JP2015004092A - HOT FORGING TYPE TiAl BASED ALLOY - Google Patents

HOT FORGING TYPE TiAl BASED ALLOY Download PDF

Info

Publication number
JP2015004092A
JP2015004092A JP2013128866A JP2013128866A JP2015004092A JP 2015004092 A JP2015004092 A JP 2015004092A JP 2013128866 A JP2013128866 A JP 2013128866A JP 2013128866 A JP2013128866 A JP 2013128866A JP 2015004092 A JP2015004092 A JP 2015004092A
Authority
JP
Japan
Prior art keywords
tial
phase
based alloy
hot
hot forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013128866A
Other languages
Japanese (ja)
Other versions
JP6202556B2 (en
Inventor
鉄井 利光
Toshimitsu Tetsui
利光 鉄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2013128866A priority Critical patent/JP6202556B2/en
Priority to PCT/JP2014/064611 priority patent/WO2014203714A1/en
Priority to US14/898,257 priority patent/US10208360B2/en
Priority to EP14814461.1A priority patent/EP3012337B1/en
Publication of JP2015004092A publication Critical patent/JP2015004092A/en
Application granted granted Critical
Publication of JP6202556B2 publication Critical patent/JP6202556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a TiAl based alloy excellent in hot temperature intensity and workability as a hot forging material.SOLUTION: The TiAl based alloy includes a fine tissue formed of 40.0-42.8 atom% of Al, 1.2-2.0 atom % of Cr equivalent obtained by following formula, the Cr equivalent=Cr+Mo+0.5Mn+0.25 Nb+0.25 V, a remainder: Ti and inevitable impurities, and lamella particles in which α2 phase and γ phase are alternately laminated and which have an average particle diameter of 30-200 μm are arranged in high density.

Description

本発明は、航空機エンジン、発電用ガスタービン等の動翼やディスクに用いて好適なTiAl基合金に関し、特に熱間鍛造性が良好で、高温での強度が高く、常温での延性も良好なTiAl基合金に関する。また、本発明は、上記のTiAl基合金の製造方法に関するものである。   The present invention relates to a TiAl-based alloy suitable for use in moving blades and disks of aircraft engines, power generation gas turbines, etc., and particularly has good hot forgeability, high strength at high temperatures, and good ductility at normal temperatures. It relates to a TiAl base alloy. Moreover, this invention relates to the manufacturing method of said TiAl base alloy.

近年、航空機エンジン、発電用ガスタービンに用いる材料として、軽量で耐熱性に優れるTiAl基合金が注目されている。特に、回転部材の場合、軽量であるほど遠心応力が少なくなるので、最高到達回転数の向上や部品サイズの大型化を図ることができる。   In recent years, TiAl-based alloys that are lightweight and have excellent heat resistance have attracted attention as materials used for aircraft engines and gas turbines for power generation. In particular, in the case of a rotating member, the lighter the weight, the less the centrifugal stress, so that it is possible to improve the maximum number of revolutions and increase the component size.

このTiAl基合金は、高温強度に優れた金属間化合物であるTiAlやTiAlを主体とする合金であり、上述の如く耐熱性に優れている。そして、軽量耐熱合金であるTiAl合金の使用形態として鋳造材と熱間鍛造材がある。
鋳造材は高温強度に優れたα2/γ完全ラメラ組織であり850℃程度まで使用可能であるが鍛造性が不良であり、また結晶粒が粗大なため常温延性に乏しいという問題がある。そこで、例えば、特許文献1では、所定の組成を有するTiAl基合金素材を、鋳造材には存在しない(α+β)相の平衡温度領域に保持し、その後に塑性加工することにより、鋳造欠陥を無くすことができるとともに、加工歪みと相変態の相乗効果で組織を微細化することが提案されている。さらに、その後に、TiAl基合金素材を(α+β)相または(α+β+γ)相または(β+γ)相の平衡温度領域に保持して、ラメラ粒及びβ相の面積分率やラメラ粒の粒径を制御し、優れた機械加工性と、比較的低い温度での強度を備えたTiAl基合金を製造することができる。塑性加工としては、押出、圧延、自由鍛造、型鍛造を使用することができる。
This TiAl-based alloy is an alloy mainly composed of TiAl or Ti 3 Al, which is an intermetallic compound excellent in high-temperature strength, and has excellent heat resistance as described above. And as a usage form of the TiAl alloy which is a lightweight heat-resistant alloy, there are a cast material and a hot forging material.
The cast material has an α2 / γ complete lamellar structure excellent in high-temperature strength and can be used up to about 850 ° C., but has a problem of poor forgeability and poor room temperature ductility due to coarse crystal grains. Therefore, for example, in Patent Document 1, a TiAl-based alloy material having a predetermined composition is held in an equilibrium temperature region of an (α + β) phase that does not exist in the cast material, and then plastic working is performed to eliminate casting defects. In addition, it has been proposed to refine the structure by a synergistic effect of processing strain and phase transformation. Furthermore, after that, the TiAl-based alloy material is held in the equilibrium temperature region of the (α + β) phase, (α + β + γ) phase or (β + γ) phase to control the area fraction of the lamellar and β phases and the particle size of the lamellar particles. Thus, a TiAl base alloy having excellent machinability and strength at a relatively low temperature can be produced. Extrusion, rolling, free forging, and die forging can be used as the plastic working.

特許第4209092号公報Japanese Patent No. 4209092 特許第4287991号公報Japanese Patent No. 4287991 特開平6−49565号公報Japanese Patent Laid-Open No. 6-49565

しかしながら、上記した鋳造材の場合、室温での延性向上の点ではなお不充分なものがあった。特に、各種エンジン、タービン等に用いる動翼では、運転時に該動翼にスラッジ等の異物が衝突したり、動翼の製造時においてディスクの外周に翼をハンマ−で植え付ける際の衝撃で翼が破壊することがあるので、TiAl基合金の常温延性を向上させることが必要になってくる。ところが、上記鋳造材の場合、鋳造組織の結晶粒径は一般に粗大であることから、常温延性を向上することは困難であった。   However, in the case of the above-mentioned cast material, there are still some inadequate in terms of improving ductility at room temperature. In particular, in moving blades used for various engines, turbines, etc., foreign objects such as sludge collide with the moving blades during operation, or during the manufacture of moving blades, the blades are impacted when the blades are planted on the outer periphery of the disk with a hammer. Since it sometimes breaks, it becomes necessary to improve the room temperature ductility of the TiAl-based alloy. However, in the case of the cast material, since the crystal grain size of the cast structure is generally coarse, it is difficult to improve the room temperature ductility.

また、鋳造材の場合、自動車用ターボチャージャ部品等の小型部品の製造は比較的容易であるが、鋳型への湯流れの問題や引け巣等の内在する鋳造欠陥等の問題から、大型部品の製造が困難であった。一方、TiAl基合金の鍛造材ではこの鋳造欠陥の問題を防止することができる。TiAl合金の鍛造方法として恒温鍛造ならびに通常の熱間鍛造がある。一般にTiAl合金の高温変形能は乏しいため、従来は高温の一定温度で保持したまま非常に低速で鍛造する恒温鍛造法が用いられてきた。この恒温鍛造法では温度を高温で一定に保つため、鍛造用の型についてもこれ全体を加熱する必要があり特殊な装置が必要である。また、鍛造時間が非常に長くなるため、素材や型の酸化防止のために加熱部全体を真空または不活性雰囲気にする必要があった。そこで、これらの制約に伴う装置能力の限界から大型の素材を鍛造することは困難であった。また特殊装置を使用することから作業費用は非常に高価であった。   In the case of cast materials, it is relatively easy to manufacture small parts such as automotive turbocharger parts. However, due to problems such as hot water flow to the mold and inherent casting defects such as shrinkage nests, Manufacturing was difficult. On the other hand, this casting defect problem can be prevented with a TiAl-based alloy forging. As a forging method of TiAl alloy, there are constant temperature forging and normal hot forging. In general, since the high temperature deformability of a TiAl alloy is poor, conventionally, a constant temperature forging method has been used in which forging is performed at a very low speed while being held at a constant high temperature. In this constant temperature forging method, since the temperature is kept constant at a high temperature, it is necessary to heat the entire forging die, and a special apparatus is required. In addition, since the forging time becomes very long, it is necessary to make the entire heating part into a vacuum or an inert atmosphere in order to prevent oxidation of the material and the mold. For this reason, it has been difficult to forge a large material due to the limitations of the equipment capability associated with these restrictions. In addition, the operation cost is very expensive due to the use of special equipment.

一方、最近提案されている熱間鍛造材では、例えば特許文献3に示すように、TiAl合金中に高温変形能に優れた(即ち高温強度の低い)β相をβ安定化元素(Mn、V、Nb、Cr等)添加で生成させることで、Ni合金や鉄合金と同様の通常の汎用加熱炉と汎用プレスを用いた通常の鍛造、いわゆる熱間鍛造を可能としている。なお、熱間鍛造とは素材のみを加熱炉で加熱し、そこから素材を取り出して油圧プレス等において大気中で急速に冷却しながら高ひずみ速度で鍛造する方法であり、装置の制約が少ないことから大型素材が比較的安価に製造できる。
しかし、ここで提案された合金では、鍛造後に熱処理を行っても最終製品中に高温強度の低いβ相が残留するため、製品の高温強度が低く使用可能温度は最高700℃程度と、鋳造材の使用可能温度である850℃程度と比較して、大幅に低くなるという課題があった。
On the other hand, in a recently proposed hot forging material, for example, as shown in Patent Document 3, a β-phase having excellent high-temperature deformability (that is, low high-temperature strength) in a TiAl alloy is converted into a β-stabilizing element (Mn, V , Nb, Cr, etc.) is added to enable normal forging using a general-purpose heating furnace and a general-purpose press similar to Ni alloys and iron alloys, so-called hot forging. Hot forging is a method in which only the raw material is heated in a heating furnace, and the raw material is taken out from the raw material and forged at a high strain rate while being rapidly cooled in the atmosphere in a hydraulic press, etc., and there are few restrictions on the equipment. Large materials can be manufactured relatively inexpensively.
However, in the alloy proposed here, a β phase having a low high-temperature strength remains in the final product even after heat treatment after forging. Therefore, the high-temperature strength of the product is low and the usable temperature is about 700 ° C. There is a problem that the temperature becomes significantly lower than the usable temperature of about 850 ° C.

本発明者は、各種元素を添加したTiAl基合金の平衡状態図および組織変化過程を鋭意検討して、熱間鍛造材として高温変形能に優れていると同時に、熱処理後の最終製品中にβ相が残留しないような組成を明らかにすることで、本発明の完成に至ったものである。
即ち、本発明は、TiAl基合金における上記した問題を解決し、熱間鍛造材としての鍛造性に優れるとともに、最終的な状態で高温強度に優れるTiAl基合金及びその製造方法の提供を目的とする。
The present inventor has intensively studied the equilibrium phase diagram and the structure change process of the TiAl-based alloy to which various elements are added, and is excellent in high-temperature deformability as a hot forging material, and at the same time β in the final product after heat treatment The present invention has been completed by clarifying the composition in which no phase remains.
That is, the present invention aims to solve the above-described problems in the TiAl-based alloy and to provide a TiAl-based alloy excellent in forgeability as a hot forging material and excellent in high-temperature strength in the final state and a method for producing the same. To do.

本発明のTiAl基合金は、上記課題を解決するもので、Al:40.0〜42.8原子%、次式によって求められるCr当量、
Cr当量=Cr+Mo+0.5Mn+0.25Nb+0.25V
が1.2〜2.0原子%、残部:Ti及び不可避不純物からなり、α2相とγ相が交互に積層された平均粒径30〜200μmのラメラ粒が密に配列してなる微細組織を有することを特徴とする。
The TiAl-based alloy of the present invention solves the above problems, Al: 40.0 to 42.8 atomic%, Cr equivalent determined by the following formula,
Cr equivalent = Cr + Mo + 0.5Mn + 0.25Nb + 0.25V
1.2 to 2.0 atomic%, balance: Ti and unavoidable impurities, and a microstructure in which lamella grains having an average particle diameter of 30 to 200 μm, in which α2 phase and γ phase are alternately laminated, are densely arranged It is characterized by having.

本発明のTiAl基合金のさらに他の一つは、上記TiAl基合金において、さらにC、Si、W、B、Ta、Zrの群から選ばれる1種以上の元素を合計で0.1〜3原子%含有したTiAl基合金である。これらの元素を添加することにより、高温強度、クリ−プ強度、耐酸化性を高めることができる。   Still another TiAl-based alloy according to the present invention is the above-described TiAl-based alloy, further including one or more elements selected from the group of C, Si, W, B, Ta, and Zr in a total amount of 0.1 to 3 It is a TiAl-based alloy containing atomic%. By adding these elements, high temperature strength, creep strength, and oxidation resistance can be enhanced.

本発明のTiAl基合金の製造方法は、上記課題を解決するもので、α2相とγ相が交互に積層された平均粒径30〜200μmのラメラ粒が密に配列してなる微細組織を密に有するTiAl基合金を製造する方法であって、Al:40.0〜42.8原子%、次式によって求められるCr当量、
Cr当量=Cr+Mo+0.5Mn+0.25Nb+0.25V
が1.2〜2.0原子%、残部:Ti及び不可避不純物からなるTiAl基合金素材を、α相とβ相の共存温度領域に保持して熱間鍛造する工程と、前記熱間鍛造したTiAl基合金素材を、1180〜1260℃の温度範囲で0.5〜20時間間保持すると共に、0.3〜10[℃/分]の冷却速度で熱処理する工程とを備えたことを特徴とする。
The method for producing a TiAl-based alloy according to the present invention solves the above-mentioned problem, and a fine structure formed by densely arranging lamella grains having an average particle diameter of 30 to 200 μm in which α2 phases and γ phases are alternately laminated is densely formed. In which Ti: 40.0 to 42.8 atomic%, Cr equivalent determined by the following formula,
Cr equivalent = Cr + Mo + 0.5Mn + 0.25Nb + 0.25V
1.2 to 2.0 atomic%, balance: TiAl-based alloy material composed of Ti and inevitable impurities is maintained in the coexisting temperature region of α phase and β phase and hot forging, and the hot forging And a step of holding the TiAl-based alloy material in a temperature range of 1180 to 1260 ° C. for 0.5 to 20 hours and heat-treating at a cooling rate of 0.3 to 10 ° C./min. To do.

本発明のTiAl基合金において、Alは40.0〜42.8原子%の範囲では、熱処理後の最終的な状態でβ相が存在せず、α2/γの完全ラメラ組織となる。また、鍛造時はα+β相となるため熱間鍛造性が良好となる。熱間鍛造性が良好とは、具体的には図4に示した条件の熱間鍛造を実施しても、大きな割れが発生しないことをいい、酸化等での表面組織変化に伴う微細な割れは含まれないものとする。Alが40.0原子%に満たない場合は、鍛造性は良好でβ相も残留しないが、α2相の比率が多くなりすぎるため、常温延性が低下する。Alが42.8原子%を超す場合は、鍛造性が不良になる。   In the TiAl-based alloy of the present invention, when Al is in the range of 40.0 to 42.8 atomic%, the β phase does not exist in the final state after the heat treatment, and an α2 / γ complete lamellar structure is obtained. Moreover, since it becomes an α + β phase during forging, the hot forgeability is improved. Specifically, good hot forgeability means that even if hot forging under the conditions shown in FIG. 4 is performed, large cracks do not occur, and fine cracks associated with surface texture changes due to oxidation or the like. Shall not be included. When Al is less than 40.0 atomic%, the forgeability is good and the β phase does not remain, but the ratio of the α2 phase is excessively increased, so that the room temperature ductility is lowered. When Al exceeds 42.8 atomic%, forgeability becomes poor.

本発明のTiAl基合金において、Cr当量は1.2〜2.0原子%の範囲が良い。Cr当量が1.2原子%に満たない場合は、鍛造時のβ相の量が不足のため鍛造性が不良になる。Cr当量が2.0原子%を超す場合は、熱処理後にβ相が残留するため、高温強度が低く使用可能温度が低くなる。
本発明のTiAl基合金において、ラメラ粒の結晶粒径が200μm以下となると、常温延性が確保されて、好ましい。ラメラ粒の平均粒径を30μm未満とすることは工業的に困難であり、又、平均粒径が200μmを超えると、室温延性が低下する。
In the TiAl-based alloy of the present invention, the Cr equivalent is preferably in the range of 1.2 to 2.0 atomic%. When the Cr equivalent is less than 1.2 atomic%, the forgeability becomes poor because the amount of β phase at the time of forging is insufficient. When the Cr equivalent exceeds 2.0 atomic%, the β phase remains after the heat treatment, so that the high-temperature strength is low and the usable temperature is low.
In the TiAl-based alloy of the present invention, it is preferable that the crystal grain size of the lamellar grains is 200 μm or less, because normal temperature ductility is ensured. It is industrially difficult to make the average particle size of lamella particles less than 30 μm, and when the average particle size exceeds 200 μm, the room temperature ductility decreases.

本発明のTiAl基合金の製造方法において、α+β域で熱間鍛造したTiAl基合金素材を熱処理する際、α単相域での平衡温度領域に保持する温度範囲は、1180〜1260℃とする。1180℃未満の場合は、α+γ域のため、α単相とならず冷却後に完全ラメラ組織が形成されない。1260℃を超す場合は、α+β域のため、冷却速度によってβ相が残留することがある。
本発明のTiAl基合金の製造方法において、熱間鍛造したTiAl基合金素材を熱処理する際、α単相域での平衡温度領域内に保持する時間は、0.5〜20時間とする。保持時間が0.5時間未満の場合は、時間が短すぎα単相化しない。保持時間が20時間を超す場合は、時間が長すぎα粒(最終的なラメラ粒)の結晶粒径が粗大化する。
In the TiAl-based alloy manufacturing method of the present invention, when the TiAl-based alloy material hot forged in the α + β region is heat-treated, the temperature range maintained in the equilibrium temperature region in the α single-phase region is 1180 to 1260 ° C. When the temperature is lower than 1180 ° C., because of the α + γ region, the α single phase is not formed and a complete lamellar structure is not formed after cooling. When the temperature exceeds 1260 ° C., the β phase may remain depending on the cooling rate because of the α + β region.
In the TiAl-based alloy manufacturing method of the present invention, when the hot forged TiAl-based alloy material is heat-treated, the time for keeping it in the equilibrium temperature region in the α single phase region is 0.5 to 20 hours. When the holding time is less than 0.5 hours, the time is too short to form α single phase. When the holding time exceeds 20 hours, the crystal grain size of α grains (final lamellar grains) becomes coarse because the time is too long.

本発明のTiAl基合金の製造方法において、熱間鍛造したTiAl基合金素材をα単相域での平衡温度領域内に所定時間保持した後の冷却速度は、0.3〜10[℃/分]がよい。冷却速度が0.3[℃/分]未満の場合は、遅すぎて、ラメラ粒内のα2相とγ相の間隔が粗大化するため、延性と強度が低下する。冷却速度が10[℃/分]を超す場合は、早すぎて、α2相の比率が多くなりすぎるため、延性が低下する。   In the manufacturing method of the TiAl base alloy of the present invention, the cooling rate after holding the hot forged TiAl base alloy material in the equilibrium temperature region in the α single phase region for a predetermined time is 0.3 to 10 ° C./min. ] Is good. When the cooling rate is less than 0.3 [° C./min], the interval between the α2 phase and the γ phase in the lamellar grains becomes too large and the ductility and strength are lowered. When the cooling rate exceeds 10 [° C./min], it is too early and the ratio of the α2 phase becomes too large, so that the ductility is lowered.

本発明のTiAl基合金の製造方法は、具体的には次の工程による。まず、所定の成分のインゴットを溶解する。次に、インゴットの熱間鍛造をする。即ち、従来のTiAl熱間鍛造合金と同様にα+β領域で実施する。従来材と同様のβ相の効果で熱間鍛造性は確保できる。また、鍛造の効果で結晶粒径は微細化する。
続いて、鍛造素材の熱処理を行う。α単相域で所定時間保持後に所定の速度で冷却することで、α→α+γ→α2+γ変態を生じさせる。α域での保持時間を適正化することで結晶粒粗大化はなく、最終的に高温強度と常温延性に優れた細粒のα2/γ完全ラメラ組織を得ることができる。
Specifically, the manufacturing method of the TiAl-based alloy of the present invention is based on the following steps. First, an ingot of a predetermined component is dissolved. Next, hot forging of the ingot is performed. That is, it is carried out in the α + β region as in the conventional TiAl hot forging alloy. Hot forgeability can be ensured by the effect of the β phase as in the conventional material. Moreover, the crystal grain size is refined by the effect of forging.
Subsequently, the forging material is heat-treated. The α → α + γ → α2 + γ transformation is caused by cooling at a predetermined speed after holding for a predetermined time in the α single phase region. By optimizing the holding time in the α region, there is no coarsening of crystal grains, and finally a fine α2 / γ complete lamellar structure excellent in high temperature strength and room temperature ductility can be obtained.

本発明では、組成を従来のTiAl熱間鍛造材と大幅に変えることで、従来の熱間鍛造材ではなかった相変態過程(α+β→α→α+γ→α2+γ)を実現し、鍛造、熱処理の過程でこの相変態を利用することで最終的な状態で高温強度の高いα2/γ完全ラメラ組織を得るものである。つまり、熱間鍛造性と高温強度の両立を可能としたものである。また、鍛造の効果で結晶粒が微細化することから常温延性は鋳造材より大幅に優れている。   In the present invention, the phase transformation process (α + β → α → α + γ → α2 + γ) which was not the conventional hot forging material is realized by changing the composition significantly from the conventional TiAl hot forging material, and the process of forging and heat treatment By using this phase transformation, an α2 / γ complete lamellar structure having a high temperature strength and high strength is obtained in the final state. That is, it is possible to achieve both hot forgeability and high temperature strength. Further, since the crystal grains are refined by the effect of forging, the room temperature ductility is significantly superior to the cast material.

本発明のTiAl熱間鍛造材を1350℃で熱間鍛造した場合の外観写真である。It is an external appearance photograph at the time of hot forging the TiAl hot forging material of this invention at 1350 degreeC. 図1の鍛造後の材料の光学顕微鏡組織写真である。It is an optical microscope structure | tissue photograph of the material after the forge of FIG. 本発明のTiAl熱間鍛造材をα域の1200℃で2時間保持後に3℃/分℃で冷却した供試材の反射電子像写真である。It is the reflection electron image photograph of the test material which cooled the TiAl hot forging material of this invention at 3 degreeC / min degreeC after hold | maintaining for 2 hours at 1200 degreeC of (alpha) area. 本発明のTiAl熱間鍛造材を含むTiAl合金の熱間鍛造性を評価するための熱間鍛造試験を説明する図である。It is a figure explaining the hot forge test for evaluating the hot forgeability of the TiAl alloy containing the TiAl hot forging material of this invention. 本発明のTiAl熱間鍛造材を含むTiAl合金の熱間鍛造性に及ぼすAl濃度とCr当量の影響を説明する図で、熱間鍛造での割れ発生状態を説明してある。The figure explaining the influence of Al concentration and Cr equivalent on the hot forgeability of the TiAl alloy containing the TiAl hot forging material of the present invention, and the crack occurrence state in the hot forging is explained. 図5の熱間鍛造試験後の試験素材の外観写真の例である。It is an example of the external appearance photograph of the test raw material after the hot forging test of FIG. 本発明のTiAl熱間鍛造材を含むTiAl合金鍛造材の熱処理後の組織変化に及ぼすAl濃度とCr当量の影響を説明する図であり、β相残留の有無について説明してある。It is a figure explaining the influence of Al density | concentration and Cr equivalent which gives to the structure | tissue change after the heat processing of the TiAl alloy forging material containing the TiAl hot forging material of this invention, and the presence or absence of (beta) phase residue is demonstrated. 図7のTiAl合金鍛造材の熱処理後の反射電子像写真の例である。It is an example of the reflected electron image photograph after the heat processing of the TiAl alloy forging material of FIG. 比較例としてのTiAl鋳造材のTiAl二元系状態図における代表的な組成範囲の説明図である。It is explanatory drawing of the typical composition range in the TiAl binary system phase diagram of the TiAl casting material as a comparative example. 比較例としてのTiAl鋳造材の光学顕微鏡組織写真である。It is an optical microscope structure photograph of the TiAl cast material as a comparative example. 比較例としてのTiAl鋳造材の反射電子像組織写真である。It is a reflected electron image structure photograph of the TiAl casting material as a comparative example. 比較例としてのTiAl鋳造材を1350℃で熱間鍛造した場合の外観写真である。It is an external appearance photograph at the time of hot forging the TiAl casting material as a comparative example at 1350 degreeC. 比較例としての従来のTiAl熱間鍛造材の状態図上における代表的な組成範囲の説明図である。It is explanatory drawing of the typical composition range on the phase diagram of the conventional TiAl hot forging material as a comparative example. 比較例としての従来のTiAl熱間鍛造材用のインゴットを1300℃で熱間鍛造した場合の外観写真である。It is an external appearance photograph at the time of hot forging at 1300 degreeC the conventional ingot for TiAl hot forging materials as a comparative example. 比較例としての従来のTiAl熱間鍛造材を1300℃で2時間分持し、20℃/分で冷却熱処理した供試材の反射電子像である。It is the reflection electron image of the test material which carried out the conventional TiAl hot forging material as a comparative example for 2 hours at 1300 degreeC, and carried out cooling heat processing at 20 degreeC / min.

表1は、本発明のTiAl熱間鍛造合金ならびに比較例1、2の材料における成分、熱間鍛造温度、熱処理条件、組織、並びに室温、850℃、950℃での引張特性を示している。   Table 1 shows the components, hot forging temperature, heat treatment conditions, structure, and tensile properties at room temperature, 850 ° C. and 950 ° C. in the TiAl hot forged alloy of the present invention and the materials of Comparative Examples 1 and 2.

図1は本発明のTiAl熱間鍛造材(組成Ti−41Al−0.6Cr−4Nb(at%))を1350℃で熱間鍛造した場合の外観写真である。鍛造温度はα+β領域となっている。高温変形能に優れたβ相が存在するため、この熱間鍛造材の鍛造性は良く、割れが無い。
図3は図1の鍛造後の材料の光学顕微鏡組織写真である。右隅の横線は、10μmを示している。鍛造による塑性ひずみの効果で結晶粒径が微細化し、例えば10〜100μm程度になっている。
FIG. 1 is a photograph of the appearance when the TiAl hot forging material (composition Ti-41Al-0.6Cr-4Nb (at%)) of the present invention is hot forged at 1350 ° C. The forging temperature is in the α + β region. Since the β phase excellent in high temperature deformability exists, the forgeability of this hot forged material is good and there is no crack.
FIG. 3 is an optical micrograph of the material after forging in FIG. The horizontal line at the right corner indicates 10 μm. The crystal grain size is refined by the effect of plastic strain by forging, and is, for example, about 10 to 100 μm.

図3は本発明のTiAl熱間鍛造材(組成Ti−41Al−0.6Cr−4Nb(at%))を熱間鍛造後にα域の1200℃で2時間保持後に3℃/分で冷却した供試材の反射電子像写真である。(A)は低倍の写真、(B)は高倍の写真である。α2相、γ相よりなる完全ラメラ組織であり、鋳造材と同様になっている。この熱処理後の材料には、高温変形能が優れた(高温強度が低い)β相が存在しない。粒径は鍛造のままに較べると若干粗大化しているが、鋳造材に較べると大幅に小さい。そこで、この熱間鍛造材は、以上の組織のため高温強度、常温延性ともに優れている。   FIG. 3 shows that the TiAl hot forging material (composition Ti-41Al-0.6Cr-4Nb (at%)) of the present invention was cooled at 3 ° C./min after being hot forged and held at 1200 ° C. in the α region for 2 hours. It is a reflection electron image photograph of a sample. (A) is a low-magnification photograph, and (B) is a high-magnification photograph. It is a complete lamellar structure composed of an α2 phase and a γ phase, and is similar to a cast material. In the material after this heat treatment, there is no β phase excellent in high temperature deformability (low temperature strength is low). The particle size is slightly coarser than that of the forged product, but is much smaller than that of the cast material. Therefore, this hot forged material is excellent in both high temperature strength and room temperature ductility because of the above structure.

図4は本発明のTiAl熱間鍛造材を含むTiAl合金の熱間鍛造性を評価するための熱間鍛造試験を説明するもので、(A)はインゴットの外観写真と鍛造試験に供した素材の切断位置(下側を使用)、(B)は熱間鍛造試験の情況写真、(C)は熱間鍛造試験での高さの変化の説明図である。
図4(A)は、表2、3の組成についてインゴットを作製した外観写真である。インゴット作製方法は、イットリアるつぼを用いた高周波溶解による。インゴットの原料は、スポンジTi、Al粒に加えて、添加元素としてCr、Mo、Mn、Nb、Vを単独または複合添加する。溶解雰囲気はアルゴンガス中である。写真のインゴット重量は約700gであるが、押し湯切断後は約450gとなる。
FIG. 4 illustrates a hot forging test for evaluating the hot forgeability of a TiAl alloy containing the TiAl hot forging material of the present invention. (A) is an ingot appearance photograph and a material subjected to a forging test. (B) is a situation photograph of the hot forging test, and (C) is an explanatory view of a change in height in the hot forging test.
FIG. 4 (A) is an external view photograph in which ingots were prepared for the compositions shown in Tables 2 and 3. The ingot production method is based on high frequency melting using an yttria crucible. Ingot raw materials include, in addition to sponge Ti and Al grains, Cr, Mo, Mn, Nb, and V as additive elements, either alone or in combination. The dissolution atmosphere is in argon gas. The ingot weight in the photograph is about 700 g, but it is about 450 g after cutting the hot water.

図4(B)および(C)は、熱間鍛造試験の情況写真および説明図で、加熱温度は1350℃、プレスの速度は50mm/秒以上、鍛造方向は据え込み、鍛造回数は7回で、都度再加熱を行っている。熱間鍛造試験での高さの変化は、90mm、80mm、70mm、55mm、40mm、30mm、20mm、15mmであり、順次圧縮をしている。   4 (B) and 4 (C) are situation photographs and explanatory diagrams of the hot forging test. The heating temperature is 1350 ° C., the press speed is 50 mm / second or more, the forging direction is upset, and the number of forgings is 7 times. , Reheating each time. Changes in height in the hot forging test are 90 mm, 80 mm, 70 mm, 55 mm, 40 mm, 30 mm, 20 mm, and 15 mm, and the compression is performed sequentially.

表2と表3は、熱間鍛造性と熱処理後のβ相残留有無を調査したインゴットの組成と試験結果を示すものである。   Tables 2 and 3 show the compositions and test results of ingots in which the hot forgeability and the presence or absence of β-phase residue after heat treatment were investigated.

図5は本発明のTiAl熱間鍛造材を含むTiAl合金の熱間鍛造性に及ぼすAl濃度とCr当量の影響を説明する図で、熱間鍛造での割れ発生状態を説明してある。ここで、図5の各プロットは別々のインゴットに相当している。各添加元素の効果は異なるが、Cr+Mo+0.5Mn+0.25Nb+0.25V(at%)を用いれば結果が良く整理できる。上記Cr当量が1at%以上、Al濃度が43at%以下において、割れずに熱間鍛造できることが確認できた。
図6は図5の熱間鍛造試験後の試験素材の外観写真の例である。図6(A)は割れ無しの場合、(B)は割れ発生の場合を示している。
FIG. 5 is a diagram for explaining the influence of the Al concentration and Cr equivalent on the hot forgeability of a TiAl alloy containing the TiAl hot forging material of the present invention, illustrating the state of occurrence of cracks in hot forging. Here, each plot in FIG. 5 corresponds to a separate ingot. Although the effect of each additive element is different, the results can be well organized by using Cr + Mo + 0.5Mn + 0.25Nb + 0.25V (at%). It was confirmed that hot forging could be performed without cracking when the Cr equivalent was 1 at% or more and the Al concentration was 43 at% or less.
FIG. 6 is an example of an appearance photograph of the test material after the hot forging test of FIG. FIG. 6 (A) shows a case where there is no crack, and FIG. 6 (B) shows a case where a crack occurs.

図7は本発明のTiAl熱間鍛造材を含むTiAl合金鍛造材の熱処理後の組織変化に及ぼすAl濃度とCr当量の影響を説明する図であり、β相残留の有無について説明してある。ここでは、表2、3の組成で作製したインゴットの熱間鍛造材を使用して試験している。試験条件は、熱間鍛造材から切り出した小片について、1350℃で2時間保持後に0.2℃/分で冷却する熱処理を実施している。この図に関する熱処理試験条件では、各組成で最終的にβ相が残留するかどうか調べるため、非常に遅い速度で冷却した。従って結晶粒径は粗大化している。
各添加元素の効果は異なるが、Cr当量であるCr+Mo+0.5Mn+0.25Nb+0.25V(at%)を用いればうまく結果を整理できる。図7の斜めに位置する点線より上側の組成ではβ相が残留し、それ以下ではβ相は冷却過程で消失し、α2/γ完全ラメラ組織が形成されている。なお、この図において点線で囲んだ範囲は、α2/γ完全ラメラ組織が形成され、かつ図5に示した熱間鍛造性が良好であった組成である。
FIG. 7 is a diagram for explaining the effects of Al concentration and Cr equivalent on the structural change after heat treatment of the TiAl alloy forging material including the TiAl hot forging material of the present invention, and the presence or absence of β-phase residue. Here, the hot forging material of the ingot produced with the composition of Tables 2 and 3 is used and tested. As test conditions, a small piece cut out from the hot forging material is subjected to heat treatment of cooling at 0.2 ° C./min after holding at 1350 ° C. for 2 hours. Under the heat treatment test conditions relating to this figure, cooling was performed at a very low rate in order to investigate whether or not the β phase finally remained in each composition. Therefore, the crystal grain size is coarsened.
Although the effect of each additive element is different, the results can be well organized by using Cr equivalent Cr + Mo + 0.5Mn + 0.25Nb + 0.25V (at%). In the composition above the dotted line located obliquely in FIG. 7, the β phase remains, and below that, the β phase disappears during the cooling process, and an α2 / γ complete lamellar structure is formed. In this figure, the range surrounded by the dotted line is a composition in which an α2 / γ complete lamellar structure is formed and the hot forgeability shown in FIG. 5 is good.

図8は図7のTiAl合金鍛造材の熱処理後の反射電子像写真の例で、(A)はβ相が残留した組織の例 、(B)はβ相が残留せず完全ラメラ組織となった組織の例を示してある。   FIG. 8 is an example of a reflection electron image photograph after heat treatment of the TiAl alloy forged material of FIG. 7, (A) is an example of a structure in which the β phase remains, and (B) is a complete lamellar structure in which the β phase does not remain. An example of an organized organization is shown.

[比較例1]
図9は、TiAl鋳造材のTiAl二元系状態図における代表的な組成範囲の説明図である。鋳造材ではβ相安定化元素(Mn、Cr、Mo、V等)は添加されても少量のため、相の状態は図9から変化しない。相変態は、α→α+γ→α2+γであり、高温においてもβ相は安定でない。
図10は、従来組成のTiAl鋳造材(組成Ti−46at%Al)の光学顕微鏡組織写真である。結晶粒径が粗大なので常温延性に乏しい
[Comparative Example 1]
FIG. 9 is an explanatory diagram of a typical composition range in a TiAl binary phase diagram of a TiAl cast material. In the cast material, even when β-phase stabilizing elements (Mn, Cr, Mo, V, etc.) are added, the phase state does not change from FIG. The phase transformation is α → α + γ → α2 + γ, and the β phase is not stable even at high temperatures.
FIG. 10 is an optical micrograph of a conventional TiAl cast material (composition Ti-46 at% Al). Low temperature ductility due to coarse crystal grain size

図11は、従来組成のTiAl鋳造材(組成Ti−46at%Al)の反射電子像組織写真である。TiAl鋳造材は、γ相とα2相で構成され、この2相が層状にした組織であるラメラ組織となっている。ここでは、すべての組織がこのラメラ組織で構成されている為、完全ラメラ組織となっている。TiAl鋳造材は完全ラメラ組織であり、高温強度は高く850℃程度まで使用可能である。
図12は、従来組成のTiAl鋳造材(組成Ti−46at%Al)を1350℃で熱間鍛造した場合の外観写真である。β相(高温変形能に優れた相)が存在しないため、変形能が悪く、大きな割れが発生した。
FIG. 11 is a reflection electron image photograph of a TiAl cast material having a conventional composition (composition Ti-46 at% Al). The TiAl cast material is composed of a γ phase and an α2 phase, and has a lamellar structure that is a structure in which the two phases are layered. Here, since all the tissues are composed of this lamellar tissue, it is a complete lamellar tissue. The TiAl cast material has a complete lamellar structure, has a high temperature strength and can be used up to about 850 ° C.
FIG. 12 is an external view photograph when a conventional TiAl cast material (composition Ti-46 at% Al) is hot forged at 1350 ° C. Since there was no β phase (a phase excellent in high temperature deformability), the deformability was poor and large cracks occurred.

[比較例2]
図13は、従来組成のTiAl熱間鍛造合金の状態図上における代表的な組成範囲の説明図である。この状態図は、Al濃度を42at%に固定し、β安定化元素(この場合はV)を添加してβ相を安定化したTiAl−V三元系合金の状態図である。添加元素がMn、Cr、Mo、Nbでも基本的な構成は共通しているが、各相の存在位置は添加元素に応じて変化する。また、Al濃度の変化によっても各相の存在位置は変化する。ここでは、矩形の実線で囲んだ領域は添加元素がVの場合での従来のTiAl熱間鍛造合金の組成であるが、Vが9〜13at%の領域であるため、1300℃付近でβ+α相領域が出現しており、1000℃以下の低温側でもβ相が安定であるため、どのような熱処理を行っても最終製品にβ相が残る。また製品として高温で長時間使用すれば平衡状態に近づきこのβ相の量が増加していくこともある。
[Comparative Example 2]
FIG. 13 is an explanatory diagram of a typical composition range on a phase diagram of a TiAl hot forged alloy having a conventional composition. This phase diagram is a phase diagram of a TiAl-V ternary alloy in which the Al concentration is fixed at 42 at% and a β-stabilizing element (in this case, V) is added to stabilize the β phase. Even if the additive elements are Mn, Cr, Mo, and Nb, the basic configuration is common, but the existence position of each phase varies depending on the additive element. In addition, the existence position of each phase changes depending on the change in Al concentration. Here, the region surrounded by the rectangular solid line is the composition of the conventional TiAl hot forging alloy when the additive element is V. However, since V is a region of 9 to 13 at%, the β + α phase is around 1300 ° C. Since the region appears and the β phase is stable even at a low temperature of 1000 ° C. or lower, the β phase remains in the final product regardless of the heat treatment. If the product is used at a high temperature for a long time, it may approach an equilibrium state and the amount of this β phase may increase.

図14は、従来組成のTiAl熱間鍛造材(組成Ti−42Al−5Mn(at%))を1300℃で熱間鍛造した場合の外観写真である。鍛造温度はα+β領域である。高温変形能に優れたβ相が存在するため鍛造性は良く、割れが無い。
図15は、従来組成のTiAl熱間鍛造材(組成Ti−42Al−5Mn(at%))を1300℃で2時間保持し、20℃/分で冷却熱処理した供試材の反射電子像である。この熱間鍛造材の組織は、β相、γ相、ならびにα2/γラメラ組織から構成されている。高温変形能が優れた(高温強度が低い)β相が存在するため、高温強度は低く、使用可能温度700℃程度である。そして、熱処理条件の変化でこのβ相を消失させることは不可能である。この組成では低温でβ相が安定するためである。
FIG. 14 is a photograph of the appearance when hot forging a TiAl hot forging material having a conventional composition (composition Ti-42Al-5Mn (at%)) at 1300 ° C. The forging temperature is in the α + β region. Since the β phase excellent in high temperature deformability exists, forgeability is good and there is no crack.
FIG. 15 is a backscattered electron image of a test material obtained by holding a TiAl hot forging material having a conventional composition (composition Ti-42Al-5Mn (at%)) at 1300 ° C. for 2 hours and cooling heat treatment at 20 ° C./min. . The structure of this hot forged material is composed of a β phase, a γ phase, and an α2 / γ lamella structure. Since there is a β-phase having excellent high-temperature deformability (low-temperature strength is low), the high-temperature strength is low and the usable temperature is about 700 ° C. It is impossible to eliminate this β phase by changing the heat treatment conditions. This is because this composition stabilizes the β phase at a low temperature.

本発明のTiAl基合金は、熱間鍛造性が良好であることから大型部品が製造でき、また高温強度、常温延性等に優れているので航空機エンジン、発電用ガスタービンの動翼やディスク等として使用するのに好適である。
本発明のTiAl基合金を用いると高温強度と常温延性に優れた大型の素材が得られる。このような素材を用いた動翼やディスクは、優れた高温強度や常温延性を有することから、航空機エンジン、発電用ガスタービンの動翼やディスクとすれば、信頼性を維持しつつ、回転数の上昇や部品サイズの大型化によるエネルギ−効率の向上に貢献することが可能となる。

Since the TiAl-based alloy of the present invention has good hot forgeability, large parts can be manufactured, and because it is excellent in high-temperature strength, room temperature ductility, etc., it is used as a moving blade or disk of an aircraft engine, a gas turbine for power generation, etc. Suitable for use.
When the TiAl base alloy of the present invention is used, a large material excellent in high temperature strength and room temperature ductility can be obtained. Rotor blades and discs using such materials have excellent high-temperature strength and cold ductility, so if they are used as rotor blades and discs for aircraft engines and gas turbines for power generation, the rotation speed is maintained while maintaining reliability. It is possible to contribute to the improvement of energy efficiency due to the increase in the size and the increase in the component size.

Claims (3)

Al:40.0〜42.8原子%、次式によって求められるCr当量、
Cr当量=Cr+Mo+0.5Mn+0.25Nb+0.25V
が1.2〜2.0原子%、残部:Ti及び不可避不純物からなり、α2相とγ相が交互に積層された平均粒径30〜200μmのラメラ粒が密に配列してなる微細組織を有することを特徴とするTiAl基合金。
Al: 40.0-42.8 atomic%, Cr equivalent determined by the following formula,
Cr equivalent = Cr + Mo + 0.5Mn + 0.25Nb + 0.25V
1.2 to 2.0 atomic%, balance: Ti and unavoidable impurities, and a microstructure in which lamella grains having an average particle diameter of 30 to 200 μm, in which α2 phase and γ phase are alternately laminated, are densely arranged A TiAl-based alloy comprising:
α2相とγ相が交互に積層された平均粒径30〜200μmのラメラ粒が密に配列してなる微細組織を密に有するTiAl基合金を製造する方法であって、Al:40.0〜42.8原子%、次式によって求められるCr当量、
Cr当量=Cr+Mo+0.5Mn+0.25Nb+0.25V
が1.2〜2.0原子%、残部:Ti及び不可避不純物からなるTiAl基合金素材を、
α相とβ相の共存温度領域に保持して熱間鍛造する工程と、
前記熱間鍛造したTiAl基合金素材を、1180〜1260℃の温度範囲で0.5〜20時間間保持すると共に、0.3〜10[℃/分]の冷却速度で熱処理する工程とを備えたことを特徴とするTiAl基合金の製造方法。
A method for producing a TiAl-based alloy having a dense microstructure in which α-phase and γ-phase alternately laminated lamellar grains having an average particle size of 30 to 200 μm are densely arranged, comprising Al: 40.0 to 42.8 atomic%, Cr equivalent determined by the following formula,
Cr equivalent = Cr + Mo + 0.5Mn + 0.25Nb + 0.25V
1.2 to 2.0 atomic%, balance: TiAl based alloy material consisting of Ti and inevitable impurities,
a process of hot forging while maintaining in the coexistence temperature range of α phase and β phase;
Holding the hot forged TiAl-based alloy material in a temperature range of 1180 to 1260 ° C. for 0.5 to 20 hours and heat-treating at a cooling rate of 0.3 to 10 ° C./min. A method for producing a TiAl-based alloy, characterized in that
前記TiAl基合金素材は、前記熱処理工程では、α→α+γ→α2+γ変態を生じさせることを特徴とする請求項2に記載のTiAl基合金の製造方法。

The method for producing a TiAl-based alloy according to claim 2, wherein the TiAl-based alloy material causes an α → α + γ → α2 + γ transformation in the heat treatment step.

JP2013128866A 2013-06-19 2013-06-19 Hot forging type TiAl based alloy Active JP6202556B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013128866A JP6202556B2 (en) 2013-06-19 2013-06-19 Hot forging type TiAl based alloy
PCT/JP2014/064611 WO2014203714A1 (en) 2013-06-19 2014-06-02 Hot-forged ti-al-based alloy and method for producing same
US14/898,257 US10208360B2 (en) 2013-06-19 2014-06-02 Hot-forged TiAl-based alloy and method for producing the same
EP14814461.1A EP3012337B1 (en) 2013-06-19 2014-06-02 Hot-forged ti-al-based alloy and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128866A JP6202556B2 (en) 2013-06-19 2013-06-19 Hot forging type TiAl based alloy

Publications (2)

Publication Number Publication Date
JP2015004092A true JP2015004092A (en) 2015-01-08
JP6202556B2 JP6202556B2 (en) 2017-09-27

Family

ID=52300219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128866A Active JP6202556B2 (en) 2013-06-19 2013-06-19 Hot forging type TiAl based alloy

Country Status (1)

Country Link
JP (1) JP6202556B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166418A (en) * 2015-03-09 2016-09-15 ライストリッツ タービンテクニック ゲーエムベーハー METHOD FOR PRODUCTION OF HIGHLY STRESSABLE COMPONENT FROM α+γ- TITANIUM ALUMINIDE ALLOY FOR RECIPROCATING-PISTON ENGINE AND GAS TURBINE, ESPECIALLY AIRCRAFT ENGINE
WO2018043187A1 (en) * 2016-09-02 2018-03-08 株式会社Ihi Tial alloy and method for producing same
JPWO2020189215A1 (en) * 2019-03-18 2020-09-24
CN112642986A (en) * 2020-11-30 2021-04-13 陕西宏远航空锻造有限责任公司 Forging method and device for optimizing structural uniformity of titanium alloy cake
US20220017994A1 (en) * 2018-12-21 2022-01-20 National Institute For Materials Science Hot-forged tial-based alloy, method for producing same, and uses for same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340955A (en) * 1991-03-15 1994-12-13 Sumitomo Metal Ind Ltd Production of ti-al series intermetallic compound base alloy
JPH07173557A (en) * 1993-12-17 1995-07-11 Kobe Steel Ltd Tial-based intermetallic compound alloy excellent in workability, toughness and high temperature strength
JP2000199025A (en) * 1999-01-05 2000-07-18 Mitsubishi Heavy Ind Ltd TiAl INTERMETALLIC COMPOUND BASE ALLOY, ITS PRODUCTION, TURBINE MEMBER AND ITS PRODUCTION
JP2001316743A (en) * 2000-02-23 2001-11-16 Mitsubishi Heavy Ind Ltd TiAl ALLOY, ITS MANUFACTURING METHOD, AND MOVING BLADE USING IT
JP2002356729A (en) * 2001-05-28 2002-12-13 Mitsubishi Heavy Ind Ltd TiAl ALLOY, THE MANUFACTURING METHOD, AND MOVING BLADE USING IT
JP2009215631A (en) * 2008-03-12 2009-09-24 Mitsubishi Heavy Ind Ltd Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
JP2010280927A (en) * 2009-06-02 2010-12-16 Honda Motor Co Ltd INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340955A (en) * 1991-03-15 1994-12-13 Sumitomo Metal Ind Ltd Production of ti-al series intermetallic compound base alloy
JPH07173557A (en) * 1993-12-17 1995-07-11 Kobe Steel Ltd Tial-based intermetallic compound alloy excellent in workability, toughness and high temperature strength
JP2000199025A (en) * 1999-01-05 2000-07-18 Mitsubishi Heavy Ind Ltd TiAl INTERMETALLIC COMPOUND BASE ALLOY, ITS PRODUCTION, TURBINE MEMBER AND ITS PRODUCTION
JP2001316743A (en) * 2000-02-23 2001-11-16 Mitsubishi Heavy Ind Ltd TiAl ALLOY, ITS MANUFACTURING METHOD, AND MOVING BLADE USING IT
JP2002356729A (en) * 2001-05-28 2002-12-13 Mitsubishi Heavy Ind Ltd TiAl ALLOY, THE MANUFACTURING METHOD, AND MOVING BLADE USING IT
JP2009215631A (en) * 2008-03-12 2009-09-24 Mitsubishi Heavy Ind Ltd Titanium-aluminum-based alloy and production method therefor, and moving blade using the same
JP2010280927A (en) * 2009-06-02 2010-12-16 Honda Motor Co Ltd INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067435B1 (en) 2015-03-09 2017-07-26 LEISTRITZ Turbinentechnik GmbH Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines
US10196725B2 (en) 2015-03-09 2019-02-05 LEISTRITZ Turbinentechnik GmbH Method for the production of a highly stressable component from an α+γ-titanium aluminide alloy for reciprocating-piston engines and gas turbines, especially aircraft engines
JP2016166418A (en) * 2015-03-09 2016-09-15 ライストリッツ タービンテクニック ゲーエムベーハー METHOD FOR PRODUCTION OF HIGHLY STRESSABLE COMPONENT FROM α+γ- TITANIUM ALUMINIDE ALLOY FOR RECIPROCATING-PISTON ENGINE AND GAS TURBINE, ESPECIALLY AIRCRAFT ENGINE
EP3067435B2 (en) 2015-03-09 2021-11-24 LEISTRITZ Turbinentechnik GmbH Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines
US11078563B2 (en) 2016-09-02 2021-08-03 Ihi Corporation TiAl alloy and method of manufacturing the same
WO2018043187A1 (en) * 2016-09-02 2018-03-08 株式会社Ihi Tial alloy and method for producing same
CN109312427A (en) * 2016-09-02 2019-02-05 株式会社Ihi TiAl alloy and its manufacturing method
JPWO2018043187A1 (en) * 2016-09-02 2019-04-18 株式会社Ihi TiAl alloy and method of manufacturing the same
JP2020105634A (en) * 2016-09-02 2020-07-09 株式会社Ihi TiAl alloy and method for producing the same
JP7060640B2 (en) 2016-09-02 2022-04-26 株式会社Ihi TiAl alloy and its manufacturing method
US20220017994A1 (en) * 2018-12-21 2022-01-20 National Institute For Materials Science Hot-forged tial-based alloy, method for producing same, and uses for same
US11920219B2 (en) * 2018-12-21 2024-03-05 National Institute For Materials Science Hot-forged tial-based alloy, method for producing same, and uses for same
WO2020189215A1 (en) 2019-03-18 2020-09-24 株式会社Ihi Titanium aluminide alloy material for hot forging, forging method for titanium aluminide alloy material, and forged body
JPWO2020189215A1 (en) * 2019-03-18 2020-09-24
JP7233659B2 (en) 2019-03-18 2023-03-07 株式会社Ihi Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
CN112642986A (en) * 2020-11-30 2021-04-13 陕西宏远航空锻造有限责任公司 Forging method and device for optimizing structural uniformity of titanium alloy cake

Also Published As

Publication number Publication date
JP6202556B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP4287991B2 (en) TiAl-based alloy, method for producing the same, and moving blade using the same
WO2014203714A1 (en) Hot-forged ti-al-based alloy and method for producing same
JP6057363B1 (en) Method for producing Ni-base superalloy
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JP2017075403A (en) Nickel-based heat-resistant superalloy
JP6202556B2 (en) Hot forging type TiAl based alloy
JP6772069B2 (en) Titanium alloy and its manufacturing method
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
US20100316525A1 (en) TiAl-BASED ALLOY, PROCESS FOR PRODUCING SAME, AND ROTOR BLADE USING SAME
JP6826235B2 (en) Ni-based alloy softened powder and method for producing the softened powder
CN105039817A (en) Preparation method for multi-element heat-resisting magnesium alloy and multi-element heat-resisting magnesium alloy
CN115747577A (en) Deformed high-temperature alloy for turbine disc and preparation method thereof
JP6718219B2 (en) Method for manufacturing heat resistant aluminum alloy material
US20150167123A1 (en) Nickel-based superalloy, process therefor, and components formed therefrom
JP5645054B2 (en) Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
JP2008163393A (en) Magnesium cast alloy and compressor impeller made therefrom
WO2015182454A1 (en) TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME
JP7188577B2 (en) Method for producing TiAl alloy and TiAl alloy
JP2015151612A (en) HOT FORGING TYPE TiAl-BASED ALLOY AND PRODUCTION METHOD THEREOF
JP7093583B2 (en) TiAl-based alloys, turbine blades, gas turbines for power generation, jet engines for aircraft, superchargers for ships or gas turbines for various industrial machinery, steam turbines
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy
Zhao et al. An advanced cast/wrought technology for GH720Li alloy disk from fine grain ingot
CN117265333A (en) Nickel-based superalloy with long high-temperature low-cycle fatigue life, and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170823

R150 Certificate of patent or registration of utility model

Ref document number: 6202556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250