WO2015182454A1 - TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME - Google Patents

TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME Download PDF

Info

Publication number
WO2015182454A1
WO2015182454A1 PCT/JP2015/064491 JP2015064491W WO2015182454A1 WO 2015182454 A1 WO2015182454 A1 WO 2015182454A1 JP 2015064491 W JP2015064491 W JP 2015064491W WO 2015182454 A1 WO2015182454 A1 WO 2015182454A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
tial
phase
atomic
heat treatment
Prior art date
Application number
PCT/JP2015/064491
Other languages
French (fr)
Japanese (ja)
Inventor
鉄井 利光
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Publication of WO2015182454A1 publication Critical patent/WO2015182454A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/06Casting non-ferrous metals with a high melting point, e.g. metallic carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a TiAl base alloy suitable for use in turbine rotor blades such as power generation gas turbines and jet engines, and more particularly to a TiAl base cast alloy having a fine crystal grain size and excellent in high temperature creep strength and room temperature ductility.
  • a TiAl-based alloy that is lightweight and excellent in heat resistance has attracted attention as a material used for turbine blades of power generation gas turbines and jet engines.
  • the lighter the components of the moving blade the smaller the centrifugal stress, so the maximum number of revolutions can be improved, the moving blade can be increased in area, and the disk can be attached to the moving blade. The load stress can be reduced.
  • This TiAl-based alloy is an alloy mainly composed of a TiAl phase or a Ti 3 Al phase, which is an intermetallic compound phase excellent in high-temperature strength, and is excellent in heat resistance as described above.
  • a casting method is used as a method for producing a TiAl-based alloy member
  • the composition and heat treatment conditions are adjusted to obtain an ⁇ 2 / ⁇ complete lamellar structure. It is common to do. In this case, the high temperature creep strength is improved, but there is a problem that ductility and toughness at room temperature (for example, 25 ° C.) are lowered.
  • crystal grain size (colony size of ⁇ 2 / ⁇ complete lamellar structure) becomes coarse. Unlike a forged material, a cast material does not have a strain effect or recrystallization due to plastic working, and thus the crystal grain size is inevitably increased.
  • Patent Document 1 proposes a method in which Al 2 O 3 particles formed by intentionally oxidizing the inside of an alloy in the course of a manufacturing process are used as a pinning effect for preventing grain size coarsening.
  • Patent Document 2 proposes a method in which silicide precipitated by adding Si is similarly used as a pinning effect.
  • Patent Document 3 proposes a method in which a boride precipitated by adding B is similarly used as a pinning effect.
  • Patent Documents 1-3 are methods in which precipitates are forcibly mixed in a TiAl-based cast alloy, if the amount of precipitates is small, the effect of refining the crystal grain size (pinning) (Effect) does not occur, and when the amount of precipitates increases, the crystal grain size becomes finer, but the influence as precipitates increases, and there is a problem of lowering ductility and toughness at room temperature.
  • the present invention solves the above-mentioned problems in the TiAl-based cast alloy, and by reducing the crystal grain size of the TiAl-based cast alloy without using precipitates, it is excellent in high-temperature creep strength and at room temperature.
  • An object is to provide a TiAl-based cast alloy having good ductility and toughness and a method for producing the same.
  • the TiAl-based cast alloy of the present invention solves the above problems, Al: 42 to 44 atomic%, Nb: 6.0 to 9.0 atomic%, Cr: 0 to 3.5 atomic%, Si: 0 .3 to 1.0 atomic%, C: 0.3 to 1.0 atomic%, balance: Ti and inevitable impurities, and an alloying element index P calculated by the following formula is ⁇ 0.9 to 1.5, Preferably, it has a composition within a range of ⁇ 0.9 to 1.0, and is a fine structure in which lamella grains having an average crystal grain size of 30 to 200 ⁇ m and laminated with an ⁇ 2 phase and a ⁇ phase are densely arranged. And it consists of a structure
  • P (41-Al) /3+0.25Nb+0.8Cr-0.8Si-1.7C
  • the method for producing a TiAl-based cast alloy according to the present invention solves the above-mentioned problem, and has a fine structure in which lamella grains having an average crystal grain size of 30 to 200 ⁇ m in which ⁇ 2 phase and ⁇ phase are laminated are densely arranged.
  • a TiAl-based cast alloy having a structure having no ⁇ phase, Al: 42 to 44 atom%, Nb: 6.0 to 9.0 atom%, Cr: 0 to 3.5 atom %, Si: 0.3 to 1.0 atomic%, C: 0.3 to 1.0 atomic%, balance: Ti and inevitable impurities, and an alloying element index P determined by the following formula is ⁇ 0.
  • a raw material having a composition in the range of 9 to 1.5, preferably ⁇ 0.9 to 1.0 is melted and cast, and then held at a temperature range of 1250 to 1300 ° C. for 1 to 30 hours, and 3 to 20 It comprises a step of cooling and heat-treating at a cooling rate of [° C./min].
  • P (41-Al) /3+0.25Nb+0.8Cr-0.8Si-1.7C
  • Ti is a basic constituent element of the alloy.
  • the ⁇ phase exists in the high temperature range immediately after solidification after casting, but the ⁇ phase does not exist in the final state after heat treatment. , ⁇ 2 / ⁇ complete lamellar structure, and high temperature creep strength is improved.
  • Al is less than 42 atomic%, the ratio of the ⁇ 2 phase in the lamellar grains is excessively increased, so that the room temperature ductility is lowered.
  • Al exceeds 44 atomic%, the ratio of ⁇ 2 phase in the lamellar grains becomes too small, so that the high temperature creep strength is lowered.
  • Nb contributes to improving the oxidation resistance of the TiAl-based cast alloy and is preferably in the range of 6.0 to 9.0 atomic%. When Nb is less than 6.0 atomic%, the oxidation resistance cannot be improved. When Nb exceeds 9.0 atomic%, the ⁇ phase may remain in the final state after heat treatment, and the weight increases, which is not preferable particularly for aircraft parts and rotating parts.
  • Cr contributes to ⁇ -phase formation in a high temperature state immediately after solidification after casting, and is preferably in the range of 0 to 3.5 atomic%. Cr is an optional composition component, but if Cr exceeds 3.5 atomic%, the ⁇ phase may remain in the final state after heat treatment, which is not desirable.
  • Si contributes to the improvement of the high temperature creep strength of the TiAl-based cast alloy and is preferably in the range of 0.3 to 1.0 atomic%. When Si is less than 0.3 atomic%, the effect of improving the high temperature creep strength cannot be obtained. When Si exceeds 1.0 atomic%, the room temperature ductility decreases. C contributes to the improvement of the high temperature creep strength of the TiAl base cast alloy, and is preferably in the range of 0.3 to 1.0 atomic%. When C is less than 0.3 atomic%, the effect of improving the high temperature creep strength cannot be obtained. When C exceeds 1.0 atomic%, the room temperature ductility decreases.
  • the alloy element index P is in the range of ⁇ 0.9 to 1.5, preferably ⁇ 0.9 to 1.0.
  • the alloy element index P is less than ⁇ 0.9, the effect of the ⁇ phase existing in the high temperature region immediately after solidification after casting is small, and the crystal grain size becomes coarse, so that the room temperature ductility is lowered.
  • the alloy element index P exceeds 1.5 atomic%, the ⁇ phase may remain after the heat treatment, so that the high temperature creep strength is low and the usable temperature is low.
  • the average crystal grain size of lamella grains is 200 ⁇ m or less because room temperature ductility is ensured.
  • the holding temperature in the heat treatment step after casting is in the equilibrium temperature region in the ⁇ single phase region, and the temperature range is 1250 to 1300 ° C.
  • the temperature is lower than 1250 ° C., the complete lamellar structure is not formed because of the ⁇ + ⁇ region.
  • the temperature exceeds 1300 ° C., the ⁇ phase may remain depending on the cooling rate because of the ⁇ + ⁇ region, and the high-temperature creep strength decreases.
  • the time for maintaining in the equilibrium temperature region in the ⁇ single phase region in the heat treatment step after casting is 1 to 30 hours. If the holding time is less than 1 hour, the time may be too short and the ⁇ single phase may not be obtained. When holding time exceeds 30 hours, time is too long and the crystal grain size of the lamella grain of the final cast alloy after heat processing will coarsen.
  • the cooling rate after maintaining for a predetermined time in the equilibrium temperature region in the ⁇ single phase region in the heat treatment step after casting is preferably 3 to 20 [° C./min].
  • the cooling rate is less than 3 [° C./min] it is too slow and the interval between the ⁇ 2 phase and the ⁇ phase in the lamellar grains is coarsened, so that the high temperature creep strength is lowered.
  • the cooling rate exceeds 20 [° C./min]
  • the ratio of the ⁇ 2 phase in the lamellar grains is too high, and the room temperature ductility is lowered.
  • the phase change process (L ⁇ L + ⁇ ⁇ ⁇ ⁇ ⁇ ) that did not occur in the conventional TiAl base cast alloy is achieved by significantly changing the composition from that of the conventional TiAl base cast alloy and performing heat treatment under appropriate conditions.
  • the particle size is necessarily reduced.
  • the ⁇ phase disappears and the high temperature creep strength is high after cooling by maintaining at a predetermined time in the equilibrium temperature region within the ⁇ single phase region and cooling at a predetermined cooling rate.
  • An ⁇ 2 / ⁇ complete lamellar tissue is obtained.
  • a TiAl base cast alloy excellent in high temperature creep strength, ductility at room temperature, and toughness can be obtained. Can do.
  • the present invention makes it possible to achieve both room temperature ductility and high temperature creep strength, which was difficult with conventional TiAl-based cast alloys.
  • the present invention relates to a TiAl base cast alloy material prepared by melting a raw material as a component of the TiAl base cast alloy of the present invention in a high frequency melting furnace and then casting it with a cast iron mold, and (A) is a front view of the cast alloy material. (B) is a side view of the cast alloy material, and (C) is an appearance photograph of the cast iron mold mold used.
  • (A) shows alloy 5 and (B) shows alloy 7.
  • In the reflection electron image structure photograph of the TiAl base cast alloy of the present invention shows the alloy 10 and (D) shows the alloy 13.
  • (E) shows the alloy 16.
  • a reflection electron image structure photograph of a TiAl base cast alloy having an alloy element index P of less than ⁇ 0.9 (A) shows Alloy 3 and (B) shows Alloy 8.
  • a reflection electron image structure photograph of a TiAl-based cast alloy having an alloy element index P of less than ⁇ 0.9 (C) shows alloy 14 and (D) shows alloy 20.
  • a reflection electron image structure photograph of a TiAl-based cast alloy having an alloy element index P exceeding 1.5 (A) shows Alloy 1 and (B) shows Alloy 4.
  • a reflection electron image structure photograph of a TiAl-based cast alloy having an alloy element index P exceeding 1.5 shows the alloy 11 and (D) shows the alloy 17.
  • a reflection electron image structure photograph of a TiAl-based cast alloy having an alloy element index P exceeding 1.5 shows the alloy 21.
  • (A) shows alloy 6
  • (B) shows alloy 9.
  • an alloy element index P is in a range of ⁇ 0.9 to 1.5, but a reflection electron image structure photograph of a TiAl based cast alloy having a C component ratio exceeding 1.0 at%. Alloy 18 is shown.
  • (A) shows alloy 15
  • (B) shows alloy 12.
  • a reflection electron image photograph of the TiAl base cast alloy in the case where the holding temperature of the heat treatment condition is less than 1250 ° C. or more than 1300 ° C. (A) is the holding temperature. Is 1230 ° C., and (B) shows a holding temperature of 1320 ° C.
  • a reflection electron image photograph of the TiAl base cast alloy when the heat treatment condition holding time is less than 1 hour or more than 30 hours (A) is the holding time. Is 0.5 hour, and (B) shows a retention time of 40 hours.
  • a reflected electron image structure photograph of the TiAl base cast alloy when the cooling rate of the heat treatment condition is less than 3 [° C./min] or exceeds 20 [° C./min] (A) shows a cooling rate of 2 [° C./min], and (B) shows a cooling rate of 30 [° C./min].
  • FIG. 1 is a photograph of the appearance of a TiAl base cast alloy material produced using raw materials as components of the TiAl base cast alloy of the present invention.
  • A is a cast alloy material front surface
  • B is a cast alloy material side surface
  • C is an appearance photograph of the cast iron mold mold used.
  • the raw materials were melted in a high-frequency melting furnace using an yttria crucible for the compositions shown in Table 1.
  • a cast alloy material having a similar oxygen concentration can be obtained even if a calcia crucible is used.
  • the raw materials used were Al, Nb, Cr, and Si granular materials as other composition components, and C was TiC powder.
  • the dissolution atmosphere is in argon gas.
  • the molten metal was poured into a cast iron mold mold shown in (C) and solidified therein to produce a TiAl-based cast alloy material.
  • the weight of the cast alloy material in the photograph is about 700 g, it becomes about 350 g after cutting the hot water.
  • Table 1 shows the component composition of the TiAl-based cast alloy material produced by the above method, the result of the structure observation after the heat treatment test, and the result of the strength test after the heat treatment under appropriate conditions.
  • the organization judged to be appropriate by the tissue observation satisfies the following two requirements.
  • (I) A fine structure in which lamella grains having an average crystal grain size of 30 to 200 ⁇ m in which ⁇ 2 phase and ⁇ phase are laminated are densely arranged.
  • the tissue has no ⁇ phase.
  • the “average crystal grain size” refers to a value determined in accordance with JIS G 0551.
  • “lamellar grains are densely arranged” means that the gap between the lamellar grains is less than 10 ⁇ m in the observation of the structure of the alloy sample by the reflected electron image of the scanning electron microscope.
  • “No ⁇ phase” means a phase having a brighter contrast than those of the ⁇ 2 phase and the ⁇ phase in addition to those identified as precipitates in the observation of the structure of the alloy sample by the reflection electron image of the scanning electron microscope. Is not confirmed.
  • the details of the evaluation of the mechanical properties of the cast alloy material of the alloy 1-21 shown in Table 1 will be described.
  • the cast alloy material of Alloy 1-21 the remaining material after cutting the heat treatment test piece was subjected to heat treatment under conditions appropriate for each cast alloy material obtained in the heat treatment test, and the parallel part diameter was 4 mm. Two test pieces were processed, and the following two strength tests were performed.
  • the heat treatment conditions of the alloy according to the invention were set to satisfy the requirements (i) and (ii) determined to be appropriate in the heat treatment test.
  • the heat treatment conditions for the comparative alloy were set to appropriate conditions for the inventive alloy having a similar Al component ratio in the overall composition of the alloy. Specific heat treatment conditions are shown below.
  • Alloy 2, 4-7 Hold at 1265 ° C. for 10 hours, then cool at 3 [° C./min] Alloy 13-13: Hold at 1275 ° C. for 10 hours, then cool at 5 [° C./min] 14-16 18, 19: After holding at 1285 ° C. for 10 hours and cooling at 10 [° C./min], the mechanical properties of Alloys 1, 3, 8, 17, 20, and 21 were not evaluated.
  • the strength test performed was a rupture test at 870 ° C. ⁇ 225 MPa and a tensile test at room temperature. As for the former, the high temperature creep strength of each alloy was compared according to the length of the rupture time, and it was judged that the rupture time was good when it was 50 hours or more. Moreover, the latter was compared with the room temperature ductility of each alloy by the magnitude of elongation, and when the elongation was 0.5% or more, it was judged that it was favorable.
  • FIG. 2B, and FIG. 2C are reflection electron image structure photographs of the alloys according to the present invention.
  • (A) is alloy 5
  • (B) is alloy 7
  • (C) is alloy 10
  • (D) is alloy 13
  • (E ) Shows the alloy 16. Both have a complete lamellar structure composed of ⁇ 2 phase and ⁇ phase, and have a fine structure in which fine lamella grains having an average crystal grain size of 30 to 200 ⁇ m in which ⁇ 2 phase and ⁇ phase are laminated are densely arranged. .
  • the TiAl base cast alloy of the present invention is excellent in both high temperature creep strength and room temperature ductility because it has the above-described structure.
  • FIG. 3A and FIG. 3B are reflected electron image structure photographs of a TiAl-based cast alloy having an alloy element index P of less than ⁇ 0.9 as a comparative example, (A) is Alloy 3, (B) is Alloy 8, and (C) Indicates an alloy 14, and (D) indicates an alloy 20.
  • the alloy element index P is -0.96, in Alloy 8 is -0.96, in Alloy 14 is -1.01, and in Alloy 20 is -1.01. Since all of the comparative alloys shown in FIG. 3 have an alloy element index P of less than ⁇ 0.9, the average crystal grain size is coarsened to exceed 200 ⁇ m.
  • FIG. 4B, and FIG. 4C are reflection electron image structure photographs of a TiAl-based cast alloy having an alloy element index P exceeding 1.5 as a comparative example, where (A) is alloy 1, (B) is alloy 4, and ( C) shows the alloy 11, (D) shows the alloy 17, and (E) shows the alloy 21.
  • the alloy element index P is 1.87, in alloy 4 is 1.62, in alloy 11 is 1.81, in alloy 17 is 1.89, and alloy 21 is 1.68.
  • a ⁇ phase (a phase having a brighter contrast than the ⁇ 2 phase and the ⁇ phase) exists.
  • FIG. 5 shows a comparative example of a TiAl-based cast alloy having an alloy element index P in the range of ⁇ 0.9 to 1.5, but an Al component ratio of less than 42.0 at% or more than 44.0 at%.
  • (A) shows alloy 2 and (B) shows alloy 19.
  • the alloy element index P is 0.66 for alloy 2 and 0.52 for alloy 19.
  • the component ratio of Al is 41.0 at% for alloy 2 and 45.0 at% for alloy 19.
  • alloy 19 since the component ratio of Al is low, there are too many ⁇ 2 phase ratios in the lamellar grains, and even in a high magnification image, there is a portion where the laminated structure with the ⁇ phase having a darker contrast than the ⁇ 2 phase is unclear, Small elongation at room temperature.
  • alloy 19 since the Al component ratio is high, the ratio of ⁇ 2 phase in the lamellar grains is too small, and the creep rupture time is short.
  • FIG. 4 shows, as a comparative example, a TiAl group in which the alloy element index P is in the range of ⁇ 0.9 to 1.5, but the component ratio of C is less than 0.3 at% or more than 1.0 at%.
  • the alloying element index P is 0.60 for alloy 6, -0.31 for alloy 9, and 0.24 for alloy 18.
  • the component ratio of C is 0.2 at% for the alloy 6, 1.2 at% for the alloy 9, and 1.2 at% for the alloy 18.
  • the alloy 6 has an alloy element index P in the range of ⁇ 0.9 to 1.5, so that the result of the structure observation is good.
  • the C component ratio is low, the creep rupture time is short.
  • the alloy element index P is in the range of ⁇ 0.9 to 1.5, so that the result of the structure observation is good.
  • the C component ratio is high, the elongation at room temperature is small.
  • FIG. 7 shows, as a comparative example, a TiAl-based cast alloy in which the alloy element index P is in the range of ⁇ 0.9 to 1.5, but the Si component ratio is less than 0.3 at% or more than 1.0 at%.
  • (A) shows the alloy 15
  • (B) shows the alloy 12.
  • the alloy element index P is 0.62 for the alloy 15 and ⁇ 0.03 for the alloy 12.
  • the component ratio of Si is 0.2 at% for the alloy 15 and 1.2 at% for the alloy 12. Since the alloy element index P of the alloy 15 is in the range of ⁇ 0.9 to 1.5, the result of the structure observation is good. However, since the Si component ratio is low, the creep rupture time is short.
  • the alloy element index P of the alloy 12 is in the range of ⁇ 0.9 to 1.5, the result of the structure observation is good, but the elongation at room temperature is small because of the high Si component ratio. Note that the fine precipitate having a bright contrast in the alloy 12 is silicide caused by Si.
  • FIG. 8 shows a TiAl-based cast alloy having an alloy element index P in the range of ⁇ 0.9 to 1.5 as a comparative example, but the reflection when the holding temperature under the heat treatment condition is less than 1250 ° C. or more than 1300 ° C.
  • An electronic image structure photograph is shown.
  • (A) is a reflection electron image structure photograph in the case where the holding temperature is 1230 ° C. with the alloy 10 of the invention alloy
  • (B) is a reflected electron image structure photograph in the case where the holding temperature is 1320 ° C.
  • the holding temperature of the heat treatment conditions is as low as 1230 ° C., the ⁇ single phase is not formed and a complete lamellar structure is not formed.
  • a ⁇ phase (a phase having a brighter contrast than the ⁇ 2 phase and the ⁇ phase) exists.
  • FIG. 9 shows a TiAl-based cast alloy having an alloy element index P in the range of ⁇ 0.9 to 1.5 as a comparative example, but the reflection when the heat treatment condition holding time is less than 1 hour or more than 30 hours.
  • An electronic image structure photograph is shown.
  • (A) is a reflection electron image structure photograph in the case of the alloy 10 of the invention alloy when the holding time is 0.5 hours
  • (B) is a reflected electron image structure photograph in the case of the alloy 10 of the invention alloy and the holding time is 40 hours.
  • the holding time of the heat treatment conditions is as short as 0.5 hours, the ⁇ single phase is not formed, and a complete lamellar structure is not formed.
  • the holding time of the heat treatment conditions is too long, 40 hours, and the average crystal grain size exceeds 200 ⁇ m and is coarsened.
  • FIG. 10 shows a TiAl-based cast alloy having an alloy element index P in the range of ⁇ 0.9 to 1.5 as a comparative example, but the cooling rate under heat treatment conditions is less than 3 [° C./min] or 20 [° C. / Min] shows a reflected electron image structure photograph.
  • (A) is a backscattered electron image of the alloy 10 of the invention alloy when the cooling rate is 2 [° C / min]
  • (B) is a backscattered electron image of the alloy 10 of the invention alloy and the cooling rate of 30 [° C / min]. It is an organization photograph.
  • the cooling rate under heat treatment conditions is as slow as 2 [° C./min], the interval between lamella grains is too large, and the high temperature creep strength is lowered.
  • (B) is a ⁇ phase having a darker contrast than the ⁇ 2 phase even in a high-magnification image because the cooling rate of the heat treatment condition is too high at 30 [° C./min] and the ratio of ⁇ 2 phase in the lamellar grains is too large. There is a part where the laminated structure is unclear. This also reduces the ductility at room temperature.
  • the TiAl-based cast alloy of the present invention is suitable for use as a moving blade of a power generation gas turbine or an aircraft jet engine.
  • a moving blade that is lightweight and excellent in high-temperature creep strength, room temperature ductility, and toughness can be obtained.

Abstract

Provided is a TiAl-based casting alloy in which the crystal grain size of the TiAl-based casting alloy is reduced without relying on deposits, and that is provided with excellent high-temperature creep strength and excellent ductility and toughness at room temperature by executing a heat treatment under appropriate conditions. This TiAl-based casting alloy comprises 42-44 at.% Al, 6.0-9.0 at.% Nb, 0-3.5 at.% Cr, 0.3-1.0 at.% Si, 0.3-1.0 at.% C, and Ti and inevitable impurities as the remainder, wherein: the alloy has a composition wherein the alloy element index P found by the following formula is within a range from -0.9 to 1.5; the alloy includes a microstructure in which lamellar particles wherein an α2 phase and a γ phase are layered are tightly arranged, the lamellar particles having an average crystal grain size of from 30 to 200 µm; and the alloy has a structure in which no β phase is present. P=(41-Al)/3+0.25Nb+0.8Cr-0.8Si-1.7C.

Description

TiAl基鋳造合金及びその製造方法TiAl-based cast alloy and method for producing the same
 本発明は、発電用ガスタービンやジェットエンジン等のタービン動翼に用いて好適なTiAl基合金に関し、特に微細な結晶粒径を有し高温クリープ強度と室温延性に優れたTiAl基鋳造合金に関する。 The present invention relates to a TiAl base alloy suitable for use in turbine rotor blades such as power generation gas turbines and jet engines, and more particularly to a TiAl base cast alloy having a fine crystal grain size and excellent in high temperature creep strength and room temperature ductility.
 近年、発電用ガスタービンやジェットエンジン等のタービン動翼に用いる材料として、軽量で耐熱性に優れるTiAl基合金が注目されている。特に、大型の回転動翼の場合、動翼の構成部材が軽量であるほど遠心応力が少なくなるので、最高到達回転数の向上や動翼の大面積化、さらには動翼が取り付けられるディスクへの負荷応力の低減を図ることができる。 In recent years, a TiAl-based alloy that is lightweight and excellent in heat resistance has attracted attention as a material used for turbine blades of power generation gas turbines and jet engines. In particular, in the case of large rotating blades, the lighter the components of the moving blade, the smaller the centrifugal stress, so the maximum number of revolutions can be improved, the moving blade can be increased in area, and the disk can be attached to the moving blade. The load stress can be reduced.
 このTiAl基合金は、高温強度に優れた金属間化合物相であるTiAl相やTiAl相を主体とする合金であり、上述の如く耐熱性に優れている。そして、TiAl基合金部材の製造方法として鋳造法を用いる場合、従来のTiAl基鋳造合金においては、高温クリープ強度を向上させるためには、組成、熱処理条件を調整してα2/γ完全ラメラ組織とすることが一般的である。その場合、高温クリープ強度は向上するが、室温(例えば25℃)での延性や靱性が低くなると言う問題があった。その最大の理由は結晶粒径(α2/γ完全ラメラ組織のコロニーサイズ)が粗大化するためである。鋳造材では鍛造材と異なり塑性加工によるひずみ効果や再結晶がないため、本質的に結晶粒径が粗大化することは避けられない。 This TiAl-based alloy is an alloy mainly composed of a TiAl phase or a Ti 3 Al phase, which is an intermetallic compound phase excellent in high-temperature strength, and is excellent in heat resistance as described above. When a casting method is used as a method for producing a TiAl-based alloy member, in a conventional TiAl-based cast alloy, in order to improve high-temperature creep strength, the composition and heat treatment conditions are adjusted to obtain an α2 / γ complete lamellar structure. It is common to do. In this case, the high temperature creep strength is improved, but there is a problem that ductility and toughness at room temperature (for example, 25 ° C.) are lowered. The biggest reason is that the crystal grain size (colony size of α2 / γ complete lamellar structure) becomes coarse. Unlike a forged material, a cast material does not have a strain effect or recrystallization due to plastic working, and thus the crystal grain size is inevitably increased.
 この室温での延性や靱性が乏しいというTiAl基鋳造合金の問題を改善するためには結晶粒径の微細化が必須であることから、結晶粒径を微細化する試みとして、例えば以下の特許文献1-3の提案がある。特許文献1では、製造プロセスの過程で意図的に合金の内部を酸化させることで形成するAl粒子を、結晶粒径粗大化防止のピン留め効果として利用する方法を提案している。特許文献2では、Siを添加することで析出するシリサイドを同様にピン留め効果として利用する方法を提案している。特許文献3では、Bを添加することで析出するホウ化物を同様にピン留め効果として利用する方法を提案している。 In order to improve the problem of the TiAl-based cast alloy having poor ductility and toughness at room temperature, it is essential to refine the crystal grain size. There are 1-3 proposals. Patent Document 1 proposes a method in which Al 2 O 3 particles formed by intentionally oxidizing the inside of an alloy in the course of a manufacturing process are used as a pinning effect for preventing grain size coarsening. Patent Document 2 proposes a method in which silicide precipitated by adding Si is similarly used as a pinning effect. Patent Document 3 proposes a method in which a boride precipitated by adding B is similarly used as a pinning effect.
特許第3694341号公報Japanese Patent No. 3694341 特開平7-252562号公報Japanese Patent Laid-Open No. 7-252562 特公平7-76399号公報Japanese Patent Publication No. 7-76399
 しかしながら、特許文献1-3の技術では、いずれも析出物を強制的にTiAl基鋳造合金中に混在させる方法であることから、析出物の量が少ないとその結晶粒径微細化効果(ピン留め効果)は生じず、また析出物の量が多くなると結晶粒径は微細化するものの、析出物としての影響が大きくなり、かえって室温での延性や靱性を低下させる問題があった。 However, since all of the techniques of Patent Documents 1-3 are methods in which precipitates are forcibly mixed in a TiAl-based cast alloy, if the amount of precipitates is small, the effect of refining the crystal grain size (pinning) (Effect) does not occur, and when the amount of precipitates increases, the crystal grain size becomes finer, but the influence as precipitates increases, and there is a problem of lowering ductility and toughness at room temperature.
 本発明は、TiAl基鋳造合金における上記した問題を解決したもので、析出物を利用することなくTiAl基鋳造合金の結晶粒径を微細化することで、高温クリープ強度に優れるとともに、室温での延性や靱性が良好なTiAl基鋳造合金及びその製造方法の提供を目的とする。 The present invention solves the above-mentioned problems in the TiAl-based cast alloy, and by reducing the crystal grain size of the TiAl-based cast alloy without using precipitates, it is excellent in high-temperature creep strength and at room temperature. An object is to provide a TiAl-based cast alloy having good ductility and toughness and a method for producing the same.
 本発明のTiAl基鋳造合金は、上記課題を解決するもので、Al:42~44原子%、Nb:6.0~9.0原子%、Cr:0~3.5原子%、Si:0.3~1.0原子%、C:0.3~1.0原子%、残部:Ti及び不可避不純物からなり、かつ次式によって求められる合金元素指数Pが-0.9~1.5、好ましくは-0.9~1.0の範囲内である組成を有し、α2相とγ相が積層された平均結晶粒径30~200μmのラメラ粒が密に配列してなる微細組織であり、かつβ相が存在しない組織からなることを特徴とする。
  P=(41-Al)/3+0.25Nb+0.8Cr-0.8Si-1.7C
The TiAl-based cast alloy of the present invention solves the above problems, Al: 42 to 44 atomic%, Nb: 6.0 to 9.0 atomic%, Cr: 0 to 3.5 atomic%, Si: 0 .3 to 1.0 atomic%, C: 0.3 to 1.0 atomic%, balance: Ti and inevitable impurities, and an alloying element index P calculated by the following formula is −0.9 to 1.5, Preferably, it has a composition within a range of −0.9 to 1.0, and is a fine structure in which lamella grains having an average crystal grain size of 30 to 200 μm and laminated with an α2 phase and a γ phase are densely arranged. And it consists of a structure | tissue which does not have (beta) phase.
P = (41-Al) /3+0.25Nb+0.8Cr-0.8Si-1.7C
 本発明のTiAl基鋳造合金の製造方法は、上記課題を解決するもので、α2相とγ相が積層された平均結晶粒径30~200μmのラメラ粒が密に配列してなる微細組織であり、かつβ相が存在しない組織からなるTiAl基鋳造合金を製造する方法であって、Al:42~44原子%、Nb:6.0~9.0原子%、Cr:0~3.5原子%、Si:0.3~1.0原子%、C:0.3~1.0原子%、残部:Ti及び不可避不純物からなり、かつ次式によって求められる合金元素指数Pが、-0.9~1.5、好ましくは-0.9~1.0の範囲内である組成を有する原料を溶解、鋳造した後、1250~1300℃の温度範囲で1~30時間保持し、3~20[℃/分]の冷却速度で冷却して熱処理する工程を備えることを特徴とする。
  P=(41-Al)/3+0.25Nb+0.8Cr-0.8Si-1.7C
The method for producing a TiAl-based cast alloy according to the present invention solves the above-mentioned problem, and has a fine structure in which lamella grains having an average crystal grain size of 30 to 200 μm in which α2 phase and γ phase are laminated are densely arranged. And a TiAl-based cast alloy having a structure having no β phase, Al: 42 to 44 atom%, Nb: 6.0 to 9.0 atom%, Cr: 0 to 3.5 atom %, Si: 0.3 to 1.0 atomic%, C: 0.3 to 1.0 atomic%, balance: Ti and inevitable impurities, and an alloying element index P determined by the following formula is −0. A raw material having a composition in the range of 9 to 1.5, preferably −0.9 to 1.0 is melted and cast, and then held at a temperature range of 1250 to 1300 ° C. for 1 to 30 hours, and 3 to 20 It comprises a step of cooling and heat-treating at a cooling rate of [° C./min].
P = (41-Al) /3+0.25Nb+0.8Cr-0.8Si-1.7C
 本発明のTiAl基鋳造合金において、Tiは合金の基本的な構成元素である。
 本発明のTiAl基鋳造合金において、Alは42~44原子%の範囲では、鋳造後の凝固直後の高温域ではβ相が存在するが、熱処理後の最終的な状態ではβ相は存在せず、α2/γの完全ラメラ組織となり、高温クリープ強度が良好となる。Alが42原子%に満たない場合は、ラメラ粒内のα2相の比率が多くなりすぎるため、室温延性が低下する。Alが44原子%を超す場合は、ラメラ粒内のα2相の比率が少なくなりすぎるため、高温クリープ強度が低下する。
In the TiAl-based cast alloy of the present invention, Ti is a basic constituent element of the alloy.
In the TiAl-based cast alloy of the present invention, when Al is in the range of 42 to 44 atomic%, the β phase exists in the high temperature range immediately after solidification after casting, but the β phase does not exist in the final state after heat treatment. , Α2 / γ complete lamellar structure, and high temperature creep strength is improved. When Al is less than 42 atomic%, the ratio of the α2 phase in the lamellar grains is excessively increased, so that the room temperature ductility is lowered. When Al exceeds 44 atomic%, the ratio of α2 phase in the lamellar grains becomes too small, so that the high temperature creep strength is lowered.
 Nbは、TiAl基鋳造合金の耐酸化性向上に寄与するもので、6.0~9.0原子%の範囲がよい。Nbが6.0原子%に満たない場合は、耐酸化性向上が得られない。Nbが9.0原子%を超す場合は、熱処理後の最終的な状態でβ相が残留する場合があると共に、重量が増加するため、特に航空機用部品や回転部品では好ましくない。
 Crは、鋳造後の凝固直後の高温状態におけるβ相形成に寄与するもので、0~3.5原子%の範囲がよい。Crは任意的組成成分であるが、Crが3.5原子%を超す場合は、熱処理後の最終的な状態でβ相が残留する場合があるため望ましくない。
Nb contributes to improving the oxidation resistance of the TiAl-based cast alloy and is preferably in the range of 6.0 to 9.0 atomic%. When Nb is less than 6.0 atomic%, the oxidation resistance cannot be improved. When Nb exceeds 9.0 atomic%, the β phase may remain in the final state after heat treatment, and the weight increases, which is not preferable particularly for aircraft parts and rotating parts.
Cr contributes to β-phase formation in a high temperature state immediately after solidification after casting, and is preferably in the range of 0 to 3.5 atomic%. Cr is an optional composition component, but if Cr exceeds 3.5 atomic%, the β phase may remain in the final state after heat treatment, which is not desirable.
 Siは、TiAl基鋳造合金の高温クリープ強度向上に寄与するもので、0.3~1.0原子%の範囲がよい。Siが0.3原子%に満たない場合は、高温クリープ強度の向上効果が得られない。Siが1.0原子%を超す場合は、室温延性が低下する。
 Cは、TiAl基鋳造合金の高温クリープ強度向上に寄与するもので、0.3~1.0原子%の範囲がよい。Cが0.3原子%に満たない場合は、高温クリープ強度の向上効果が得られない。Cが1.0原子%を超す場合は、室温延性が低下する。
Si contributes to the improvement of the high temperature creep strength of the TiAl-based cast alloy and is preferably in the range of 0.3 to 1.0 atomic%. When Si is less than 0.3 atomic%, the effect of improving the high temperature creep strength cannot be obtained. When Si exceeds 1.0 atomic%, the room temperature ductility decreases.
C contributes to the improvement of the high temperature creep strength of the TiAl base cast alloy, and is preferably in the range of 0.3 to 1.0 atomic%. When C is less than 0.3 atomic%, the effect of improving the high temperature creep strength cannot be obtained. When C exceeds 1.0 atomic%, the room temperature ductility decreases.
 本発明のTiAl基鋳造合金において、合金元素指数Pは-0.9~1.5、好ましくは-0.9~1.0の範囲内が良い。合金元素指数Pが-0.9未満の場合は鋳造後の凝固直後の高温域で存在するβ相の効果が小さく、結晶粒径が粗大化するため室温延性が低下する。合金元素指数Pが1.5原子%を超す場合は、熱処理後にβ相が残留する場合があるため、高温クリープ強度が低く、使用可能温度が低くなる。
 本発明のTiAl基鋳造合金において、ラメラ粒の平均結晶粒径が200μm以下となると、室温延性が確保されて好ましい。ラメラ粒の平均結晶粒径を30μm未満とするためには多大な生産コストが発生するため工業製品としては現実的でない。又、平均結晶粒径が200μmを超えると、室温での延性、靱性が低下する。
In the TiAl-based cast alloy of the present invention, the alloy element index P is in the range of −0.9 to 1.5, preferably −0.9 to 1.0. When the alloy element index P is less than −0.9, the effect of the β phase existing in the high temperature region immediately after solidification after casting is small, and the crystal grain size becomes coarse, so that the room temperature ductility is lowered. When the alloy element index P exceeds 1.5 atomic%, the β phase may remain after the heat treatment, so that the high temperature creep strength is low and the usable temperature is low.
In the TiAl-based cast alloy of the present invention, it is preferable that the average crystal grain size of lamella grains is 200 μm or less because room temperature ductility is ensured. In order to make the average crystal grain size of lamella grains less than 30 μm, a great production cost is generated, which is not practical as an industrial product. On the other hand, when the average crystal grain size exceeds 200 μm, the ductility and toughness at room temperature decrease.
 本発明のTiAl基鋳造合金の製造方法において、鋳造後の熱処理工程における保持温度はα単相域での平衡温度領域内であり、その温度範囲は1250~1300℃とする。1250℃未満の場合は、α+γ域のため、完全ラメラ組織が形成されない。1300℃を超す場合は、α+β域のため、冷却速度によってβ相が残留することがあり、高温クリープ強度が低下する。 In the method for producing a TiAl-based cast alloy of the present invention, the holding temperature in the heat treatment step after casting is in the equilibrium temperature region in the α single phase region, and the temperature range is 1250 to 1300 ° C. When the temperature is lower than 1250 ° C., the complete lamellar structure is not formed because of the α + γ region. When the temperature exceeds 1300 ° C., the β phase may remain depending on the cooling rate because of the α + β region, and the high-temperature creep strength decreases.
 本発明のTiAl基鋳造合金の製造方法において、鋳造後の熱処理工程でα単相域での平衡温度領域内に保持する時間は、1~30時間とする。保持時間が1時間未満の場合は、時間が短すぎて、α単相化しないことがある。保持時間が30時間を超す場合は、時間が長すぎて、熱処理後の最終的な鋳造合金のラメラ粒の結晶粒径が粗大化する。 In the method for producing a TiAl-based cast alloy of the present invention, the time for maintaining in the equilibrium temperature region in the α single phase region in the heat treatment step after casting is 1 to 30 hours. If the holding time is less than 1 hour, the time may be too short and the α single phase may not be obtained. When holding time exceeds 30 hours, time is too long and the crystal grain size of the lamella grain of the final cast alloy after heat processing will coarsen.
 本発明のTiAl基鋳造合金の製造方法において、鋳造後の熱処理工程でα単相域での平衡温度領域内に所定時間保持した後の冷却速度は、3~20[℃/分]がよい。冷却速度が3[℃/分]未満の場合は、遅すぎて、ラメラ粒内のα2相とγ相の間隔が粗大化するため、高温クリープ強度が低下する。冷却速度が20[℃/分]を超す場合は、速すぎて、ラメラ粒内のα2相の比率が多くなりすぎるため、室温延性が低下する。 In the method for producing a TiAl-based cast alloy of the present invention, the cooling rate after maintaining for a predetermined time in the equilibrium temperature region in the α single phase region in the heat treatment step after casting is preferably 3 to 20 [° C./min]. When the cooling rate is less than 3 [° C./min], it is too slow and the interval between the α2 phase and the γ phase in the lamellar grains is coarsened, so that the high temperature creep strength is lowered. When the cooling rate exceeds 20 [° C./min], the ratio of the α2 phase in the lamellar grains is too high, and the room temperature ductility is lowered.
 本発明では、組成を従来のTiAl基鋳造合金の組成と大幅に変え、適正な条件で熱処理を実施することで、従来のTiAl基鋳造合金では生じなかった相変態過程(L→L+β→β→α+β→α→α+γ→α2+γ)を実現した。この効果により、先行技術において必要であった析出物に頼ることなくTiAl基鋳造合金の結晶粒径の微細化を可能とした。具体的な効果は以下の通りである。まず、原料の溶解、鋳造後の液相状態からの冷却過程においては高温域で存在するβ相の効果で粒径が微細化する。(液相とβ相や、α相とβ相の2相が共存すると必然的に粒径は小さくなる)。また、鋳造後の熱処理工程において、α単相域内での平衡温度領域内で所定の時間保持して所定の冷却速度で冷却することで、β相が消失するとともに、冷却後に高温クリープ強度の高いα2/γ完全ラメラ組織が得られる。つまり、熱処理後の最終的な状態で微細な結晶粒径(コロニーサイズ)のα2/γ完全ラメラ組織となるため、高温クリープ強度ならびに室温での延性、靱性に優れたTiAl基鋳造合金を得ることができる。
 つまり、本発明では、従来のTiAl基鋳造合金では困難であった、室温延性と高温クリープ強度の両立を可能としたものである。
In the present invention, the phase change process (L → L + β → β →) that did not occur in the conventional TiAl base cast alloy is achieved by significantly changing the composition from that of the conventional TiAl base cast alloy and performing heat treatment under appropriate conditions. α + β → α → α + γ → α2 + γ). Due to this effect, the crystal grain size of the TiAl-based cast alloy can be made finer without relying on the precipitates required in the prior art. Specific effects are as follows. First, in the process of melting the raw material and cooling from the liquid phase after casting, the particle size is refined by the effect of the β phase existing in the high temperature region. (If two phases, a liquid phase and a β phase, or an α phase and a β phase coexist, the particle size is necessarily reduced). In addition, in the heat treatment step after casting, the β phase disappears and the high temperature creep strength is high after cooling by maintaining at a predetermined time in the equilibrium temperature region within the α single phase region and cooling at a predetermined cooling rate. An α2 / γ complete lamellar tissue is obtained. In other words, since the final state after heat treatment becomes an α2 / γ complete lamellar structure with a fine crystal grain size (colony size), a TiAl base cast alloy excellent in high temperature creep strength, ductility at room temperature, and toughness can be obtained. Can do.
In other words, the present invention makes it possible to achieve both room temperature ductility and high temperature creep strength, which was difficult with conventional TiAl-based cast alloys.
本発明のTiAl基鋳造合金の成分となる原料を高周波溶解炉で溶解した後、鋳鉄製の金型鋳型で鋳造して作製したTiAl基鋳造合金素材に関し、(A)は鋳造合金素材正面の、(B)は鋳造合金素材側面の、(C)は用いた鋳鉄製金型鋳型の外観写真である。The present invention relates to a TiAl base cast alloy material prepared by melting a raw material as a component of the TiAl base cast alloy of the present invention in a high frequency melting furnace and then casting it with a cast iron mold, and (A) is a front view of the cast alloy material. (B) is a side view of the cast alloy material, and (C) is an appearance photograph of the cast iron mold mold used. 本発明のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金5、(B)は合金7を示している。In the reflection electron image structure photograph of the TiAl base cast alloy of the present invention, (A) shows alloy 5 and (B) shows alloy 7. 本発明のTiAl基鋳造合金の反射電子像組織写真で、(C)は合金10、(D)は合金13を示している。In the reflection electron image structure photograph of the TiAl base cast alloy of the present invention, (C) shows the alloy 10 and (D) shows the alloy 13. 本発明のTiAl基鋳造合金の反射電子像組織写真で、(E)は合金16を示している。In the reflected electron image structure photograph of the TiAl base cast alloy of the present invention, (E) shows the alloy 16. 比較例として合金元素指数Pが-0.9未満のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金3、(B)は合金8を示している。As a comparative example, a reflection electron image structure photograph of a TiAl base cast alloy having an alloy element index P of less than −0.9, (A) shows Alloy 3 and (B) shows Alloy 8. 比較例として合金元素指数Pが-0.9未満のTiAl基鋳造合金の反射電子像組織写真で、(C)は合金14、(D)は合金20を示している。As a comparative example, a reflection electron image structure photograph of a TiAl-based cast alloy having an alloy element index P of less than −0.9, (C) shows alloy 14 and (D) shows alloy 20. 比較例として合金元素指数Pが1.5を超えるTiAl基鋳造合金の反射電子像組織写真で、(A)は合金1、(B)は合金4を示している。As a comparative example, a reflection electron image structure photograph of a TiAl-based cast alloy having an alloy element index P exceeding 1.5, (A) shows Alloy 1 and (B) shows Alloy 4. 比較例として合金元素指数Pが1.5を超えるTiAl基鋳造合金の反射電子像組織写真で、(C)は合金11、(D)は合金17を示している。As a comparative example, a reflection electron image structure photograph of a TiAl-based cast alloy having an alloy element index P exceeding 1.5, (C) shows the alloy 11 and (D) shows the alloy 17. 比較例として合金元素指数Pが1.5を超えるTiAl基鋳造合金の反射電子像組織写真で、(E)は合金21を示している。As a comparative example, a reflection electron image structure photograph of a TiAl-based cast alloy having an alloy element index P exceeding 1.5, (E) shows the alloy 21. 比較例として合金元素指数Pが-0.9~1.5の範囲内であるが、Alの成分比率が42.0at%未満、又は44.0at%超のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金2、(B)は合金19を示している。As a comparative example, a reflection electron image structure of a TiAl-based cast alloy having an alloy element index P in the range of −0.9 to 1.5 but an Al component ratio of less than 42.0 at% or more than 44.0 at% In the photograph, (A) shows Alloy 2 and (B) shows Alloy 19. 比較例として合金元素指数Pが-0.9~1.5の範囲内であるが、Cの成分比率が0.3at%未満、又は1.0at%超のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金6、(B)は合金9を示している。As a comparative example, the reflected electron image structure of a TiAl-based cast alloy in which the alloy element index P is in the range of −0.9 to 1.5, but the component ratio of C is less than 0.3 at% or more than 1.0 at% In the photograph, (A) shows alloy 6 and (B) shows alloy 9. 比較例として合金元素指数Pが-0.9~1.5の範囲内であるが、Cの成分比率が1.0at%超のTiAl基鋳造合金の反射電子像組織写真で、(C)は合金18を示している。As a comparative example, an alloy element index P is in a range of −0.9 to 1.5, but a reflection electron image structure photograph of a TiAl based cast alloy having a C component ratio exceeding 1.0 at%. Alloy 18 is shown. 比較例として合金元素指数Pが-0.9~1.5の範囲内であるが、Siの成分比率が0.3at%未満、又は1.0at%超のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金15、(B)は合金12を示している。As a comparative example, the reflected electron image structure of a TiAl-based cast alloy in which the alloy element index P is in the range of −0.9 to 1.5 but the Si component ratio is less than 0.3 at% or more than 1.0 at% In the photograph, (A) shows alloy 15 and (B) shows alloy 12. 比較例として発明合金の合金10のTiAl基鋳造合金において、熱処理条件の保持温度が1250℃未満、又は1300℃超の場合のTiAl基鋳造合金の反射電子像組織写真で、(A)は保持温度が1230℃、(B)は保持温度が1320℃のものを示している。As a comparative example, in the TiAl base cast alloy of the alloy 10 of the invention alloy, a reflection electron image photograph of the TiAl base cast alloy in the case where the holding temperature of the heat treatment condition is less than 1250 ° C. or more than 1300 ° C., (A) is the holding temperature. Is 1230 ° C., and (B) shows a holding temperature of 1320 ° C. 比較例として発明合金の合金10のTiAl基鋳造合金において、熱処理条件の保持時間が1時間未満、又は30時間超の場合のTiAl基鋳造合金の反射電子像組織写真で、(A)は保持時間が0.5時間、(B)は保持時間が40時間のものを示している。As a comparative example, in the TiAl base cast alloy of the alloy 10 of the invention alloy, a reflection electron image photograph of the TiAl base cast alloy when the heat treatment condition holding time is less than 1 hour or more than 30 hours, (A) is the holding time. Is 0.5 hour, and (B) shows a retention time of 40 hours. 比較例として発明合金の合金10のTiAl基鋳造合金において、熱処理条件の冷却速度が3[℃/分]未満、又は20[℃/分]超の場合のTiAl基鋳造合金の反射電子像組織写真で、(A)は冷却速度が2[℃/分]、(B)は冷却速度が30[℃/分]のものを示している。As a comparative example, in a TiAl base cast alloy of the alloy 10 of the invention alloy, a reflected electron image structure photograph of the TiAl base cast alloy when the cooling rate of the heat treatment condition is less than 3 [° C./min] or exceeds 20 [° C./min] (A) shows a cooling rate of 2 [° C./min], and (B) shows a cooling rate of 30 [° C./min].
[実施例1]
 図1は、本発明のTiAl基鋳造合金の成分となる原料を用いて作製したTiAl基鋳造合金素材に関する外観写真である。(A)は鋳造合金素材正面の、(B)は鋳造合金素材側面の、(C)は用いた鋳鉄製金型鋳型の外観写真である。原料の溶解は表1の組成についてイットリアるつぼを用いた高周波溶解炉によって実施した。なお、カルシアるつぼを用いても同程度の酸素濃度の鋳造合金素材が得られる。原料は、スポンジTiに加えて、他の組成成分としてAl、Nb、Cr、Siの粒状物を用い、CとしてはTiC粉末を用いた。溶解雰囲気はアルゴンガス中である。各原料が完全に溶解してから3分間経過後、(C)に示した鋳鉄製金型鋳型に溶湯を注ぎ込み、その中で凝固させることでTiAl基鋳造合金素材を作製した。写真の鋳造合金素材の重量は約700gであるが、押し湯切断後は約350gとなる。
[Example 1]
FIG. 1 is a photograph of the appearance of a TiAl base cast alloy material produced using raw materials as components of the TiAl base cast alloy of the present invention. (A) is a cast alloy material front surface, (B) is a cast alloy material side surface, and (C) is an appearance photograph of the cast iron mold mold used. The raw materials were melted in a high-frequency melting furnace using an yttria crucible for the compositions shown in Table 1. A cast alloy material having a similar oxygen concentration can be obtained even if a calcia crucible is used. In addition to sponge Ti, the raw materials used were Al, Nb, Cr, and Si granular materials as other composition components, and C was TiC powder. The dissolution atmosphere is in argon gas. Three minutes after each raw material was completely dissolved, the molten metal was poured into a cast iron mold mold shown in (C) and solidified therein to produce a TiAl-based cast alloy material. Although the weight of the cast alloy material in the photograph is about 700 g, it becomes about 350 g after cutting the hot water.
 表1は、上記方法により作製したTiAl基鋳造合金素材の成分組成と、熱処理試験後の組織観察の結果と、適正条件での熱処理後の強度試験の結果を示すものである。 Table 1 shows the component composition of the TiAl-based cast alloy material produced by the above method, the result of the structure observation after the heat treatment test, and the result of the strength test after the heat treatment under appropriate conditions.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 次に、表1に示した合金1-21の鋳造合金素材に対して行った熱処理試験について、詳細を説明する。
 各鋳造合金素材より切り出した小片(10mm×10mm)について、温度と時間のプログラム制御が可能な電気炉を用いて、熱処理条件のうち保持温度、保持時間、冷却速度の三条件を以下の範囲で変化させて、大気中で熱処理を実施した。
保持温度:1200~1350℃
保持時間:0.5~50時間
冷却速度:1~30[℃/分]
 次に、熱処理後の小片の断面について、走査型電子顕微鏡の反射電子像による組織観察を実施し、その組織の状態から適正な熱処理条件であるかどうかを判定した。ここで、組織観察で適正と判断した組織は次の2要件を充足するものである。
(i)α2相とγ相が積層された平均結晶粒径30~200μmのラメラ粒が密に配列してなる微細組織であること。
(ii)β相が存在しない組織であること。
 ここで、「平均結晶粒径」とは、JIS G 0551に準拠して決定される値をいう。また、ラメラ粒が「密に配列してなる」とは、走査型電子顕微鏡の反射電子像による合金試料の組織観察において、ラメラ粒同士の間の隙間が10μm未満であることをいう。
 また、「β相が存在しない」とは、走査型電子顕微鏡の反射電子像による合金試料の組織観察において、析出物と同定されるもの以外に、α2相およびγ相よりも明るいコントラストを有する相が確認されないことをいう。
Next, the heat treatment test performed on the cast alloy material of alloy 1-21 shown in Table 1 will be described in detail.
For small pieces (10mm x 10mm) cut out from each cast alloy material, using an electric furnace capable of temperature and time program control, the three conditions of holding temperature, holding time and cooling rate among the heat treatment conditions are as follows. The heat treatment was performed in the air while changing.
Holding temperature: 1200-1350 ° C
Holding time: 0.5-50 hours Cooling rate: 1-30 [° C / min]
Next, the cross-section of the small piece after the heat treatment was subjected to a structure observation by a reflection electron image of a scanning electron microscope, and it was determined whether or not the heat treatment conditions were appropriate from the state of the structure. Here, the organization judged to be appropriate by the tissue observation satisfies the following two requirements.
(I) A fine structure in which lamella grains having an average crystal grain size of 30 to 200 μm in which α2 phase and γ phase are laminated are densely arranged.
(Ii) The tissue has no β phase.
Here, the “average crystal grain size” refers to a value determined in accordance with JIS G 0551. Further, “lamellar grains are densely arranged” means that the gap between the lamellar grains is less than 10 μm in the observation of the structure of the alloy sample by the reflected electron image of the scanning electron microscope.
“No β phase” means a phase having a brighter contrast than those of the α2 phase and the γ phase in addition to those identified as precipitates in the observation of the structure of the alloy sample by the reflection electron image of the scanning electron microscope. Is not confirmed.
 続いて、表1に示した合金1-21の鋳造合金素材の機械的特性の評価について、詳細を説明する。
 合金1-21の鋳造合金素材に関し、熱処理試験片を切断した後の残材について、熱処理試験で得られた各々の鋳造合金素材に適正な条件で熱処理を実施した後、平行部直径が4mmの2つの試験片を加工し、以下の2種の強度試験を実施した。ここで、発明合金の熱処理条件については、上記熱処理試験で適正と判断した要件(i)、(ii)を充足する条件とした。また、比較合金の熱処理条件については、合金の全体組成におけるAlの成分比率が類似する発明合金での適正条件とした。具体的な熱処理条件を以下に示す。
合金2、4-7:1265℃で10時間保持した後、3[℃/分]で冷却
合金9-13:1275℃で10時間保持した後、5[℃/分]で冷却
合金14-16、18、19:1285℃で10時間保持した後、10[℃/分]で冷却
なお、合金1、3、8、17、20および21については、機械的特性の評価は行わなかった。
 実施した強度試験は870℃×225MPaのクリープ破断試験、ならびに室温での引張試験である。前者については、破断時間の長短によって各合金の高温クリープ強度を比較し、破断時間が50時間以上の場合に良好であると判断した。また、後者については、伸びの大小によって各合金の室温延性を比較し、伸びが0.5%以上の場合に良好であると判断した。
Subsequently, the details of the evaluation of the mechanical properties of the cast alloy material of the alloy 1-21 shown in Table 1 will be described.
Regarding the cast alloy material of Alloy 1-21, the remaining material after cutting the heat treatment test piece was subjected to heat treatment under conditions appropriate for each cast alloy material obtained in the heat treatment test, and the parallel part diameter was 4 mm. Two test pieces were processed, and the following two strength tests were performed. Here, the heat treatment conditions of the alloy according to the invention were set to satisfy the requirements (i) and (ii) determined to be appropriate in the heat treatment test. The heat treatment conditions for the comparative alloy were set to appropriate conditions for the inventive alloy having a similar Al component ratio in the overall composition of the alloy. Specific heat treatment conditions are shown below.
Alloy 2, 4-7: Hold at 1265 ° C. for 10 hours, then cool at 3 [° C./min] Alloy 13-13: Hold at 1275 ° C. for 10 hours, then cool at 5 [° C./min] 14-16 18, 19: After holding at 1285 ° C. for 10 hours and cooling at 10 [° C./min], the mechanical properties of Alloys 1, 3, 8, 17, 20, and 21 were not evaluated.
The strength test performed was a rupture test at 870 ° C. × 225 MPa and a tensile test at room temperature. As for the former, the high temperature creep strength of each alloy was compared according to the length of the rupture time, and it was judged that the rupture time was good when it was 50 hours or more. Moreover, the latter was compared with the room temperature ductility of each alloy by the magnitude of elongation, and when the elongation was 0.5% or more, it was judged that it was favorable.
 続いて、表1に示した合金1-21の鋳造合金素材の反射電子像組織写真を、発明合金と比較合金に分けて説明する。
 図2A、図2B、図2Cは、発明合金の反射電子像組織写真で、(A)は合金5、(B)は合金7、(C)は合金10、(D)は合金13、(E)は合金16を示している。いずれもα2相、γ相よりなる完全ラメラ組織であり、α2相とγ相が積層された平均結晶粒径30~200μmの微細なラメラ粒が密に配列してなる微細組織を有している。また高温クリープ強度が低いβ相(α2相およびγ相よりも明るいコントラストを有する相)が存在しない。つまり、本発明のTiAl基鋳造合金は、以上の組織構成を有するため、高温クリープ強度、室温延性ともに優れていると言える。
Subsequently, the reflected electron image structure photograph of the cast alloy material of Alloy 1-21 shown in Table 1 will be described separately for the invention alloy and the comparative alloy.
2A, FIG. 2B, and FIG. 2C are reflection electron image structure photographs of the alloys according to the present invention. (A) is alloy 5, (B) is alloy 7, (C) is alloy 10, (D) is alloy 13, (E ) Shows the alloy 16. Both have a complete lamellar structure composed of α2 phase and γ phase, and have a fine structure in which fine lamella grains having an average crystal grain size of 30 to 200 μm in which α2 phase and γ phase are laminated are densely arranged. . Further, there is no β phase (phase having a brighter contrast than α2 phase and γ phase) having low high-temperature creep strength. That is, it can be said that the TiAl base cast alloy of the present invention is excellent in both high temperature creep strength and room temperature ductility because it has the above-described structure.
[比較例1]
 図3A、図3Bは、比較例として合金元素指数Pが-0.9未満のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金3、(B)は合金8、(C)は合金14、(D)は合金20を示している。合金3では合金元素指数Pが-0.96であり、また合金8では-0.96であり、合金14では-1.01であり、合金20では-1.01である。図3の比較合金はいずれも合金元素指数Pが-0.9未満であることから、平均結晶粒径が200μmを超えて粗大化している。
[Comparative Example 1]
FIG. 3A and FIG. 3B are reflected electron image structure photographs of a TiAl-based cast alloy having an alloy element index P of less than −0.9 as a comparative example, (A) is Alloy 3, (B) is Alloy 8, and (C) Indicates an alloy 14, and (D) indicates an alloy 20. In Alloy 3, the alloy element index P is -0.96, in Alloy 8 is -0.96, in Alloy 14 is -1.01, and in Alloy 20 is -1.01. Since all of the comparative alloys shown in FIG. 3 have an alloy element index P of less than −0.9, the average crystal grain size is coarsened to exceed 200 μm.
[比較例2]
 図4A、図4B、図4Cは、比較例として合金元素指数Pが1.5を超えるTiAl基鋳造合金の反射電子像組織写真で、(A)は合金1、(B)は合金4、(C)は合金11、(D)は合金17、(E)は合金21を示している。合金1では合金元素指数Pが1.87であり、また合金4では1.62であり、合金11では1.81であり、合金17では1.89であり、合金21は1.68である。図4の比較合金はいずれも合金元素指数Pが1.5超であることから、β相(α2相およびγ相よりも明るいコントラストを有する相)が存在している。
[Comparative Example 2]
4A, FIG. 4B, and FIG. 4C are reflection electron image structure photographs of a TiAl-based cast alloy having an alloy element index P exceeding 1.5 as a comparative example, where (A) is alloy 1, (B) is alloy 4, and ( C) shows the alloy 11, (D) shows the alloy 17, and (E) shows the alloy 21. In alloy 1, the alloy element index P is 1.87, in alloy 4 is 1.62, in alloy 11 is 1.81, in alloy 17 is 1.89, and alloy 21 is 1.68. . Since all of the comparative alloys of FIG. 4 have an alloy element index P exceeding 1.5, a β phase (a phase having a brighter contrast than the α2 phase and the γ phase) exists.
[比較例3]
 図5は、比較例として合金元素指数Pが-0.9~1.5の範囲内であるが、Alの成分比率が42.0at%未満、又は44.0at%超のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金2、(B)は合金19を示している。合金元素指数Pについては、合金2では0.66であり、また合金19では0.52である。Alの成分比率については、合金2では41.0at%であり、また合金19では45.0at%である。合金2ではAlの成分比率が低いため、ラメラ粒内のα2相の比率が多すぎて高倍率の像においてもα2相よりも暗いコントラストを有するγ相との積層構造が不鮮明な部分があり、室温での伸びが小さい。合金19ではAlの成分比率が高いため、ラメラ粒内のα2相の比率が少なすぎて、クリープ破断時間が短い。
[Comparative Example 3]
FIG. 5 shows a comparative example of a TiAl-based cast alloy having an alloy element index P in the range of −0.9 to 1.5, but an Al component ratio of less than 42.0 at% or more than 44.0 at%. In the reflected electron image structure photograph, (A) shows alloy 2 and (B) shows alloy 19. The alloy element index P is 0.66 for alloy 2 and 0.52 for alloy 19. The component ratio of Al is 41.0 at% for alloy 2 and 45.0 at% for alloy 19. In Alloy 2, since the component ratio of Al is low, there are too many α2 phase ratios in the lamellar grains, and even in a high magnification image, there is a portion where the laminated structure with the γ phase having a darker contrast than the α2 phase is unclear, Small elongation at room temperature. In alloy 19, since the Al component ratio is high, the ratio of α2 phase in the lamellar grains is too small, and the creep rupture time is short.
[比較例4]
 図6A、図6Bは、比較例として合金元素指数Pが-0.9~1.5の範囲内であるが、Cの成分比率が0.3at%未満、又は1.0at%超のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金6、(B)は合金9、(C)は合金18を示している。合金元素指数Pについては、合金6では0.60であり、合金9では-0.31であり、また合金18では0.24である。Cの成分比率については、合金6では0.2at%であり、合金9では1.2at%であり、また合金18では1.2at%である。合金6は合金元素指数Pが-0.9~1.5の範囲内にあるため組織観察の結果は良好であるが、Cの成分比率が低いため、クリープ破断時間が短い。合金9、18は合金元素指数Pが-0.9~1.5の範囲内にあるため組織観察の結果は良好であるが、Cの成分比率が高いため室温での伸びが小さい。
[Comparative Example 4]
6A and 6B show, as a comparative example, a TiAl group in which the alloy element index P is in the range of −0.9 to 1.5, but the component ratio of C is less than 0.3 at% or more than 1.0 at%. In the reflection electron image structure photograph of the cast alloy, (A) shows the alloy 6, (B) shows the alloy 9, and (C) shows the alloy 18. The alloying element index P is 0.60 for alloy 6, -0.31 for alloy 9, and 0.24 for alloy 18. The component ratio of C is 0.2 at% for the alloy 6, 1.2 at% for the alloy 9, and 1.2 at% for the alloy 18. The alloy 6 has an alloy element index P in the range of −0.9 to 1.5, so that the result of the structure observation is good. However, since the C component ratio is low, the creep rupture time is short. In Alloys 9 and 18, the alloy element index P is in the range of −0.9 to 1.5, so that the result of the structure observation is good. However, since the C component ratio is high, the elongation at room temperature is small.
[比較例5]
 図7は、比較例として合金元素指数Pが-0.9~1.5の範囲内であるが、Siの成分比率が0.3at%未満、又は1.0at%超のTiAl基鋳造合金の反射電子像組織写真で、(A)は合金15、(B)は合金12を示している。合金元素指数Pについては、合金15では0.62であり、また合金12では-0.03である。Siの成分比率については、合金15では0.2at%であり、また合金12では1.2at%である。合金15は合金元素指数Pが-0.9~1.5の範囲内であるため組織観察の結果は良好であるが、Siの成分比率が低いため、クリープ破断時間が短い。合金12は合金元素指数Pが-0.9~1.5の範囲内にあるため組織観察の結果は良好であるが、Siの成分比率が高いため室温での伸びが小さい。なお、合金12で明るいコントラストを有する微細な析出物はSiに起因するシリサイドである。
[Comparative Example 5]
FIG. 7 shows, as a comparative example, a TiAl-based cast alloy in which the alloy element index P is in the range of −0.9 to 1.5, but the Si component ratio is less than 0.3 at% or more than 1.0 at%. In the reflected electron image structure photograph, (A) shows the alloy 15 and (B) shows the alloy 12. The alloy element index P is 0.62 for the alloy 15 and −0.03 for the alloy 12. The component ratio of Si is 0.2 at% for the alloy 15 and 1.2 at% for the alloy 12. Since the alloy element index P of the alloy 15 is in the range of −0.9 to 1.5, the result of the structure observation is good. However, since the Si component ratio is low, the creep rupture time is short. Since the alloy element index P of the alloy 12 is in the range of −0.9 to 1.5, the result of the structure observation is good, but the elongation at room temperature is small because of the high Si component ratio. Note that the fine precipitate having a bright contrast in the alloy 12 is silicide caused by Si.
[比較例6]
 図8は、比較例として合金元素指数Pが-0.9~1.5の範囲内のTiAl基鋳造合金であるが、熱処理条件の保持温度が1250℃未満、又は1300℃超の場合の反射電子像組織写真を示している。(A)は発明合金の合金10で保持温度が1230℃の場合の、(B)は発明合金の合金10で保持温度が1320℃の場合の反射電子像組織写真である。(A)では熱処理条件の保持温度が1230℃と低い温度であるため、α単相化せず完全ラメラ組織が形成されていない。(B)では、熱処理条件の保持温度が1320℃と高い温度であるため、β相(α2相およびγ相よりも明るいコントラストを有する相)が存在している。
[Comparative Example 6]
FIG. 8 shows a TiAl-based cast alloy having an alloy element index P in the range of −0.9 to 1.5 as a comparative example, but the reflection when the holding temperature under the heat treatment condition is less than 1250 ° C. or more than 1300 ° C. An electronic image structure photograph is shown. (A) is a reflection electron image structure photograph in the case where the holding temperature is 1230 ° C. with the alloy 10 of the invention alloy, and (B) is a reflected electron image structure photograph in the case where the holding temperature is 1320 ° C. In (A), since the holding temperature of the heat treatment conditions is as low as 1230 ° C., the α single phase is not formed and a complete lamellar structure is not formed. In (B), since the holding temperature of the heat treatment condition is as high as 1320 ° C., a β phase (a phase having a brighter contrast than the α2 phase and the γ phase) exists.
[比較例7]
 図9は、比較例として合金元素指数Pが-0.9~1.5の範囲内のTiAl基鋳造合金であるが、熱処理条件の保持時間が1時間未満、又は30時間超の場合の反射電子像組織写真を示している。(A)は発明合金の合金10で保持時間が0.5時間の場合の、(B)は発明合金の合金10で保持時間が40時間の場合の反射電子像組織写真である。(A)では熱処理条件の保持時間が0.5時間と短く、α単相化せず完全ラメラ組織が形成されていない。(B)では、熱処理条件の保持時間が40時間と長すぎ、平均結晶粒径が200μmを超えて粗大化している。
[Comparative Example 7]
FIG. 9 shows a TiAl-based cast alloy having an alloy element index P in the range of −0.9 to 1.5 as a comparative example, but the reflection when the heat treatment condition holding time is less than 1 hour or more than 30 hours. An electronic image structure photograph is shown. (A) is a reflection electron image structure photograph in the case of the alloy 10 of the invention alloy when the holding time is 0.5 hours, and (B) is a reflected electron image structure photograph in the case of the alloy 10 of the invention alloy and the holding time is 40 hours. In (A), the holding time of the heat treatment conditions is as short as 0.5 hours, the α single phase is not formed, and a complete lamellar structure is not formed. In (B), the holding time of the heat treatment conditions is too long, 40 hours, and the average crystal grain size exceeds 200 μm and is coarsened.
[比較例8]
 図10は、比較例として合金元素指数Pが-0.9~1.5の範囲内のTiAl基鋳造合金であるが、熱処理条件の冷却速度が3[℃/分]未満、又は20[℃/分]超の場合の反射電子像組織写真を示している。(A)は発明合金の合金10で冷却速度が2[℃/分]の場合の、(B)は同様に発明合金の合金10で冷却速度が30[℃/分]の場合の反射電子像組織写真である。(A)は熱処理条件の冷却速度が2[℃/分]と遅く、ラメラ粒の間隔が大きすぎて、高温クリープ強度が低下する。(B)は、熱処理条件の冷却速度が30[℃/分]と早すぎて、ラメラ粒内のα2相の比率が多すぎて高倍率の像においてもα2相よりも暗いコントラストを有するγ相との積層構造が不鮮明な部分がある。またこれにより、室温での延性が低下する。
[Comparative Example 8]
FIG. 10 shows a TiAl-based cast alloy having an alloy element index P in the range of −0.9 to 1.5 as a comparative example, but the cooling rate under heat treatment conditions is less than 3 [° C./min] or 20 [° C. / Min] shows a reflected electron image structure photograph. (A) is a backscattered electron image of the alloy 10 of the invention alloy when the cooling rate is 2 [° C / min], and (B) is a backscattered electron image of the alloy 10 of the invention alloy and the cooling rate of 30 [° C / min]. It is an organization photograph. In (A), the cooling rate under heat treatment conditions is as slow as 2 [° C./min], the interval between lamella grains is too large, and the high temperature creep strength is lowered. (B) is a γ phase having a darker contrast than the α2 phase even in a high-magnification image because the cooling rate of the heat treatment condition is too high at 30 [° C./min] and the ratio of α2 phase in the lamellar grains is too large. There is a part where the laminated structure is unclear. This also reduces the ductility at room temperature.
 なお、上述したように、表1に示す発明合金10の強度試験においては、適正な条件で熱処理を実施している。 As described above, in the strength test of the inventive alloy 10 shown in Table 1, heat treatment is performed under appropriate conditions.
 上記の実施の形態は本発明の説明のために示したもので、本発明の権利範囲を制限するものではない。本発明の権利範囲は、本明細書での開示範囲、ならびにこの開示を基礎として当業者に自明な範囲を含むものである。 The above embodiments are shown for the purpose of explaining the present invention, and do not limit the scope of rights of the present invention. The scope of right of the present invention includes the scope disclosed herein, as well as the scope obvious to those skilled in the art based on this disclosure.
 本発明のTiAl基鋳造合金は、発電用ガスタービンや航空機用ジェットエンジンの動翼として使用するのに好適である。
 例えば、本発明のTiAl基鋳造合金素材を用いると、軽量であり、しかも高温クリープ強度と室温での延性や靭性に優れた動翼が得られる。この動翼を発電用ガスタービンや航空機用ジェットエンジンに用いることで、信頼性を維持しつつ、エネルギ-効率の向上による二酸化炭素排出量の削減や、燃料消費量の削減に貢献することが可能となる。
The TiAl-based cast alloy of the present invention is suitable for use as a moving blade of a power generation gas turbine or an aircraft jet engine.
For example, when the TiAl-based cast alloy material of the present invention is used, a moving blade that is lightweight and excellent in high-temperature creep strength, room temperature ductility, and toughness can be obtained. By using these blades for power generation gas turbines and aircraft jet engines, it is possible to contribute to reducing carbon dioxide emissions and fuel consumption by improving energy efficiency while maintaining reliability. It becomes.

Claims (3)

  1.  Al:42~44原子%、Nb:6.0~9.0原子%、Cr:0~3.5原子%、Si:0.3~1.0原子%、C:0.3~1.0原子%、残部:Ti及び不可避不純物からなり、かつ次式によって求められる合金元素指数Pが、-0.9~1.5の範囲内である組成を有し、α2相とγ相が積層された平均結晶粒径30~200μmのラメラ粒が密に配列してなる微細組織であり、かつβ相が存在しない組織からなることを特徴とするTiAl基鋳造合金。
      P=(41-Al)/3+0.25Nb+0.8Cr-0.8Si-1.7C
    Al: 42 to 44 atomic%, Nb: 6.0 to 9.0 atomic%, Cr: 0 to 3.5 atomic%, Si: 0.3 to 1.0 atomic%, C: 0.3 to 1. The composition is composed of 0 atomic%, the balance: Ti and inevitable impurities, and the alloy element index P obtained by the following formula is in the range of −0.9 to 1.5, and the α2 phase and the γ phase are laminated. A TiAl-based cast alloy characterized in that it has a fine structure in which lamella grains having an average crystal grain size of 30 to 200 μm are densely arranged and has no β phase.
    P = (41-Al) /3+0.25Nb+0.8Cr-0.8Si-1.7C
  2.  α2相とγ相が積層された平均結晶粒径30~200μmのラメラ粒が密に配列してなる微細組織であり、かつβ相が存在しない組織からなるTiAl基鋳造合金を製造する方法であって、
     Al:42~44原子%、Nb:6.0~9.0原子%、Cr:0~3.5原子%、Si:0.3~1.0原子%、C:0.3~1.0原子%、残部:Ti及び不可避不純物からなり、かつ次式によって求められる合金元素指数Pが、-0.9~1.5の範囲内である組成を有する原料を溶解、鋳造した後、1250~1300℃の温度範囲で1~30時間保持し、3~20[℃/分]の冷却速度で冷却して熱処理する工程を備えることを特徴とするTiAl基鋳造合金の製造方法。
      P=(41-Al)/3+0.25Nb+0.8Cr-0.8Si-1.7C
    This is a method for producing a TiAl-based cast alloy having a fine structure in which lamella grains having an average crystal grain size of 30 to 200 μm laminated with an α2 phase and a γ phase are densely arranged and a structure in which no β phase is present. And
    Al: 42 to 44 atomic%, Nb: 6.0 to 9.0 atomic%, Cr: 0 to 3.5 atomic%, Si: 0.3 to 1.0 atomic%, C: 0.3 to 1. After melting and casting a raw material having a composition of 0 atomic%, balance: Ti and inevitable impurities, and an alloying element index P determined by the following formula within a range of −0.9 to 1.5, 1250 A method for producing a TiAl-based cast alloy comprising the steps of: holding at a temperature range of ˜1300 ° C. for 1 to 30 hours, and cooling and heat-treating at a cooling rate of 3 to 20 [° C./min].
    P = (41-Al) /3+0.25Nb+0.8Cr-0.8Si-1.7C
  3.  前記TiAl基鋳造合金は、前記原料の溶解、鋳造後の液相状態からの冷却過程、ならびに前記熱処理工程では、L→L+β→β→α+β→α→α+γ→α2+γ変態を生じることを特徴とする請求項2に記載のTiAl基鋳造合金の製造方法。 The TiAl-based cast alloy is characterized in that the L → L + β → β → α + β → α → α + γ → α2 + γ transformation occurs in the melting process of the raw material, the cooling process from the liquid phase after casting, and the heat treatment process. The manufacturing method of the TiAl base casting alloy of Claim 2.
PCT/JP2015/064491 2014-05-28 2015-05-20 TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME WO2015182454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-110547 2014-05-28
JP2014110547A JP6284232B2 (en) 2014-05-28 2014-05-28 TiAl-based cast alloy and method for producing the same

Publications (1)

Publication Number Publication Date
WO2015182454A1 true WO2015182454A1 (en) 2015-12-03

Family

ID=54698791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064491 WO2015182454A1 (en) 2014-05-28 2015-05-20 TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME

Country Status (2)

Country Link
JP (1) JP6284232B2 (en)
WO (1) WO2015182454A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123186A1 (en) * 2016-01-11 2017-07-20 General Electric Company Tial-based alloys having improved creep strength by strengthening of gamma phase
CN109628867A (en) * 2019-01-28 2019-04-16 西北工业大学 Obtained the heat treatment method of the nearly lamellar structure of peritectoid casting TiAl alloy
EP3575423A1 (en) * 2018-06-01 2019-12-04 Daido Steel Co.,Ltd. Preform and method for producing tial-based turbine wheel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107233A (en) * 1990-08-28 1992-04-08 Nissan Motor Co Ltd Ti-al series lightweight heat resistant material
JPH08120372A (en) * 1994-10-25 1996-05-14 Mitsubishi Heavy Ind Ltd Tial intermetallic compound base alloy and its production
JP2000199025A (en) * 1999-01-05 2000-07-18 Mitsubishi Heavy Ind Ltd TiAl INTERMETALLIC COMPOUND BASE ALLOY, ITS PRODUCTION, TURBINE MEMBER AND ITS PRODUCTION
JP2008184665A (en) * 2007-01-30 2008-08-14 Daido Steel Co Ltd TiAl ALLOY SUPERIOR IN HIGH-TEMPERATURE CREEP CHARACTERISTICS AND MANUFACTURING METHOD THEREFOR
KR101342169B1 (en) * 2013-05-20 2013-12-18 한국기계연구원 A tial base alloy ingot having ductility at room temperature

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036877A (en) * 2009-08-10 2011-02-24 Seimitsu Kogyo Kk METHOD FOR PRODUCING TiAl ALLOY INGOT, AND TiAl ALLOY INGOT PRODUCED BY THE METHOD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107233A (en) * 1990-08-28 1992-04-08 Nissan Motor Co Ltd Ti-al series lightweight heat resistant material
JPH08120372A (en) * 1994-10-25 1996-05-14 Mitsubishi Heavy Ind Ltd Tial intermetallic compound base alloy and its production
JP2000199025A (en) * 1999-01-05 2000-07-18 Mitsubishi Heavy Ind Ltd TiAl INTERMETALLIC COMPOUND BASE ALLOY, ITS PRODUCTION, TURBINE MEMBER AND ITS PRODUCTION
JP2008184665A (en) * 2007-01-30 2008-08-14 Daido Steel Co Ltd TiAl ALLOY SUPERIOR IN HIGH-TEMPERATURE CREEP CHARACTERISTICS AND MANUFACTURING METHOD THEREFOR
KR101342169B1 (en) * 2013-05-20 2013-12-18 한국기계연구원 A tial base alloy ingot having ductility at room temperature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123186A1 (en) * 2016-01-11 2017-07-20 General Electric Company Tial-based alloys having improved creep strength by strengthening of gamma phase
EP3575423A1 (en) * 2018-06-01 2019-12-04 Daido Steel Co.,Ltd. Preform and method for producing tial-based turbine wheel
CN109628867A (en) * 2019-01-28 2019-04-16 西北工业大学 Obtained the heat treatment method of the nearly lamellar structure of peritectoid casting TiAl alloy
CN109628867B (en) * 2019-01-28 2020-09-08 西北工业大学 Heat treatment method for obtaining peritectic casting TiAl alloy near lamellar structure

Also Published As

Publication number Publication date
JP2015224372A (en) 2015-12-14
JP6284232B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2013089218A1 (en) Heat-resistant nickel-based superalloy
JP5478601B2 (en) Ni-based forged alloy and gas turbine using the same
WO2011062231A1 (en) Heat-resistant superalloy
US20100000635A1 (en) Titanium aluminide alloys
WO2012026354A1 (en) Co-based alloy
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
JPWO2006059805A1 (en) Heat resistant superalloy
US10208360B2 (en) Hot-forged TiAl-based alloy and method for producing the same
US9828657B2 (en) Ni-base super alloy
CN103556020A (en) Manganese copper-based high-damping alloy with high mechanical properties and high manganese content
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP2020517821A (en) Precipitation hardened cobalt-nickel based superalloys and articles made therefrom
JPWO2018043187A1 (en) TiAl alloy and method of manufacturing the same
JP7450639B2 (en) Low stacking fault energy superalloys, structural members and their uses
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
JP6202556B2 (en) Hot forging type TiAl based alloy
JP2011052239A (en) Heat resistant orthorhombic titanium alloy and method for producing the same
WO2015182454A1 (en) TiAl-BASED CASTING ALLOY AND METHOD FOR PRODUCING SAME
CN114214532B (en) Method for realizing gamma-TiAl alloy refinement by accurately controlling metastable structure stabilization
JP5747410B2 (en) Heat resistant titanium alloy
CN112063885B (en) Ruthenium-containing multi-component TiAl alloy suitable for 800 DEG C
JP5645054B2 (en) Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
WO2020189215A1 (en) Titanium aluminide alloy material for hot forging, forging method for titanium aluminide alloy material, and forged body
JP2015193910A (en) TiAl-BASED HEAT RESISTANT MEMBER
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800276

Country of ref document: EP

Kind code of ref document: A1