EP3067435B2 - Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines - Google Patents

Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines Download PDF

Info

Publication number
EP3067435B2
EP3067435B2 EP16153407.8A EP16153407A EP3067435B2 EP 3067435 B2 EP3067435 B2 EP 3067435B2 EP 16153407 A EP16153407 A EP 16153407A EP 3067435 B2 EP3067435 B2 EP 3067435B2
Authority
EP
European Patent Office
Prior art keywords
process according
forming
component
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16153407.8A
Other languages
German (de)
French (fr)
Other versions
EP3067435A1 (en
EP3067435B1 (en
Inventor
Marianne Baumgärtner
Peter Janschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leistritz Turbinentechnik GmbH
Original Assignee
Leistritz Turbinentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55310669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3067435(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Leistritz Turbinentechnik GmbH filed Critical Leistritz Turbinentechnik GmbH
Priority to PL16153407T priority Critical patent/PL3067435T5/en
Publication of EP3067435A1 publication Critical patent/EP3067435A1/en
Application granted granted Critical
Publication of EP3067435B1 publication Critical patent/EP3067435B1/en
Publication of EP3067435B2 publication Critical patent/EP3067435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Definitions

  • the invention relates to a method for producing a highly resilient component from an ⁇ + ⁇ -titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines.
  • TiAl-based alloys belong to the group of intermetallic materials that have been developed for applications in the area of the operating temperatures of superalloys. Due to its low density of around 4 g / cm 3 , this material offers considerable potential for weight savings and for reducing the loads on moving components, e.g. blades and disks of gas turbines or components of piston engines, at temperatures of up to approx. 700 ° C. State of the art is the investment casting of z. B. Turbine blades for aircraft engines. For applications with higher loads such as B. in high-speed turbines for novel geared turbofan aircraft engines, the properties of the cast structure are no longer sufficient.
  • TiAl alloys can be increased to the required values through thermomechanical treatment by means of plastic deformation with a defined degree of deformation and subsequent heat treatment.
  • thermomechanical treatment due to their high deformation resistance, TiAl alloys cannot be forged conventionally.
  • the forming processes must therefore be carried out at high temperatures in the area of the ⁇ + ⁇ or ⁇ -phase area in a protective atmosphere at low forming speeds. In order to achieve the desired final geometry of the forged part, several successive forging steps are usually necessary.
  • FIG DE 101 50 674 B4 An example of such a method for producing heavy-duty components from ⁇ + ⁇ -TiAl alloys is shown in FIG DE 101 50 674 B4 known.
  • the components are manufactured by encapsulating TiAI blanks with a globular structure through isothermal primary deformation in the ⁇ + ⁇ phase range in the temperature range of 1000 - 1340 ° C or in the ⁇ phase range in the temperature range of 1340 - 1360 ° C are deformed by forging or extrusion, after which the preforms are formed by forging into a component of a given contour by at least one isothermal secondary forming process with simultaneous dynamic recrystallization in the ⁇ + ⁇ or ⁇ phase range in the temperature range of 1000 - 1340 ° C, after which the component is solution annealed to adjust the microstructure in the ⁇ -phase area and then rapidly cooled.
  • a two-stage process is used here, including primary forming in the ⁇ + ⁇ or ⁇ phase range, followed by
  • the invention is thus based on the object of specifying a method for producing a highly stressed component from an ⁇ + ⁇ -titanium aluminide alloy, which is easier to implement in comparison to previously known methods.
  • a method according to claim 1 is used to solve this problem.
  • the method according to the invention is characterized by a one-stage, isothermal forming process of the component in the ⁇ -phase range at a slow forming speed, a specific TiAl alloy being used that makes it possible to stabilize the component in the ⁇ -phase range so that the forming takes place there can.
  • the alloy contains a corresponding proportion of the element Mo, which stabilizes the ⁇ -phase.
  • the method according to the invention particularly advantageously permits a single-stage deformation, the component being completely forged after the end of the deformation.
  • the content of the element Mo stabilizing the ⁇ -phase is 0.8-1.2%.
  • Mo has a particularly high stabilizing property, so its content can be kept relatively low.
  • the forming temperature in the ⁇ -phase range is 1070-1250 ° C, with the forming being carried out isothermally as described, i.e. the forming tools are kept at the forming temperature in order not to leave the required narrow temperature window.
  • the logarithmic forming speed is 10 -3 s -1 to 10 -1 s -1 .
  • the preform used has a volume distribution that varies over the longitudinal axis, i.e. a predetermined three-dimensional basic shape is already given, from which the finished component is forged by the one-step forming according to the invention.
  • This preform is preferably produced by casting, metal injection molding (MIM) or additive processes (3D printing, laser deposition welding, etc.) or a combination of the options mentioned.
  • tools made of a highly heat-resistant material are preferably used, preferably made of a Mo alloy.
  • the tools are expediently protected against oxidation by an inert atmosphere during the forming process.
  • they are preferably actively heated, for example inductively or by resistance heating.
  • the preform is also heated before the forming process, for example in a furnace, inductively or by resistance heating.
  • the deformation is preferably followed by a heat treatment of the deformed component in order to set the required properties and to convert the ⁇ -phase favorable for the deformation into a fine-lamellar ⁇ + ⁇ structure by means of a suitable heat treatment.
  • the heat treatment can include recrystallization annealing at a temperature of 1230-1270 ° C.
  • the holding time during the recrystallization annealing is preferably 50-100 minutes.
  • the recrystallization annealing takes place in the range of the ⁇ / ⁇ conversion temperature. If, as also provided according to the invention, after the recrystallization annealing, the component is cooled to a temperature of 900-950 ° C. in 120 s or faster, then small lamellar spacings of the ⁇ + ⁇ phase are formed.
  • a second heat treatment step in which the component is first cooled to room temperature and then heated to a stabilization or relaxation temperature of 850-950 ° C.
  • the temperature of 900 - 950 ° C which is quickly reached after the recrystallization annealing, can be changed directly to the stabilization and relaxation temperature of 850 - 950 ° C as described above.
  • the preferred holding time at the stabilization and relaxation temperature is preferably 300-360 min.
  • the component temperature is preferably reduced to a temperature below 300 ° C. at a defined cooling rate.
  • the cooling rate is preferably 0.5-2 K / min, that is, the cooling takes place relatively slowly, which serves to stabilize and relax the structure.
  • the cooling rate is preferably 1.5 K / min.
  • the respective cooling can take place in a liquid, e.g. in oil, or in air or an inert gas.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer α+γ-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke.The invention relates to a method for producing a highly resilient component from an α + γ-titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines.

Legierungen auf TiAl-Basis gehören zur Gruppe der intermetallischen Werkstoffe, die für Anwendungen im Bereich der Einsatztemperaturen der Superlegierungen entwickelt wurden. Aufgrund ihrer geringen Dichte von etwa 4 g/cm3 bietet dieser Werkstoff ein erhebliches Potenzial zur Gewichtseinsparung sowie zur Reduzierung der Belastungen bewegter Bauteile, z.B. Schaufeln und Scheiben von Gasturbinen oder Bauteile von Kolbenmotoren, bei Temperaturen bis ca. 700 °C. Stand der Technik ist das Feingießen von z. B. Turbinenschaufeln für Flugtriebwerke. Für Anwendungen mit größerer Belastung wie z. B. in schnell laufenden Turbinen für neuartige Getriebefan-Flugtriebwerke sind die Eigenschaften des Gussgefüges nicht mehr ausreichend. Durch thermomechanische Behandlung mittels plastischer Umformung mit definiertem Umformgrad und nachfolgender Wärmebehandlung lassen sich die statischen und dynamischen Eigenschaften von TiAI-Legierungen auf die geforderten Werte steigern. Allerdings sind TiAI-Legierungen wegen ihres hohen Umformwiderstands nicht konventionell schmiedbar. Daher müssen die Umformprozesse bei hohen Temperaturen im Bereich des α+γ- oder α-Phasengebiets in schützender Atmosphäre bei niedrigen Umformgeschwindigkeiten durchgeführt werden. Zum Erreichen der gewünschten Endgeometrie des Schmiedeteils sind dabei i. d. Regel mehrere aufeinander folgende Schmiedeschritte erforderlich.TiAl-based alloys belong to the group of intermetallic materials that have been developed for applications in the area of the operating temperatures of superalloys. Due to its low density of around 4 g / cm 3 , this material offers considerable potential for weight savings and for reducing the loads on moving components, e.g. blades and disks of gas turbines or components of piston engines, at temperatures of up to approx. 700 ° C. State of the art is the investment casting of z. B. Turbine blades for aircraft engines. For applications with higher loads such as B. in high-speed turbines for novel geared turbofan aircraft engines, the properties of the cast structure are no longer sufficient. The static and dynamic properties of TiAl alloys can be increased to the required values through thermomechanical treatment by means of plastic deformation with a defined degree of deformation and subsequent heat treatment. However, due to their high deformation resistance, TiAl alloys cannot be forged conventionally. The forming processes must therefore be carried out at high temperatures in the area of the α + γ or α-phase area in a protective atmosphere at low forming speeds. In order to achieve the desired final geometry of the forged part, several successive forging steps are usually necessary.

Ein Beispiel eines solchen Verfahrens zur Herstellung hochbelastbarer Bauteile aus α+γ-TiAl-Legierungen ist aus DE 101 50 674 B4 bekannt. Bei diesem Verfahren werden die Bauteile, insbesondere für Flugtriebwerke oder stationäre Gasturbinen, dadurch hergestellt, dass gekapselte TiAI-Rohlinge globularen Gefüges durch isotherme Primärumformung im α+γ-Phasengebiet im Temperaturbereich von 1000 - 1340 °C oder im α-Phasengebiet im Temperaturbereich von 1340 - 1360 °C durch Schmieden oder Strangpressen verformt werden, wonach die Vorformlinge durch mindestens einen isothermen Sekundärumformprozess unter gleichzeitiger dynamischer Rekristallisation im α+γ- oder α-Phasengebiet im Temperaturbereich von 1000 - 1340 °C durch Schmieden zum Bauteil vorgegebener Kontur ausgeformt werden, wonach das Bauteil zur Einstellung des Mikrogefüges im α-Phasengebiet lösungsgelüht und anschließend schnell abgekühlt wird. Hier kommt also ein zweistufiger Prozess zum Einsatz, umfassend die Primärumformung im α+γ- oder α-Phasengebiet, gefolgt von der Sekundärumformung unter gleichzeitiger Rekristallisation. Ein solcher zweistufiger Prozess ist jedoch äußerst aufwendig.An example of such a method for producing heavy-duty components from α + γ-TiAl alloys is shown in FIG DE 101 50 674 B4 known. In this process, the components, especially for aircraft engines or stationary gas turbines, are manufactured by encapsulating TiAI blanks with a globular structure through isothermal primary deformation in the α + γ phase range in the temperature range of 1000 - 1340 ° C or in the α phase range in the temperature range of 1340 - 1360 ° C are deformed by forging or extrusion, after which the preforms are formed by forging into a component of a given contour by at least one isothermal secondary forming process with simultaneous dynamic recrystallization in the α + γ or α phase range in the temperature range of 1000 - 1340 ° C, after which the component is solution annealed to adjust the microstructure in the α-phase area and then rapidly cooled. A two-stage process is used here, including primary forming in the α + γ or α phase range, followed by secondary forming with simultaneous recrystallization. However, such a two-stage process is extremely complex.

Der Erfindung liegt damit die Aufgabenstellung zugrunde, ein Verfahren zur Herstellung eines hochbelasteten Bauteils aus einer α+γ-Titanaluminid-Legierung anzugeben, das im Vergleich zu bisher bekannten Verfahren einfacher zu realisieren ist.The invention is thus based on the object of specifying a method for producing a highly stressed component from an α + γ-titanium aluminide alloy, which is easier to implement in comparison to previously known methods.

Zur Lösung dieses Problems dient erfindungsgemäss ein Verfahren gemäss Patentanspruch 1.According to the invention, a method according to claim 1 is used to solve this problem.

Das erfindungsgemäße Verfahren zeichnet sich durch einen einstufigen, isothermen Umformvorgang des Bauteils im β-Phasenbereich bei langsamer Umformgeschwindigkeit aus, wobei eine spezifische TiAI-Legierung verwendet wird, die es ermöglicht, das Bauteil im β-Phasenbereich zu stabilisieren, so dass dort die Umformung erfolgen kann. Zu diesem Zweck enthält die Legierung einen entsprechenden Anteil des die β-Phase stabilisierenden Elements Mo. Während der langsamen Umformung mit einer logarithmischen Umformgeschwindigkeit von 0,01 - 0,5 1/s bei hoher Temperatur werden die in der kubisch-raumzentrierten β-Phase existenten 12 Gleitebenen aktiviert und eine dynamische Rekristallisation angestoßen. Durch stetig weiter zugeführte Umformenergie wird diese über den gesamten Umformweg aufrechterhalten. Hierbei entsteht bei niedrigerer Fließspannung ein feinkörniges Mikrogefüge. Dagegen ist bei einer Umformung im α+γ- oder α-Phasengebiet, wie in DE 101 50 674 A1 beschrieben, aufgrund der hexagonalen Phasenstruktur nur eine Gleitebene existent, was die Zweistufigkeit des Umformvorgangs erfordert. Demgegenüber lässt das erfindungsgemäße Verfahren mit besonderem Vorteil eine einstufige Umformung zu, wobei das Bauteil nach Beendigung der Umformung fertig geschmiedet ist.The method according to the invention is characterized by a one-stage, isothermal forming process of the component in the β-phase range at a slow forming speed, a specific TiAl alloy being used that makes it possible to stabilize the component in the β-phase range so that the forming takes place there can. For this purpose, the alloy contains a corresponding proportion of the element Mo, which stabilizes the β-phase. During the slow deformation with a logarithmic deformation rate of 0.01-0.5 1 / s at high temperature, the body-centered cubic β-phase 12 existing slip planes activated and dynamic recrystallization initiated. This is maintained over the entire forming path by continuously supplied further forming energy. This creates a fine-grain microstructure at a lower flow stress. On the other hand, in the case of a deformation in the α + γ or α phase region, as in DE 101 50 674 A1 described, due to the hexagonal phase structure, there is only one slip plane, which requires the two-stage forming process. In contrast, the method according to the invention particularly advantageously permits a single-stage deformation, the component being completely forged after the end of the deformation.

Erfindungsgemäss beträgt der Gehalt des die β-Phase stabilisierenden Elements Mo 0,8 - 1,2 %. Mobesitzt eine besonders hohe stabilisierende Eigenschaft, daher kann dessen Gehalt relativ niedrig gehalten werden.According to the invention, the content of the element Mo stabilizing the β-phase is 0.8-1.2%. Mo has a particularly high stabilizing property, so its content can be kept relatively low.

Die Umformtemperatur im β-Phasenbereich beträgt 1070 - 1250°C, wobei wie beschrieben die Umformung isotherm erfolgt, das heißt, dass die Umformwerkzeuge auf der Umformtemperatur gehalten sind, um das geforderte enge Temperaturfenster nicht zu verlassen. Die logarithmische Umformgeschwindigkeit beträgt 10-3 s-1 bis 10-1 s-1.The forming temperature in the β-phase range is 1070-1250 ° C, with the forming being carried out isothermally as described, i.e. the forming tools are kept at the forming temperature in order not to leave the required narrow temperature window. The logarithmic forming speed is 10 -3 s -1 to 10 -1 s -1 .

Die verwendete Vorform weist eine über die Längsachse variierende Volumenverteilung auf, d.h. dass bereits eine vorgegebene dreidimensionale Grundform gegeben ist, aus der durch die erfindungsgemäße einstufige Umformung das fertige Bauteil geschmiedet wird. Diese Vorform wird bevorzugt durch Gießen, Metallformspritzen (MIM) oder additive Verfahren (3D-Druck, Laserauftragsschweißen, etc.) oder eine Kombination der genannten Möglichkeiten hergestellt.The preform used has a volume distribution that varies over the longitudinal axis, i.e. a predetermined three-dimensional basic shape is already given, from which the finished component is forged by the one-step forming according to the invention. This preform is preferably produced by casting, metal injection molding (MIM) or additive processes (3D printing, laser deposition welding, etc.) or a combination of the options mentioned.

Zur Umformung werden bevorzugt Werkzeuge aus einem höchst-warmfesten Werkstoff verwendet, bevorzugt aus einer Mo-Legierung. Zweckmäßigerweise werden die Werkzeuge während des Umformvorgangs durch eine inerte Atmosphäre gegen Oxidation geschützt. Um die Werkzeuge auf der Umformtemperatur zu halten werden sie bevorzugt aktiv beheizt, beispielsweise induktiv oder durch Widerstandsheizung.For forming, tools made of a highly heat-resistant material are preferably used, preferably made of a Mo alloy. The tools are expediently protected against oxidation by an inert atmosphere during the forming process. In order to keep the tools at the forming temperature, they are preferably actively heated, for example inductively or by resistance heating.

Auch die Vorform wird vor dem Umformvorgang erwärmt, beispielsweise in einem Ofen, induktiv oder durch Widerstandsbeheizung.The preform is also heated before the forming process, for example in a furnace, inductively or by resistance heating.

Bevorzugt folgt der Umformung eine Wärmebehandlung des umgeformten Bauteils, um die geforderten Gebrauchseigenschaften einzustellen und hierfür die für die Umformung günstige β-Phase durch eine geeignete Wärmebehandlung in ein feinlamellares α+γ-Gefüge umzuwandeln. Hierzu kann die Wärmebehandlung eine Rekristallisationsglühung bei einer Temperatur von 1230 - 1270°C umfassen. Die Haltezeit während der Rekristallisationsglühung beträgt bevorzugt 50 - 100 min. Die Rekristallisationsglühung erfolgt im Bereich der γ/α-Umwandlungstemperatur. Wird, wie erfindungsgemäß ferner vorgesehen, nach der Rekristallisationsglühung das Bauteil auf eine Temperatur von 900 - 950°C in 120 s oder schneller abgekühlt, so kommt es zur Bildung kleiner Lamellenabstände der α+γ-Phase.The deformation is preferably followed by a heat treatment of the deformed component in order to set the required properties and to convert the β-phase favorable for the deformation into a fine-lamellar α + γ structure by means of a suitable heat treatment. For this purpose, the heat treatment can include recrystallization annealing at a temperature of 1230-1270 ° C. The holding time during the recrystallization annealing is preferably 50-100 minutes. The recrystallization annealing takes place in the range of the γ / α conversion temperature. If, as also provided according to the invention, after the recrystallization annealing, the component is cooled to a temperature of 900-950 ° C. in 120 s or faster, then small lamellar spacings of the α + γ phase are formed.

Bevorzugt schließt sich ein zweiter Wärmebehandlungsschritt an, in dem das Bauteil zunächst auf Raumtemperatur abgekühlt und anschließend auf eine Stabilisierungs- oder Entspannungstemperatur von 850 - 950°C erwärmt wird. Alternativ kann auch direkt von der nach der Rekristallisationsglühung schnell erreichten Temperatur von 900 - 950 °C wie zuvor beschrieben auf die Stabilisierungs- und Entspannungstemperatur von 850 - 950°C gegangen werden. Die bevorzugte Haltezeit auf der Stabilisierungs- und Entspannungstemperatur, unabhängig davon, wie diese erreicht wird, beträgt bevorzugt 300 - 360 min.This is preferably followed by a second heat treatment step in which the component is first cooled to room temperature and then heated to a stabilization or relaxation temperature of 850-950 ° C. Alternatively, the temperature of 900 - 950 ° C, which is quickly reached after the recrystallization annealing, can be changed directly to the stabilization and relaxation temperature of 850 - 950 ° C as described above. The preferred holding time at the stabilization and relaxation temperature, regardless of how this is achieved, is preferably 300-360 min.

Nach Ablauf der Haltezeit wird bevorzugt mit einer definierten Abkühlrate die Bauteiltemperatur auf eine Temperatur unterhalb 300°C reduziert. Die Abkühlrate beträgt bevorzugt 0,5 - 2 K/min, das heißt, die Abkühlung erfolgt relativ langsam, was zur Stabilisierung und Entspannung des Gefüges dient. Bevorzugt beträgt die Abkühlrate 1,5 K/min.After the holding time has elapsed, the component temperature is preferably reduced to a temperature below 300 ° C. at a defined cooling rate. The cooling rate is preferably 0.5-2 K / min, that is, the cooling takes place relatively slowly, which serves to stabilize and relax the structure. The cooling rate is preferably 1.5 K / min.

Die jeweilige Abkühlung kann in einer Flüssigkeit, z.B. in Öl, oder in Luft oder einem Inertgas erfolgen.The respective cooling can take place in a liquid, e.g. in oil, or in air or an inert gas.

Claims (13)

  1. Process for producing a highly stressable component composed of a α+γ-titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines, characterized in that a TiAl alloy having the following composition (in atom%) :
    42.8-44.2% of Al,
    3.7-4.3% of Nb,
    0.8-1.2% of Mo
    0.07-1.3% of B,
    and a balance of Ti and melting-related impurities is used as alloy, where forming is carried out in a single stage proceeding from a preform having a volume distribution which varies over the longitudinal axis, wherein the component is formed isothermally in the β phase region with a logarithmic strain rate of 0.01-0.5 1/s and the forming temperature is 1070-1250°C.
  2. Process according to Claim 1, characterized in that the preform is produced by casting, metal injection moulding (MIM), additive processes, in particular 3D printing, laser build-up welding or a combination thereof.
  3. Process according to either of the preceding claims, characterized in that tools made of an Mo alloy are used for forming.
  4. Process according to Claim 3, characterized in that the tools are protected by an inert atmosphere during the forming operation.
  5. Process according to any of the preceding claims, characterized in that the tools used for forming are actively, in particular inductively, heated.
  6. Process according to any of the preceding claims, characterized in that the preform is heated in a furnace, inductively or by resistance heating, before forming.
  7. Process according to any of the preceding claims, characterized in that forming is followed by a heat treatment of the formed component.
  8. Process according to Claim 7, characterized in that the heat treatment comprises a recrystallization heat treatment at a temperature of 1230-1270°C.
  9. Process according to Claim 8, characterized in that the hold time during the recrystallization heat treatment is 50-100 minutes.
  10. Process according to Claim 9, characterized in that the component is cooled to a temperature of 900-950°C in 120 s or less after the recrystallization heat treatment.
  11. Process according to Claim 10, characterized in that the component is subsequently cooled to room temperature and is subsequently heated to a stabilization and relaxation temperature of 850-950°C or in that the component is, without prior cooling, maintained at a stabilization and relaxation temperature of 850-950°C.
  12. Process according to Claim 11, characterized in that the hold time at the stabilization and relaxation temperature is 300-360 minutes.
  13. Process according to Claim 11 or 12, characterized in that the component is subsequently cooled to a temperature below 300°C at a cooling rate of 0.5-2 K/min, in particular 1.5 K/min.
EP16153407.8A 2015-03-09 2016-01-29 Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines Active EP3067435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16153407T PL3067435T5 (en) 2015-03-09 2016-01-29 Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015103422.0A DE102015103422B3 (en) 2015-03-09 2015-03-09 Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines

Publications (3)

Publication Number Publication Date
EP3067435A1 EP3067435A1 (en) 2016-09-14
EP3067435B1 EP3067435B1 (en) 2017-07-26
EP3067435B2 true EP3067435B2 (en) 2021-11-24

Family

ID=55310669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16153407.8A Active EP3067435B2 (en) 2015-03-09 2016-01-29 Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines

Country Status (5)

Country Link
US (1) US10196725B2 (en)
EP (1) EP3067435B2 (en)
JP (1) JP6200985B2 (en)
DE (1) DE102015103422B3 (en)
PL (1) PL3067435T5 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103422B3 (en) 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
WO2018043187A1 (en) 2016-09-02 2018-03-08 株式会社Ihi Tial alloy and method for producing same
KR101888049B1 (en) * 2016-12-14 2018-08-13 안동대학교 산학협력단 Method for preparing Ti-Al-Nb-Fe alloy improved fracture toughness and creep properties
KR101890642B1 (en) * 2016-12-14 2018-08-22 안동대학교 산학협력단 Method for preparing Ti-Al-Nb-V alloy improved fracture toughness and creep properties
EP3372700B1 (en) 2017-03-10 2019-10-09 MTU Aero Engines GmbH Method for making forged tial components
DE102017212082A1 (en) 2017-07-14 2019-01-17 MTU Aero Engines AG FORGING AT HIGH TEMPERATURES, IN PARTICULAR OF TITANALUMINIDES
DE102018101194A1 (en) 2018-01-19 2019-07-25 Otto Fuchs - Kommanditgesellschaft - Method for producing a highly loadable component from an at least two-phase metallic or intermetallic material
DE102018202723A1 (en) * 2018-02-22 2019-08-22 MTU Aero Engines AG METHOD FOR PRODUCING A COMPONENT FROM A GRADIENT TIAL ALLOY AND COMPONENT PRODUCED ACCORDINGLY
WO2019191450A1 (en) * 2018-03-29 2019-10-03 Arconic Inc. Titanium aluminide alloys and titanium aluminide alloy products and methods for making the same
DE102018209315A1 (en) 2018-06-12 2019-12-12 MTU Aero Engines AG Process for producing a component from gamma - TiAl and corresponding manufactured component
EP3943627A4 (en) * 2019-03-18 2022-11-16 IHI Corporation Titanium aluminide alloy material for hot forging, forging method for titanium aluminide alloy material, and forged body
DE102020214700A1 (en) 2020-11-23 2022-05-25 MTU Aero Engines AG METHOD OF MANUFACTURING A COMPONENT FROM A TIAL ALLOY AND COMPONENT MADE ACCORDINGLY
DE102021000614A1 (en) 2021-02-08 2022-08-11 Access E.V. Mold for the crack-free production of a metal object with at least one undercut, in particular from intermetallic alloys such as TiAl, FeAl and other brittle or crack-prone materials, as well as a corresponding method.
US20240043978A1 (en) * 2021-04-16 2024-02-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tial alloy for forging, tial alloy material, and method for producing tial alloy material
CN113355619B (en) * 2021-06-04 2022-08-09 西安交通大学 Heat treatment method for preventing thermal mechanical processing cracking of zirconium alloy
US11807911B2 (en) * 2021-12-15 2023-11-07 Metal Industries Research & Development Centre Heat treatment method for titanium-aluminum intermetallic and heat treatment device therefor
CN115679231B (en) * 2022-09-16 2024-03-19 中南大学 Process for improving high-temperature plasticity of titanium-aluminum-based alloy

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299353A (en) 1991-05-13 1994-04-05 Asea Brown Boveri Ltd. Turbine blade and process for producing this turbine blade
JPH08283890A (en) 1995-04-13 1996-10-29 Nippon Steel Corp Tial-base intermetallic compound excellent in creep resistance and its production
EP1127949A2 (en) 2000-02-23 2001-08-29 Mitsubishi Heavy Industries, Ltd. TiA1 based alloy, production process therefor, and rotor blade using same
DE10150674A1 (en) 2000-12-15 2002-07-04 Thyssen Krupp Automotive Ag Production of components with a high load capacity used in aircraft engines or stationary gas turbines comprises preforming encapsulated titanium-aluminum blanks, shaping, solution annealing and cooling off rapidly
EP1649954A2 (en) 2004-10-20 2006-04-26 United Technologies Corporation Low porosity powder metallurgy produced components
US20070034350A1 (en) 2003-10-09 2007-02-15 Manfred Renkel Tool for producing cast components, method for producing said tool, and method for producing cast components
EP2251445A1 (en) 2008-03-12 2010-11-17 Mitsubishi Heavy Industries, Ltd. Tial-based alloy, process for production of the same, and rotor blade comprising the same
EP2272993A1 (en) 2009-06-05 2011-01-12 Böhler Schmiedetechnik GmbH & Co KG Method for producing a forged article from a gamma-titanium-aluminium base alloy
WO2013020548A1 (en) 2011-08-11 2013-02-14 Mtu Aereo Engines Gmbh Forged tial components, and method for producing same
US8864918B2 (en) 2010-05-12 2014-10-21 Boehler Schmiedetechnik Gmbh & Co. Kg Method for producing a component and components of a titanium-aluminum base alloy
US8888461B2 (en) 2007-10-27 2014-11-18 Mtu Aero Engines Gmbh Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
JP2015004092A (en) 2013-06-19 2015-01-08 独立行政法人物質・材料研究機構 HOT FORGING TYPE TiAl BASED ALLOY
EP3012337A1 (en) 2013-06-19 2016-04-27 National Institute for Materials Science Hot-forged ti-al-based alloy and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112799A1 (en) 1982-12-06 1984-07-04 Ciba-Geigy Ag Herbicidal agent for selective weed control in cereals
US4836982A (en) * 1984-10-19 1989-06-06 Martin Marietta Corporation Rapid solidification of metal-second phase composites
JPH03285051A (en) * 1990-03-30 1991-12-16 Sumitomo Light Metal Ind Ltd Method for forging titanium aluminide
JPH0543958A (en) * 1991-01-17 1993-02-23 Sumitomo Light Metal Ind Ltd Production of oxidation resistant titanium aluminide
US5328530A (en) 1993-06-07 1994-07-12 The United States Of America As Represented By The Secretary Of The Air Force Hot forging of coarse grain alloys
DE19756354B4 (en) * 1997-12-18 2007-03-01 Alstom Shovel and method of making the blade
WO2002048420A2 (en) * 2000-12-15 2002-06-20 Thyssenkrupp Automotive Ag Method for producing components with a high load capacity from tial alloys
DE102009050603B3 (en) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Process for producing a β-γ-TiAl base alloy
DE102015103422B3 (en) 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299353A (en) 1991-05-13 1994-04-05 Asea Brown Boveri Ltd. Turbine blade and process for producing this turbine blade
JPH08283890A (en) 1995-04-13 1996-10-29 Nippon Steel Corp Tial-base intermetallic compound excellent in creep resistance and its production
EP1127949A2 (en) 2000-02-23 2001-08-29 Mitsubishi Heavy Industries, Ltd. TiA1 based alloy, production process therefor, and rotor blade using same
DE10150674A1 (en) 2000-12-15 2002-07-04 Thyssen Krupp Automotive Ag Production of components with a high load capacity used in aircraft engines or stationary gas turbines comprises preforming encapsulated titanium-aluminum blanks, shaping, solution annealing and cooling off rapidly
US20070034350A1 (en) 2003-10-09 2007-02-15 Manfred Renkel Tool for producing cast components, method for producing said tool, and method for producing cast components
EP1649954A2 (en) 2004-10-20 2006-04-26 United Technologies Corporation Low porosity powder metallurgy produced components
US8888461B2 (en) 2007-10-27 2014-11-18 Mtu Aero Engines Gmbh Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
EP2251445A1 (en) 2008-03-12 2010-11-17 Mitsubishi Heavy Industries, Ltd. Tial-based alloy, process for production of the same, and rotor blade comprising the same
EP2272993A1 (en) 2009-06-05 2011-01-12 Böhler Schmiedetechnik GmbH & Co KG Method for producing a forged article from a gamma-titanium-aluminium base alloy
US8864918B2 (en) 2010-05-12 2014-10-21 Boehler Schmiedetechnik Gmbh & Co. Kg Method for producing a component and components of a titanium-aluminum base alloy
WO2013020548A1 (en) 2011-08-11 2013-02-14 Mtu Aereo Engines Gmbh Forged tial components, and method for producing same
US20140202601A1 (en) 2011-08-11 2014-07-24 MTU Aero Engines AG FORGED TiAl COMPONENTS, AND METHOD FOR PRODUCING SAME
JP2015004092A (en) 2013-06-19 2015-01-08 独立行政法人物質・材料研究機構 HOT FORGING TYPE TiAl BASED ALLOY
EP3012337A1 (en) 2013-06-19 2016-04-27 National Institute for Materials Science Hot-forged ti-al-based alloy and method for producing same

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"ASM Handbook", vol. 14, article "Forming and Forging"
"Titanium in Industry", 1955, VAN NOSTRAND, article STANLEY ABKOWITZ ET AL.: "Alloying and heat-treatment", pages: 56 - 59
DENG ZHIHAI ET AL.: "Hot Workability and Microstructure Evolution of TiAI Alloyin (a2+y) Dual-phase Field", RARE METAL MATERIALS AND ENGINEERING, vol. 42, no. 7, July 2013 (2013-07-01), pages 1356 - 1361
DIETER ET AL.: "Handbook of Workability and Process Design", ASM INTERNATIONAL, ISBN: 0-87170-778-0, article GEORGE E DIETER: "Chapter 2 Bulk Workability of Metals", pages: 22 - 25
Extrakt aus einem GfE Katalog, y-TiAI, datiert März 2010
G. SAUTHOFF, TITAN - ALUMINID - LEGIERUNGEN - EINE WERKSTOFF- GRUPPE MIT ZUKUNFT, FORSCHUNGSZENTRUM JÜLICH - PROJEKTTRÄGER JÜLICH PTJ, 2003, ISBN: 3-89336-318-1
HELMUT CLEMENS ET AL.: "Materials for Aircraft Engines", 7TH EUROPEAN WINTER SCHOOL ON NEUTRONS AND SYNCHROTRON RADIATION, 9 March 2011 (2011-03-09), pages 1 - 44, Retrieved from the Internet <URL:http://planner2011.unileoben.ac.at/fileadmin/shares/planner2011/docs/private/16-Clemens.pdf>
HUANG ZHAO-HUI ET AL.: "Isothermal forging of y-TiAI based alloys", TRANSF. NONFERROUS MET. SOC. CHINA, vol. 13, December 2003 (2003-12-01), pages 1325 - 1328
JACQUES TSCHOFFEN ET AL.: "Development of forging processes for TiAI engine components for aerospace and automotive components", INTERNATIONAL WORKSHOP ON GAMMA ALLOY TECHNOLOGY, 11 June 2013 (2013-06-11), Toulouse, France, pages 1 - 23
Programm der '7th European Winter School on Neutrons and Synchroton Radiation, 2011
Programm International Workshop on Gamma Alloy Technology, Toulouse, FR, 11-14 Juni 2013
YANG FEI ET AL.: "Effect of Heat Treatment on Microstructure and Propertiesof as-Forged TiAI Alloy with beta Phase", RARE METAL MATERIALS AND ENGINEERING, vol. 40, no. 9, September 2011 (2011-09-01), pages 1505 - 1509
ZHANG H. ET AL.: "Process optimization for isothermal forging of TiAI Compressor blade by Numérical Simulation", 2ND INTERNATIONAL CONFÉRENCE ON COMPUTER ENGINEERING AND TECHNOLOGY, vol. 5, 16 April 2010 (2010-04-16), pages V5-412 - V5-415

Also Published As

Publication number Publication date
PL3067435T5 (en) 2022-03-14
US10196725B2 (en) 2019-02-05
JP6200985B2 (en) 2017-09-20
JP2016166418A (en) 2016-09-15
US20160265096A1 (en) 2016-09-15
PL3067435T3 (en) 2018-01-31
EP3067435A1 (en) 2016-09-14
DE102015103422B3 (en) 2016-07-14
EP3067435B1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
EP3067435B2 (en) Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
EP3144402A1 (en) Process for the production of a alpha+gamma titanium-aluminide alloy preform for the manufacture of a high load capacity component for piston engines and turbines, in particular aircraft turbines
EP2742162B1 (en) Method for producing forged tial components
KR102001279B1 (en) Methods for processing titanium alloys
EP2807281B1 (en) Method for producing forged components from a tial alloy and component produced thereby
EP2851445B1 (en) Creep-resistant TiAl alloy
DE102013002483A1 (en) Nickel-cobalt alloy
EP3269838B1 (en) High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
EP3581668B1 (en) Method for producing a component from gamma tial and correspondingly manufactured component
EP3372700B1 (en) Method for making forged tial components
DE60008116T2 (en) Superalloy with optimized high-temperature performance in high-pressure turbine disks
EP3037194A1 (en) Turbine wheel and method for its production
CH709882A2 (en) Process for joining high temperature materials and articles made therewith.
EP3427858A1 (en) Forging at high temperatures, in particular of titanium aluminides
EP3211111A2 (en) Heat treatment method for components made of nickel base superalloys
DE102008055546A1 (en) A method for improving mechanical properties of a beta-treated titanium alloy article
EP3077557B1 (en) Method for producing titanium-aluminum components
DE10355892B4 (en) Process for producing Ti, Zr, Hf-containing drop forgings
EP3584334A1 (en) Method for producing a forged component from a tial alloy and correspondingly manufactured component
DE10150674B4 (en) Process for the production of heavy-duty components made of TiAl alloys
Roveda Investigation of Residual Stress and Microstructure Effects on the Fatigue Behaviour of an Aluminium-Silicon Eutectic Alloy Produced by Laser Powder Bed Fusion
CH263074A (en) Alloy.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160916

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/18 20060101ALI20170321BHEP

Ipc: C22C 14/00 20060101AFI20170321BHEP

INTG Intention to grant announced

Effective date: 20170413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 912460

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016000064

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016000064

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LISI AEROSPACE

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

26 Opposition filed

Opponent name: MTU AERO ENGINES GMBH

Effective date: 20180426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160129

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20211124

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502016000064

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230123

Year of fee payment: 8

Ref country code: AT

Payment date: 20230118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230123

Year of fee payment: 8

Ref country code: PL

Payment date: 20230124

Year of fee payment: 8

Ref country code: IT

Payment date: 20230131

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240116

Year of fee payment: 9

Ref country code: GB

Payment date: 20240124

Year of fee payment: 9