Radex Ag Gasspüleinrichtung
DE19511640C1 (de) 1995-03-30 1996-05-23 Veitsch Radex Ag Rüssel für ein Entgasungsgefäß
JPH1198418A (ja) 1997-09-24 1999-04-09 Toyota Central Res & Dev Lab Inc 撮像装置
JPH11158536A (ja) 1997-12-02 1999-06-15 Sumitomo Metal Ind Ltd 清浄性に優れた極低炭素鋼の溶製方法
RU2215047C2 (ru) * 2001-12-25 2003-10-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Устройство для циркуляционного вакуумирования стали
PL204157B1 (pl) * 2005-08-16 2009-12-31 Zak & Lstrok Ady Magnezytowe R Króćce urządzenia do próżniowego odgazowywania stali

Also Published As

Publication number Publication date
BR112012004433A2 (pt) 2016-03-22
US20120160063A1 (en) 2012-06-28
RU2473704C1 (ru) 2013-01-27
BR112012004433B1 (pt) 2018-06-12
US9181602B2 (en) 2015-11-10
DE102009039260A1 (de) 2011-03-03
TWI454579B (zh) 2014-10-01
TW201120221A (en) 2011-06-16
WO2011023337A1 (de) 2011-03-03
EP2470678A1 (de) 2012-07-04

Similar Documents

Publication Publication Date Title
EP0418656B1 (de) Verfahren und Vorrichtung zum zumindest zeitweise gleichzeitigen Beaufschlagen einer Metallschmelze mit einem Gas und feinkörnigen Feststoffen
EP2470678B1 (de) Vorrichtung zur entgasung einer stahlschmelze mit einem verbesserten auslaufrüssel
EP2355949B1 (de) Vorrichtung und verfahren zur granulierung einer edelmetallschmelze
CH641839A5 (de) Vorrichtung zur einleitung von gasen in metallschmelzen.
DE202021100533U1 (de) System für in-situ-autogenes aluminiumbasiertes Verbundmaterial mit permanentmagnetischem Rühren
DE1533890B1 (de) Vorrichtung zum Spruehfrischen von Metallschmelzen
DE2923493C2 (de) Verfahren und Vorrichtung zum Entgasen von Metallschmelzen in einer Reaktionskammer
DE4139020C2 (de) Vorrichtung und Verfahren zur Herstellung eines Metallschaums
DE2702267A1 (de) Stranggussverfahren sowie vorrichtung zur durchfuehrung des verfahrens und nach dem verfahren hergestellter gussrohling
DE3876519T2 (de) Verfahren und vorrichtung zum entgasen geschmolzener metalle nach der rh-methode.
EP2698588B1 (de) Ofen zur Entfernung von Verunreinigungen aus Metallschmelzen
DE1912936A1 (de) Verfahren und Vorrichtung zum Reinigen und Vakuumentgasen von schmelzfluessigen Metallen
DE2933466C2 (de) Gefäß für die Behandlung von geschmolzenem Metall
EP2445663B1 (de) Verfahren und vorrichtung zum erzeugen von stahlbändern mittels bandgiessen
DE102018113643A1 (de) Vorrichtung zur Beschichtung einer Oberfläche
DE1458812A1 (de) Vorrichtung zum Vakuumbehandeln von Schmelzen,insbesondere Stahlschmelzen,und Verfahren zu ihrem Betrieb
EP2253916B1 (de) Metallurgisches Schmelz- und Behandlungsaggregat
EP2106454B1 (de) Vorrichtung und verfahren zum behandeln von werkblei
DE2518903A1 (de) Stranggiessverfahren und -vorrichtung
EP0281508B1 (de) Vorrichtung für die Entgasung von geschmolzenem Metall
DE2253630C2 (de) Verfahren zur Behandlung von Stahl in einer Pfanne
EP3493930B1 (de) Pralltopf, vorrichtung zum vergiessen einer metallischen schmelze sowie verfahren zum vergiessen einer metallischen schmelze
DE1912936C (de) Vorrichtung und Betriebsverfahren zum Reinigen und Vakuumentgasen von schmelz flussigen Metallen
DE2234748A1 (de) Verfahren und vorrichtung zum behandeln von leichtmetallegierungen
DE2903211A1 (de) Lanze zum einspritzen von pulverfoermigem material in eine metallschmelze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS GROUP GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 836564

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012567

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012567

Country of ref document: DE

Representative=s name: HEMMERICH, MUELLER & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012567

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012567

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012567

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012567

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012567

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

26N No opposition filed

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220822

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 14

Ref country code: AT

Payment date: 20230822

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230820