EP2199422A1 - Acier renforcé à précipitation pauvre en carbone pour des applications de frappe à froid - Google Patents

Acier renforcé à précipitation pauvre en carbone pour des applications de frappe à froid Download PDF

Info

Publication number
EP2199422A1
EP2199422A1 EP08021703A EP08021703A EP2199422A1 EP 2199422 A1 EP2199422 A1 EP 2199422A1 EP 08021703 A EP08021703 A EP 08021703A EP 08021703 A EP08021703 A EP 08021703A EP 2199422 A1 EP2199422 A1 EP 2199422A1
Authority
EP
European Patent Office
Prior art keywords
ppm
phase
steel
steel wire
predominant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08021703A
Other languages
German (de)
English (en)
Inventor
designation of the inventor has not yet been filed The
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swiss Steel AG
ArcelorMittal Hamburg GmbH
Instytut Metalurgii Zelaza
Institut Metallurgii Zeleza Imeni
Original Assignee
Swiss Steel AG
ArcelorMittal Hamburg GmbH
Instytut Metalurgii Zelaza
Institut Metallurgii Zeleza Imeni
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swiss Steel AG, ArcelorMittal Hamburg GmbH, Instytut Metalurgii Zelaza, Institut Metallurgii Zeleza Imeni filed Critical Swiss Steel AG
Priority to EP08021703A priority Critical patent/EP2199422A1/fr
Publication of EP2199422A1 publication Critical patent/EP2199422A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working

Definitions

  • the present invention relates to low-carbon precipitation-strengthened bainitic steels with predomnantly granular bainite microstructure in the wire and rod that are suitable for the production of cold headed products without the application of heat treating operations.
  • a hot rolled steel wire or rod having a chemical composition, by weight, of: 0.04 % ⁇ C ⁇ 0.1 % 1.8 % ⁇ Mn ⁇ 2.0 % 0.15 % ⁇ Si ⁇ 0.30 % S ⁇ 0.025 % P ⁇ 0.025 % Cr ⁇ 0.50 % Mo ⁇ 0.08 % Ni + Cu ⁇ 0.30 % 0.01 % ⁇ Al ⁇ 0.05 % V ⁇ 0.05 % 10 ppm ⁇ B ⁇ 30 ppm N ⁇ 100 ppm Ti ⁇ 0.06 % the remainder being iron and impurities resulting from the production process.
  • the steel has a cementite-free microstructure comprising a predominant phase, a minor phase and MX-precipitations distributed within the predominant phase, the predominant phase consisting of bainitic ferrite, the minor phase comprising retained austenite and optionally martensite with a size of 2 to 3 ⁇ m, the relative amount of the minor phase amounting to ⁇ 20% by volume.
  • M represents metal atoms and X represents interstitial atoms, i.e., carbon and/or nitrogen.
  • the MX particle could be a carbide, nitride or carbonitride particle.
  • MX particles there are two types of MX particles: primary (large or coarse) MX particles and secondary (small or fine) MX particles.
  • Primary MX particles in steel are usually greater than about 50 nm whereas secondary (small or fine) MX particles are usually less than about 20 nm.
  • the conditions under which different metal atoms form MX particles vary with the composition of the steel alloy.
  • a method of producing the above defined steel wire or rod comprises conventional normalized hot-rolling with a finish rolling temperature of ⁇ 1000°C and a subsequent cooling rate of > 3K/s between 800 and 500°C.
  • a method of producing the above defined steel wire or rod comprises a thermomechanically controlled process with a finish rolling temperature of ⁇ 800°C and a subsequent cooling rate of > 3K/s between 800 and 500°C.
  • a steel wire or rod having the above defined chemical composition is used for producing a cold formable part.
  • a comparatively high titanium content of greater than 0.06 mass % in a low-carbon bainitic steel allows to develop a cementite-free granular bainite morphology with a limited volume fraction of less than 20% of a very fine second phase, which is most suitable for cold heading applications.
  • TMCP thermomechanically controlled process
  • this type of morphology results from the austenite decomposition at higher transformation temperatures, below Bs temperature.
  • Microalloying with high titanium content appears to have a special role in the formation of the granular bainite, since it separates the bainitic C-curve and provides also intense precipitation strengthening.
  • the precipitation strengthening with very fine MX-carbonitrides appears to provide high strength of the rod or wire rod while decreasing the carbon content in the steel, which results in an increase in toughness and ductility.
  • a basic level of the bainitic hardenability in the steel is achieved by using a high manganese content ( ⁇ 1.9%) and boron (0.0010 to 0.0030%).
  • a fine dispersion of the second phase in the wire rod is achieved by a proper selection of the finish rolling temperature.
  • a finish rolling temperature in the range of 850 to 750°C should be applied. This produces extremely fine austenite grain size in the wire rod after the last pass, with mean linear intercept in the range of 10 to 15 ⁇ m being the prerequisite for the development of fine dispersion of the second phase with the size not exceeding 1 to 2 ⁇ m.
  • static recrystallization control rolling can be applied with the finish rolling temperature of approximately 1000°C, which develops the fine austenite grain size with mean linear intercept in the range of 20 to 30 ⁇ m after the last pass.
  • the required austenite grain refinement appears to be achieved through the effect of titanium partly combined in the fine TiN particles and partly due to the dynamic precipitation of TiC during and after deformation.
  • the parameters of accelerated-controlled cooling conducted in the Stelmor line after the finish rolling is another prerequisite for achieving of the proper microstructure and mechanical properties in the wire rod.
  • the fast cooling is performed with a rate in the range of 3 to 6°C/s (or even higher) and stopped at a temperature between 400 and 480°C.
  • Second phase particles in such a structure typically consists of a thin outer layer of M-A constituent and relatively ductile incomplete transformation reaction products inside. This provides a mechanical compatibility of the second phase during the deformation with the matrix, preventing the formation of microcracks.
  • This morphology of the second phase is connected to the fact that the second phase in the granular bainite forms under the local equilibrium conditions with respect to carbon, prevailing at the bainitic ferrite/austenite interface, producing a steep carbon distribution profile in the residual austenite. Because an increase of the carbon content in the austenite lowers the martensite start temperature (Ms), the Ms temperature of the carbon enriched austenite may be lowered close to or below the room temperature.
  • Ms martensite start temperature
  • the present invention provides the ways of achieving extremely high cold workability of the wire rod by using lean steel chemistries, and at the same time, allowing the achievement of high strength properties in the ultimate products.
  • yield strength approximately 550 to 800 MPa can be achieved, suitable for the production of fasteners with strength properties meeting 8.8 or even 10.9 grade requirements according to EN ISO 898 for fasteners due to the work hardening during cold deformation. It was found out that for bainitic steels drawing and cold heading operations could increase the strength properties by approximately 300 MPa.
  • the two main effects influencing the cold headibility in the invention are precipitation strengthening and developing granular bainite in the semi products.
  • high titanium content is used in the bainitic steels being the subject of the invention. Titanium promotes both the development of granular bainite morphology in a steel microstructure and a precipitation strengthening effect of up to 200 MPa, provided that the content of this element in a steel is greater than 0.06%, preferably in the range of 0.1 to 0.2%.
  • TMCP combined with a proper cooling conditions after rolling must be used.
  • Example 1 conventional normalized hot rolling
  • Table 1 Chemical compositions in mass percentage Heat C [%] Mn [%] Si [%] P [%] s [%] Ni [%] Cu [%] Ti [%] Al [%] B [%] 1180 0.052 1.87 0.21 0.014 0.014 0.15 0.16 0.10 0.026 0.002 1181 0.08 1.95 0.20 0.012 0.015 0.20 0.21 0.10 0.028 0.003
  • the initial sample geometry was 45 x 45 x 150 mm.
  • the ingots were heated up in a furnace for 15 min at 1200°C.
  • the bars were rough rolled from the initial geometry to a wire of 12 mm in diameter.
  • the rolling was performed in 12 steps.
  • the finish rolling was performed continuously in four steps down to a diameter of 8 mm.
  • the material temperature before the first continuous pass was 870°C, and before the last continuous pass it was 980°C. The increase in the temperature is due to the deformation heat.
  • the finishing rolling speed was 20 m/s.
  • the cooling was conducted on a Stelmor line at full ventilation speed.
  • the cooling rate between 800°C and 500°C was 8 K/s.
  • the cooling stop temperature was set to 400°C.
  • the mechanical properties were determined in the hot rolled as well as in the drawn condition (see Table 2).
  • the drawing reduction was 10% in one pass.
  • Table 2 Mechanical properties Steel heat / cooling stop temperature / processing Sample No Yield strength R p0.2 [MPa] Tensile strength R m [MPa] Elongation at fracture A 25 [%] Reduction of area Z [%] 1180/400°C/as-hot rolled 1 722 915 27.9 75.1 2 766 930 28.1 75.9 3 802 911 27.6 74.7 1180/400°C/cold drawn 1 950 991 26.6 74.0 2 941 993 26.4 73.9 3 953 996 26.4 - 1181/400°C/as-hot rolled 1 630 800 27.9 66.6 2 641 805 27.7 71.1 3 680 744 - 71.2 1181/400°C/cold drawn 1 863 903 27.3 72.3 2 810 884 27.1 67.5 3 788 851 27.8 68.6
  • FIGS 1 and 2 show the typical structure after hot rolling.
  • the initial sample geometry was 45 x 45 x 150 mm.
  • the ingots were heated up in the furnace for 15 min at 1200°C.
  • the bars were rough rolled from the initial geometry to a wire of 12 mm in diameter.
  • the rolling was performed in 12 steps. Unlike the conventional rolling experiments of example 1, the rolling was stopped after the reversing mill and the rods were directly cooled in the cooling device with air. At the start of rolling the temperature was 1180°C, and the finishing temperature would have been around 1000°C. In order to carry out a rolling below the recrystallisation temperature, the rolling was interrupted for several seconds until the rod temperature was 850°C. Subsequently, the last pass was conducted. The cooling rate between 800°C and 500°C was 5.5 K/s.
  • thermomechanically controlled hot rolling process (heat 1209) has a microstructure that is more resistant to crack propagation, thus enabling very high high impact toughness to be achieved at low temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
EP08021703A 2008-12-15 2008-12-15 Acier renforcé à précipitation pauvre en carbone pour des applications de frappe à froid Ceased EP2199422A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08021703A EP2199422A1 (fr) 2008-12-15 2008-12-15 Acier renforcé à précipitation pauvre en carbone pour des applications de frappe à froid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08021703A EP2199422A1 (fr) 2008-12-15 2008-12-15 Acier renforcé à précipitation pauvre en carbone pour des applications de frappe à froid

Publications (1)

Publication Number Publication Date
EP2199422A1 true EP2199422A1 (fr) 2010-06-23

Family

ID=40680026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08021703A Ceased EP2199422A1 (fr) 2008-12-15 2008-12-15 Acier renforcé à précipitation pauvre en carbone pour des applications de frappe à froid

Country Status (1)

Country Link
EP (1) EP2199422A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112611A1 (fr) * 2009-04-03 2010-10-07 Swiss Steel Ag Aciers à structure bainitique pour pivots à rotule de véhicules à usage personnel et de véhicules utilitaires légers
EP2557184A1 (fr) * 2011-08-10 2013-02-13 Swiss Steel AG Armature en acier profilée et laminée à chaud pour pièces en béton armé dotées d'une résistance au feu améliorée et son procédé de fabrication
CN103846286A (zh) * 2014-03-01 2014-06-11 首钢总公司 一种改善高碳钢线材心部组织的粗轧方法
CN109072381A (zh) * 2016-04-14 2018-12-21 杰富意钢铁株式会社 高强度钢板及其制造方法
CN110079734A (zh) * 2019-05-16 2019-08-02 武汉科技大学 一种低碳贝氏体钢及其制备方法
CN110724807A (zh) * 2019-09-23 2020-01-24 邢台钢铁有限责任公司 具有良好冷成型性能的低合金高强耐热钢盘条及制备方法
CN111655893A (zh) * 2018-01-30 2020-09-11 杰富意钢铁株式会社 高碳热轧钢板及其制造方法
CN115874109A (zh) * 2021-09-29 2023-03-31 宝山钢铁股份有限公司 一种合金冷镦钢及其制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591935A (en) * 1978-12-28 1980-07-11 Nippon Steel Corp Preparation of high tension, high ductility wire rod and steel bar for high strength bolt
US5554233A (en) * 1994-05-26 1996-09-10 Inland Steel Company Cold deformable, high strength, hot rolled bar and method for producing same
EP0851038A1 (fr) 1996-12-31 1998-07-01 Ascometal Acier et procédé pour la fabrication d'une piéce en acier mise en forme par déformation plastique à froid
JP2000001752A (ja) * 1998-06-17 2000-01-07 Nippon Steel Corp 耐食性および疲労強度に優れた溶接継手
US6315946B1 (en) * 1999-10-21 2001-11-13 The United States Of America As Represented By The Secretary Of The Navy Ultra low carbon bainitic weathering steel
US20020162613A1 (en) * 1999-07-02 2002-11-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel sheet superior in stretch-flanging performance and fatigue resistance and method for production thereof
FR2847592A1 (fr) * 2002-11-27 2004-05-28 Ispat Unimetal Acier pour deformation a froid ou a chaud, piece mecanique prete a l'emploi realisable avec cet acier et son procede de fabrication
FR2867785A3 (fr) 2004-03-18 2005-09-23 Ispat Unimetal Piece mecanique de taille moyenne ou petite issue de la forge ou de la frappe
EP1780293A2 (fr) 2005-10-28 2007-05-02 Saarstahl AG Procédure de fabrication de la matière brute de l'acier par déformer ä chaud
WO2007122910A1 (fr) * 2006-03-24 2007-11-01 Kabushiki Kaisha Kobe Seiko Sho TÔLÉ d'acier À RÉSISTANCE ÉLEVÉE ET LAMINÉE À chaud ayant une excellente attitude au moulage composite
JP2007284774A (ja) * 2006-04-20 2007-11-01 Jfe Bars & Shapes Corp 耐遅れ破壊特性および冷間加工性に優れる線材およびその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591935A (en) * 1978-12-28 1980-07-11 Nippon Steel Corp Preparation of high tension, high ductility wire rod and steel bar for high strength bolt
US5554233A (en) * 1994-05-26 1996-09-10 Inland Steel Company Cold deformable, high strength, hot rolled bar and method for producing same
EP0851038A1 (fr) 1996-12-31 1998-07-01 Ascometal Acier et procédé pour la fabrication d'une piéce en acier mise en forme par déformation plastique à froid
JP2000001752A (ja) * 1998-06-17 2000-01-07 Nippon Steel Corp 耐食性および疲労強度に優れた溶接継手
US20020162613A1 (en) * 1999-07-02 2002-11-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength hot-rolled steel sheet superior in stretch-flanging performance and fatigue resistance and method for production thereof
US6315946B1 (en) * 1999-10-21 2001-11-13 The United States Of America As Represented By The Secretary Of The Navy Ultra low carbon bainitic weathering steel
FR2847592A1 (fr) * 2002-11-27 2004-05-28 Ispat Unimetal Acier pour deformation a froid ou a chaud, piece mecanique prete a l'emploi realisable avec cet acier et son procede de fabrication
EP1565587A1 (fr) 2002-11-27 2005-08-24 Mittal Steel Gandrange Piece mecanique prete a l emploi en acier bas carbone pour d eformation plastique et son procede de fabrication
FR2867785A3 (fr) 2004-03-18 2005-09-23 Ispat Unimetal Piece mecanique de taille moyenne ou petite issue de la forge ou de la frappe
EP1780293A2 (fr) 2005-10-28 2007-05-02 Saarstahl AG Procédure de fabrication de la matière brute de l'acier par déformer ä chaud
WO2007122910A1 (fr) * 2006-03-24 2007-11-01 Kabushiki Kaisha Kobe Seiko Sho TÔLÉ d'acier À RÉSISTANCE ÉLEVÉE ET LAMINÉE À chaud ayant une excellente attitude au moulage composite
JP2007284774A (ja) * 2006-04-20 2007-11-01 Jfe Bars & Shapes Corp 耐遅れ破壊特性および冷間加工性に優れる線材およびその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112611A1 (fr) * 2009-04-03 2010-10-07 Swiss Steel Ag Aciers à structure bainitique pour pivots à rotule de véhicules à usage personnel et de véhicules utilitaires légers
EP2557184A1 (fr) * 2011-08-10 2013-02-13 Swiss Steel AG Armature en acier profilée et laminée à chaud pour pièces en béton armé dotées d'une résistance au feu améliorée et son procédé de fabrication
EP2557185A1 (fr) * 2011-08-10 2013-02-13 Swiss Steel AG Hot-rolled profiled steel reinforcement for reinforced concrete with improved fire resistance and method for producing same
CN103846286A (zh) * 2014-03-01 2014-06-11 首钢总公司 一种改善高碳钢线材心部组织的粗轧方法
CN109072381A (zh) * 2016-04-14 2018-12-21 杰富意钢铁株式会社 高强度钢板及其制造方法
CN111655893B (zh) * 2018-01-30 2022-05-03 杰富意钢铁株式会社 高碳热轧钢板及其制造方法
CN111655893A (zh) * 2018-01-30 2020-09-11 杰富意钢铁株式会社 高碳热轧钢板及其制造方法
US11434542B2 (en) 2018-01-30 2022-09-06 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
CN110079734A (zh) * 2019-05-16 2019-08-02 武汉科技大学 一种低碳贝氏体钢及其制备方法
CN110079734B (zh) * 2019-05-16 2020-06-26 武汉科技大学 一种低碳贝氏体钢及其制备方法
CN110724807A (zh) * 2019-09-23 2020-01-24 邢台钢铁有限责任公司 具有良好冷成型性能的低合金高强耐热钢盘条及制备方法
CN110724807B (zh) * 2019-09-23 2021-04-02 邢台钢铁有限责任公司 具有良好冷成型性能的低合金高强耐热钢盘条及制备方法
CN115874109A (zh) * 2021-09-29 2023-03-31 宝山钢铁股份有限公司 一种合金冷镦钢及其制造方法

Similar Documents

Publication Publication Date Title
US5938865A (en) Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
EP2789699B1 (fr) Produit d'acier laminé à chaud de grande dureté et procédé de fabrication de celui-ci
US5658400A (en) Rails of pearlitic steel with high wear resistance and toughness and their manufacturing methods
JP5135868B2 (ja) 缶用鋼板およびその製造方法
EP1288316B1 (fr) Procédé de fabrication de tubes sans soudure en acier inoxydable martensitique à résistance et tenacité éléveés
EP2305850B1 (fr) Produits d'acier épais de haute résistance présentant d'excellentes caractéristiques en termes d'endurance et d'aptitude au soudage, acier en forme de h ultra épais de haute résistance et procédés de fabrication de ceux-ci
CN114686777B (zh) 具有良好耐老化性的扁钢产品及其制造方法
EP3653736B1 (fr) Bande d'acier laminée à chaud et procédé de fabrication
EP2615191B1 (fr) Feuille d'acier laminé à froid à haute résistance ayant d'excellentes propriétés de déformabilité de bordage par étirage et son procédé de fabrication
EP2071044A1 (fr) Procédé de production de rails en acier à forte teneur en carbone ayant une excellente résistante à l'usure et ductilité
EP2199422A1 (fr) Acier renforcé à précipitation pauvre en carbone pour des applications de frappe à froid
Matlock et al. Microalloying concepts and application in long products
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
JPH1150148A (ja) 高強度高耐食継目無鋼管の製造方法
US10301700B2 (en) Method for producing a steel component
EP2412840A1 (fr) Acier de grande résistance et de grande ductilité pour un ressort, procédé de fabrication de celui-ci et ressort
EP1375694B1 (fr) Procédé de la fabrication d'une bande d'acier laminée à chaud
EP3190202A1 (fr) Tôle d'acier laminée à chaud à teneur élevée en carbone et procédé de production de cette dernière
EP3561121B1 (fr) Tôle d'acier laminée à froid ayant une excellente aptitude au pliage et une excellente aptitude d'expansion des trous et sont procédé de fabrication
JPH07179938A (ja) 高張力鋼の衝撃特性を改善する方法及び改善された衝撃特性を有する高張力鋼製品
JP2008189987A (ja) テーラードブランク用熱延鋼板およびテーラードブランク
JP2023531248A (ja) 鋼組成物から高強度鋼管を製造する方法およびその鋼管から作られる構成部品
JP2010126808A (ja) 冷延鋼板およびその製造方法
JP3267772B2 (ja) 高強度、高延性、高靭性レールの製造法
US9394580B2 (en) High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100710