EP2430199B1 - Procédé de la fabrication d'une bande d'acier laminée à chaud et le produit de la bande d'acier laminée à chaud - Google Patents

Procédé de la fabrication d'une bande d'acier laminée à chaud et le produit de la bande d'acier laminée à chaud Download PDF

Info

Publication number
EP2430199B1
EP2430199B1 EP10727754.3A EP10727754A EP2430199B1 EP 2430199 B1 EP2430199 B1 EP 2430199B1 EP 10727754 A EP10727754 A EP 10727754A EP 2430199 B1 EP2430199 B1 EP 2430199B1
Authority
EP
European Patent Office
Prior art keywords
steel
steel strip
strip product
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10727754.3A
Other languages
German (de)
English (en)
Other versions
EP2430199A1 (fr
Inventor
Tommi Liimatainen
Mikko HEMMILÄ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rautaruukki Oyj
Original Assignee
Rautaruukki Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rautaruukki Oyj filed Critical Rautaruukki Oyj
Priority to PL10727754T priority Critical patent/PL2430199T3/pl
Publication of EP2430199A1 publication Critical patent/EP2430199A1/fr
Application granted granted Critical
Publication of EP2430199B1 publication Critical patent/EP2430199B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a method for manufacturing a hot rolled steel strip product having a wall thickness of 2 to 12 mm using steel whose composition in percentage by weight is C: 0.04 - 0.08 Si: 0 - 0.5 Mn: 1.3 - 2.2 Nb: 0.04 - 0.09 Ti: 0.06 - 0.16 N: ⁇ 0.01 P: ⁇ 0.03 S: ⁇ 0.015 Al: 0.01 - 0.15 V: ⁇ 0.1 Cr: ⁇ 0.2 Mo: ⁇ 0.2 Cu: ⁇ 0.5 Ni: ⁇ 0.5 the rest consisting of iron and unavoidable impurities.
  • Low carbon content is excellent for providing steel with good welding characteristics. Also the low carbon equivalent of steel has a positive effect to good weldability.
  • the invention further relates to a steel product with a wall thickness of 2 to 12 mm and a composition as described above.
  • EP 1319725 discloses a method for manufacturing a steel strip having the above composition.
  • the strength of the steel strip thus manufactured is relatively high, its yield strength exceeding 690 MPa, combined with a relatively high percentage of elongation after fracture (12 to 21%).
  • these mechanical properties are arrived at by subjecting the steel to a two-step cooling. In the first cooling step an extremely fast cooling is carried out, the cooling rate being over 150°C/s after hot rolling, followed by a pause of 3 to 10 seconds without active cooling, after which a second cooling step is carried out to the coiling temperature of the steel strip to be manufactured, the temperature being chosen according to the desired strength.
  • the recommended coiling temperature for yield strengths exceeding 690 MPa is 580°C.
  • the high cooling rate of over 150°C/s at the first quenching step may be obtained only at low strip thicknesses, and the publication only discusses strip thicknesses lower than 4 mm.
  • the cooling pause is meant to provide time for a phase change, during which the yield strength of the material in particular decreases and the yield strength/tensile strength value decreases compared with continued cooling.
  • the publication does not disclose how a yield strength of over 690 MPa is obtained in the steel when the coiling temperature is below 580°C.
  • the publication shows that the yield strength obtained in a coiling temperature of less than 580°C remains below 690 MPa.
  • US 2004/040633 A1 describes a hot strip or hot plate, and its production method.
  • the steel is micro-alloyed and its disclosed chemical composition overlaps with the the composition claimed in the application.
  • the method disclosed in US 2004/040633 A1 consists of casting the steel to form a raw material such as slabs, blooms, or thin slabs; heating to a temperature of 1300-1350°C; rough rolling at a degree of deformation of 36% to 43%; thermo-mechanically hot rolling at a finish roll temperature which exceeds the Ac3 temperature so as to form a hot strip; cooling at a cooling rate of at least 15C°/ s to a coiling temperature of 590-630°C.
  • Said two-step cooling is in practice more complicated to carry out than a one-step cooling and requires more complex production equipment.
  • the bendability of the steel strip obtained by two-step cooling is not particularly good, although the steel strip has relatively good values for percentage of elongation after fracture. Bendability means the ability of steel strip to bend to a small bending radius without surface damage emerging at the bending point.
  • Two-step cooling has not succeeded in providing steel with particularly good impact strength values at low temperatures in combination with high strength.
  • An object of the invention is to overcome said drawbacks of the prior art and to provide a method that is easy to implement for manufacturing strip steel product, typically a steel strip, of high strength and a particularly good bendability, the strip steel product having a chemical composition as mentioned above.
  • the method of the invention is characterized by
  • the invention has surprisingly shown that said steel composition is capable of producing high-strength steel which also has good bendability. Also surprisingly, it was discovered that the strength of the steel is isotropic, i.e. its yield strength does not vary considerably irrespective of whether it is measured lengthwise or crosswise in relation to the rolling direction.
  • the direct quenching rate is preferably 120 °C/s at the most, because this enables to obtain a steel microstructure that provides the steel with particularly good mechanical properties, including good impact strength combined with good bendability.
  • the end temperature of the direct quenching is 100°C at the most, because this enables to obtain a planar strip with also planar and even edges after the quenching.
  • the steel strip is direct quenched directly to the coiling temperature and coiled.
  • the processing of the steel strip is preferably thermomechanical, and thus no tempering is carried out after the direct quenching. It has been observed that a steel product manufactured with the method has good mechanical properties although no tempering adding the costs is required on the product. Tempering does not significantly improve the mechanical properties of the product, and it complicates the process.
  • the major advantages of the method of the invention are that it allows a steel product with good mechanical properties, including bendability, and a predetermined composition to be manufactured in a simple and economical manner and with simple equipment.
  • the invention further relates to a product manufactured in method steps of the invention.
  • the steel strip product of the invention having a wall thickness of 2 to 12 mm and composed in percentage by weight of C: 0.04 - 0.08 Si: 0 - 0.5 Mn: 1.3 - 2.2 Nb: 0.04 - 0.09 Ti: 0.06 - 0.16 N: ⁇ 0.01 P ⁇ 0.03 S: ⁇ 0.015 Al: 0.01 - 0.15 V: ⁇ 0.1 Cr: ⁇ 0.2 Mo: ⁇ 0.2 Cu: ⁇ 0.5 Ni: ⁇ 0.5, the rest being iron and unavoidable impurities, is characterized in that the micro structure of the steel is substantially low carbon ferritic and/or low carbon bainitic, and contains high-carbon islands; that its yield strength is 650 - 800 MPa and percentage of elongation after fracture is at least 12%; that its yield ratio is 0.8-0.95; and that its structure is isotropic in the sense that its yield strength in the rolling direction differs 6.5% at the most from its yield strength in the direction that is transverse to the rolling direction.
  • the microstructure of the steel mostly consists of a low carbon ferrite and/or bainite, without containing significant amounts of carbon-rich martensite or carbon-rich bainite.
  • the dominant phase consists of ferrite with an almost fully ferritic microstructure, as recommended, and small amounts of bainite and/or martensite and/or residue austenite in extremely small islands of enriched carbon content.
  • a significant reason for the obtained high strength is the use of niobium and titanium as micro-alloy elements in the steel produced with the method. Both niobium and titanium must be used.
  • the major advantages of the steel product of the invention are its excellent mechanical properties, including bendability and shear characteristics and impact strength values, in relation to its composition.
  • the steel is also well applicable in arctic conditions.
  • the steel of the invention is extremely useful due to its properties related to engineering works, because its weldability is good and its isotropic strength properties allow a very efficient optimization of its use.
  • the small bending radius particularly facilitates the work of bent product designers.
  • the steel strip product of the invention is specifically well suited for use as strong structure steel.
  • Figure 1 shows the method steps of the invention for producing a steel strip product with a wall thickness of 2 to 12mm.
  • the manufacture starts with a work piece of steel whose composition in percentage by weight is C: 0.04 - 0.08 Si: 0 - 0.5 Mn: 1.3 - 2.2 Nb: 0.04 - 0.09 Ti: 0.06 - 0.16 N: ⁇ 0.01 P ⁇ 0.03 S: ⁇ 0.015 Al: 0.01 - 0.15 V: ⁇ 0.1 Cr: ⁇ 0.2 Mo: ⁇ 0.2 Cu: ⁇ 0.5 Ni: ⁇ 0.5 and the rest iron and unavoidable impurities.
  • the steel has a low carbon content C of 0.04 to 0.08%, which is advantageous in view of the impact strength, bendability and weldability of the material.
  • Silicon, Si may be used in an amount of 0 to 0.50% as a killing agent (in addition to aluminium) and for ferrite reinforcement. If a particularly good surface quality is to be aimed at, the silicon content must be limited to below 0.25%.
  • the alloying content of manganese, Mn is 1.3 to 2.2%. Because of the low carbon content, steel is not prone to manganese and carbon segregation during casting, which enhances the homogeneity of the microstructure also at relatively high contents of Mn.
  • the steel of the invention may be cut into precisely dimensioned pieces both thermally (e.g. by laser and plasma) and mechanically. It has been observed that a piece with a relatively smooth cutting surface is obtained. This has an advantageous effect on fatigue strength. In addition, low carbon content prevents the cutting surface from becoming rough during thermal cutting and reduces maximum hardness, the cutting surface being less prone to brittle and crack during forming of the piece and in the conditions of use thereof.
  • the cutting gap may be set at a value of 10 to 15% of the sheet thickness, the cutting result being still smooth and non-fractured and hence separate grinding of the cutting surface or thermal cutting is not needed, which significantly reduces working allowances and decreases the number of manufacturing steps, thereby enhancing the manufacturing process.
  • the amounts of phosphor, P, (0.03% at the most) and sulphur, S, (0.015% at the most) present as impurities are to be restricted.
  • the maximum amount of P is preferably 0.015% and that of S preferably 0.005%.
  • the properties may be improved, when necessary, by treatment with molten Ca or CaSi.
  • As a killing agent aluminium Al 0.01 - 0.15% is used.
  • the amount of aluminium used is preferably 0.05% at the most.
  • the amount of nitrogen, N, used is 0.01% at the most, because when present in steel containing titanium, nitrogen forms hard titanium nitride particles that impair the bendability of the steel.
  • the preferred amount of nitrogen used is 0.006% at the most.
  • the content of copper, Cu is to be reduced to 0.3% at the most to ensure excellent surface quality for a hot-rolled strip. If the copper content exceeds 0.3%, it is recommended to alloy also nickel, Ni, in an amount equal to at least 0.25 times the Cu content. Although steel achieves its good properties also without copper, it may be used, when necessary, to slightly increase strength.
  • the Cu content is 0.5% at the most.
  • An alloy 0.3 to 0.5% of copper and at least 0.1% of nickel is preferably used particularly for thick strips of 8 to 12 mm, for example.
  • Ni is restricted to 0.5% at the most. Although steel achieves its excellent strength properties also without the blending of Ni, it may slightly increase strength, when necessary.
  • Borium, B is not alloyed at all, because it would unnecessarily increase hardening.
  • the borium content in the steel strip product of the invention is restricted to the impurity level, i.e. B ⁇ 0.0005%.
  • Titanium, T may be alloyed to achieve a desired strength level. Typically 0.06 to 0.16%, although higher Ti levels could be used as well, but in that case its strength increasing effect is extremely small and may complicate the casting of the work piece. Lower Ti percentages are not used, because then high strength is difficult to obtain without using a more expensive alloying or increasing the carbon content to over 0.08%. Surprisingly the invention has shown that even at low temperatures, such as -40°C and -60°C, titanium does not lower significantly the impact strength of the basic agent, as shown by the measurement results of Table 3.
  • Chromium, Cr, and molybdene, Mo do not need to be alloyed. They are elements that increase hardening and have a disadvantageous effect on weldability, at least in higher amounts. For this reason Cr is restricted to a maximum content of 0.2% and, similarly, Mo to a maximum content of 0.2%.
  • the amount of chromium is preferably less than 0.1%.
  • Molybdene is most preferably allowed in an amount of 0.10%, and 0.2% at the most, because the mechanical properties of the steel of the invention are most preferably achieved by alloying titanium which provides more affordable alloying element costs than molybdene. Molybdene may even be harmful for strength in a direct quenched steel strip product of the invention. In any case, added molybdene does not significantly improve the strength of the steel strip product of the invention, when the product is produced by thermomechanical treatment.
  • Vanadine, V does not need to be alloyed. In addition, it increases unnecessary hardening and has a disadvantageous effect on weldability at least in high concentrations. For this reason, V is restricted to a maximum content of 0.1%.
  • Nb and Ti concentrations are restricted as follows: Nb: 0.04 - 0.06% and Ti: 0.06 - 0.10% for reducing the rolling forces and, at the same time, a vanadium concentration V of 0.06 - 0.10% may be selected to obtain high strength.
  • silicon may be advantageously added in an amount of Si: 0.30 - 0.50% to increase strength, as shown in Table 1 of the tests run with an experimental composition E1.
  • the sum of the niobium, titanium and vanadium concentrations is greater than 0.15%, i.e. Ti + Nb + V > 0.15%, the steel strip product being applicable as a particularly strong structural steel.
  • the steel strip product of the invention is excellent to bend (fold) and to weld e.g. by autogenous high frequency (HF) welding into a tube or a tube beam.
  • HF high frequency
  • the work piece of steel is 210 mm thick, for example, and heated to an austenizing temperature of 1280°C, where it is kept for about 3 hours.
  • the thickness of the steel work piece may differ from the one disclosed here and the austenizing temperature may be differently chosen, but a range of 1200 - 1350°C is recommended. If the austenizing temperature is below the lower limit given, there is a risk that the microalloying elements do not dissolve into the austenite, i.e. a homogenous austenite is not obtained.
  • the annealing time varies within a range of 2 to 4 hours.
  • the carbon equivalent C + Mn/6 + (Cr + Mo +V)/5 + Ni + Cu)/15 for steel is preferably not higher than 0.45, which guarantees a good weldability of the steel.
  • the steel work piece After austenizing, the steel work piece is hot-rolled at a temperature of 950 - 1250°C to a thickness which is typically 25 - 50 mm and then immediately transferred to a strip rolling mill to be rolled into a strip with a final thickness of 2 - 12 mm.
  • the recommended final thickness of the steel strip is at least 4 mm. It also recommended that the final thickness does not exceed 10 mm.
  • the number of passes in the strip roll mill is typically 5 to 7.
  • the last pass in the strip roll mill is carried out at a temperature range of 760 - 960°C, the recommendation being 780 - 850°C.
  • the direct quenching of the steel strip starts within 15 seconds.
  • the temperature of the steel strip must be at least 700°C.
  • the direct quenching is carried out as a water quenching at a quenching rate of 30 - 150°C/s, the recommended upper limit being 120°C/s at the most.
  • the direct quenching continues up to a temperature of 300°C at the most, the recommended temperature being 100°C.
  • the steel is coiled.
  • the coiling temperature may fall within a temperature range of 30 - 300°C.
  • a recommended initial coiling temperature is 100°C at the most, because when steel is coiled at a temperature exceeding 100°C, a discontinuous steam cushion complicating the process may form onto the steel surface.
  • the microstructure of the steel becomes homogenous and consists of a dominant phase, which is preferably low carbon ferrite and/or low carbon bainite.
  • the amount of the dominant phase is typically over 90%.
  • extremely low amounts of high carbon bainite and/or residual austenite and/or martensite is present in extremely high carbon groups.
  • the average grain size in the microstructure is small, preferably approximately 2 - 4 micrometers. It is also essential that the microstructure does not contain big grains in the first place and therefore the steel has particularly good bending characteristics taking into consideration the strength of the steel.
  • the grain size must be as uniform and fine as possible, which is achieved by the method of the invention.
  • Tables 1 to 3 below provide examples of the concentrations and manufacturing parameters of the steel of the invention and of the strength and toughness values obtained with them. For the sake of comparison, Tables 2 and 3 also contain manufacturing parameters not belonging to the scope of the method of the invention, i.e. treatments not corresponding to the method of the invention. In Table 2 on the manufacturing parameters and in the table on the mechanical strength properties reference tests have been indicated with R.
  • a further topic of examination are the bending characteristics obtained with the treatments of the invention, these being compared with the bending characteristics obtained by manufacturing parameters remaining outside the scope of the method, see Tables 3 and 4, Steel B3Q23 (bending test a) according to the invention)and Steel A3M33 (bending test b) outside the invention).
  • Indication T_f in Table 2 denotes the temperature at the last rolling pass, indication T_c denoting the temperature at the start of the coiling, indication Th denoting the thickness of the steel strip and indication Wi denoting the width of the steel strip.
  • T denotes a sample whose strength and toughness have been determined in a direction transverse to the roll direction.
  • Ending L denotes a sample whose strength and toughness have been determined in the rolling direction.
  • TABLE 1 TEST COMPOSITION anal C SI MN P S AL NB V CU CR NI N MO TI CA Ti+Nb+V example A1 0.049 0.23 1.99 0.008 0.003 0.03 0.08 0.01 0.03 0.04 0.04 0.005 0.10 0.20 1,2,3 A2 0.049 0.19 1.92 0.007 0.003 0.03 0.09 0.01 0.04 0.04 0.05 0.005 0.01 0.10 0.003 0.19 10 A3 0.049 0.19 1.89 0.009 0.002 0.03 0.08 0.01 0.01 0.03 0.08 0.01 0.01 0.03 0.05 0.006 0.00 0.10 0.003 0.19 9 B2 0.056 021 1.81 0.007 0.003 0.03 0.09 0.01 0.04 0.04 0.05 0.007 0.01 0.11 0.00
  • STRENGTH AND TOUGHNESS PROPERTIES sample Th RP02 RM RP02 difference (T-L)/L A5 ChV-20 ChV-40 ChV-60 e.g. mm MPa MPa % % J/cm2 J/cm2 J/cm2 A1 M33T 5 829 873 9.8 % 17.0 1 R A1 M33L 5 748 833 19.0 133 120 104 1 R A1 M63T 5 728 770 8.0 % 16.0 2a R A1 M63L 5 670 734 18.0 245 216 187 2a R A1Q61T 5 747 850 7.0 % 15.0 2b A1Q61L 5 695 773 15.0 211 205 189 2b A1 M83T 5 752 841 4.1 % 15.0 3 A1M83L 5 721 811 16.0 216 195 187 3 B2L13T 10 734 812 10.4 % 15.6 5 R B2L13L 10 658 745 17.6
  • Tables 2 and 3 show that the impact strength values are good and the strength is isotropically high, when direct quenching is carried out to a low temperature (50°C).
  • the yield strength of steels according to the invention is 635 - 829 MPa.
  • the percentage of elongation after fracture A5 is at least 12% and typically at least 15%.
  • the yield ratio (yield strength/break strength) of the steels is about 0.8 - 0.95.
  • the yield strength values of the steel strip in the machine direction and cross machine direction of the steel strip do not differ significantly from one another in examples 3, 4, 6, 7, 9, 11 and 12.
  • the yield strength in the machine direction is almost as high as the yield strength in cross machine direction, the ratio of the strengths being ⁇ 6.5%, even ⁇ 2%.
  • strength variations as low as these are obtained by carrying out the quenching according to a preferred embodiment of the invention to a temperature of less than 100°C and/or by using the final strip rolling temperature of 890°C.
  • said uniform quality is present in steels in which the final rolling temperature is low (below 890°C) and/or coiled at a low temperature (coiling temperatures 50°C).
  • Uniform quality is advantageous, because when a steel strip for different purposes is being designed, there is no need to take into account the fact that the steel strip has a higher strength in rolling direction than in the direction that is transverse to the rolling direction. Hence it is possible to take advantage of the high strength of the steel strip in all situations, i.e. also when cutting blanks that are processed into products which in use receive their greatest load in the direction that corresponds to the rolling direction of the steel strip. Further, the use of the steel strip may be optimized, because variations in strength in relation to the loading direction do not need to be taken into account.
  • isotropic strength properties probably contribute to the formation of bends of uniform quality irrespective of the bending direction (longitudinal/transverse), which further improves the applicability of the steel strip product of the invention.
  • Table 4 shows that bendability in longitudinal bending, which is known to be problematic, is excellent.
  • Steel sample B5Q3 for example, in longitudinal bending allows an R/t value of 1.3 to be reached. Transverse bending of this steel still succeeds at R/t value 0.3.
  • the bending has been carried out by a prior art method as a V-bend between the upper and the lower tool, Figure 3 illustrating the principle.
  • the bending method used is free bending with a V-opening width V of 100 mm.
  • the test pieces were bent in both directions, whereby they were bent into Z-shapes.
  • the bending tests were made transversally (T) to the rolling direction.
  • FIG. 3 shows a successful bend (OK) with a round bend form and an intact surface.
  • Rejecting result (Fail) is due to visible cracks, fissures or angularity in the area of the bending radius.
  • Table 5 shows typical bending faults that lead to a rejecting result and Table 4 an example of a clearly failed bending (Fail).
  • Table 5 shows typical bending faults Name Description Edge fracture Edge fractures on shear edge of outer bend Very thin surface fracture Yield lines visible on the bend Thin surface fracture Yield lines show as distinct grooves (Surface crack) Possible crack on bend surface Surface crack Reflecting crack on bend surface Open crack Clear break on bend surface
  • steel B3Q23 (bending test a in Table 2) has a far better bendability than steel A3M33 (bending test b in Table 2).
  • the ratio of the bending radius to material strength (R/t) may be even 0.4, whereas the ratio achieved by conventionally manufactured reference steel is only about 1.6.
  • the conclusion drawn from Tables 1 to 4 and Figure 5 is that the in the method of the invention direct quenching is performed to a temperature of 300°C at the most.
  • the impact strength values obtained for steel samples B4Q23 are significantly better than those for steel samples A2M33 (transition curve c).
  • the former steel samples have been direct quenched to a temperature of 50°C (cf. Table 2), whereas the latter have been cooled to a temperature of 615°C.
  • Table 3 also shows that cooling to a high temperature of about 600°C (examples 1 and 10) results only in impact strength values that are typical for steel of this strength grade.
  • the impact strength of the steel of the invention at a temperature of -20°C is at least 200 J/cm 2 and/or at a temperature of -40°C at least 190 J/cm 2 and/or at a temperature of -60°C at least 180 J/cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Claims (14)

  1. Procédé de fabrication d'un produit en bande d'acier laminé à chaud ayant une épaisseur de 2 à 12 mm en utilisant de l'acier dont la composition en pourcentage en poids est C: 0,04 - 0,08 Si: 0 - 0,5 Mn: 1,3 - 2,2 Nb: 0,04 - 0,09 Ti: 0,06 - 0,16 N: < 0,01 P: ≤ 0,03 S: < 0,015 Al: 0,01 - 0,15 V: ≤ 0,1 Cr: < 0,2 Mo: < 0,2 Cu: ≤ 0,5 Ni: ≤ 0,5
    le reste étant constitué de fer et d'impuretés inévitables, caractérisé par:
    - austénisation d'une pièce à usiner d'acier à une température d'austénisation de 1200 à 1350°C ;
    - laminage à chaud de la pièce à usiner en acier dans une étape de prélaminage ;
    - laminage de la pièce à usiner d'acier pré-laminée dans un laminoir à bandes de manière à obtenir une température de laminage de 760 à 960 °C pour la pièce à usiner lors du dernier passage ; et
    - trempe directe de la bande d'acier après le dernier passage dans le laminoir à bande par un refroidissement en une étape à une vitesse de refroidissement de 30 à 150 °C/s jusqu'à 300 °C au maximum, la trempe directe étant réalisée dans les 15 s à compter du dernier passage.
  2. Procédé selon la revendication 1, caractérisé en ce que la température finale de la trempe directe est de 100 °C au maximum.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la bande d'acier est transformée en un produit tubulaire après la trempe directe.
  4. Produit en bande d'acier laminée à chaud ayant une épaisseur de 2 - 12 mm et une composition en pourcentage en poids de C: 0,04 - 0,08 Si: 0 - 0,5 Mn: 1,3 - 2,2 Nb: 0,04 - 0,09 Ti: 0,06 - 0,16 N: < 0,01 P: ≤ 0,03 S: < 0,015 Al: 0,01 - 0,15 V: ≤ 0,1 Cr: < 0,2 Mo: < 0,2 Cu: ≤ 0,5 Ni: ≤ 0,5
    le reste étant du fer et des impuretés inévitables, caractérisé en ce que la microstructure de l'acier est essentiellement ferritique à faible teneur en carbone et / ou bainitique à faible teneur en carbone et contient des îlots à haute teneur en carbone ; que sa limite d'élasticité est de 650 - 800 MPa et pourcentage d'allongement après fracture est d'au moins 12 % ; et que son taux de rendement est de 0,8 - 0,95 ; et que sa structure est isotrope en ce sens que sa limite d'élasticité dans la direction de laminage diffère au maximum de 6,5 % de sa limite d'élasticité dans la direction qui est transversale à la direction de laminage.
  5. Produit en bande d'acier selon la revendication 4, caractérisée en ce que, lors de la flexion transversale, l'acier maintient un rayon de courbure de 0,4 ≤ R ≤ 0,75 t, t étant l'épaisseur de paroi du produit d'acier, sans fissures ni fractures visibles à l'oeil.
  6. Produit en bande d'acier selon les revendications 4 ou 5, caractérisée en ce que sa taille de grain moyenne est de 2 à 4 micromètres.
  7. Produit en bande d'acier selon l'une quelconque des revendications précédentes 4 à 6, caractérisée en ce que son équivalent en carbone est de 0,45 au maximum.
  8. Produit en bande d'acier selon l'une quelconque des revendications précédentes 4 à 7, caractérisée en ce que sa limite d'élasticité est supérieure à 680 MPa.
  9. Produit en bande d'acier selon l'une quelconque des revendications précédentes 4 à 8, caractérisée en ce que sa résistance au choc à une température de -20 °C est d'au moins 200 J/cm2 et/ou à une température de -40 °C au moins de 190 J/cm2 et/ou à une température de -60 °C au moins de 180 J/cm2.
  10. Produit en bande d'acier selon l'une quelconque des revendications précédentes 4 à 9, caractérisée en ce qu'il peut être coupé à un intervalle de coupe de 10 à 15 % de l'épaisseur de la feuille sans fissures perceptibles visuellement.
  11. Produit en bande d'acier selon la revendication 4, caractérisé en ce que la composition d'acier répond également à l'exigence Ti + Nb + V > 0,15.
  12. Produit en bande d'acier selon la revendication 11, caractérisée en ce que son épaisseur est de 2 - 6 mm et le contenu en éléments d'alliage Nb, Ti et V dans l'acier est
    Nb: 0,04 - 0,06
    Ti: 0,06 - 0,10
    V: 0,06 - 0,10.
  13. Produit en bande d'acier selon la revendication 10, caractérisée en ce que la teneur en molybdène de l'acier est Mo < 0,10.
  14. Produit en bande d'acier selon la revendication 4, caractérisée en ce que son épaisseur est supérieure à 8 mm et que la teneur en cuivre et en nickel de l'acier est 0,3 ≤ Cu ≤ 0,5 et Ni < 0,1 %.
EP10727754.3A 2009-05-11 2010-04-16 Procédé de la fabrication d'une bande d'acier laminée à chaud et le produit de la bande d'acier laminée à chaud Active EP2430199B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10727754T PL2430199T3 (pl) 2009-05-11 2010-04-16 Sposób wytwarzania produktu w postaci walcowanej na gorąco taśmy stalowej, i produkt w postaci walcowanej na gorąco taśmy stalowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20095528A FI20095528A (fi) 2009-05-11 2009-05-11 Menetelmä kuumavalssatun nauhaterästuotteen valmistamiseksi sekä kuumavalssattu nauhaterästuote
PCT/FI2010/050310 WO2010130871A1 (fr) 2009-05-11 2010-04-16 Procédé de fabrication d'un produit en bande d'acier laminée à chaud et produit de bande d'acier laminée à chaud

Publications (2)

Publication Number Publication Date
EP2430199A1 EP2430199A1 (fr) 2012-03-21
EP2430199B1 true EP2430199B1 (fr) 2019-05-29

Family

ID=40680709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10727754.3A Active EP2430199B1 (fr) 2009-05-11 2010-04-16 Procédé de la fabrication d'une bande d'acier laminée à chaud et le produit de la bande d'acier laminée à chaud

Country Status (8)

Country Link
EP (1) EP2430199B1 (fr)
CN (1) CN102439179B (fr)
ES (1) ES2738876T3 (fr)
FI (1) FI20095528A (fr)
PL (1) PL2430199T3 (fr)
RU (1) RU2535890C2 (fr)
TR (1) TR201910938T4 (fr)
WO (1) WO2010130871A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122313B (fi) * 2010-06-07 2011-11-30 Rautaruukki Oyj Menetelmä kuumavalssatun terästuotteen valmistamiseksi sekä kuumavalssattu teräs
WO2013007729A1 (fr) 2011-07-10 2013-01-17 Tata Steel Ijmuiden Bv Bande d'acier haute résistance laminée à chaud avec résistance élevée au ramollissement haz et son procédé de production
FI20125379L (fi) * 2012-04-03 2013-10-04 Rautaruukki Oyj Menetelmä suurlujuuksisen muokattavan jatkuvahehkutetun teräsnauhan valmistamiseksi ja suurlujuuksinen muokattava jatkuvahehkutettu teräsnauha
FI124825B (fi) * 2013-02-22 2015-02-13 Rautaruukki Oyj Menetelmä metallipinnoitetun ja kuumamuokatun teräskomponentin valmistamiseksi ja metallipinnoitettu teräsnauhatuote
EP3097214B1 (fr) * 2014-01-24 2021-02-24 Rautaruukki Oyj Produit de bande d'acier très haute résistance laminé à chaud
SI2924140T1 (en) * 2014-03-25 2018-04-30 Thyssenkrupp Steel Europe Ag A process for the manufacture of a high-strength steel flat product
CN104526115B (zh) * 2014-11-04 2017-01-18 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
WO2016198906A1 (fr) 2015-06-10 2016-12-15 Arcelormittal Acier a haute résistance et procédé de fabrication
CN109414904B (zh) 2016-05-10 2022-10-28 美国钢铁公司 高强度钢产品和用于制造其的退火过程
US11560606B2 (en) * 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
CN107236909B (zh) * 2017-06-16 2019-06-18 武汉钢铁有限公司 可用于-60℃低温环境的高强度、高韧性耐腐蚀钢及其生产方法
CN108300949B (zh) * 2018-02-12 2020-01-17 天津理工大学 一种使钢中束状贝氏体取向分布的方法
CN109100378B (zh) * 2018-07-24 2021-01-01 华北理工大学 一种低碳贝氏体钢中残余奥氏体的分析方法
EP3653736B1 (fr) * 2018-11-14 2020-12-30 SSAB Technology AB Bande d'acier laminée à chaud et procédé de fabrication
CN109487163B (zh) * 2018-12-13 2020-08-28 河钢股份有限公司 直接淬火型屈服800MPa级结构钢板及其生产方法
CN111349759B (zh) * 2020-03-30 2021-09-28 武汉钢铁有限公司 一种dq工艺薄规格耐磨钢的生产方法
CN113172980B (zh) * 2021-05-12 2023-01-03 北京科技大学 一种不锈钢/碳钢复合薄板带材的制备方法
CN114150215B (zh) * 2021-10-19 2022-10-21 首钢集团有限公司 一种汽车用低合金高强钢及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531842A (en) * 1994-12-06 1996-07-02 Exxon Research And Engineering Company Method of preparing a high strength dual phase steel plate with superior toughness and weldability (LAW219)
JP3425837B2 (ja) * 1996-03-28 2003-07-14 株式会社神戸製鋼所 耐孔明き腐食性および圧壊特性に優れた高強度熱延鋼板、および高強度亜鉛系めっき鋼板並びにそれらの製造方法
FR2757877B1 (fr) * 1996-12-31 1999-02-05 Ascometal Sa Acier et procede pour la fabrication d'une piece en acier mise en forme par deformation plastique a froid
ATE346960T1 (de) * 1997-07-28 2006-12-15 Exxonmobil Upstream Res Co Herstellungsverfahren für ultra-hochfeste, schweissbare stähle mit ausgezeichneter zähigkeit
FR2807068B1 (fr) * 2000-03-29 2002-10-11 Usinor Acier lamine a chaud a tres haute limite d'elasticite et resistance mecanique utilisable notamment pour la realisation de piece de vehicules automobiles
DE10062919A1 (de) * 2000-12-16 2002-06-27 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von Warmband oder -blech aus einem mikrolegierten Stahl
DE10161465C1 (de) 2001-12-13 2003-02-13 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von Warmband
FI114484B (fi) * 2002-06-19 2004-10-29 Rautaruukki Oyj Kuumavalssattu nauhateräs ja sen valmistusmenetelmä
JP4214006B2 (ja) * 2003-06-19 2009-01-28 新日本製鐵株式会社 成形性に優れた高強度鋼板およびその製造方法
JP2006299415A (ja) * 2005-03-24 2006-11-02 Jfe Steel Kk 低温靭性に優れた低降伏比電縫鋼管用熱延鋼板の製造方法
RU2292404C1 (ru) * 2005-07-15 2007-01-27 Открытое акционерное общество "Северсталь" Способ производства полос для изготовления труб

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2011149763A (ru) 2013-06-20
CN102439179A (zh) 2012-05-02
TR201910938T4 (tr) 2019-08-21
FI20095528A0 (fi) 2009-05-11
CN102439179B (zh) 2015-03-25
WO2010130871A1 (fr) 2010-11-18
ES2738876T3 (es) 2020-01-27
EP2430199A1 (fr) 2012-03-21
RU2535890C2 (ru) 2014-12-20
FI20095528A (fi) 2010-11-12
PL2430199T3 (pl) 2019-12-31

Similar Documents

Publication Publication Date Title
EP2430199B1 (fr) Procédé de la fabrication d&#39;une bande d&#39;acier laminée à chaud et le produit de la bande d&#39;acier laminée à chaud
EP1288316B1 (fr) Procédé de fabrication de tubes sans soudure en acier inoxydable martensitique à résistance et tenacité éléveés
KR101291010B1 (ko) 핫 프레스 부재, 핫 프레스 부재용 강판, 핫 프레스 부재의 제조 방법
JP5359168B2 (ja) 延性に優れる超高強度冷延鋼板およびその製造方法
KR101988144B1 (ko) 재질 균일성이 우수한 후육 고인성 고장력 강판 및 그 제조 방법
EP3859041A1 (fr) Tôle d&#39;acier laminée à froid à haute résistance ayant un rapport d&#39;expansion de trou élevé, tôle d&#39;acier galvanisée à chaud par trempe à haute résistance, et procédés de fabrication associés
EP3653736B1 (fr) Bande d&#39;acier laminée à chaud et procédé de fabrication
JP6950835B2 (ja) 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法
EP1375694B2 (fr) Procédé de la fabrication d&#39;une bande d&#39;acier laminée à chaud
EP3034643A1 (fr) Tuyau en acier soudé par résistance électrique présentant une excellente qualité de soudure, et procédé permettant de produire ledit tuyau
EP0709480B1 (fr) Tole grosse d&#39;acier presentant d&#39;excellentes caracteristiques sur le plan de la prevention de la propagation des criques et de la durete a basse temperature et procede d&#39;elaboration de cette tole
JPWO2007023873A1 (ja) 焼入れ性、熱間加工性および疲労強度に優れた高強度厚肉電縫溶接鋼管およびその製造方法
EP2199422A1 (fr) Acier renforcé à précipitation pauvre en carbone pour des applications de frappe à froid
EP3889296B1 (fr) Tôle à haute résistance ayant une excellente ductilité et une excellente ténacité à basse température et son procédé de fabrication
JP4984933B2 (ja) テーラードブランク用熱延鋼板およびテーラードブランク
EP2883974A1 (fr) Fil machine ayant une résistance et une ductilité correctes et procédé pour produire celui-ci
JP6958752B2 (ja) 鋼板、部材及びそれらの製造方法
JP2010126808A (ja) 冷延鋼板およびその製造方法
EP3730641B1 (fr) Tôle d&#39;acier laminée à chaud présentant une excellente extensibilité et son procédé de fabrication
KR20200061513A (ko) 형상 품질 및 굽힘성이 우수한 초고강도 열연강판 및 그 제조방법
JP7444018B2 (ja) 鋼板及びその製造方法、並びに、部材
JP2007146220A (ja) 靭性に優れた厚鋼板の製造方法
KR20240075905A (ko) 후강판 및 그의 제조 방법
JPH0688129A (ja) 低残留応力の溶接まま高強度鋼管の製造方法
EP3730634A1 (fr) Tôle d&#39;acier laminée à chaud possédant une excellente durabilité et son procédé de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RAUTARUUKKI OYJ

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170609

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181031

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEMMILAE, MIKKO

Inventor name: LIIMATAINEN, TOMMI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190403

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1138290

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010059160

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2738876

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010059160

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1138290

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230306

Year of fee payment: 14

Ref country code: PL

Payment date: 20230322

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230406

Year of fee payment: 14

Ref country code: FR

Payment date: 20230427

Year of fee payment: 14

Ref country code: DE

Payment date: 20230411

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230420

Year of fee payment: 14

Ref country code: FI

Payment date: 20230412

Year of fee payment: 14

Ref country code: AT

Payment date: 20230413

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230411

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230707

Year of fee payment: 14