JP2009215631A - Titanium-aluminum-based alloy and production method therefor, and moving blade using the same - Google Patents

Titanium-aluminum-based alloy and production method therefor, and moving blade using the same Download PDF

Info

Publication number
JP2009215631A
JP2009215631A JP2008062690A JP2008062690A JP2009215631A JP 2009215631 A JP2009215631 A JP 2009215631A JP 2008062690 A JP2008062690 A JP 2008062690A JP 2008062690 A JP2008062690 A JP 2008062690A JP 2009215631 A JP2009215631 A JP 2009215631A
Authority
JP
Japan
Prior art keywords
tial
based alloy
atomic
temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008062690A
Other languages
Japanese (ja)
Inventor
Kentaro Shindo
健太郎 新藤
Toshimitsu Tetsui
利光 鉄井
Masao Takeyama
雅夫 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Institute of Technology NUC
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Institute of Technology NUC filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008062690A priority Critical patent/JP2009215631A/en
Priority to US12/863,529 priority patent/US20100316525A1/en
Priority to EP09720943A priority patent/EP2251445A4/en
Priority to PCT/JP2009/051539 priority patent/WO2009113335A1/en
Publication of JP2009215631A publication Critical patent/JP2009215631A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • B21K3/04Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like blades, e.g. for turbines; Upsetting of blade roots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0403Refractory metals, e.g. V, W
    • F05C2201/0412Titanium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-forged Ti-Al-based alloy having excellent oxidizing resistance and high strength at high temperature, and a production method therefor. <P>SOLUTION: In the Ti-Al-based alloy composed of (40+a) atomic% Al and b atomic% Nb and the balance Ti with inevitable impurities, the alloy satisfies the following (1) and (2) relations: 0≤a≤2 (1), 3+a≤b≤7+a (2). Alternatively, in the Ti-Al-based alloy composed of (40+a) atomic% Al and b atomic% Nb and further, one or more elements selected from c atomic% V, d atomic% Cr and e atomic% Mo and the balance Ti with inevitable impurities, the alloy satisfies the following (3) to (9) relations: 0≤a≤2 (3), 3+a≤b+1.0c+1.8d+3.8e≤7+a (4), b≥2 (5), c≥0 (6), d≥0 (7), e≥0 (8) and c+d+e>0 (9). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、TiAl基合金及びその製造方法、並びにそれを用いた動翼に関するものである。   The present invention relates to a TiAl-based alloy, a manufacturing method thereof, and a moving blade using the same.

ガスタービンや過給機の動翼などに用いる材料として、軽量(比重約4)で耐熱性に優れるTiAl基合金が注目されている。特に、大型の回転動翼の場合、動翼の構成部材が軽量であるほど遠心応力が少なくなるので、最高到達回転数の向上や動翼の大面積化、さらにはディスク部分への負荷応力の低減を図ることができる。   As a material used for a gas turbine, a rotor blade of a supercharger, and the like, a TiAl-based alloy that is lightweight (specific gravity about 4) and excellent in heat resistance has attracted attention. In particular, in the case of a large rotating blade, the lighter the component of the moving blade, the smaller the centrifugal stress. Therefore, the maximum rotation speed can be increased, the moving blade can be increased in area, and the load stress on the disk can be reduced. Reduction can be achieved.

TiAl基合金は、高温強度に優れた金属間化合物であるTiAlやTiAlを主体とする合金であり、耐熱性に優れている。しかし、TiAl基合金は鋳造性が悪く、鋳造での大型部品の製造が困難であるため、鍛造による成形が研究されている。鍛造方法には、超塑性加工を利用した恒温鍛造と熱間鍛造とがある。恒温鍛造は、鋳造合金のインゴットを高温で加熱しながら低速で加工する方法である。熱間鍛造は、鋳造合金インゴットを高温で加熱した後、放冷しながら高速で加工する方法である。この熱間鍛造では、TiAl基合金の鍛造性を向上させるために、高温での変形能に優れるβ相が析出する成分組成とし、第3元素としてCr,V,Mnなどのβ相安定化元素が添加される。 The TiAl-based alloy is an alloy mainly composed of TiAl or Ti 3 Al, which is an intermetallic compound excellent in high-temperature strength, and has excellent heat resistance. However, since TiAl-based alloys have poor castability and it is difficult to produce large parts by casting, forming by forging has been studied. Forging methods include isothermal forging using superplastic working and hot forging. Constant temperature forging is a method of processing a cast alloy ingot at a low speed while heating it at a high temperature. Hot forging is a method in which a cast alloy ingot is heated at a high temperature and then processed at high speed while being allowed to cool. In this hot forging, in order to improve the forgeability of the TiAl-based alloy, a component composition in which a β phase excellent in deformability at high temperatures is precipitated and a β phase stabilizing element such as Cr, V, Mn as the third element is used. Is added.

特許文献1には、Alを43〜47原子%含有し、第3元素としてCrを添加したTiAl基合金を、超塑性加工(恒温鍛造)することが開示されている。上記組成のTiAl基合金を、加熱保持装置を用いた塑性加工装置で、動的再結晶が起こる低歪速度で変形し、γ相の結晶粒界にβ相を析出させた微細構造を有するTiAl基合金を得ている。   Patent Document 1 discloses superplastic working (constant temperature forging) of a TiAl-based alloy containing 43 to 47 atomic percent of Al and added with Cr as a third element. A TiAl-based alloy having the above composition is deformed at a low strain rate at which dynamic recrystallization occurs in a plastic working device using a heating and holding device, and has a fine structure in which a β phase is precipitated at a grain boundary of a γ phase. A base alloy has been obtained.

特許文献2には、Alを40〜48原子%含有し第3元素としてCr及びVから選択される1種以上を添加したTiAl基合金、及び、Alを38〜48原子%含有し第3元素としてMnを添加したTiAl基合金が開示されている。上記組成のTiAl基合金に対して高速塑性加工(熱間鍛造)を施し、α相とγ層とが交互に積層されたラメラ組織粒を形成させて、TiAl基合金の高温強度を向上させている。
米国特許第5370839号明細書 特開2001−316743号公報
Patent Document 2 includes a TiAl-based alloy containing 40 to 48 atomic% of Al and adding one or more selected from Cr and V as a third element, and a third element containing 38 to 48 atomic% of Al. A TiAl-based alloy to which Mn is added is disclosed. The TiAl base alloy having the above composition is subjected to high-speed plastic working (hot forging) to form a lamellar structure grain in which α 2 phase and γ layer are alternately laminated, thereby improving the high temperature strength of the TiAl base alloy. ing.
US Pat. No. 5,370,839 JP 2001-316743 A

特許文献1に記載の超塑性加工は、高温に保持しながらの低歪速度での塑性加工であるので、生産性が低く工業的な実用性は低い。   The superplastic working described in Patent Document 1 is a plastic working at a low strain rate while being kept at a high temperature, so that productivity is low and industrial practicality is low.

一方、特許文献2に記載される熱間鍛造は、汎用設備にて一般鋼材とほぼ同様の鍛造加工が可能であるため、生産性が高く実用的である。
しかし、特許文献2に記載されるTiAl基合金は、熱間鍛造によりラメラ組織粒を析出させて高温強度を向上させているが、鋳造TiAl基合金に比べてクリープ強度が低く、耐酸化性も不十分であった。このため、TiAl基合金の適用可能温度は650℃以下となっていた。
On the other hand, the hot forging described in Patent Document 2 is practical and high in productivity because it can be forged in the same manner as general steel by general-purpose equipment.
However, the TiAl-based alloy described in Patent Document 2 improves the high-temperature strength by precipitating lamellar structure grains by hot forging, but has a lower creep strength and oxidation resistance than cast TiAl-based alloy. It was insufficient. For this reason, the applicable temperature of the TiAl-based alloy was 650 ° C. or less.

本発明は、耐酸化性に優れ、且つ、高温強度の高い熱間鍛造TiAl基合金及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a hot forged TiAl-based alloy having excellent oxidation resistance and high high-temperature strength, and a method for producing the same.

上記課題を解決するために、本発明は、Al:(40+a)原子%と、Nb:b原子%とを含有し、残部がTi及び不可避的不純物からなるTiAl基合金であって、前記a及びbが以下の式(1)及び(2):
0≦a≦2 (1)
3+a≦b≦7+a (2)
を満たすTiAl基合金を提供する。
In order to solve the above-mentioned problems, the present invention provides a TiAl-based alloy containing Al: (40 + a) atomic% and Nb: b atomic%, with the balance being Ti and inevitable impurities, b is the following formula (1) and (2):
0 ≦ a ≦ 2 (1)
3 + a ≦ b ≦ 7 + a (2)
A TiAl-based alloy satisfying the above requirements is provided.

また、本発明は、Al:(40+a)原子%と、Nb:b原子%とを含有し、更にV:c原子%、Cr:d原子%、及びMo:e原子%から選択される1種以上の元素を含有し、残部がTi及び不可避的不純物からなるTiAl基合金であって、前記a乃至eが以下の式(3)乃至(9):
0≦a≦2 (3)
3+a≦b+1.0c+1.8d+3.8e≦7+a (4)
b≧2 (5)
c≧0 (6)
d≧0 (7)
e≧0 (8)
c+d+e>0 (9)
を満たすTiAl基合金を提供する。
Further, the present invention contains Al: (40 + a) atomic% and Nb: b atomic%, and is further selected from V: c atomic%, Cr: d atomic%, and Mo: e atomic% A TiAl-based alloy containing the above elements, the balance being Ti and inevitable impurities, wherein a to e are the following formulas (3) to (9):
0 ≦ a ≦ 2 (3)
3 + a ≦ b + 1.0c + 1.8d + 3.8e ≦ 7 + a (4)
b ≧ 2 (5)
c ≧ 0 (6)
d ≧ 0 (7)
e ≧ 0 (8)
c + d + e> 0 (9)
A TiAl-based alloy satisfying the above requirements is provided.

Al含有量が高くなると高温強度は向上する。しかし、Al含有量が高いと、高温での変形能に優れるβ相が析出しない、あるいは、析出温度域が高いために、鍛造性が悪くなる。本発明のTiAl基合金は、汎用の鍛造設備で実現可能な温度範囲の高温でα相とβ相の2相領域となる温度領域を有し、この温度領域での熱間鍛造が可能である。本発明のTiAl基合金は、β相安定化元素としてNbを上記範囲で含有し、Al含有量が40原子%以上42原子%以下と従来のTiAl基合金よりも低くすることにより、鍛造性を維持しつつ高い高温強度を有する。また、Nbを添加することにより、従来の熱間鍛造TiAl基合金よりも耐酸化性を向上させることが可能となる。   The high temperature strength improves as the Al content increases. However, if the Al content is high, the β phase, which is excellent in deformability at high temperatures, does not precipitate, or because the precipitation temperature range is high, the forgeability deteriorates. The TiAl-based alloy of the present invention has a temperature region that becomes a two-phase region of α phase and β phase at a high temperature in a temperature range that can be realized by a general-purpose forging facility, and hot forging in this temperature region is possible. . The TiAl-based alloy of the present invention contains Nb as a β-phase stabilizing element in the above range, and the Al content is 40 atomic% or more and 42 atomic% or less, which is lower than the conventional TiAl-based alloy, thereby improving the forgeability. High temperature strength while maintaining. Further, by adding Nb, it becomes possible to improve the oxidation resistance as compared with the conventional hot forged TiAl-based alloy.

V,Cr及びMoは、Nbと同様にβ相を形成させやすく、TiAl基合金の鍛造性を向上させる効果が高い元素である。Nbの他にV,Cr及びMoから選択される1種以上の元素を上記の割合で含有することで、鍛造性に優れたTiAl基合金となる。更に、Vは高温での引張強度向上に寄与する。Crは、TiAl基合金の変形抵抗を低下させる。Moはクリープ強度向上に寄与する。V,Cr及びMoから選択される1種以上の元素を含有することにより、合金性能を更に向上させることが可能となる。   V, Cr and Mo are elements that are easy to form a β phase like Nb and have a high effect of improving the forgeability of the TiAl-based alloy. By containing at least one element selected from V, Cr, and Mo in addition to Nb in the above ratio, a TiAl-based alloy having excellent forgeability can be obtained. Furthermore, V contributes to improvement in tensile strength at high temperatures. Cr reduces the deformation resistance of the TiAl-based alloy. Mo contributes to the improvement of creep strength. By including one or more elements selected from V, Cr and Mo, the alloy performance can be further improved.

上記発明において、TiAl基合金が、α相とγ相とが交互に積層されたラメラ粒が配列してなる金属組織を有することが好ましい。ラメラ粒が配列した金属組織を有することで、高温強度の高いTiAl基合金となる。 In the above invention, the TiAl-based alloy preferably has a metal structure in which lamellar grains in which α 2 phase and γ phase are alternately laminated are arranged. By having a metal structure in which lamella grains are arranged, a TiAl-based alloy having high temperature strength is obtained.

本発明は、Al:(40+a)原子%と、Nb:b原子%とを含有し、残部がTi及び不可避的不純物からなるTiAl基合金素材であって、前記a及びbが以下の式(1)及び(2):
0≦a≦2 (1)
3+a≦b≦7+a (2)
を満たすTiAl基合金素材を、(α+β)相の平衡温度領域内の保持温度に保持する工程と、該保持温度に保持したTiAl基合金素材を、所定の最終加工温度まで冷却しながら高速塑性加工する工程とを備えるTiAl基合金の製造方法を提供する。
The present invention is a TiAl-based alloy material containing Al: (40 + a) atomic% and Nb: b atomic%, the balance being Ti and inevitable impurities, wherein the a and b are represented by the following formula (1 ) And (2):
0 ≦ a ≦ 2 (1)
3 + a ≦ b ≦ 7 + a (2)
The TiAl base alloy material satisfying the above conditions is held at a holding temperature within the equilibrium temperature region of the (α + β) phase, and the high speed plastic working is performed while cooling the TiAl base alloy material held at the holding temperature to a predetermined final processing temperature. The manufacturing method of a TiAl base alloy provided with the process to perform is provided.

また、本発明は、Al:(40+a)原子%と、Nb:b原子%とを含有し、更にV:c原子%、Cr:d原子%、及びMo:e原子%から選択される1種以上の元素を含有し、残部がTi及び不可避的不純物からなるTiAl基合金素材であって、前記a乃至eが以下の式(3)乃至(9):
0≦a≦2 (3)
3+a≦b+1.0c+1.8d+3.8e≦7+a (4)
b≧2 (5)
c≧0 (6)
d≧0 (7)
e≧0 (8)
c+d+e>0 (9)
を満たすTiAl基合金素材を、(α+β)相の平衡温度領域内の保持温度に保持する工程と、該保持温度に保持したTiAl基合金素材を、所定の最終加工温度まで冷却しながら高速塑性加工する工程とを備えるTiAl基合金の製造方法を提供する。
Further, the present invention contains Al: (40 + a) atomic% and Nb: b atomic%, and is further selected from V: c atomic%, Cr: d atomic%, and Mo: e atomic% A TiAl-based alloy material containing the above elements, the balance being Ti and inevitable impurities, wherein a to e are the following formulas (3) to (9):
0 ≦ a ≦ 2 (3)
3 + a ≦ b + 1.0c + 1.8d + 3.8e ≦ 7 + a (4)
b ≧ 2 (5)
c ≧ 0 (6)
d ≧ 0 (7)
e ≧ 0 (8)
c + d + e> 0 (9)
The TiAl base alloy material satisfying the above conditions is held at a holding temperature within the equilibrium temperature region of the (α + β) phase, and the high speed plastic working is performed while cooling the TiAl base alloy material held at the holding temperature to a predetermined final processing temperature. The manufacturing method of a TiAl base alloy provided with the process to perform is provided.

上記組成のTiAl基合金は、高温において(α+β)相の平衡領域を有するとともに、V,Cr及びMoから選択される1種以上の元素及びNbを含有するので、β相が安定して析出する。TiAl基合金素材を(α+β)相の平衡温度領域保持して、高温変形能の高いβ相が安定して存在する状態で、高速にて塑性加工を施すので、加工性が良好である。また、(α+β)相の平衡温度領域の保持温度から最終加工温度まで冷却する間に高速塑性加工を施すことにより、合金中に歪みが多数導入される。この歪みを起点として動的再結晶が誘起され、最終的に微細なラメラ粒が配列する金属組織が形成される。このラメラ粒が存在する金属組織とすることで、TiAl基合金は高い高温強度を示す。   The TiAl-based alloy having the above composition has an equilibrium region of (α + β) phase at high temperature and contains one or more elements selected from V, Cr, and Mo and Nb, so that the β phase is stably precipitated. . Since the TiAl-based alloy material is held in the equilibrium temperature region of the (α + β) phase and the β phase having a high high temperature deformability is stably present, the plastic working is performed at a high speed, so that the workability is good. In addition, many strains are introduced into the alloy by performing high-speed plastic working while cooling from the holding temperature in the equilibrium temperature region of the (α + β) phase to the final working temperature. Starting from this strain, dynamic recrystallization is induced, and finally a metal structure in which fine lamellar grains are arranged is formed. By using a metal structure in which these lamella grains are present, the TiAl-based alloy exhibits high high-temperature strength.

上記発明において、前記保持温度が、1150℃以上1350℃以下であれば、金属組織内に(α+β)相が安定して析出させることができる。   In the said invention, if the said holding temperature is 1150 degreeC or more and 1350 degrees C or less, an ((alpha) + (beta)) phase can be stably deposited in a metal structure.

上記発明において、前記最終加工温度が、1150℃以上であれば、高速塑性加工が可能な高い変形能を維持できる。1150℃未満であると、変形能が低下してTiAl基合金素材に割れが発生する恐れがある。   In the said invention, if the said final processing temperature is 1150 degreeC or more, the high deformability in which a high-speed plastic processing is possible can be maintained. If it is lower than 1150 ° C., the deformability is lowered, and there is a risk of cracking in the TiAl-based alloy material.

上記発明において、前記高速塑性加工として鍛造法を用いることができる。   In the above invention, a forging method can be used as the high-speed plastic working.

上記のTiAl基合金を用いた動翼は、高温強度と耐酸化性に優れ、650℃以上での使用に耐え得る動翼となる。   A moving blade using the TiAl-based alloy is excellent in high-temperature strength and oxidation resistance, and is a moving blade that can withstand use at 650 ° C. or higher.

本発明によれば、高温強度と耐酸化性が高く、鍛造性に優れたTiAl基合金とすることができる。本発明のTiAl基合金を用いた動翼は、高温強度と耐酸化性に優れるため、650℃以上の使用環境においても適用可能である。また、鍛造性が良好であるため、短時間での成形が可能である。   According to the present invention, a TiAl-based alloy having high high-temperature strength and high oxidation resistance and excellent forgeability can be obtained. The moving blade using the TiAl-based alloy of the present invention is excellent in high-temperature strength and oxidation resistance, and therefore can be applied even in a use environment of 650 ° C. or higher. Moreover, since the forgeability is good, the molding can be performed in a short time.

本発明の第一実施形態に係るTiAl基合金は、Al:(40+a)原子%と、Nb:b原子%とを含有し、残部がTi及び不可避的不純物からなり、a及びbが以下の式(1)及び(2):
0≦a≦2 (1)
3+a≦b≦7+a (2)
を満たす。
The TiAl-based alloy according to the first embodiment of the present invention contains Al: (40 + a) atomic% and Nb: b atomic%, with the balance being Ti and inevitable impurities, where a and b are the following formulae (1) and (2):
0 ≦ a ≦ 2 (1)
3 + a ≦ b ≦ 7 + a (2)
Meet.

上記組成のTiAl基合金は、Alを40原子%以上42原子%の割合で含有する。Al含有量が40原子%未満であると、高温強度が低下する。Al含有量が42原子%を超えると、鍛造性が低下する。   The TiAl-based alloy having the above composition contains Al in a proportion of 40 atomic% to 42 atomic%. When the Al content is less than 40 atomic%, the high temperature strength decreases. When Al content exceeds 42 atomic%, forgeability will fall.

第一実施形態のTiAl基合金は、Nbを含有することにより耐酸化性に優れる。Nbはβ相を高温領域で安定して析出させる効果もある。β相は高温での変形能が大きいため、β相を安定して析出させることで鍛造性が向上する。また、β相が析出することによって、冷却過程でラメラ組織(例えば、平均粒径が1μmから50μmの微細ラメラ組織)が形成されやすくなる。このため、鍛造後の合金の高温強度、特にクリープ強度が向上する。Nb含有量が多くなると逆にラメラ組織が析出しにくくなり、高温強度が低下する。Nb含有量を上記割合とすることで、高温強度に優れ鍛造性が良好なTiAl基合金となる。   The TiAl-based alloy according to the first embodiment is excellent in oxidation resistance by containing Nb. Nb also has the effect of stably depositing the β phase in a high temperature region. Since the β phase has a large deformability at high temperatures, the forgeability is improved by stably precipitating the β phase. Further, the precipitation of the β phase makes it easy to form a lamellar structure (for example, a fine lamellar structure having an average particle diameter of 1 μm to 50 μm) during the cooling process. For this reason, the high temperature strength of the alloy after forging, especially the creep strength is improved. On the contrary, when the Nb content increases, the lamellar structure becomes difficult to precipitate, and the high-temperature strength decreases. By setting the Nb content to the above ratio, a TiAl-based alloy having excellent high temperature strength and good forgeability is obtained.

本発明の第二実施形態に係るTiAl基合金は、Al:(40+a)原子%と、Nb:b原子%とを含有し、更にV:c原子%、Cr:d原子%、及びMo:e原子%から選択される1種以上の元素を含有し、残部がTi及び不可避的不純物からなり、a乃至eが以下の式(3)乃至(9):
0≦a≦2 (3)
3+a≦b+1.0c+1.8d+3.8e≦7+a (4)
b≧2 (5)
c≧0 (6)
d≧0 (7)
e≧0 (8)
c+d+e>0 (9)
を満たす。
The TiAl-based alloy according to the second embodiment of the present invention contains Al: (40 + a) atomic% and Nb: b atomic%, and further includes V: c atomic%, Cr: d atomic%, and Mo: e. It contains one or more elements selected from atomic%, the balance is made of Ti and inevitable impurities, and a to e are the following formulas (3) to (9):
0 ≦ a ≦ 2 (3)
3 + a ≦ b + 1.0c + 1.8d + 3.8e ≦ 7 + a (4)
b ≧ 2 (5)
c ≧ 0 (6)
d ≧ 0 (7)
e ≧ 0 (8)
c + d + e> 0 (9)
Meet.

V,Cr及びMoは、Nbと同様にβ相を形成させやすい元素である。Nbのβ相析出効果をNb量:b(原子%)に換算した値をNb当量とすると、各元素のNb当量は以下のようになる。
V:b=1.0c
Cr:b=1.8d
Mo:b=3.8e
すなわち、Vのβ相析出効果はNbの場合と同等である。Cr及びMoのβ相析出効果は、それぞれNbの1.8倍、3.8倍であり、Nbに比べて少量の添加でβ相を安定して析出させることができる。
V, Cr, and Mo are elements that are easy to form a β phase like Nb. When the value obtained by converting the β-phase precipitation effect of Nb into Nb amount: b (atomic%) is Nb equivalent, the Nb equivalent of each element is as follows.
V: b = 1.0c
Cr: b = 1.8d
Mo: b = 3.8e
That is, the β phase precipitation effect of V is equivalent to that of Nb. The effect of β-phase precipitation of Cr and Mo is 1.8 times and 3.8 times that of Nb, respectively, and the β-phase can be stably precipitated with a small amount of addition compared to Nb.

β相を安定して析出させる効果の他に、Vは高温での引張強度を更に向上させる効果がある。CrはTiAl基合金の変形抵抗を低下させる効果があり、鍛造性が更に向上する。Moはクリープ強度を更に向上させる効果がある。   In addition to the effect of stably precipitating the β phase, V has the effect of further improving the tensile strength at high temperatures. Cr has the effect of reducing the deformation resistance of the TiAl-based alloy, and forgeability is further improved. Mo has the effect of further improving the creep strength.

Nb,V,Cr及びMoの含有量は、鍛造性及び高温強度を考慮すると、上記割合の範囲内とすると良い。   The contents of Nb, V, Cr, and Mo are preferably set within the above-mentioned ratio range in consideration of forgeability and high-temperature strength.

第一実施形態および第二実施形態のTiAl基合金を熱間鍛造法で製造する方法を、以下に説明する。
上記組成で表される組成となるTiAl基合金素材(例えばインゴット形状)を溶製する。
A method for producing the TiAl-based alloy of the first embodiment and the second embodiment by the hot forging method will be described below.
A TiAl-based alloy material (for example, ingot shape) having a composition represented by the above composition is melted.

TiAl基合金素材を重油炉などで加熱して、(α+β)相の平衡温度領域内の保持温度で長時間保持する。この工程により、金属組織内にα相及びβ相を析出させる。保持温度は、上記組成式のTiAl基合金の場合は、1150℃から1350℃となる。   The TiAl-based alloy material is heated in a heavy oil furnace or the like and held for a long time at a holding temperature within the equilibrium temperature region of the (α + β) phase. By this step, an α phase and a β phase are precipitated in the metal structure. The holding temperature is 1150 ° C. to 1350 ° C. in the case of the TiAl-based alloy having the above composition formula.

保持後のTiAl基合金素材を炉から取り出し、合金素材の温度が(α+β)相平衡温度領域である間に、汎用の油圧プレス機などを用いて、高速塑性加工を施す。冷却過程での高速塑性加工により、α相に歪みが導入される。歪みを起点として動的再結晶がおこり、その結果、α相とγ相とが交互に積層された微細なラメラ粒が形成する。β相からは冷却過程でγ相が析出して等軸的な微細組織が形成される。上記組成のTiAl基合金の場合、最終加工温度は1150℃以上とすれば、変形能が大きいβ相が析出した状態で塑性加工を施すことができる。最終加工温度が1150℃未満であると、変形能が低下して材料割れが発生する。また、冷却速度が速すぎると、マッシブ変態を生じてラメラ組織が形成されず、冷却速度が遅すぎるとラメラ間隔が広がり材料強度が低下する。冷却速度は、例えば50〜700℃/分程度とすることが好ましい。 The retained TiAl-based alloy material is removed from the furnace, and high-speed plastic working is performed using a general-purpose hydraulic press machine or the like while the temperature of the alloy material is in the (α + β) phase equilibrium temperature region. Strain is introduced into the α phase by high-speed plastic working during the cooling process. Dynamic recrystallization occurs starting from strain, and as a result, fine lamellar grains in which α 2 and γ phases are alternately stacked are formed. From the β phase, the γ phase precipitates during the cooling process to form an equiaxed microstructure. In the case of the TiAl-based alloy having the above composition, if the final processing temperature is 1150 ° C. or more, plastic processing can be performed in a state where a β phase having a large deformability is precipitated. If the final processing temperature is less than 1150 ° C., the deformability is lowered and material cracking occurs. On the other hand, if the cooling rate is too fast, massive transformation occurs and a lamellar structure is not formed. If the cooling rate is too slow, the lamellar spacing increases and the material strength decreases. The cooling rate is preferably about 50 to 700 ° C./min, for example.

本実施形態のTiAl基合金を用いて製造された動翼は、高温強度及び高温での耐酸化性に優れる。動翼は以下の手順にて製造される。
第一実施形態または第二実施形態の組成のTiAl基合金素材(インゴット形状など)を溶製する。次に、TiAl基合金素材に熱間自由鍛造を施し、後工程の型鍛造における鍛造性を向上させる。その後、合金素材を棒状に切断し、動翼の型鍛造の荒地とする。荒地の製造は、コストを重視する場合には、棒状のTiAl基合金素材を溶製しても良い。棒材の形状は、最終的な翼形状を付与しやすいように、ドッグボーン形状などに加工する。
A moving blade manufactured using the TiAl-based alloy of this embodiment is excellent in high-temperature strength and oxidation resistance at high temperatures. The moving blade is manufactured by the following procedure.
A TiAl-based alloy material (such as an ingot shape) having the composition of the first embodiment or the second embodiment is melted. Next, hot free forging is performed on the TiAl-based alloy material to improve the forgeability in the die forging in the subsequent process. After that, the alloy material is cut into a rod shape and used as a rough ground for die forging of a moving blade. In the case of manufacturing wasteland, a rod-like TiAl-based alloy material may be melted when cost is important. The shape of the bar is processed into a dogbone shape so that the final wing shape can be easily given.

型鍛造工程では、棒状のTiAl基合金素材を重油炉などで加熱し、(α+β)相平衡温度領域内の保持温度に保持する。合金素材を炉から取り出した直後に、鍛造荒地を使用して、汎用のハンマープレスで型鍛造を施して成形する。型鍛造後は、冷却過程での熱変形を防ぐために断熱材中あるいは600℃程度の低温炉中で除冷する。最後に、鍛造品を切削加工などで動翼形状に成形する。   In the die forging step, the rod-like TiAl-based alloy material is heated in a heavy oil furnace or the like and held at a holding temperature within the (α + β) phase equilibrium temperature region. Immediately after taking out the alloy material from the furnace, it is molded by forging with a general-purpose hammer press using forged wasteland. After die forging, in order to prevent thermal deformation during the cooling process, it is cooled in a heat insulating material or in a low temperature furnace of about 600 ° C. Finally, the forged product is formed into a moving blade shape by cutting or the like.

本実施形態のTiAl基合金は鍛造性に優れるため、大型部材である動翼を簡略な工程にて短時間で形成することが可能である。   Since the TiAl-based alloy of this embodiment is excellent in forgeability, it is possible to form a moving blade, which is a large member, in a simple process in a short time.

(実施例1)
表1の実施例1−1乃至実施例1−4に示す成分からなるTiAl基合金インゴットを鋳造により製造した。各インゴットを所定の寸法となるように切断して表面加工を施し、直径80mm、高さ60mmの柱状のTiAl基合金素材を得た。
Example 1
TiAl-based alloy ingots comprising the components shown in Examples 1-1 to 1-4 in Table 1 were produced by casting. Each ingot was cut to a predetermined size and surface-treated to obtain a columnar TiAl-based alloy material having a diameter of 80 mm and a height of 60 mm.

各TiAl基合金素材を重油炉内で1300℃に加熱保持した。保持後、重油炉からTiAl基合金素材を取り出し、汎用の300トン油圧プレスを用いて、鍛造比3sの据え込み鍛造を行った。なお、TiAl基合金素材取出しから鍛造終了まで10秒以内で実施した。鍛造後の冷却は、鉄製架台上にて大気放冷とした。鍛造後熱処理として、マッフル炉を使用して800℃、24時間の応力除去焼鈍を実施した。   Each TiAl-based alloy material was heated and held at 1300 ° C. in a heavy oil furnace. After holding, the TiAl-based alloy material was taken out from the heavy oil furnace, and upset forging with a forging ratio of 3 s was performed using a general-purpose 300-ton hydraulic press. The TiAl-based alloy material was taken out and finished forging within 10 seconds. Cooling after forging was air cooling on an iron mount. As heat treatment after forging, stress relief annealing was performed at 800 ° C. for 24 hours using a muffle furnace.

(比較例)
表1の比較例1−1乃至比較例1−9に示す成分からなるTiAl基合金インゴットを鋳造により製造した。各インゴットを切断して表面加工を施し、直径80mm、高さ60mmの柱状のTiAl基合金素材を得た。実施例1と同様の方法で、各TiAl基合金素材の鍛造及び鍛造後の応力除去焼鈍を実施した。
(Comparative example)
TiAl-based alloy ingots made of the components shown in Comparative Examples 1-1 to 1-9 in Table 1 were produced by casting. Each ingot was cut and subjected to surface processing to obtain a columnar TiAl-based alloy material having a diameter of 80 mm and a height of 60 mm. In the same manner as in Example 1, forging of each TiAl-based alloy material and stress removal annealing after forging were performed.

(実施例2〜5)
表1の実施例2乃至実施例5に示す成分からなるTiAl基合金インゴットを鋳造により製造した。インゴットを切断して表面加工を施し、直径80mm、高さ60mmの柱状TiAl基合金素材を得た。実施例1と同様の方法で、実施例2のTiAl基合金素材の鍛造及び鍛造後の応力除去焼鈍を実施した。
(Examples 2 to 5)
TiAl-based alloy ingots comprising the components shown in Examples 2 to 5 in Table 1 were produced by casting. The ingot was cut and surface-treated to obtain a columnar TiAl-based alloy material having a diameter of 80 mm and a height of 60 mm. In the same manner as in Example 1, forging of the TiAl-based alloy material of Example 2 and stress removal annealing after forging were performed.

各TiAl基合金の鍛造性評価、クリープ強度試験及び耐酸化性試験を実施した。
鍛造性評価は、鍛造後のインゴットの割れの発生有無を目視で確認した。割れが発生しない場合は鍛造性良好(○)とし、割れが発生する場合は鍛造性不良(×)とした。
クリープ強度試験は、焼鈍後のインゴットから試験片を切り出し、試験温度760度、負荷応力311MPaで実施した。クリープ破断時間が25時間以上で高温強度良好(○)とし、25時間未満で高温強度不足(×)とした。
耐酸化性試験は、焼鈍後のインゴットから一辺が2.8mmの立方体試験片を切り出し、870℃にて50時間加熱し、単位面積当たりの酸化増量で比較した。酸化増量が0.01g/mm以下で耐酸化性良好(○)とし、0.01g/mmを超えた場合に耐酸化性不足(×)とした。
Each TiAl-based alloy was subjected to forgeability evaluation, creep strength test and oxidation resistance test.
Forgeability evaluation visually confirmed whether or not the ingot after forging was cracked. When cracks did not occur, forgeability was good (◯), and when cracks occurred, forgeability was poor (x).
In the creep strength test, a test piece was cut out from the ingot after annealing, and the test temperature was 760 degrees and the load stress was 311 MPa. The creep rupture time was 25 hours or longer and the high-temperature strength was good (◯), and the low temperature strength was insufficient (x) in less than 25 hours.
In the oxidation resistance test, a cubic test piece having a side of 2.8 mm was cut out from the ingot after annealing, heated at 870 ° C. for 50 hours, and compared in terms of increase in oxidation per unit area. When the increase in oxidation was 0.01 g / mm 2 or less, the oxidation resistance was good (◯), and when it exceeded 0.01 g / mm 2 , the oxidation resistance was insufficient (x).

Figure 2009215631
Figure 2009215631

実施例1−1乃至実施例1−4のTiAl基合金は、いずれもラメラ粒が析出した金属組織となり、高い高温強度が得られた。また、Nbを含有しない比較例1−9のTiAl基合金と比較して、耐酸化性が大幅に改善された。   The TiAl-based alloys of Examples 1-1 to 1-4 all had a metal structure in which lamellar particles were precipitated, and high high-temperature strength was obtained. Moreover, compared with the TiAl base alloy of Comparative Example 1-9 not containing Nb, the oxidation resistance was greatly improved.

Alが40原子%(at%)未満の場合、クリープ破断時間が低下した(比較例1−1、比較例1−3)。Alが42原子%を超えると、クリープ破断時間が長く高温強度は良好だったが、鍛造割れが発生した(比較例1−5、比較例1−7)。
Nbの含有量bが不等式b<3+aを満たす場合、鍛造割れが発生した(比較例1−2、比較例1−6)。Nb含有量bが不等式b>7+aとなる場合は、クリープ破断時間が低下した(比較例1−4、比較例1−8)。
When Al was less than 40 atomic% (at%), the creep rupture time decreased (Comparative Example 1-1, Comparative Example 1-3). When Al exceeded 42 atomic%, the creep rupture time was long and the high-temperature strength was good, but forging cracks occurred (Comparative Example 1-5, Comparative Example 1-7).
When the content b of Nb satisfies the inequality b <3 + a, forging cracks occurred (Comparative Example 1-2, Comparative Example 1-6). When the Nb content b was inequality b> 7 + a, the creep rupture time was reduced (Comparative Example 1-4, Comparative Example 1-8).

実施例2乃至実施例5のTiAl基合金はいずれも、鍛造性、高温強度及び耐酸化性は良好だった。   All of the TiAl-based alloys of Examples 2 to 5 had good forgeability, high temperature strength, and oxidation resistance.

実施例1−1、及び、実施例2乃至実施例5のTiAl基合金について、変形抵抗測定、引張試験、クリープ強度試験、及び耐酸化性試験の評価結果を表2に示す。変形抵抗測定は、焼鈍後のインゴットから直径7mm、長さ12mmの円柱試験片を切り出し、高周波加熱を用いて1250℃に保持し、変形速度100mm/秒で実施した。引張試験は、焼鈍後のインゴットから切り出した全長60mm、評定部直径4mm、評定部長さ20mmの試験片に対し、700℃大気中にて実施した。   Table 2 shows the evaluation results of the deformation resistance measurement, the tensile test, the creep strength test, and the oxidation resistance test for the TiAl-based alloys of Example 1-1 and Examples 2 to 5. The deformation resistance was measured by cutting a cylindrical test piece having a diameter of 7 mm and a length of 12 mm from the ingot after annealing, holding at 1250 ° C. using high-frequency heating, and a deformation rate of 100 mm / second. The tensile test was performed in a 700 ° C. atmosphere on a test piece having a total length of 60 mm, a rating part diameter of 4 mm, and a rating part length of 20 mm cut out from the ingot after annealing.

Figure 2009215631
Figure 2009215631

Vを含有する実施例2及び実施例3は、実施例1−1と比較し引張破断強度が向上した。Crを含有する実施例4は、変形抵抗が小さくなった。すなわち、高温での変形能が増大した。Moを含有する実施例5は、クリープ強度が大幅に向上した。   In Examples 2 and 3 containing V, the tensile strength at break was improved as compared with Example 1-1. In Example 4 containing Cr, the deformation resistance was small. That is, the deformability at high temperature increased. In Example 5 containing Mo, the creep strength was greatly improved.

Claims (9)

Al:(40+a)原子%と、
Nb:b原子%とを含有し、
残部がTi及び不可避的不純物からなるTiAl基合金であって、
前記a及びbが以下の式(1)及び(2):
0≦a≦2 (1)
3+a≦b≦7+a (2)
を満たすTiAl基合金。
Al: (40 + a) atomic%,
Nb: b atomic%,
The balance is TiAl based alloy composed of Ti and inevitable impurities,
Said a and b are the following formulas (1) and (2):
0 ≦ a ≦ 2 (1)
3 + a ≦ b ≦ 7 + a (2)
TiAl base alloy satisfying
Al:(40+a)原子%と、
Nb:b原子%とを含有し、更に
V:c原子%、
Cr:d原子%、及び
Mo:e原子%
から選択される1種以上の元素を含有し、
残部がTi及び不可避的不純物からなるTiAl基合金であって、
前記a乃至eが以下の式(3)乃至(9):
0≦a≦2 (3)
3+a≦b+1.0c+1.8d+3.8e≦7+a (4)
b≧2 (5)
c≧0 (6)
d≧0 (7)
e≧0 (8)
c+d+e>0 (9)
を満たすTiAl基合金。
Al: (40 + a) atomic%,
Nb: b atom%, and V: c atom%,
Cr: d atomic%, and Mo: e atomic%
Containing one or more elements selected from
The balance is TiAl based alloy composed of Ti and inevitable impurities,
The a to e are the following formulas (3) to (9):
0 ≦ a ≦ 2 (3)
3 + a ≦ b + 1.0c + 1.8d + 3.8e ≦ 7 + a (4)
b ≧ 2 (5)
c ≧ 0 (6)
d ≧ 0 (7)
e ≧ 0 (8)
c + d + e> 0 (9)
TiAl base alloy satisfying
α相とγ相とが交互に積層されたラメラ粒が配列してなる金属組織を有する請求項1または請求項2に記載のTiAl基合金。 The TiAl-based alloy according to claim 1 or 2, wherein the TiAl-based alloy has a metal structure formed by arranging lamella grains in which α 2 phases and γ phases are alternately laminated. Al:(40+a)原子%と、
Nb:b原子%とを含有し、
残部がTi及び不可避的不純物からなるTiAl基合金素材であって、
前記a及びbが以下の式(1)及び(2):
0≦a≦2 (1)
3+a≦b≦7+a (2)
を満たすTiAl基合金素材を、(α+β)相の平衡温度領域内の保持温度に保持する工程と、
該保持温度に保持したTiAl基合金素材を、所定の最終加工温度まで冷却しながら高速塑性加工する工程とを備えるTiAl基合金の製造方法。
Al: (40 + a) atomic%,
Nb: b atomic%,
The balance is TiAl based alloy material consisting of Ti and inevitable impurities,
Said a and b are the following formulas (1) and (2):
0 ≦ a ≦ 2 (1)
3 + a ≦ b ≦ 7 + a (2)
Holding the TiAl-based alloy material satisfying the condition at a holding temperature within the equilibrium temperature region of the (α + β) phase;
And a high-speed plastic working process for cooling the TiAl-based alloy material held at the holding temperature to a predetermined final processing temperature.
Al:(40+a)原子%と、
Nb:b原子%とを含有し、更に
V:c原子%、
Cr:d原子%、及び
Mo:e原子%
から選択される1種以上の元素を含有し、
残部がTi及び不可避的不純物からなるTiAl基合金素材であって、
前記a乃至eが以下の式(3)乃至(9):
0≦a≦2 (3)
3+a≦b+1.0c+1.8d+3.8e≦7+a (4)
b≧2 (5)
c≧0 (6)
d≧0 (7)
e≧0 (8)
c+d+e>0 (9)
を満たすTiAl基合金素材を、(α+β)相の平衡温度領域内の保持温度に保持する工程と、
該保持温度に保持したTiAl基合金素材を、所定の最終加工温度まで冷却しながら高速塑性加工する工程とを備えるTiAl基合金の製造方法。
Al: (40 + a) atomic%,
Nb: b atom%, and V: c atom%,
Cr: d atomic%, and Mo: e atomic%
Containing one or more elements selected from
The balance is TiAl based alloy material consisting of Ti and inevitable impurities,
The a to e are the following formulas (3) to (9):
0 ≦ a ≦ 2 (3)
3 + a ≦ b + 1.0c + 1.8d + 3.8e ≦ 7 + a (4)
b ≧ 2 (5)
c ≧ 0 (6)
d ≧ 0 (7)
e ≧ 0 (8)
c + d + e> 0 (9)
Holding the TiAl-based alloy material satisfying the condition at a holding temperature within the equilibrium temperature region of the (α + β) phase;
And a high-speed plastic working process for cooling the TiAl-based alloy material held at the holding temperature to a predetermined final processing temperature.
前記保持温度が、1150℃以上1350℃以下である請求項4または請求項5に記載のTiAl基合金の製造方法。   The method for producing a TiAl-based alloy according to claim 4 or 5, wherein the holding temperature is 1150 ° C or higher and 1350 ° C or lower. 前記最終加工温度が、1150℃以上である請求項4乃至請求項6のいずれか1項に記載のTiAl基合金の製造方法。   The method for producing a TiAl-based alloy according to any one of claims 4 to 6, wherein the final processing temperature is 1150 ° C or higher. 前記高速塑性加工として鍛造法を用いる請求項4乃至請求項7のいずれか1項に記載のTiAl基合金の製造方法。   The method for producing a TiAl-based alloy according to any one of claims 4 to 7, wherein a forging method is used as the high-speed plastic working. 請求項1乃至請求項3のいずれか1項に記載のTiAl基合金を用いた動翼。   A moving blade using the TiAl-based alloy according to any one of claims 1 to 3.
JP2008062690A 2008-03-12 2008-03-12 Titanium-aluminum-based alloy and production method therefor, and moving blade using the same Withdrawn JP2009215631A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008062690A JP2009215631A (en) 2008-03-12 2008-03-12 Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
US12/863,529 US20100316525A1 (en) 2008-03-12 2009-01-30 TiAl-BASED ALLOY, PROCESS FOR PRODUCING SAME, AND ROTOR BLADE USING SAME
EP09720943A EP2251445A4 (en) 2008-03-12 2009-01-30 Tial-based alloy, process for production of the same, and rotor blade comprising the same
PCT/JP2009/051539 WO2009113335A1 (en) 2008-03-12 2009-01-30 Tial-based alloy, process for production of the same, and rotor blade comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062690A JP2009215631A (en) 2008-03-12 2008-03-12 Titanium-aluminum-based alloy and production method therefor, and moving blade using the same

Publications (1)

Publication Number Publication Date
JP2009215631A true JP2009215631A (en) 2009-09-24

Family

ID=41065007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062690A Withdrawn JP2009215631A (en) 2008-03-12 2008-03-12 Titanium-aluminum-based alloy and production method therefor, and moving blade using the same

Country Status (4)

Country Link
US (1) US20100316525A1 (en)
EP (1) EP2251445A4 (en)
JP (1) JP2009215631A (en)
WO (1) WO2009113335A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203714A1 (en) * 2013-06-19 2014-12-24 独立行政法人物質・材料研究機構 Hot-forged ti-al-based alloy and method for producing same
JP2015004092A (en) * 2013-06-19 2015-01-08 独立行政法人物質・材料研究機構 HOT FORGING TYPE TiAl BASED ALLOY
JP2015151612A (en) * 2014-02-19 2015-08-24 国立研究開発法人物質・材料研究機構 HOT FORGING TYPE TiAl-BASED ALLOY AND PRODUCTION METHOD THEREOF
JP2016166418A (en) * 2015-03-09 2016-09-15 ライストリッツ タービンテクニック ゲーエムベーハー METHOD FOR PRODUCTION OF HIGHLY STRESSABLE COMPONENT FROM α+γ- TITANIUM ALUMINIDE ALLOY FOR RECIPROCATING-PISTON ENGINE AND GAS TURBINE, ESPECIALLY AIRCRAFT ENGINE
JPWO2018043187A1 (en) * 2016-09-02 2019-04-18 株式会社Ihi TiAl alloy and method of manufacturing the same
WO2022219991A1 (en) 2021-04-16 2022-10-20 株式会社神戸製鋼所 Tial alloy for forging, tial alloy material, and method for producing tial alloy material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757578B (en) * 2014-01-24 2016-03-30 中国科学院金属研究所 The tiny complete lamellar structure preparation method of a kind of gamma-TiAl alloy
EP2905350A1 (en) 2014-02-06 2015-08-12 MTU Aero Engines GmbH High temperature TiAl alloy
CN103820672B (en) * 2014-03-12 2017-05-03 北京工业大学 Cr and Mn alloying beta phase solidifying high Nb-TiAl alloy and preparation method thereof
CN105397000A (en) * 2015-12-02 2016-03-16 贵州安大航空锻造有限责任公司 Rolling method of titanium alloy plate-shaped forgings
CN114603141B (en) * 2022-03-09 2022-12-27 西北工业大学 TiAl alloy blade die forging forming method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370839A (en) * 1991-07-05 1994-12-06 Nippon Steel Corporation Tial-based intermetallic compound alloys having superplasticity
JPH05320791A (en) * 1992-05-15 1993-12-03 Mitsubishi Heavy Ind Ltd Ti-al intermetallic compound alloy
JPH0633172A (en) * 1992-07-17 1994-02-08 Sumitomo Light Metal Ind Ltd Ti-al intermetallic compound
US5451366A (en) * 1992-07-17 1995-09-19 Sumitomo Light Metal Industries, Ltd. Product of a halogen containing Ti-Al system intermetallic compound having a superior oxidation and wear resistance
JPH06116691A (en) * 1992-10-05 1994-04-26 Mitsubishi Materials Corp Method for heat-treating ti-al intermetallic compound series ti alloy
DE19581384C2 (en) * 1994-10-25 1999-03-11 Mitsubishi Heavy Ind Ltd Titanium-aluminum alloy based on an intermetallic compound
JP4287991B2 (en) * 2000-02-23 2009-07-01 三菱重工業株式会社 TiAl-based alloy, method for producing the same, and moving blade using the same
DE102007060587B4 (en) * 2007-12-13 2013-01-31 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH titanium aluminide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203714A1 (en) * 2013-06-19 2014-12-24 独立行政法人物質・材料研究機構 Hot-forged ti-al-based alloy and method for producing same
JP2015004092A (en) * 2013-06-19 2015-01-08 独立行政法人物質・材料研究機構 HOT FORGING TYPE TiAl BASED ALLOY
US10208360B2 (en) 2013-06-19 2019-02-19 National Institute For Materials Science Hot-forged TiAl-based alloy and method for producing the same
JP2015151612A (en) * 2014-02-19 2015-08-24 国立研究開発法人物質・材料研究機構 HOT FORGING TYPE TiAl-BASED ALLOY AND PRODUCTION METHOD THEREOF
JP2016166418A (en) * 2015-03-09 2016-09-15 ライストリッツ タービンテクニック ゲーエムベーハー METHOD FOR PRODUCTION OF HIGHLY STRESSABLE COMPONENT FROM α+γ- TITANIUM ALUMINIDE ALLOY FOR RECIPROCATING-PISTON ENGINE AND GAS TURBINE, ESPECIALLY AIRCRAFT ENGINE
JPWO2018043187A1 (en) * 2016-09-02 2019-04-18 株式会社Ihi TiAl alloy and method of manufacturing the same
US11078563B2 (en) 2016-09-02 2021-08-03 Ihi Corporation TiAl alloy and method of manufacturing the same
WO2022219991A1 (en) 2021-04-16 2022-10-20 株式会社神戸製鋼所 Tial alloy for forging, tial alloy material, and method for producing tial alloy material

Also Published As

Publication number Publication date
US20100316525A1 (en) 2010-12-16
EP2251445A4 (en) 2011-12-14
EP2251445A1 (en) 2010-11-17
WO2009113335A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
US10196724B2 (en) Method for manufacturing Ni-based super-heat-resistant alloy
JP2009215631A (en) Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
JP6252704B2 (en) Method for producing Ni-base superalloy
JP4287991B2 (en) TiAl-based alloy, method for producing the same, and moving blade using the same
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JP6150192B2 (en) Method for producing Ni-base superalloy
EP3012337B1 (en) Hot-forged ti-al-based alloy and method for producing same
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JP6687118B2 (en) TiAl alloy and method for producing the same
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
JP2021130861A (en) PRODUCTION METHOD OF α+β TYPE TITANIUM ALLOY BAR MATERIAL
WO2020031579A1 (en) Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy
JP6202556B2 (en) Hot forging type TiAl based alloy
JP6642843B2 (en) Manufacturing method of Ni-base super heat-resistant alloy
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
JP6660042B2 (en) Method for manufacturing extruded Ni-base superalloy and extruded Ni-base superalloy
JP7188577B2 (en) Method for producing TiAl alloy and TiAl alloy
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy
JP2015151612A (en) HOT FORGING TYPE TiAl-BASED ALLOY AND PRODUCTION METHOD THEREOF
TW202022126A (en) Nickel-based austenitic alloy and method of forming the same
JP7233658B2 (en) Titanium aluminide alloy material for hot forging and method for forging titanium aluminide alloy material
JP2003201530A (en) High-strength titanium alloy with excellent hot workability
JP6172653B2 (en) Nickel-based alloy, cast material, hot plastic work material and method for producing hot plastic work material excellent in high temperature ductility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120424