EP2423341B1 - Titanium aluminide alloys - Google Patents

Titanium aluminide alloys Download PDF

Info

Publication number
EP2423341B1
EP2423341B1 EP11187502.7A EP11187502A EP2423341B1 EP 2423341 B1 EP2423341 B1 EP 2423341B1 EP 11187502 A EP11187502 A EP 11187502A EP 2423341 B1 EP2423341 B1 EP 2423341B1
Authority
EP
European Patent Office
Prior art keywords
alloy
phase
alloys
lamella
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11187502.7A
Other languages
German (de)
French (fr)
Other versions
EP2423341A1 (en
Inventor
Fritz Appel
Jonathan Paul
Michael Oehring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Original Assignee
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH filed Critical Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Publication of EP2423341A1 publication Critical patent/EP2423341A1/en
Application granted granted Critical
Publication of EP2423341B1 publication Critical patent/EP2423341B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to alloys based on titanium aluminides, in particular those produced using melt or powder metallurgical processes, preferably based on y (TiAl).
  • Titanium aluminide alloys are characterized by low density, high strength and good corrosion resistance. In the solid state, they have domains with hexagonal ( ⁇ ), biphasic structures ( ⁇ + ⁇ ) and cubic body-centered ⁇ -phase and / or ⁇ -phase.
  • alloys are interesting, based on an intermetallic phase ⁇ (TiAI) with tetragonal structure and in addition to the majority phase ⁇ (TiAI) and minority components of the intermetallic phase ⁇ 2 (Ti 3 Al) with hexagonal structure.
  • These ⁇ -titanium aluminide alloys are characterized by properties such as low density (3.85 - 4.2 g / cm 3 ), high elastic modulus, high strength and creep resistance up to 700 ° C, making them a lightweight material for high temperature applications make attractive. Examples of this are turbine blades in aircraft engines and in stationary gas turbines, valves in engines and hot gas fans.
  • ⁇ -titanium aluminide alloys are highly anisotropic due to their deformation and fracture behavior, but also because of the microstructural anisotropy of the preferred lamellar structure or duplex structure.
  • different powder metallurgy and forming methods and combinations of these production methods are used.
  • a titanium aluminide alloy which has a structurally and chemically homogeneous structure.
  • the majority phases ⁇ (TiAl) and ⁇ 2 (Ti 3 Al) are finely dispersed.
  • the disclosed titanium aluminide alloy with an aluminum content of 45 atom% is characterized by exceptionally good mechanical properties and high-temperature properties.
  • titanium aluminides have been softened mainly by additions of boron, which lead to the formation of titanium borides (cf. TT Cheng, in: Gamma Titanium Aluminides 1999, Eds. Y.-W. Kim, DM Dimiduk, MH Loretto, TMS, Warrendale PA, 1999, p. 389 , such as Y.-W. Kim, DM Dimiduk, in: Structural Intermetallics 2001, Eds. KJ Hemker, DM Dimiduk, H. Clemens, R. Darolia, H. Inui, JM Larsen, VK Sikka, M. Thomas, JD Whittenberger, TMS, Warrendale PA, 2001, p. 625 .)
  • JP-A-06 116691 discloses a method of heat treating titanium aluminide alloys to improve the hardness of the alloys.
  • the titanium alloys consist of Ti, 40-50% Al and 3 to 10% of at least one element Nb, Mo and Cr, wherein the alloys may also contain several of the latter elements.
  • DE-A-10 2004 056 582 relates to alloys based on titanium aluminides, the alloy compositions consisting of Ti (44.5 to 47) Al (5-10) Nb and Walweise boron and / or carbon.
  • the described alloys also contain molybdenum in the range of between 0.1 atom% to 3.0 atom%.
  • the alloys are characterized by the fact that they have stable ⁇ phases through the addition of molybdenum over a wide temperature range.
  • EP-A-1 889 939 discloses a method for increasing the massive transformation of titanium aluminide alloys with an ⁇ -phase, wherein up to 0.5 at% is introduced into the alloy.
  • the alloy may have up to 43 at% of aluminum, 0 to 9 at% of niobium, 0 to 10 at% of tantalum, and 0.01 to 0.15 at% of yttrium
  • the present invention seeks to provide a titanium aluminide alloy having a fine grain morphology, especially in the nanometer range. Furthermore, the object is to provide a component with a homogeneous alloy.
  • Such composite lamellar structures can be used in alloys via known manufacturing technologies, i. by casting, forming and powder technologies.
  • the alloys are characterized by extremely high strength and creep resistance combined with high ductility and fracture toughness.
  • Each of said titanium aluminide alloys may optionally comprise the additions of boron and / or carbon, wherein in one embodiment the compositions of said alloys or intermetallic compounds are each optionally (0.1 to 1 at.%) B (boron) and / or ( 0.1 to 1 at.%) C (carbon). As a result, the already fine structure of the alloy is further softened.
  • alloys are provided which can be used as a lightweight material for high temperature applications, e.g. Turbine blades or engine and turbine components are suitable.
  • the alloys of the invention are prepared using casting metallurgy, melt metallurgy or powder metallurgy techniques, or using these methods in combination with forming techniques.
  • the alloys according to the invention are characterized in that they have a very fine microstructure and have high strength and creep resistance combined with good ductility and fracture toughness, in particular with respect to alloys without the composite lamellar structures according to the invention.
  • further additives for example of refractory elements
  • contain relatively large volume fractions of the ⁇ -phase which may also be present in ordered form as B2 phase.
  • the crystallographic lattices of these two phases are mechanically unstable to homogeneous shear processes, which can lead to lattice transformations. This property is mainly due to the anistropic bonding and the symmetry of the cubic body-centered lattice. The inclination of the ⁇ or B2 phase to the lattice transformation is thus pronounced.
  • various orthorhombic phases can be formed, including, in particular, phases B19 and B33.
  • the invention is based on the idea of utilizing these lattice transformations by shear conversion for additional refining of the microstructure of the titanium aluminide alloys of the present invention. Such a method is not yet known for titanium aluminide alloys in the scientific literature.
  • shearing transformations additionally avoid brittle phases such as ⁇ , ⁇ 'and ⁇ ", which are extremely disadvantageous for the mechanical material properties.
  • a significant advantage of the alloys according to the invention is that the texture refinement of the alloys without the addition of grain-fining elements or additives such as. Boron (B) is reached and therefore the alloys contain no borides. Since the borides occurring in TiAl alloys are brittle, they lead to the embrittlement of TiAl alloys above a certain content and generally represent potential cracking nuclei in boron-containing alloys.
  • the alloys are further characterized in that the corresponding composition has composite lamellar structures with the B19 phase and ⁇ phase in each lamella, the lamellae being surrounded by the TiAl ⁇ phase.
  • the ratio, in particular the volume ratio, of the B19 phase and ⁇ -phase in each case is between 0.05 and 20, in particular between 0.1 and 10.
  • the ratio, in particular the volume ratio, of the B19 phase and ⁇ phase is in each case in a lamella between 0.2 and 5, in particular between 0.25 and 4.
  • a particularly fine microstructure in the alloy composition is characterized in that the ratio, in particular the volume ratio, of the B19 phase and ⁇ Phase in each case between 0.75 and 1.25, in particular between 0.8 and 1.2, preferably between 0.9 and 1.1.
  • lamellae of the composite lamellar structures are surrounded by lamellae of the ⁇ (TiAl) type, preferably on both sides of the lamella.
  • the alloys are further characterized in that the lamellae of the composite lamellar structures have a volume fraction of more than 10%, preferably more than 20%, of the entire alloy.
  • the fine lamellar structure is retained in the composite structures, if the lamellae of the composite lamellar structures TiAl have the phase ⁇ 2 -Ti 3 Al in a proportion of up to 20%, in particular the (volume) ratio of the B19 phase and ⁇ phase in the lamellae remain unchanged and constant.
  • the alloys according to the invention are suitable as high-temperature lightweight materials for components which are exposed to temperatures of up to 800 ° C.
  • the object is achieved by a method for producing an alloy described above using from melting or powder metallurgy techniques, wherein after the production of the alloy to an intermediate, further heat treatment of the intermediate at temperatures above 900 ° C, preferably above 1000 ° C, in particular at temperatures between 1000 ° C and 1200 ° C, for a predetermined Duration of more than 60 minutes, preferably more than 90 minutes, is performed, and then the heat-treated alloy is cooled at a predetermined cooling rate of more than 0.5 ° C per minute.
  • the heat-treated alloy is cooled at a predetermined cooling rate between 1 ° C per minute to 20 ° C per minute, preferably to 10 ° C per minute.
  • the object of the invention is achieved by a component which is produced from an alloy according to the invention, wherein in particular the alloy is produced by melt or powder metallurgical methods or techniques.
  • the alloys based on a ⁇ -TiAl intermetallic compound provide lightweight (high temperature) materials or components for use or for use in heat engines such as internal combustion engines, gas turbines, aircraft engines.
  • alloys according to the invention with the above-mentioned compositions are preferably prepared by using conventional metallurgical casting methods or by per se known powder metallurgy techniques are produced and can be processed for example by hot forging, hot pressing or hot extrusion and hot rolling.
  • the composite lamellar structures are shown below using an alloy with a composition Ti - 42 At% Al - 8.5 At% Nb.
  • Fig. 1a shows a photograph of the Gedemandgleiter, which has been recorded by means of a transmission electron microscope.
  • the overview in Fig. 1 shows that the composite lamellar structures in Fig. 1 with T, have a streaky contrast to the structures surrounding the structures of the ⁇ -phase.
  • Fig. 1b shows a recording of the alloy structure with a higher magnification, wherein it can be seen that the modulated composite lamellar structures (reference symbol T) are surrounded by the ⁇ phase or embedded in the ⁇ phase.
  • Fig. 1 c a cast structure of the same alloy Ti-42 atom% Al-8.5 atom% Nb is shown, in which also a composite lamellar structure (reference T) is formed, which is surrounded by the ⁇ -phase.
  • Fig. 2a shows in a high-resolution representation the atomic structure of the composite lamellar structures above the ⁇ -phase.
  • the composite lamellar structures consist of the ordered B19 phase and the disordered ⁇ phase, which adjoin the ⁇ phase (in the lower region). From the recording in Fig. 2a It can be seen that the composite lamellar structures contain the two crystallographically different phases B19 and ⁇ / B2, which are arranged at intervals of a few nanometers.
  • the composite lamellar structures contain phases B19 and ⁇ , both of which are considered ductile.
  • the volume ratio of B19 phases and ⁇ phases in a composite lamellar structure is 0.8 to 1.2. Due to the ductile phases B19 and ⁇ , the structure consists essentially of easily deformable lamellae, which are embedded in the relatively brittle ⁇ -phase.
  • FIG. 2b The illustration of a B19 structure is shown with an enlarged view.
  • the corresponding diffractogram, from the in Fig. 2b shown section and is characteristic of the B19 structure is in Fig. 2c shown.
  • Fig. 3 is an electron micrograph of a crack C of the above alloy shown.
  • the image shows that the crack C is deflected at the modulated composite lamellar structures (T), and that the composite lamellar structures form ligaments that can bridge the crack edges.
  • T modulated composite lamellar structures
  • Such a behavior differs significantly from the crack propagation in the previously known Ti-Al alloys, in which a gap fracture occurs in the microscopic scale considered here. In the alloy crack propagation is hindered due to the formed composite lamellar structures.
  • the alloys may be formed by the technologies known for TiAl alloys, i. via melt metallurgy, forming technologies and powder metallurgy. For example, alloys are melted in an electric arc furnace and remelted several times and then subjected to a heat treatment.
  • the production methods known for primary cast blocks of TiAl alloys may also be used for the production of vacuum arc melting, induction melting or plasma melting.
  • hot isostatic pressing may be used as the densification process at temperatures of 900 ° C to 1300 ° C or heat treatments in the temperature range of 700 ° C to 1400 ° C or a combination of these treatments to close pores and to adjust a microstructure in the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

Die Erfindung betrifft Legierungen auf der Basis von, insbesondere unter Verwendung von schmelz- oder pulvermetallurgischen Verfahren hergestellten, Titanaluminiden, vorzugsweise auf Basis von y (TiAI).The invention relates to alloys based on titanium aluminides, in particular those produced using melt or powder metallurgical processes, preferably based on y (TiAl).

Titanaluminid-Legierungen zeichnen sich durch eine geringe Dichte, eine hohe Festigkeit und gute Korrosionsbeständigkeit aus. Im festen Zustand weisen sie Domänen mit hexagonaler (α), zweiphasige Strukturen (α + β) sowie kubisch raumzentrierte β-Phase und/oder γ-Phase auf.Titanium aluminide alloys are characterized by low density, high strength and good corrosion resistance. In the solid state, they have domains with hexagonal (α), biphasic structures (α + β) and cubic body-centered β-phase and / or γ-phase.

Für die industrielle Praxis sind insbesondere Legierungen interessant, die auf einer intermetallischen Phase γ (TiAI) mit tetragonaler Struktur beruhen und neben der Majoriätsphase γ (TiAI) auch Minoritätsanteile der intermetallischen Phase α2(Ti3Al) mit hexagonaler Struktur enthalten. Diese γ-Titanaluminid-Legierungen zeichnen sich durch Eigenschaften wie geringe Dichte (3,85 - 4,2 g/cm3), hohe elastische Module, hohe Festigkeit und Kriechfestigkeit bis zu 700°C aus, die sie als Leichtbau-Werkstoff für Hochtemperaturanwendungen attraktiv machen. Beispiele hierfür sind Turbinenschaufeln in Flugzeugtriebwerken und in stationären Gasturbinen, Ventile bei Motoren sowie Heißgasventilatoren.For industrial practice, in particular alloys are interesting, based on an intermetallic phase γ (TiAI) with tetragonal structure and in addition to the majority phase γ (TiAI) and minority components of the intermetallic phase α 2 (Ti 3 Al) with hexagonal structure. These γ-titanium aluminide alloys are characterized by properties such as low density (3.85 - 4.2 g / cm 3 ), high elastic modulus, high strength and creep resistance up to 700 ° C, making them a lightweight material for high temperature applications make attractive. Examples of this are turbine blades in aircraft engines and in stationary gas turbines, valves in engines and hot gas fans.

Im technisch wichtigen Bereich von Legierungen mit Aluminium-Gehalten zwischen 45 Atom % und 49 Atom % treten beim Erstarren aus der Schmelze und beim nachfolgenden Abkühlen eine Reihe von Phasenumwandlungen auf. Die Erstarrung kann entweder vollständig über den β-Mischkristall mit kubisch raumzentrierter Struktur (Hochtemperaturphase) oder in zwei peritektischen Reaktionen erfolgen, an denen der α-Mischkristall mit hexagonaler Struktur und die γ-Phase beteiligt sind.In the technically important range of alloys with aluminum contents between 45 atom% and 49 atom%, a number of phase transformations occur on solidification from the melt and subsequent cooling. The solidification can take place either completely via the β-mixed crystal with cubic body-centered structure (high-temperature phase) or in two peritectic reactions in which the α-mixed crystal with hexagonal structure and the γ-phase are involved.

Ferner ist bekannt, dass Aluminium in γ-Titanaluminid-Legierungen eine Erhöhung der Duktilität und der Oxidationsbeständigkeit bewirkt. Außerdem führt das Element Niob (Nb) zu einer Steigerung der Festigkeit, Kriechfestigkeit, Oxidationsbeständigkeit, aber auch der Duktilität. Mit dem in der γ-Phase praktisch nicht löslichen Element Bor kann eine Kornfeinung sowohl im Gusszustand als auch nach dem Umformen mit anschließender Wärmebehandlung im α― Gebiet erreicht werden. Ein erhöhter Anteil an β-Phase im Gefüge infolge von niedrigen Aluminium-Gehalten und hohen Konzentrationen von β-stabilisierenden Elementen kann zu grober Dispersion dieser Phase führen und eine Verschlechterung der mechanischen Eigenschaften bewirken.It is also known that aluminum in γ-titanium aluminide alloys causes an increase in ductility and oxidation resistance. In addition, the element niobium (Nb) leads to an increase in strength, creep resistance, oxidation resistance, but also the ductility. With the element boron, which is practically insoluble in the γ-phase, grain refining can be achieved both in the cast state and after the forming with subsequent heat treatment in the α-region. An increased proportion of β-phase in the microstructure due to low aluminum contents and high concentrations of β-stabilizing elements can lead to coarse dispersion of this phase and cause a deterioration of the mechanical properties.

Die mechanischen Eigenschaften von γ-Titanaluminid-Legierungen sind aufgrund ihres Verformungs- und Bruchverhaltens, aber auch wegen der Gefügeanisotropie der bevorzugt eingestellten lamellaren Gefüge bzw. Duplex-Gefüge stark anisotrop. Zu einer gezielten Einstellung von Gefüge und Textur bei der Herstellung von Bauteilen aus Titanaluminiden werden Gießverfahren, unterschiedliche pulvermetallurgische und Umform-Verfahren sowie Kombinationen dieser Herstellungsverfahren angewandt.The mechanical properties of γ-titanium aluminide alloys are highly anisotropic due to their deformation and fracture behavior, but also because of the microstructural anisotropy of the preferred lamellar structure or duplex structure. For a specific adjustment of structure and texture in the production of components made of titanium aluminides casting methods, different powder metallurgy and forming methods and combinations of these production methods are used.

Darüber hinaus ist aus EP 1 015 650 B1 eine Titanaluminid-Legierung bekannt, die ein strukturell und chemisch homogenes Gefüge aufweist. Hierbei sind die Majoritätsphasen γ (TiAl) und α2 (Ti3AI) fein dispers verteilt. Die offenbarte Titanaluminid-Legierung mit einem Aluminium-Gehalt von 45 Atom % zeichnet sich durch außergewöhnlich gute mechanische Eigenschaften und Hochtemperatureigenschaften aus.In addition, is off EP 1 015 650 B1 a titanium aluminide alloy is known, which has a structurally and chemically homogeneous structure. In this case, the majority phases γ (TiAl) and α 2 (Ti 3 Al) are finely dispersed. The disclosed titanium aluminide alloy with an aluminum content of 45 atom% is characterized by exceptionally good mechanical properties and high-temperature properties.

Titanaluminide auf der Basis von γ (TiAI) zeichnen sich im Allgemeinen durch relativ hohe Festigkeiten, hohe elastische Moduln, gute Oxidations- und Kriechbeständigkeit bei gleichzeitig geringer Dichte aus. Aufgrund dieser Eigenschaften sollen TiAI-Legierungen als Hochtemperatur-Werkstoffe eingesetzt werden. Derartige Anwendungen werden durch die sehr geringe plastische Verformbarkeit und die niedrige Bruchzähigkeit stark beeinträchtigt. Hierbei verhalten sich Festigkeit und Verformbarkeit, wie bei vielen anderen Werkstoffen, zueinander invers. Dadurch sind gerade die technisch interessanten hochfesten Legierungen oft besonders spröde. Zur Behebung dieser sehr nachteiligen Eigenschaften wurden umfangreiche Untersuchungen zur Optimierung der Gefüge durchgeführt. Die bisher entwickelten Gefügetypen können grob in a) gleichachsige Gamma-Gefüge, b) Duplexgefüge und c) lamellare Gefüge eingeteilt werden. Der derzeit erreichte Entwicklungsstand ist beispielsweise ausführlich dargestellt in:

  • Y.-W. Kim, D.M. Dimiduk, in: Structural Intermetallics 1997, Eds. M.V. Nathal, R. Darolia, CT. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1996, S. 531 .
  • M. Yamaguchi, H. Inui, K. Ito, Acta mater. 48 (2000), S. 307 .
Titanium aluminides based on γ (TiAl) are generally characterized by relatively high strengths, high elastic moduli, good oxidation and creep resistance with low density at the same time. Due to these properties, TiAl alloys are to be used as high-temperature materials. Such applications are severely impaired by the very low plastic deformability and the low fracture toughness. Here, strength and deformability, as with many other materials, behave inversely to each other. As a result, especially the technically interesting high-strength alloys are often particularly brittle. To remedy these very disadvantageous properties, extensive investigations were carried out to optimize the microstructure. The previously developed microstructure types can roughly be divided into a) equiaxed gamma microstructure, b) duplex microstructure and c) lamellar microstructure. For example, the current state of development is described in detail in:
  • Y.-W. Kim, DM Dimiduk, in: Structural Intermetallics 1997, Eds. MV Nathal, R. Darolia, CT. Liu, PL Martin, DB Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1996, p. 531 ,
  • M. Yamaguchi, H. Inui, K. Ito, Acta mater. 48 (2000), p. 307 ,

Bisher wurden die Gefüge von Titanaluminiden vor allem durch Borzusätze gefeint, die zur Bildung von Titanboriden führen (vgl. T.T. Cheng, in: Gamma Titanium Aluminides 1999, Eds. Y.-W. Kim, D.M. Dimiduk, M.H. Loretto, TMS, Warrendale PA, 1999, S. 389 , sowie Y.-W. Kim, D.M. Dimiduk, in: Structural Intermetallics 2001, Eds. K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, J.D. Whittenberger, TMS, Warrendale PA, 2001, S. 625 .)So far, the structure of titanium aluminides have been softened mainly by additions of boron, which lead to the formation of titanium borides (cf. TT Cheng, in: Gamma Titanium Aluminides 1999, Eds. Y.-W. Kim, DM Dimiduk, MH Loretto, TMS, Warrendale PA, 1999, p. 389 , such as Y.-W. Kim, DM Dimiduk, in: Structural Intermetallics 2001, Eds. KJ Hemker, DM Dimiduk, H. Clemens, R. Darolia, H. Inui, JM Larsen, VK Sikka, M. Thomas, JD Whittenberger, TMS, Warrendale PA, 2001, p. 625 .)

Zur weiteren Feinung und Konsolidierung des Gefüges werden die Legierungen meist mehreren Hochtemperaturumformungen durch Extrudieren bzw. Schmieden unterzogen. Hierzu wird ergänzend auf die folgenden Veröffentlichungen verwiesen:

  • Gamma Titanium Aluminides, Eds. Y.-W. Kim, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1995 .
  • Structural Intermetallics 1997, Eds. M.V. Nathal, R. Darolia, CT. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1997 .
  • Gamma Titanium Aluminides 1999, Eds. Y-W. Kim, D.M. Dimiduk, M.H. Loretto, TMS, Warrendale PA, 1999 .
  • Structural Intermetallics 2001, Eds. K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, J.D. Whittenberger, TMS, Warrendale PA, 2001 .
For further refining and consolidation of the structure, the alloys are usually subjected to several high-temperature transformations by extrusion or forging. Reference is additionally made to the following publications:
  • Gamma Titanium Aluminides, Eds. Y.-W. Kim, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1995 ,
  • Structural Intermetallics 1997, Eds. MV Nathal, R. Darolia, CT. Liu, PL Martin, DB Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1997 ,
  • Gamma Titanium Aluminides 1999, Eds. YW. Kim, DM Dimiduk, MH Loretto, TMS, Warrendale PA, 1999 ,
  • Structural Intermetallics 2001, Eds. KJ Hemker, DM Dimiduk, H. Clemens, R. Darolia, H. Inui, JM Larsen, VK Sikka, M. Thomas, JD Whittenberger, TMS, Warrendale PA, 2001 ,

Eine Arbeitsgruppe um Fritz Appel hat in mehreren Veröffentlichungen Phasenzusammensetzungen in β/B2-Phasen von Titanaluminiden beschrieben, wobei insbesondere die Untersuchungen an der Grundzusammensetzung Ti-(40-44)Al-8,5 Nb (at.%) vorgestellt werden. Hierin ist beschrieben, dass die Legierungen eine neuartige Lamellenstruktur mit den Phasen γ, β/B2 und α2 aufweisen, so unter anderem

  • Fritz Appel et al., "Nano-Scale Design of TiAL Alloys Based on Beta-Phase Decomposition", Materials Research Society Symposium Proceedings 980, Seiten 383 bis 388 (2007 ),
  • Fritz Appel et al., "Nano Scale Design of TiAL Alloys Based on β-Phase Decomposition", Advanced Engineering Materials 2006, Seiten 371 bis 376 und
  • Fritz Appel et al., "Atomistic Processes of Phase Transformation and Dynamic Recrystallization during Hot-Working of Intermetallic Titanium Alumindes", Material Science Forum 2007, Seiten 465 bis 470 .
A working group around Fritz Appel has described in several publications phase compositions in β / B2 phases of titanium aluminides, in particular, the investigations of the basic composition Ti- (40-44) Al-8.5 Nb (at.%) Are presented. Herein, it is described that the alloys have a novel lamellar structure with phases γ, β / B2 and α 2 , among others
  • Fritz Appel et al., "Nano-scale Design of TiAL Alloys Based on Beta Phase Decomposition," Materials Research Society Symposium Proceedings 980, pp. 383-388 (2007 )
  • Fritz Appel et al., "Nano Scale Design of TiAL Alloys Based on β-Phase Decomposition", Advanced Engineering Materials 2006, pages 371-376 and
  • Fritz Appel et al., "Atomic Processes of Phase Transformation and Dynamic Recrystallization during Hot-Working of Intermetallic Titanium Alumindes", Material Science Forum 2007, pages 465-470 ,

In JP-A-06 116691 ist ein Verfahren zur Wärmebehandlung von Titanaluminidlegierungen offenbart, um die Härte der Legierungen zu verbessern. Hierbei bestehen die Titanlegierungen aus Ti, 40-50% Al und 3 bis 10% aus wenigstens einem Element Nb, Mo und Cr, wobei die Legierungen auch mehrere der zuletzt genannten Elemente enthalten können.In JP-A-06 116691 discloses a method of heat treating titanium aluminide alloys to improve the hardness of the alloys. Here, the titanium alloys consist of Ti, 40-50% Al and 3 to 10% of at least one element Nb, Mo and Cr, wherein the alloys may also contain several of the latter elements.

DE-A-10 2004 056 582 betrifft Legierungen auf der Basis von Titanaluminiden, wobei die Legierungszusammensetzungen aus Ti-(44,5 bis 47) Al-(5-10)Nb und walweise Bor- und/oder Kohlenstoff bestehen. Zusätzlich enthalten die beschriebenen Legierungen auch Molybdän im Bereich zwischen 0,1 Atom-% bis 3,0 Atom-%. Die Legierungen zeichnen sich dadurch aus, dass sie durch das Zulegieren von Molybdän über einen großen Temperaturbereich stabile β-Phasen aufweisen. DE-A-10 2004 056 582 relates to alloys based on titanium aluminides, the alloy compositions consisting of Ti (44.5 to 47) Al (5-10) Nb and Walweise boron and / or carbon. In addition, the described alloys also contain molybdenum in the range of between 0.1 atom% to 3.0 atom%. The alloys are characterized by the fact that they have stable β phases through the addition of molybdenum over a wide temperature range.

EP-A-1 889 939 offenbart ein Verfahren zur Erhöhung der massiven Transformation von Titanaluminidlegierungen mit einer α-Phase, wobei bis zu 0,5 Atom-% in die Legierung eingebracht wird. Hierbei kann die Legierung bis zu 43 Atom-% Aluminium, 0 bis 9 Atom-% Niob, 0 bis 10 Atom-% Tantal und 0,01 bis 0,15 Atom-% Yttrium aufweisen EP-A-1 889 939 discloses a method for increasing the massive transformation of titanium aluminide alloys with an α-phase, wherein up to 0.5 at% is introduced into the alloy. Here, the alloy may have up to 43 at% of aluminum, 0 to 9 at% of niobium, 0 to 10 at% of tantalum, and 0.01 to 0.15 at% of yttrium

In L.C. Zhang et al., "Twin thickness dependence of type-I-twin intersections in a γ-TiAl-based Ti-45Al-8Nb-2.5Mn alloy deformed at room temperature", Journal of Materials Science Letters 2000, Seiten 1727 bis 1730 werden Untersuchungen an Titanaluminidlegierungen der Zusammensetzung Ti-45Al-8Nb-2.5Mn vorgestellt, wobei diese eine Duplexmikrostruktur mit lamellaren Strukturen und γ-Phasen aufweisen. Hierbei bildet sich zwischen Zwillingsstrukturen jeweils eine Zwillingsbarriere (barrier twin) aus. Die Kreuzungspunkte sind hierbei abhängig von der Dicke der Zwillingsstrukturen.In LC Zhang et al., "Twin thickness dependence of type I twin intersections in a TiAl-based Ti-45Al-8Nb-2.5Mn alloy deformed at room temperature", Journal of Materials Science Letters 2000, pages 1727-1730 Investigations on titanium aluminide alloys of the composition Ti-45Al-8Nb-2.5Mn are presented, whereby they have a duplex microstructure with lamellar structures and γ-phases. In each case, a twin barrier (barrier twin) forms between twin structures. The crossing points are dependent on the thickness of the twin structures.

Die Veröffentlichung G.L. Chen et al., "Deformation mechanism at large strains in a high-Nb-containing TiAL at room temperature", Material Science and Engineering 2002, Seiten 163 bis 170 , befasst sich mit dem Deformationsverhalten von Titanaluminidlegierungen, bestehend aus Ti-45Al-9Nb-2.5Mn nach großen Deformationen bei Raumtemperatur. Hierbei weisen die Legierungen eine Duplexmikrostruktur auf. Bei zunehmender Deformation werden die ursprünglichen γ-Phasen und Lamellenstrukturen in Nanostrukturen aufgeteilt. Dabei werden zickzackartige Verbindungen an den Grenzen von Zwillingsstrukturen beobachtetThe publication GL Chen et al., "Deformation mechanism at large strains in high Nb containing TiAL at room temperature", Material Science and Engineering 2002, pages 163 to 170 , deals with the deformation behavior of titanium aluminide alloys consisting of Ti-45Al-9Nb-2.5Mn after large deformations at room temperature. In this case, the alloys have a duplex microstructure. With increasing deformation, the original γ phases and lamellar structures are divided into nanostructures. At the same time, zigzag connections are observed at the boundaries of twin structures

Auch L.C. Zhang et al., "Twin-intersection-related nanotwinning in a heavily deformed γ-TiAl-based alloy", Philosophical Magazine Letters 1999, Seiten 49 bis 54 sowie L.C. Zhang et al., "Structural change of deformation twin boundaries in a heavily deformed γ-TiAl-based alloy", Materials Letters 2000, Seiten 320 bis 325 , befassen sich mit der Erzeugung von Nanozwillingsstrukturen in deformierten Titanaluminidlegierungen, wobei als Titanaluminidlegierung eine Zusammensetzung von Ti-45Al-8Nb-2.5Mn untersucht worden ist.Also LC Zhang et al., "Twin-intersection-related nanotwinning in a heavily deformed γ-TiAl-based alloy", Philosophical Magazine Letters 1999, pages 49-54 such as LC Zhang et al., "Structural change of deformation of twin boundaries in a heavily deformed γ-TiAl-based alloy", Materials Letters 2000, pages 320 to 325 , are concerned with the production of nano-twin structures in deformed titanium aluminide alloys, wherein a composition of Ti-45Al-8Nb-2.5Mn has been investigated as the titanium aluminide alloy.

In T.T. Cheng et al., "Effects of major alloying additions on the microstructure and mechanical properties of γ-TiAl", Intermetallics 1999, Seiten 89 bis 99 , wurden die Untersuchungen sowie die Mikrostrukturen von acht verschiedenen γ-TiAl-Legierungen vorgestellt. Dabei wurden Legierungen mit der Zusammensetzung Ti-44Al-8(Nb, Ta, Zr, Hf)-(0-0.2) Si-(0-1)B untersucht. Hierbei wurde festgestellt, dass die ω-Phase, die ein Transformationsprodukt der β-Phase ist, stabil ist bei Raumtemperatur und bis über 900° Celsius. In Legierungen mit β- und γ- Stabilisatoren sind keine singulären α-Phasen in der Transformationssequenz entstanden und wobei ein Dreiphasenregime (α + β + γ) vorhanden ist.In Cheng et al., "Effects of major alloying addition to the microstructure and mechanical properties of γ-TiAl", Intermetallics 1999, pages 89-99 , the investigations as well as the microstructures of eight different γ-TiAl alloys were presented. Alloys with the composition Ti-44Al-8 (Nb, Ta, Zr, Hf) - (0-0.2) Si (0-1) B were investigated. It was found that the ω-phase, which is a transformation product of the β-phase, is stable at room temperature and above 900 ° Celsius. In alloys with β- and γ-stabilizers, no singular α-phases have arisen in the transformation sequence and a three-phase regime (α + β + γ) is present.

In S. Kobayashi et al., "Formation of β-Ti Phase in Multi-component Gamma Alloys", Materials Research Society Symposium Proceedings, Materials Research Society, Vol. 753, Seiten 123 bis 128 werden Untersuchungen an quarternären Titanaluminidlegierungen präsentiert. Beispielsweise wird dies anhand von Ti-Al-Nb-V-Legierungen und Ti-Al-Mo-Cr-Legierungen untersucht, wobei die Vorhersagen von Regionen mit β-Phase in diesen Multi-Komponentensystemen schwierig sind.In S. Kobayashi et al., "Formation of β-Ti Phase in Multi-component Gamma Alloys", Materials Research Society Symposium Proceedings, Materials Research Society, Vol. 753, pp. 123-128 investigations on quaternary titanium aluminide alloys are presented. For example, this is studied on the basis of Ti-Al-Nb-V alloys and Ti-Al-Mo-Cr alloys, and the predictions of β-phase regions in these multi-component systems are difficult.

D. Hu et al., "On the massive phase transformation regime in TiAl alloys: The alloying effect on massive/lamellar competition", Intermetallics 2007, Seiten 327 bis 332 befasst sich mit dem Einfluss von Legierungszusammensetzungen auf Festkörperumwandlungen, die beim kontinuierlichen Abkühlen von Titanaluminidlegierungen auftreten. Hierbei wurden die Untersuchungen an ternären und quarternären Legierungen durchgeführt D. Hu et al., "On the Massive Transformation Process in TiAl Alloys: The Alloying Effect on Massive / Lamellar Competition", Intermetallics 2007, pages 327 to 332 deals with the influence of alloy compositions on solid state transformations that occur in the continuous cooling of titanium aluminide alloys. The investigations were carried out on ternary and quaternary alloys

Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Titanaluminid-Legierung mit einer feinen Gefügemorphologie, insbesondere im Nanometerbereich, bereitzustellen. Des Weiteren besteht die Aufgabe darin, ein Bauteil mit einer homogenen Legierung bereitzustellen.Based on this prior art, the present invention seeks to provide a titanium aluminide alloy having a fine grain morphology, especially in the nanometer range. Furthermore, the object is to provide a component with a homogeneous alloy.

Gelöst wird diese Aufgabe durch eine Legierung auf der Basis von, insbesondere unter Verwendung von schmelz- oder pulvermetallurgischen Verfahren hergestellten, Titanaluminiden, vorzugsweise auf Basis von γ (TiAl), wobei TiAl-Legierungen mit weiteren Zusätzen Volumenanteile der β-Phase enthalten, die dadurch weitergebildet wird, dass die Zusammensetzung Komposit-Lamellen-Strukturen mit B19-Phase und β-Phase in jeder Lamelle aufweist, wobei das Verhältnis, insbesondere das Volumenverhältnis, der B19-Phase und β-Phase jeweils in einer Lamelle zwischen 0.05 und 20, insbesondere zwischen 0.1 und 10, beträgt.This object is achieved by an alloy based on, in particular using melt or powder metallurgy produced titanium aluminides, preferably based on γ (TiAl), wherein TiAl alloys containing other additives volume fractions of the β-phase, thereby is further developed that the composition has composite lamellar structures with B19 phase and β-phase in each lamella, wherein the ratio, in particular the volume ratio of the B19 phase and β-phase in each case in a lamella between 0.05 and 20, in particular between 0.1 and 10.

Hierbei weist die Legierung die folgende Zusammensetzung auf:

  • Ti - (41 bis 44.5 At %) Al - (5 bis 10 At %) Nb - (0.5 bis 5 At %) Fe.
In this case, the alloy has the following composition:
  • Ti - (41 to 44.5 At%) Al - (5 to 10 At%) Nb - (0.5 to 5 At%) Fe.

Es hat sich gezeigt, dass bei einer derartigen intermetallischen Verbindung Komposit-Lamellen-Strukturen mit Strukturen im Nanometermaßstab erzeugt werden bzw. vorhanden sind, wobei die lamellenartigen Gebilde bzw. modulierte Lamellen aus den kristallographisch unterschiedlichen, alternierend ausgebildeten B19-Phase und β-Phase aufgebaut sind. Hierbei sind die erzeugten Komposit-Lamellen-Strukturen größtenteils von γ-TiAl umgeben.It has been found that in such an intermetallic compound composite lamellar structures are generated with structures on the nanometer scale or are present, wherein the lamellar structures or modulated lamellae of the crystallographically different, alternately formed B19 phase and β-phase constructed are. Here, the composite lamellar structures produced are largely surrounded by γ-TiAl.

Derartige Komposit-Lamellen-Strukturen können in Legierungen über bekannte Herstellungstechnologien, d.h. durch Gießen, Umformen und Pulvertechnologien, hergestellt werden. Die Legierungen zeichnen sich durch extrem hohe Festigkeit und Kriechbeständigkeit bei gleichzeitig hoher Duktilität und Bruchzähigkeit aus.Such composite lamellar structures can be used in alloys via known manufacturing technologies, i. by casting, forming and powder technologies. The alloys are characterized by extremely high strength and creep resistance combined with high ductility and fracture toughness.

Jede der genannten Titanaluminid-Legierungen kann optional die Zusätze von Bor und/oder Kohlenstoff aufweisen, wobei in einer Ausgestaltung die Zusammensetzungen der genannten Legierungen bzw. der intermetallischen Verbindungen jeweils wahlweise (0.1 bis 1 At. %) B (Bor) und/oder (0.1 bis 1 At. %) C (Kohlenstoff) aufweisen. Hierdurch wird das ohnehin schon feine Gefüge der Legierung weiter gefeint.Each of said titanium aluminide alloys may optionally comprise the additions of boron and / or carbon, wherein in one embodiment the compositions of said alloys or intermetallic compounds are each optionally (0.1 to 1 at.%) B (boron) and / or ( 0.1 to 1 at.%) C (carbon). As a result, the already fine structure of the alloy is further softened.

Im Rahmen der Erfindung bestehen bei den angegebenen Legierungszusammensetzungen jeweils die Reste aus Titan und unvermeidbaren Verunreinigungen.In the context of the invention, the residues of titanium and unavoidable impurities exist in the case of the stated alloy compositions.

Damit werden gemäß der Erfindung Legierungen bereitgestellt, die als Leichtbau-Werkstoff für Hochtemperaturanwendungen, wie z.B. Turbinenschaufeln oder Motoren- und Turbinenkomponenten, geeignet sind.Thus, according to the invention, alloys are provided which can be used as a lightweight material for high temperature applications, e.g. Turbine blades or engine and turbine components are suitable.

Die erfindungsgemäßen Legierungen werden unter Verwendung von gießmetallurgischen, schmelzmetallurgischen oder pulvermetallurgischen Verfahren bzw. Techniken oder unter Verwendung dieser Verfahren in Kombination mit Umformtechniken hergestellt.The alloys of the invention are prepared using casting metallurgy, melt metallurgy or powder metallurgy techniques, or using these methods in combination with forming techniques.

Die erfindungsgemäßen Legierungen zeichnen sich dadurch aus, dass sie eine sehr feine Mikrostruktur haben und eine hohe Festigkeit und Kriechbeständigkeit bei gleichzeitig guter Duktilität und Bruchzähigkeit aufweisen, insbesondere gegenüber Legierungen ohne die erfindungsgemäßen Komposit-Lamellen-Strukturen.The alloys according to the invention are characterized in that they have a very fine microstructure and have high strength and creep resistance combined with good ductility and fracture toughness, in particular with respect to alloys without the composite lamellar structures according to the invention.

Es ist bekannt, dass Titanaluminid-Legierungen mit Aluminiumgehalten von 38 - 45 At.% und weiteren Zusätzen beispielsweise von Refraktärelementen relativ große Volumenanteile der β-Phase enthalten, die auch in geordneter Form als B2-Phase vorliegen kann. Die kristallografischen Gitter dieser beiden Phasen sind gegenüber homogenen Scherprozessen mechanisch instabil, was zu Gitterumwandlungen führen kann. Diese Eigenschaft ist im Wesentlichen auf die anistropen Bindungsverhältnisse und die Symmetrie des kubisch raumzentrierten Gitters zurückzuführen. Die Neigung der β- bzw. B2-Phase zur Gittertransformation ist damit stark ausgeprägt. Durch eine Scherumwandlung des kubisch-raumzentrierten Gitters der β- bzw. B2-Phase können verschiedene orthorhombische Phasen gebildet werden, wozu insbesondere die Phasen B19 und B33 gehören.It is known that titanium aluminide alloys with aluminum contents of 38-45 at.% And further additives, for example of refractory elements, contain relatively large volume fractions of the β-phase, which may also be present in ordered form as B2 phase. The crystallographic lattices of these two phases are mechanically unstable to homogeneous shear processes, which can lead to lattice transformations. This property is mainly due to the anistropic bonding and the symmetry of the cubic body-centered lattice. The inclination of the β or B2 phase to the lattice transformation is thus pronounced. By shearing the cubic body centered lattice of the β or B2 phase, various orthorhombic phases can be formed, including, in particular, phases B19 and B33.

Die Erfindung beruht auf dem Gedanken, diese Gittertransformationen durch Scherumwandlung für eine zusätzliche Feinung der Mikrostruktur der erfindungsgemäßen Titanaluminid-Legierungen zu nutzen. Ein derartiges Verfahren ist für Titanaluminid-Legierungen auch in der wissenschaftlichen Literatur bisher nicht bekannt. Bei den oben aufgeführten erfindungsgemäßen Legierungen werden durch die Scherumwandlungen zudem spröde Phasen wie ω, ω' und ω" vermieden, die für die mechanischen Werkstoffeigenschaften äußerst nachteilig sind.The invention is based on the idea of utilizing these lattice transformations by shear conversion for additional refining of the microstructure of the titanium aluminide alloys of the present invention. Such a method is not yet known for titanium aluminide alloys in the scientific literature. In the case of the abovementioned alloys according to the invention, shearing transformations additionally avoid brittle phases such as ω, ω 'and ω ", which are extremely disadvantageous for the mechanical material properties.

Ein wesentlicher Vorteil der erfindungsgemäßen Legierungen besteht darin, dass die Gefügefeinung der Legierungen ohne den Zusatz von Korn-feinenden bzw. Gefüge-feinenden Elementen oder Zusätzen wie z.B. Bor (B) erreicht wird und die Legierungen demnach keine Boride enthalten. Da die in TiAl-Legierungen auftretenden Boride spröde sind, führen sie ab einem bestimmten Gehalt zur Versprödung von TiAl-Legierungen und stellen generell in Borhaltigen Legierungen potenzielle Risskeime dar.A significant advantage of the alloys according to the invention is that the texture refinement of the alloys without the addition of grain-fining elements or additives such as. Boron (B) is reached and therefore the alloys contain no borides. Since the borides occurring in TiAl alloys are brittle, they lead to the embrittlement of TiAl alloys above a certain content and generally represent potential cracking nuclei in boron-containing alloys.

Die Legierungen zeichnen sich weiter dadurch aus, dass die entsprechende Zusammensetzung Komposit-Lamellen-Strukturen mit der B19-Phase und β-Phase in jeder Lamelle aufweist, wobei die Lamellen von der TiAl-γ-Phase umgeben sind.The alloys are further characterized in that the corresponding composition has composite lamellar structures with the B19 phase and β phase in each lamella, the lamellae being surrounded by the TiAl γ phase.

Insbesondere beträgt das Verhältnis, insbesondere das Volumenverhältnis, der B19-Phase und β-Phase jeweils in einer Lamelle zwischen 0.05 und 20, insbesondere zwischen 0.1 und 10. Weiterhin beträgt das Verhältnis, insbesondere das Volumenverhältnis, der B19-Phase und β-Phase jeweils in einer Lamelle zwischen 0.2 und 5, insbesondere zwischen 0.25 und 4. Vorzugsweise beträgt das Verhältnis, insbesondere das Volumenverhältnis, der B19-Phase und β-Phase jeweils in einer Lamelle zwischen (1/3) und 3, insbesondere zwischen 0.5 und 2. Außerdem zeichnet sich eine besonders feine Gefügestruktur in der Legierungszusammensetzung dadurch aus, dass das Verhältnis, insbesondere das Volumenverhältnis, der B19-Phase und β-Phase jeweils in einer Lamelle zwischen 0.75 und 1.25, insbesondere zwischen 0.8 und 1.2, vorzugsweise zwischen 0.9 und 1.1, beträgt.In particular, the ratio, in particular the volume ratio, of the B19 phase and β-phase in each case is between 0.05 and 20, in particular between 0.1 and 10. Furthermore, the ratio, in particular the volume ratio, of the B19 phase and β phase is in each case in a lamella between 0.2 and 5, in particular between 0.25 and 4. Preferably, the ratio, in particular the volume ratio, of the B19 phase and β-phase in each case in a lamella between (1/3) and 3, in particular between 0.5 and 2. In addition, a particularly fine microstructure in the alloy composition is characterized in that the ratio, in particular the volume ratio, of the B19 phase and β Phase in each case between 0.75 and 1.25, in particular between 0.8 and 1.2, preferably between 0.9 and 1.1.

Überdies ist es in einer Weiterbildung der erfindungsgemäßen Legierungen möglich, dass Lamellen der Komposit-Lamellen-Strukturen von Lamellen des γ (TiAl)-Typs, vorzugsweise beidseits der Lamelle, umgeben sind.Moreover, it is possible in a development of the alloys according to the invention that lamellae of the composite lamellar structures are surrounded by lamellae of the γ (TiAl) type, preferably on both sides of the lamella.

Die Legierungen zeichnen sich ferner dadurch aus, dass die Lamellen der Komposit-Lamellen-Strukturen ein Volumenanteil von mehr als 10%, vorzugsweise mehr als 20%, der gesamten Legierung haben.The alloys are further characterized in that the lamellae of the composite lamellar structures have a volume fraction of more than 10%, preferably more than 20%, of the entire alloy.

Zudem bleibt die feine lamellenartige Struktur in den Komposit-Strukuren erhalten, wenn die Lamellen der Komposit-Lamellen-Strukturen TiAl die Phase α2-Ti3Al mit einem Anteil von bis zu 20% aufweisen, wobei insbesondere das (Volumen-)Verhältnis von der B19-Phase und β-Phase in den Lamellen unverändert und konstant bleibt.In addition, the fine lamellar structure is retained in the composite structures, if the lamellae of the composite lamellar structures TiAl have the phase α 2 -Ti 3 Al in a proportion of up to 20%, in particular the (volume) ratio of the B19 phase and β phase in the lamellae remain unchanged and constant.

Die erfindungsgemäßen Legierungen eignen sich als Hochtemperatur-Leichtbauwerkstoffe für Bauteile, die Temperaturen von bis zu 800 °C ausgesetzt sind.The alloys according to the invention are suitable as high-temperature lightweight materials for components which are exposed to temperatures of up to 800 ° C.

Darüber hinaus wird die Aufgabe gelöst durch ein Verfahren zum Herstellen einer voranstehend beschriebenen Legierung unter Verwendung von schmelz- oder pulvermetallurgischen Techniken, wobei nach der Herstellung der Legierung zu einem Zwischenprodukt eine weitere Wärmebehandlung des Zwischenprodukts bei Temperaturen oberhalb von 900°C, vorzugsweise über 1000°C, insbesondere bei Temperaturen zwischen 1000°C und 1200°C, für eine vorbestimmte Zeitdauer von mehr als 60 Minuten, vorzugsweise mehr als 90 Minuten, durchgeführt wird, und nachfolgend die wärmebehandelte Legierung mit einer vorbestimmten Kühlrate von mehr als 0.5°C pro Minute abgekühlt wird.In addition, the object is achieved by a method for producing an alloy described above using from melting or powder metallurgy techniques, wherein after the production of the alloy to an intermediate, further heat treatment of the intermediate at temperatures above 900 ° C, preferably above 1000 ° C, in particular at temperatures between 1000 ° C and 1200 ° C, for a predetermined Duration of more than 60 minutes, preferably more than 90 minutes, is performed, and then the heat-treated alloy is cooled at a predetermined cooling rate of more than 0.5 ° C per minute.

Insbesondere wird die wärmebehandelte Legierung mit einer vorbestimmten Kühlrate zwischen 1 °C pro Minute bis 20°C pro Minute, vorzugsweise bis 10°C pro Minute, abgekühlt.More specifically, the heat-treated alloy is cooled at a predetermined cooling rate between 1 ° C per minute to 20 ° C per minute, preferably to 10 ° C per minute.

Weiterhin wird die Aufgabe der Erfindung durch ein Bauteil gelöst, das aus einer erfindungsgemäßen Legierung hergestellt ist, wobei insbesondere die Legierung durch schmelz- oder pulvermetallurgische Verfahren oder Techniken hergestellt ist. Durch die Legierungen auf der Basis einer intermetallischen Verbindung vom Typ γ-TiAl werden leichte (Hochtemperatur-)Werkstoffe oder Bauteile für den Einsatz oder zur Verwendung in Wärmekraftmaschinen, wie Verbrennungsmotoren, Gasturbinen, Flugtriebwerken bereitgestellt.Furthermore, the object of the invention is achieved by a component which is produced from an alloy according to the invention, wherein in particular the alloy is produced by melt or powder metallurgical methods or techniques. The alloys based on a γ-TiAl intermetallic compound provide lightweight (high temperature) materials or components for use or for use in heat engines such as internal combustion engines, gas turbines, aircraft engines.

Überdies besteht eine weitere Lösung der Aufgabe in einer Verwendung einer erfindungsgemäßen, voranstehend beschriebenen Legierung zur Herstellung eines Bauteils. Zur Vermeidung von Wiederholungen wird auf die obigen Ausführungen ausdrücklich verwiesen.Moreover, a further solution of the problem is a use of an alloy according to the invention, described above, for the production of a component. To avoid repetition, reference is expressly made to the above statements.

Die erfindungsgemäßen Legierungen mit den oben aufgeführten Zusammensetzungen werden vorzugsweise durch Verwendung herkömmlicher metallurgischer Gießmethoden oder durch an sich bekannte pulvermetallurgische Techniken erzeugt und können beispielsweise durch Warmschmieden, Warmpressen bzw. Warmstrangpressen und Warmwalzen bearbeitet werden.The alloys according to the invention with the above-mentioned compositions are preferably prepared by using conventional metallurgical casting methods or by per se known powder metallurgy techniques are produced and can be processed for example by hot forging, hot pressing or hot extrusion and hot rolling.

Nachfolgend werden anhand einer Legierung mit einer Zusammensetzung Ti - 42 Atom % Al - 8.5 Atom % Nb die Komposit-Lamellen-Strukturen gezeigt.The composite lamellar structures are shown below using an alloy with a composition Ti - 42 At% Al - 8.5 At% Nb.

Fig. 1a zeigt eine Aufnahme der Gefügelegierung, die mit Hilfe eines Transmissions-Elektronenmikroskops aufgenommen worden ist. Die Übersichtsaufnahme in Fig. 1 zeigt, dass die Komposit-Lamellen-Strukturen, die in Fig. 1 mit T bezeichnet sind, einen streifigen Kontrast zu den die Strukturen umgebenden Gefüge der γ-Phase haben. Fig. 1a shows a photograph of the Gefreiegierung, which has been recorded by means of a transmission electron microscope. The overview in Fig. 1 shows that the composite lamellar structures in Fig. 1 with T, have a streaky contrast to the structures surrounding the structures of the γ-phase.

Fig. 1b zeigt eine Aufnahme des Legierungsgefüges mit einer höheren Vergrößerung, wobei ersichtlich ist, dass die modulierten Komposit-Lamellen-Strukturen (Bezugszeichen T) von der γ-Phase umgeben sind bzw. in die γ-Phase eingebettet sind. Fig. 1b shows a recording of the alloy structure with a higher magnification, wherein it can be seen that the modulated composite lamellar structures (reference symbol T) are surrounded by the γ phase or embedded in the γ phase.

Die in Fig. 1a und 1b gezeigten Gefüge wurden durch Extrudieren erhalten bzw. eingestellt.In the Fig. 1a and 1b The microstructures shown were obtained or adjusted by extrusion.

In Fig. 1 c ist ein Gussgefüge der gleichen Legierung Ti-42 Atom % Al-8,5 Atom % Nb gezeigt, in der ebenfalls eine Komposit-Lamellen-Struktur (Bezugszeichen T) ausgebildet ist, die von der γ-Phase umgeben ist.In Fig. 1 c a cast structure of the same alloy Ti-42 atom% Al-8.5 atom% Nb is shown, in which also a composite lamellar structure (reference T) is formed, which is surrounded by the γ-phase.

Fig. 2a zeigt in einer hochauflösenden Darstellung die atomare Struktur der Komposit-Lamellen-Strukturen oberhalb der γ-Phase. Die Komposit-Lamellen-Strukturen bestehen aus der geordneten B19-Phase und der ungeordneten β-Phase, die an die γ-Phase angrenzen (im unteren Bereich). Aus der Aufnahme in Fig. 2a ist ersichtlich, dass die Komposit-Lamellen-Strukturen die beiden kristallographisch unterschiedlichen Phasen B19 und β/B2 enthalten, die in Abständen von wenigen Nanometern angeordnet sind. Die Komposit-Lamellen-Strukturen enthalten die Phasen B19 und β, die beide als duktil gelten. Das Volumenverhältnis der B19-Phasen und der β-Phasen in einer Komposit-Lamellen-Struktur beträgt 0,8 bis 1,2. Aufgrund der duktilen Phasen B19 und β besteht das Gefüge im Wesentlichen aus gut verformbaren Lamellen, die in die hierzu relativ spröden γ-Phase eingebettet sind. Fig. 2a shows in a high-resolution representation the atomic structure of the composite lamellar structures above the γ-phase. The composite lamellar structures consist of the ordered B19 phase and the disordered β phase, which adjoin the γ phase (in the lower region). From the recording in Fig. 2a It can be seen that the composite lamellar structures contain the two crystallographically different phases B19 and β / B2, which are arranged at intervals of a few nanometers. The composite lamellar structures contain phases B19 and β, both of which are considered ductile. The volume ratio of B19 phases and β phases in a composite lamellar structure is 0.8 to 1.2. Due to the ductile phases B19 and β, the structure consists essentially of easily deformable lamellae, which are embedded in the relatively brittle γ-phase.

In Fig. 2b ist die Abbildung einer B19 Struktur mit vergrößerter Darstellung gezeigt. Das entsprechende Diffraktogramm, das aus dem in Fig. 2b gezeigten Ausschnitt berechnet wurde und für die B19 Struktur charakteristisch ist, ist in Fig. 2c dargestellt.In Fig. 2b The illustration of a B19 structure is shown with an enlarged view. The corresponding diffractogram, from the in Fig. 2b shown section and is characteristic of the B19 structure is in Fig. 2c shown.

In Fig. 3 ist eine elektronenmikroskopische Aufnahme eines Risses C der oben genannten Legierung dargestellt. Hierbei geht aus der Aufnahme hervor, dass der Riss C an den modulierten Komposit-Lamellen-Strukturen (T) abgelenkt wird, und dass die Komposit-Lamellen-Strukturen Ligamente ausbilden, die die Rissufer überbrücken können. Ein derartiges Verhalten unterscheidet sich deutlich von der Rissausbreitung in den bisher bekannten Ti-Al-Legierungen, bei denen in dem hier betrachteten mikroskopischen Maßstab ein Spaltbruch auftritt. Bei der Legierung wird aufgrund der ausgebildeten Komposit-Lamellen-Strukturen eine Rissausbreitung behindert.In Fig. 3 is an electron micrograph of a crack C of the above alloy shown. Here, the image shows that the crack C is deflected at the modulated composite lamellar structures (T), and that the composite lamellar structures form ligaments that can bridge the crack edges. Such a behavior differs significantly from the crack propagation in the previously known Ti-Al alloys, in which a gap fracture occurs in the microscopic scale considered here. In the alloy crack propagation is hindered due to the formed composite lamellar structures.

Die für technische Anwendungen wichtige Bruchzähigkeit von Gefügen wurde mit Hilfe von gekerbten Chevron-Proben im Biegetest bei unterschiedlichen Temperaturen bestimmt. Die aufgenommene Registerkurve eines solchen Tests ist in Fig. 4 dargestellt. In der Kurve sind die durch die Pfeile markierten Zacken ersichtlich, die darauf hinweisen, dass während der Belastung der Probe zeitweise Rissausbreitung auftritt, die jedoch immer wieder gestoppt wird. Ein solches Verhalten ist typisch für Legierungen, die aus einer spröden Phase (γ-Phase) bestehen, in die die relativ duktilen Phasen B19 und β eingebettet sind.The fracture toughness of structures, which is important for technical applications, was tested in the bending test with the aid of notched chevron samples determined at different temperatures. The recorded register curve of such a test is in Fig. 4 shown. In the curve, the pips marked by the arrows are visible, which indicate that during the load of the sample, temporary crack propagation occurs, but this is stopped again and again. Such behavior is typical of alloys consisting of a brittle phase (γ-phase) in which the relatively ductile phases B19 and β are embedded.

Die Legierungen können durch die für TiAl-Legierungen bekannten Technologien, d.h. über Schmelzmetallurgie, Umformtechnologien und Pulvermetallurgie hergestellt werden. Beispielsweise werden Legierungen in einem Lichtbogenofen geschmolzen und mehrfach umgeschmolzen und anschließend einer Wärmebehandlung unterzogen. Darüber hinaus können zur Herstellung auch die für Primärgussblöcke aus TiAl-Legierungen bekannten Herstellverfahren Vakuum-Lichtenbogen-Schmelzen, Induktionsschmelzen oder Plasma-Schmelzen verwendet werden. Gegebenenfalls können nach dem Erstarren von Guss-Primärgussmaterial heiß-istostatisches Pressen als Verdichtungsverfahren bei Temperaturen von 900°C bis 1.300°C oder Wärmebehandlungen im Temperaturbereich von 700°C bis 1.400°C oder eine Kombination dieser Behandlungen angewendet werden, um Poren zu schließen und eine Mikrostruktur im Material einzustellen.The alloys may be formed by the technologies known for TiAl alloys, i. via melt metallurgy, forming technologies and powder metallurgy. For example, alloys are melted in an electric arc furnace and remelted several times and then subjected to a heat treatment. In addition, the production methods known for primary cast blocks of TiAl alloys may also be used for the production of vacuum arc melting, induction melting or plasma melting. Optionally, after the solidification of cast primary material, hot isostatic pressing may be used as the densification process at temperatures of 900 ° C to 1300 ° C or heat treatments in the temperature range of 700 ° C to 1400 ° C or a combination of these treatments to close pores and to adjust a microstructure in the material.

Claims (12)

  1. An alloy based on titanium aluminides, particularly made with the use of fusion or powder metallurgical processes, preferably on the basis of γ (TiAl), wherein TiAl alloys with further additives contain volumetric fractions of the β phase, characterised in that the composition includes composite lamellar structures with B19 phase and β phase in each lamella, wherein the ratio, particularly the volumetric ratio, of the B19 phase and the β phase in each lamella is between 0.05 and 20, particularly between 0.1 and 10, wherein the alloy has the following composition:
    Ti - (41 to 44.5 at %) Al - (5 to 10 at %) Nb - (0.5 to 5 at %) Fe.
  2. An alloy as claimed in claim 1, characterised in that the ratio, particularly the volumetric ratio, of the B19 phase and the β phase in each lamella is between 0.2 and 5, particularly between 0.25 and 4.
  3. An alloy as claimed in claim 1 or 2, characterised in that the ratio, particularly the volumetric ratio, of the B19 phase and β phase in each lamella is between (1/3) and 3, particularly between 0.5 and 2.
  4. An alloy as claimed in one of claims 1 to 3, characterised in that the ratio, particularly the volumetric ratio, of the B19 phase and β phase in each lamella is between 0.75 and 1.25, particularly between 0.8 and 1.2, preferably between 0.9 and 1.1.
  5. An alloy as claimed in one of claims 1 to 4, characterised in that the composition selectively includes (0.1 to 1 to 1 at %) B (boron) and/or (0.1 to 1 at %) C (carbon).
  6. An alloy as claimed in one of claims 1 to 5, characterised in that lamellas of the composite lamellar structures are surrounded by lamellas of the γ (TiAl) type, preferably on both sides of the lamella.
  7. An alloy as claimed in one of claims 1 to 6, characterised in that the lamellas of the composite lamellar structures have a volumetric proportion of more than 10%, preferably more than 20%, of the alloy.
  8. An alloy as claimed in one of claims 1 to 7, characterised in that the lamellas of the composite lamellar structures include the phase α2-Ti3Al in a proportion of up to 20%.
  9. A method of making an alloy as claimed in one claims 1 to 8 using fusion or powder metallurgical techniques, wherein after making the alloy into an intermediate product a further heat treatment of the intermediate product is performed at temperatures above 900°c, preferably above 1000°c, particularly at temperatures between 1000°c and 1200°c for a predetermined period of time of more than 60 minutes, preferably more than 90 minutes and subsequently the heat-treated alloy is cooled at a predetermined cooling rate of more than 0.5°C per minute.
  10. A method as claimed in claim 9, characterised in that heat-treated alloy is cooled at a predetermined cooling rate of between 1°c per minute to 20°c per minute, preferably to 10°c per minute.
  11. A component which is made of an alloy as claimed in one of claims 1 to 8, wherein, in particular, the alloy is made by fusion or powder metallurgical methods or techniques.
  12. Use of an alloy as claimed in one of claims 1 to 8 for making a component.
EP11187502.7A 2007-12-13 2008-11-25 Titanium aluminide alloys Not-in-force EP2423341B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007060587A DE102007060587B4 (en) 2007-12-13 2007-12-13 titanium aluminide
EP08020431.6A EP2075349B1 (en) 2007-12-13 2008-11-25 Titanium aluminide alloys
EP09010152.8A EP2145967B1 (en) 2007-12-13 2008-11-25 Titanium aluminide alloys

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP08020431.6 Division 2008-11-25
EP08020431.6A Division-Into EP2075349B1 (en) 2007-12-13 2008-11-25 Titanium aluminide alloys
EP09010152.8 Division 2009-08-06

Publications (2)

Publication Number Publication Date
EP2423341A1 EP2423341A1 (en) 2012-02-29
EP2423341B1 true EP2423341B1 (en) 2013-07-10

Family

ID=40527708

Family Applications (3)

Application Number Title Priority Date Filing Date
EP09010152.8A Not-in-force EP2145967B1 (en) 2007-12-13 2008-11-25 Titanium aluminide alloys
EP08020431.6A Not-in-force EP2075349B1 (en) 2007-12-13 2008-11-25 Titanium aluminide alloys
EP11187502.7A Not-in-force EP2423341B1 (en) 2007-12-13 2008-11-25 Titanium aluminide alloys

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP09010152.8A Not-in-force EP2145967B1 (en) 2007-12-13 2008-11-25 Titanium aluminide alloys
EP08020431.6A Not-in-force EP2075349B1 (en) 2007-12-13 2008-11-25 Titanium aluminide alloys

Country Status (10)

Country Link
US (3) US20090151822A1 (en)
EP (3) EP2145967B1 (en)
JP (1) JP5512964B2 (en)
KR (1) KR20090063173A (en)
CN (1) CN101457314B (en)
BR (1) BRPI0806979A2 (en)
CA (1) CA2645843A1 (en)
DE (1) DE102007060587B4 (en)
IL (1) IL195756A0 (en)
RU (1) RU2466201C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544485B2 (en) 2016-05-23 2020-01-28 MTU Aero Engines AG Additive manufacturing of high-temperature components from TiAl

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215631A (en) * 2008-03-12 2009-09-24 Mitsubishi Heavy Ind Ltd Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
DE102009050603B3 (en) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Process for producing a β-γ-TiAl base alloy
WO2012041276A2 (en) 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Heat-resistant tial alloy
DE102011110740B4 (en) * 2011-08-11 2017-01-19 MTU Aero Engines AG Process for producing forged TiAl components
EP2620517A1 (en) 2012-01-25 2013-07-31 MTU Aero Engines GmbH Heat-resistant TiAl alloy
US20130248061A1 (en) * 2012-03-23 2013-09-26 General Electric Company Methods for processing titanium aluminide intermetallic compositions
US10597756B2 (en) 2012-03-24 2020-03-24 General Electric Company Titanium aluminide intermetallic compositions
CN103320648B (en) * 2012-03-24 2017-09-12 通用电气公司 Titanium aluminide intermetallic complex
KR101261885B1 (en) * 2012-07-25 2013-05-06 한국기계연구원 Lamellar structure tial base alloy having beta-gamma phase
RU2502824C1 (en) * 2012-11-13 2013-12-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Heat treatment method of castings from alloys based on gamma titanium aluminide
DE102012222745A1 (en) 2012-12-11 2014-06-12 MTU Aero Engines AG Turbine blade, useful in fluid-flow machine e.g. stationary gas turbine or aircraft engine, comprises monocrystalline of titanium aluminide material in blade portion, and blade root made of polycrystalline material
WO2014115921A1 (en) * 2013-01-23 2014-07-31 한국기계연구원 Titanium-aluminum alloy having enhanced high temperature strength and oxidation resistance
US10179377B2 (en) 2013-03-15 2019-01-15 United Technologies Corporation Process for manufacturing a gamma titanium aluminide turbine component
CN103484701B (en) * 2013-09-10 2015-06-24 西北工业大学 Method for refining cast titanium alloy crystalline grains
CN103773981B (en) * 2013-12-25 2016-06-29 西安西工大超晶科技发展有限责任公司 A kind of method of smelting of high Nb-TiAl base alloy
CN103820697B (en) * 2014-03-10 2016-08-17 北京工业大学 A kind of multi-element alloyed β phase solidifies high Nb containing TiAl based alloy and preparation method thereof
CN103820677B (en) * 2014-03-12 2016-03-02 北京工业大学 A kind of containing the novel β of Mn height Nb-γ TiAl intermetallic compound material and preparation method thereof
CN103820675A (en) * 2014-03-12 2014-05-28 北京工业大学 Novel V-contained beta-gamma TiAl intermetallic compound material with high Nb content and preparation method thereof
CN103820674B (en) * 2014-03-12 2016-05-25 北京工业大学 A kind of W, Mn alloying β solidify high Nb-TiAl Alloy And Preparation Method mutually
CN103834844B (en) * 2014-03-12 2016-08-24 北京工业大学 A kind of V, Mn alloying β phase solidifies high Nb containing TiAl based alloy and preparation method thereof
CN103820672B (en) * 2014-03-12 2017-05-03 北京工业大学 Cr and Mn alloying beta phase solidifying high Nb-TiAl alloy and preparation method thereof
JP6439287B2 (en) * 2014-06-18 2018-12-19 株式会社デンソー Driving support device, driving support method, image correction device, and image correction method
RU2592657C2 (en) * 2014-12-29 2016-07-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Heat-resistant titanium-based alloy and article made therefrom
RU2621500C1 (en) * 2015-12-21 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" INTERMETALLIC TiAl BASED ALLOY
CN105441715A (en) * 2015-12-29 2016-03-30 青岛博泰美联化工技术有限公司 Automobile charging turbine
CN105624465A (en) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 Blade of automobile engine
CN105970026A (en) * 2016-05-31 2016-09-28 黄河科技学院 Light weight alloy material and preparation method thereof
CN106148739B (en) * 2016-06-29 2018-02-06 西安西工大超晶科技发展有限责任公司 A kind of preparation method of the alloy cast ingots of Ti3Al containing niobium
JP6687118B2 (en) * 2016-09-02 2020-04-22 株式会社Ihi TiAl alloy and method for producing the same
CN106367633A (en) * 2016-09-12 2017-02-01 江苏大学 La2O3-microalloyed TiAl-based alloy being high in acid corrosion resistance
CN106367624B (en) * 2016-09-12 2017-10-13 江苏大学 High acid etching resistance Y microalloying TiAl-base alloys
RU2633135C1 (en) * 2016-11-11 2017-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Intermetallic tial-based alloy
KR101890642B1 (en) 2016-12-14 2018-08-22 안동대학교 산학협력단 Method for preparing Ti-Al-Nb-V alloy improved fracture toughness and creep properties
KR101888049B1 (en) 2016-12-14 2018-08-13 안동대학교 산학협력단 Method for preparing Ti-Al-Nb-Fe alloy improved fracture toughness and creep properties
US20180230822A1 (en) * 2017-02-14 2018-08-16 General Electric Company Titanium aluminide alloys and turbine components
CN107034384A (en) * 2017-04-26 2017-08-11 东北大学 A kind of excellent low cost titanium acieral of thermal deformation working ability
CN107475595A (en) * 2017-07-10 2017-12-15 江苏鑫龙化纤机械有限公司 A kind of polyethylene fibre dry heat draw box electric heating tube alloy material
CN107699738A (en) * 2017-09-29 2018-02-16 成都露思特新材料科技有限公司 A kind of fine-grained TiAl alloy and preparation method thereof, aero-engine, automobile
JP7197597B2 (en) * 2017-11-24 2022-12-27 コリア インスティテュート オブ マテリアルズ サイエンス Titanium-aluminum alloy for 3D printing with excellent high-temperature properties and its production method
KR102095463B1 (en) * 2018-05-24 2020-03-31 안동대학교 산학협력단 TiAl-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE FORMABILITY AND METHOD FOR MANUFACTURING TiAl-BASED ALLOY MEMBER USING THE SAME
JP7233659B2 (en) 2019-03-18 2023-03-07 株式会社Ihi Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
WO2020235200A1 (en) * 2019-05-23 2020-11-26 株式会社Ihi Tial alloy and production method therefor
CN110438369A (en) * 2019-09-18 2019-11-12 大连大学 A kind of high rigidity, the preparation method of high oxidative Ti-Al-Nb-Re alloy
US20240043978A1 (en) 2021-04-16 2024-02-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tial alloy for forging, tial alloy material, and method for producing tial alloy material
JPWO2022260026A1 (en) * 2021-06-09 2022-12-15
CN115261657B (en) * 2022-08-03 2023-02-28 南京铖联激光科技有限公司 Preparation method and preparation device of high-temperature alloy

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734794B2 (en) * 1991-03-15 1998-04-02 住友金属工業株式会社 Method for producing Ti-Al-based intermetallic compound-based alloy
JP3310680B2 (en) * 1991-09-25 2002-08-05 三菱重工業株式会社 Intermetallic compound-based heat-resistant alloy
CN1023133C (en) * 1991-12-31 1993-12-15 北京科技大学 High-temperature resistant materials of Nb-Ti-Al series metal compounds
JPH05320791A (en) * 1992-05-15 1993-12-03 Mitsubishi Heavy Ind Ltd Ti-al intermetallic compound alloy
DE4224867A1 (en) * 1992-07-28 1994-02-03 Abb Patent Gmbh Highly heat-resistant material
JPH06116692A (en) * 1992-10-05 1994-04-26 Honda Motor Co Ltd Ti-al intermetallic compound excellent in high temperature strength and its production
JPH06116691A (en) * 1992-10-05 1994-04-26 Mitsubishi Materials Corp Method for heat-treating ti-al intermetallic compound series ti alloy
US5296056A (en) * 1992-10-26 1994-03-22 General Motors Corporation Titanium aluminide alloys
JPH06346173A (en) * 1993-06-11 1994-12-20 Mitsubishi Heavy Ind Ltd Ti-al intermetallic compound base alloy
JPH07197154A (en) * 1994-01-10 1995-08-01 Mitsubishi Heavy Ind Ltd Titanium aluminum base alloy and its production
JP3332615B2 (en) * 1994-10-25 2002-10-07 三菱重工業株式会社 TiAl-based intermetallic compound-based alloy and method for producing the same
JPH08199264A (en) * 1995-01-19 1996-08-06 Mitsubishi Heavy Ind Ltd Titanium-aluminum series intermetallic compound base alloy
JP3374553B2 (en) * 1994-11-22 2003-02-04 住友金属工業株式会社 Method for producing Ti-Al-based intermetallic compound-based alloy
DE4443147A1 (en) * 1994-12-05 1996-06-27 Dechema Corrosion-resistant material for high-temperature applications in sulfidizing process gases
US5558729A (en) * 1995-01-27 1996-09-24 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
JPH1161298A (en) * 1997-08-18 1999-03-05 Natl Res Inst For Metals Titanium-aluminum intermetallic compound-base alloy and its production
DE19735841A1 (en) * 1997-08-19 1999-02-25 Geesthacht Gkss Forschung Titanium aluminide alloy contains niobium
US6174387B1 (en) * 1998-09-14 2001-01-16 Alliedsignal, Inc. Creep resistant gamma titanium aluminide alloy
JP2000199025A (en) * 1999-01-05 2000-07-18 Mitsubishi Heavy Ind Ltd TiAl INTERMETALLIC COMPOUND BASE ALLOY, ITS PRODUCTION, TURBINE MEMBER AND ITS PRODUCTION
DE10351946A1 (en) * 2003-03-21 2004-10-07 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Process for treating the surface of a component consisting of an AL alloy, in particular a TiAL alloy, and the use of organic halocarbon compounds or halides incorporated in an organic matrix
DE102004056582B4 (en) * 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Alloy based on titanium aluminides
GB0616566D0 (en) * 2006-08-19 2006-09-27 Rolls Royce Plc An alloy and method of treating titanium aluminide
CN101011705A (en) * 2007-01-31 2007-08-08 哈尔滨工业大学 Method for preparation of Yt-containing TiAl intermetallic compound plate material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544485B2 (en) 2016-05-23 2020-01-28 MTU Aero Engines AG Additive manufacturing of high-temperature components from TiAl

Also Published As

Publication number Publication date
EP2145967A3 (en) 2010-04-21
EP2075349B1 (en) 2016-03-09
JP5512964B2 (en) 2014-06-04
RU2466201C2 (en) 2012-11-10
EP2075349A2 (en) 2009-07-01
DE102007060587A1 (en) 2009-06-18
CN101457314A (en) 2009-06-17
US20090151822A1 (en) 2009-06-18
EP2075349A3 (en) 2009-09-09
CN101457314B (en) 2013-07-24
BRPI0806979A2 (en) 2010-04-20
RU2008149177A (en) 2010-06-20
EP2145967A2 (en) 2010-01-20
EP2145967B1 (en) 2013-07-24
US20140010701A1 (en) 2014-01-09
DE102007060587B4 (en) 2013-01-31
JP2009144247A (en) 2009-07-02
CA2645843A1 (en) 2009-06-13
IL195756A0 (en) 2009-11-18
US20100000635A1 (en) 2010-01-07
KR20090063173A (en) 2009-06-17
EP2423341A1 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
EP2423341B1 (en) Titanium aluminide alloys
EP1819838B1 (en) Titanium aluminide based alloy
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
DE102013002483B4 (en) Nickel-cobalt alloy
DE2264997C2 (en) Precipitation hardenable iron-nickel alloy
EP1287173B1 (en) $g(G)-TIAL ALLOY-BASED COMPONENT COMPRISING AREAS HAVING A GRADUATED STRUCTURE
DE60316212T2 (en) Nickel-based alloy, hot-resistant spring made of this alloy and method of making this spring
EP2742162B1 (en) Method for producing forged tial components
DE3887259T2 (en) Alloys containing gamma prime phase and process for their formation.
DE60001249T2 (en) Ti-Al (Mo, V, Si, Fe) alloys and process for their manufacture
DE60302108T2 (en) Precipitation-hardened cobalt-nickel alloy with good heat resistance and associated production method
DE69028452T2 (en) Titanium-aluminum alloys of the gamma type modified with chromium and silicon and process for their production
DE69802595T2 (en) Titanium aluminide for use at elevated temperatures
EP2905350A1 (en) High temperature TiAl alloy
EP2620517A1 (en) Heat-resistant TiAl alloy
EP3553193A1 (en) Al-rich high temperature tial alloy
DE2649529A1 (en) FORMABLE COBALT-NICKEL-CHROME BASED ALLOY AND METHOD FOR ITS MANUFACTURING
EP3091095A1 (en) Low density rhenium-free nickel base superalloy
EP2339595B1 (en) Magnetic shape memory alloy material
DE4140679C2 (en) Process for producing an alloy based on gamma titanium aluminide
DE4140707C2 (en) Process for producing an alloy based on gamma titanium aluminide
DE69415447T2 (en) High-strength materials based on magnesium-based alloys and process for producing these materials
DE19623943C2 (en) Gamma-hardened single-crystalline turbine blade alloy for hydrogen-powered engine systems, molded article and heat-treated article daruas as well as process for the production of the alloy
EP2450463A2 (en) Aluminium alloy
DE20019886U1 (en) Alloy based on titanium aluminides

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20111102

AC Divisional application: reference to earlier application

Ref document number: 2075349

Country of ref document: EP

Kind code of ref document: P

Ref document number: 2145967

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2145967

Country of ref document: EP

Kind code of ref document: P

Ref document number: 2075349

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 621028

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008010294

Country of ref document: DE

Effective date: 20130905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131110

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131021

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131011

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUR MATERIAL

Effective date: 20131130

26N No opposition filed

Effective date: 20140411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008010294

Country of ref document: DE

Effective date: 20140411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161122

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 621028

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191125

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191121

Year of fee payment: 12

Ref country code: IT

Payment date: 20191120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191126

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008010294

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201125

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201125

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601