JP2010280927A - INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY - Google Patents

INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY Download PDF

Info

Publication number
JP2010280927A
JP2010280927A JP2009132652A JP2009132652A JP2010280927A JP 2010280927 A JP2010280927 A JP 2010280927A JP 2009132652 A JP2009132652 A JP 2009132652A JP 2009132652 A JP2009132652 A JP 2009132652A JP 2010280927 A JP2010280927 A JP 2010280927A
Authority
JP
Japan
Prior art keywords
tial alloy
internal combustion
combustion engine
atom
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009132652A
Other languages
Japanese (ja)
Inventor
Masayuki Tsuchiya
雅之 土屋
Sadayoshi Minato
定美 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009132652A priority Critical patent/JP2010280927A/en
Publication of JP2010280927A publication Critical patent/JP2010280927A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TiAl-made internal combustion engine component, particularly a valve or a piston pin, which has high temperature high strength and high rigidity, and also is improved in ductility. <P>SOLUTION: The internal combustion engine component are produced through: an extruding process where a TiAl alloy containing, by atom, 40 to 42% Al and 2.4 to 2.6% Cr, and the balance Ti with inevitable impurities is extruded at 1,100 to 1,150°C at an extrusion ratio of ≥10 so as to obtain a molded body; an annealing process where, after the completion of the extruding process or during the extruding process, the molded body is held at 950 to 1,050°C for 2 to 5 h in a vacuum; and a cooling process where the molded body subjected to the annealing process is cooled to 400°C at a cooling speed of 10 to 60 °C/min in an inert gas. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、本発明は高温高強度や高剛性を有するTiAl合金製内燃機関部品に係り、特に、バルブやピストンピンの延性を向上させる技術に関するものである。   The present invention relates to a TiAl alloy internal combustion engine component having high temperature and high strength and high rigidity, and more particularly to a technique for improving ductility of valves and piston pins.

内燃機関用のバルブとしては、従来、高温での強度と剛性に優れたTiAl合金製のものが知られている。たとえば、特許文献1には、TiAl合金素材を1000〜1350℃に加熱してバルブ形状に押出し成形する技術が開示されている。この技術では、加熱時のTiAl合金素材の酸化を防止するために、TiAl合金素材を金属製ケース内に密封し、押出し成形後にケースを機械加工によって除去している。また、特許文献2には、TiAl合金粉末を圧粉成形して焼結することにより、バルブ形状とする技術が開示されている。
また内燃機関用ピストンピンは、鉄鋼材料に浸炭や窒化処理を施したものが一般的に使用されている。一方で、慣性重量低減による燃費性能の向上を狙いとして、従来、低比重かつ剛性に優れるセラミックスや複合強化金属を用いた技術が開示されている(特許文献3、4)。
As a valve for an internal combustion engine, conventionally, a valve made of a TiAl alloy excellent in strength and rigidity at high temperature is known. For example, Patent Document 1 discloses a technique in which a TiAl alloy material is heated to 1000 to 1350 ° C. and extruded into a valve shape. In this technique, in order to prevent oxidation of the TiAl alloy material during heating, the TiAl alloy material is sealed in a metal case, and the case is removed by machining after extrusion. Patent Document 2 discloses a technique for forming a valve shape by compacting and sintering a TiAl alloy powder.
Further, as a piston pin for an internal combustion engine, a steel material that is carburized or nitrided is generally used. On the other hand, techniques using ceramics and composite reinforced metals having low specific gravity and excellent rigidity have been disclosed for the purpose of improving fuel efficiency by reducing inertia weight (Patent Documents 3 and 4).

特開2000−24748号公報JP 2000-24748 A 特開2000−355706号公報JP 2000-355706 A 特開平10−61765号公報Japanese Patent Laid-Open No. 10-61765 特許第1809240号公報Japanese Patent No. 1809240

ところで、内燃機関用のバルブは、バルブシートと衝突を繰り返すため、高温での強度と剛性は勿論のこと、延性すなわち耐衝撃性も要求される。たとえば、ノッキング等によってバルブに大きな衝撃が作用したときに、破損しない耐衝撃性が求められる。しかしながら、TiAl合金は1%という乏しい延性にもかかわらず、延性を改良する試みは今までのところなされていないのが実情である。 また内燃機関用ピストンピンに関しても、セラミックスや複合強化金属には耐衝撃性や強度、あるいはコストの課題があり、鉄鋼製に代わる実用レベルには至っていないのが実情である。TiAl合金もその低比重かつ高剛性特性から有望な材料であるが、やはり内燃機関の爆発負荷に耐え得る耐衝撃性の観点で延性に乏しく、実用部品とするには本特性を改善する必要があった。   By the way, since a valve for an internal combustion engine repeatedly collides with a valve seat, not only strength and rigidity at high temperature but also ductility, that is, impact resistance is required. For example, there is a demand for impact resistance that does not break when a large impact is applied to the valve by knocking or the like. However, despite the poor ductility of 1% for TiAl alloys, no attempt has been made so far to improve the ductility. As for piston pins for internal combustion engines, ceramics and composite reinforced metals have problems of impact resistance, strength, and cost, and the actual situation is that they have not reached a practical level in place of steel. TiAl alloy is also a promising material because of its low specific gravity and high rigidity, but it also has poor ductility in terms of impact resistance that can withstand the explosion load of an internal combustion engine, and it is necessary to improve this property to make it a practical part. there were.

したがって、本発明は、上記事情に鑑みてなされたもので、高温高強度や高剛性を有するのは勿論のこと、延性も向上したTiAl合金製内燃機関部品を提供することを目的としている。   Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a TiAl alloy-made internal combustion engine component with improved ductility as well as high temperature, high strength and high rigidity.

本発明のTiAl合金製内燃機関部品は、Alを40〜42atom%、Cr:2.4〜2.6atom%含有し、残部がTiおよび不可避不純物からなるTiAl合金を、1100〜1150℃で押出比10以上に押し出して成形体を得る押出工程と、前記押出工程終了後または押出工程中に前記成形体を真空中で950〜1050℃で2〜5時間保持する焼鈍工程と、前記焼鈍工程が終了した前記成形体を不活性ガス中で400℃まで10〜60℃/分の冷却速度で冷却する冷却工程とを経て製造されたことを特徴とする。   The TiAl alloy internal combustion engine component of the present invention contains a TiAl alloy containing Al of 40 to 42 atom%, Cr: 2.4 to 2.6 atom%, and the balance of Ti and inevitable impurities at 1100 to 1150 ° C. Extruding step to obtain a molded body by extruding to 10 or more, annealing step for holding the molded body in vacuum at 950 to 1050 ° C. for 2 to 5 hours after completion of the extrusion step or during the extrusion step, and the annealing step are completed The molded body is manufactured through a cooling step of cooling the molded body to 400 ° C. at a cooling rate of 10 to 60 ° C./min in an inert gas.

以下、本発明の数値限定の根拠について本発明の作用とともに説明する。
Alの含有量:40〜42atom%
AlはTiAl合金の強度と延性を向上させる元素である。Alの含有量が40atom%未満では延性が低下し、43atom%を超えると延性とともに強度が低下する。よって、Alの含有量は40〜42atom%とした。
Hereinafter, the grounds for limiting the numerical values of the present invention will be described together with the operation of the present invention.
Al content: 40-42 atom%
Al is an element that improves the strength and ductility of the TiAl alloy. If the Al content is less than 40 atom%, the ductility is lowered, and if it exceeds 43 atom%, the ductility is lowered together with the ductility. Therefore, the Al content is set to 40 to 42 atom%.

押出加工の温度範囲:1100〜1150℃
β−Ti相は延性の高い組織であり、本発明は、後述するように結晶組織の粒界に微細なβ−Ti相を析出することで延性を向上させている。Ti−Al平衡状態図でAlが40〜42atom%では、1150℃以下でβ−Ti相を含む組織となる。したがって、1150℃以下でTiAl合金を押し出すことにより、大きな伸びを得ることができる。また、1150℃以下で押し出すことにより組織が微細化し、高い強度を得ることができる。換言すると、1150℃を超えた温度範囲では、α−Ti相かこれにγ相を加えた組織となり、押し出し時に充分な伸びを得ることができず、また、組織を微細化して高強度を得ることができない。一方、1100℃未満の温度範囲では、TiAl合金の変形抵抗が大きく、実用的な操業が困難となる。なお、押出加工はTiAl合金素材をステンレス鋼製ケース内に密封して大気中で行い、押出加工後に機械加工によってケースを除去し、内燃機関部品とする。
Extrusion temperature range: 1100-1150 ° C
The β-Ti phase is a highly ductile structure, and the present invention improves the ductility by precipitating a fine β-Ti phase at the grain boundary of the crystal structure as described later. In the Ti-Al equilibrium diagram, when the Al content is 40 to 42 atom%, the structure includes a β-Ti phase at 1150 ° C. or lower. Therefore, a large elongation can be obtained by extruding a TiAl alloy at 1150 ° C. or lower. Moreover, by extruding at 1150 degrees C or less, a structure | tissue refines | miniaturizes and it can obtain high intensity | strength. In other words, in the temperature range exceeding 1150 ° C., it becomes a structure in which the α-Ti phase or the γ phase is added thereto, and sufficient elongation cannot be obtained at the time of extrusion, and the structure is refined to obtain high strength. I can't. On the other hand, in the temperature range below 1100 ° C., the deformation resistance of the TiAl alloy is large and practical operation becomes difficult. The extrusion process is performed in the atmosphere with the TiAl alloy material sealed in a stainless steel case, and after the extrusion process, the case is removed by machining to obtain an internal combustion engine part.

押出加工の加工率:押出比10以上
上述の温度範囲1100〜1150℃で押出比10以上の強加工を付与することにより、微細化が促進され、後述の焼鈍処理の効果を最大化し大きな伸びを得ることができる。押出比が10を下回る加工率では微細化が不足し、十分な効果が得られない。なお、押出比とは、コンテナに充填した材料の直径と押出後の材料の直径との比であり、本発明では内燃機関部品として、バルブやピストンピンとなる部分の直径をいう。
Extrusion processing rate: Extrusion ratio of 10 or more By applying strong processing with an extrusion ratio of 10 or more in the above-described temperature range of 1100 to 1150 ° C., miniaturization is promoted, and the effect of the annealing treatment described later is maximized and large elongation is achieved Obtainable. When the extrusion ratio is less than 10, the fineness is insufficient and a sufficient effect cannot be obtained. The extrusion ratio is the ratio between the diameter of the material filled in the container and the diameter of the material after extrusion. In the present invention, it refers to the diameter of a portion that becomes a valve or a piston pin as an internal combustion engine component.

焼鈍温度:950〜1050℃で
焼鈍により延性の高いβ−Ti相(体心立方晶)をTiAl合金組織中に析出させる。また、焼鈍により、押し出し時の圧縮応力で形成された微小なクラックが拡散接合されるので、製品不良が回避されて歩留りが向上する。この場合、β−Ti相は、不純物が析出し易く延性が低い結晶粒界に析出するので、合金全体の延性向上に貢献する。焼鈍温度が1050℃を超えてもβ−Ti相のそれ以上の析出は望めないばかりでなく、結晶粒が粗大化して強度が低下する。一方、焼鈍温度が950℃未満では、β−Ti相の析出が不充分となる。よって、焼鈍時間は、950〜1050℃とする。なお、酸化防止および表面の微小クラックの拡散接合を促進させる観点から、焼鈍は大気雰囲気ではなく真空中で行う。
Annealing temperature: A β-Ti phase (body-centered cubic) having high ductility is precipitated in the TiAl alloy structure by annealing at 950 to 1050 ° C. Moreover, since the minute crack formed by the compressive stress at the time of extrusion is diffusion-bonded by annealing, a product defect is avoided and the yield is improved. In this case, the β-Ti phase contributes to the improvement of the ductility of the entire alloy because impurities are likely to precipitate and precipitate at the crystal grain boundaries having low ductility. Even if the annealing temperature exceeds 1050 ° C., further precipitation of the β-Ti phase cannot be expected, and the crystal grains become coarse and the strength is lowered. On the other hand, if the annealing temperature is less than 950 ° C., the precipitation of the β-Ti phase becomes insufficient. Therefore, annealing time shall be 950-1050 degreeC. In addition, from the viewpoint of promoting oxidation prevention and diffusion bonding of micro cracks on the surface, annealing is performed in a vacuum instead of an atmospheric atmosphere.

焼鈍時間:2〜5時間
焼鈍時間が2時間未満では、TiAl合金の温度が均一とならない。一方、焼鈍温度が5時間を超えると、結晶粒が粗大化して強度が低下するとともに操業時間が不要に長くなる。よって、焼鈍時間は、2〜5時間とする。
Annealing time: 2-5 hours If the annealing time is less than 2 hours, the temperature of the TiAl alloy is not uniform. On the other hand, if the annealing temperature exceeds 5 hours, the crystal grains become coarse and the strength decreases, and the operation time becomes unnecessarily long. Therefore, the annealing time is 2 to 5 hours.

焼鈍後の冷却速度:400℃まで10〜60℃/分
β−Ti相をα2(TiAl)相やγ相に変態させずに残留させるために、焼鈍後に強制的に冷却する。冷却時の雰囲気は例えばArなどの不活性ガスで、冷却は空冷で行う。冷却速度が60℃/分を超えると、TiAl合金に歪みが発生し、クラックの拡散接合部に応力集中してクラックが開くことがある。一方、冷却速度が10℃/分未満では、β−Ti相がα2相やγ相に変態し易くなる。よって、焼鈍後の冷却速度は400℃まで10〜60℃/分とする。
Cooling rate after annealing: 10 to 60 ° C./min up to 400 ° C. In order to leave the β-Ti phase without being transformed into α 2 (Ti 3 Al) phase or γ phase, cooling is forced after annealing. The atmosphere during cooling is, for example, an inert gas such as Ar, and the cooling is performed by air cooling. When the cooling rate exceeds 60 ° C./min, strain may be generated in the TiAl alloy, and stress may concentrate on the crack diffusion bonding portion to open the crack. On the other hand, when the cooling rate is less than 10 ° C./min, the β-Ti phase is easily transformed into an α2 phase or a γ phase. Therefore, the cooling rate after annealing shall be 10-60 degree-C / min to 400 degreeC.

本発明は、TiAl合金組織にβ−Ti相を残留させることにより、高温高強度や高剛性を有するのは勿論のこと、延性も向上させることができ、常温域にて800MPa以上の0.2%耐力と2%以上の伸びを得ることができる。本発明の効果を確実に得るために、β−Ti相を20〜35体積%含有すると共に強度を高めるが、靭性に乏しいα2相を10〜20体積%の範囲に制御することが望ましい。また、焼鈍により析出したβ−Ti相を安定して残留させるために、強度と延性への影響が少ないNbおよびZrの少なくとも1種を添加することが望ましい。この場合、Nbは1.3〜1.9atom%、Zrは0.1〜0.2atom%である。   In the present invention, by leaving the β-Ti phase in the TiAl alloy structure, the ductility can be improved as well as high temperature and high strength and high rigidity. % Yield strength and elongation of 2% or more can be obtained. In order to obtain the effects of the present invention with certainty, it is desirable to control the α2 phase having a low toughness in the range of 10 to 20% by volume while containing 20 to 35% by volume of the β-Ti phase and increasing the strength. Further, in order to stably leave the β-Ti phase precipitated by annealing, it is desirable to add at least one kind of Nb and Zr that has little influence on strength and ductility. In this case, Nb is 1.3 to 1.9 atom%, and Zr is 0.1 to 0.2 atom%.

本発明によれば、高温高強度や高剛性を有するのは勿論のこと、延性も向上させたTiAl合金製内燃機関部品、特にバルブやピストンピンを提供することができる。   According to the present invention, it is possible to provide a TiAl alloy-made internal combustion engine component, in particular, a valve and a piston pin, having improved ductility as well as high temperature, high strength and high rigidity.

本発明の実施例におけるAl含有量と機械的特性との関係を示すグラフである。It is a graph which shows the relationship between Al content and the mechanical characteristic in the Example of this invention. 本発明の実施例におけるCr含有量と機械的特性との関係を示すグラフである。It is a graph which shows the relationship between Cr content and the mechanical characteristic in the Example of this invention. 本発明の実施例におけるNb含有量と機械的特性との関係を示すグラフである。It is a graph which shows the relationship between Nb content and the mechanical characteristic in the Example of this invention. 本発明の実施例におけるZr含有量と機械的特性との関係を示すグラフである。It is a graph which shows the relationship between Zr content and the mechanical characteristic in the Example of this invention. 本発明の実施例における焼鈍温度と機械的特性との関係を示すグラフである。It is a graph which shows the relationship between the annealing temperature and the mechanical characteristic in the Example of this invention.

1.第1実施例
種々の合金成分を含有するTiAl合金を1150℃に加熱して最終直径が22mmの寸法を有する試料に押出比41で押出成形した。この試料を真空中1000℃で2.0時間焼鈍し、続いて、Ar雰囲気中で400℃まで60℃/分の冷却速度で空冷した。この試料の引張強度、0.2%耐力、疲労強度、および伸びを調査した。その結果を図1〜図4に示す。
1. Example 1 A TiAl alloy containing various alloy components was heated to 1150 ° C. and extruded into a sample having a final diameter of 22 mm at an extrusion ratio of 41. This sample was annealed in vacuum at 1000 ° C. for 2.0 hours, and then air-cooled in an Ar atmosphere to 400 ° C. at a cooling rate of 60 ° C./min. The sample was examined for tensile strength, 0.2% proof stress, fatigue strength, and elongation. The results are shown in FIGS.

Al含有量の検証
図1は、Alの含有量がTiAl合金の機械的特性に及ぼす影響を示したものである。図1に示すように、Alの含有量が増加するに従って0.2%耐力、引張強度および疲労強度は低下するが、Alの含有量が42atom%以下のときに0.2%耐力は800MPa以上となり、引張強度は1000MPa以上で疲労強度は700MPa以上となる。また、Alの含有量が40atom%以上のときに伸びは2%以上となる。このように、Alの含有量を40〜42atom%としたことの根拠が確認された。
Verification of Al Content FIG. 1 shows the influence of the Al content on the mechanical properties of the TiAl alloy. As shown in FIG. 1, 0.2% yield strength, tensile strength and fatigue strength decrease as the Al content increases, but when the Al content is 42 atom% or less, the 0.2% yield strength is 800 MPa or more. Thus, the tensile strength is 1000 MPa or more and the fatigue strength is 700 MPa or more. Further, the elongation becomes 2% or more when the Al content is 40 atom% or more. Thus, the grounds for setting the Al content to 40 to 42 atom% were confirmed.

Cr含有量の検証
図2は、Crの含有量がTiAl合金の機械的特性に及ぼす影響を示したものである。図2に示すように、Crの含有量が2.4〜2.6atom%のときに0.2%耐力は概ね800MPa以上となり、引張強度は1000MPa以上で疲労強度は700MPa以上となる。また、伸びは概ね2%以上となる。このように、Cr2.4〜2.6atom%含有しても機械的性質はあまり影響を受けないことが確認された。
Verification of Cr Content FIG. 2 shows the influence of the Cr content on the mechanical properties of the TiAl alloy. As shown in FIG. 2, when the Cr content is 2.4 to 2.6 atom%, the 0.2% proof stress is approximately 800 MPa or more, the tensile strength is 1000 MPa or more, and the fatigue strength is 700 MPa or more. Further, the elongation is approximately 2% or more. Thus, it was confirmed that the mechanical properties are not significantly affected even if Cr 2.4 to 2.6 atom% is contained.

Nb含有量の検証
図3は任意成分であるNbの含有量がTiAl合金の機械的特性に及ぼす影響を示したものである。図3に示すように、Nbの含有量が1.3〜1.9atom%のときに0.2%耐力は800MPa以上となり、引張強度は900MPa以上で疲労強度は650MPa以上となる。また、伸びは2%以上となる。このように、Nbを1.3〜1.9atom%含有しても機械的性質はあまり影響を受けないことが確認された。
Verification of Nb Content FIG. 3 shows the influence of the content of Nb, which is an optional component, on the mechanical properties of the TiAl alloy. As shown in FIG. 3, when the Nb content is 1.3 to 1.9 atom%, the 0.2% yield strength is 800 MPa or more, the tensile strength is 900 MPa or more, and the fatigue strength is 650 MPa or more. Further, the elongation is 2% or more. As described above, it was confirmed that the mechanical properties were not significantly affected even when 1.3 to 1.9 atom% of Nb was contained.

Zr含有量の検証
図4は任意成分であるZrの含有量がTiAl合金の機械的特性に及ぼす影響を示したものである。図4に示すように、Zrの含有量が0.1〜0.2atom%のときに0.2%耐力は800MPa以上となり、引張強度は800MPa以上で疲労強度は700MPa以上となる。また、伸びは2%以上となる。このように、Zrを0.1〜0.2atom%含有しても機械的性質はあまり影響を受けないことが確認された。
Verification of Zr Content FIG. 4 shows the influence of the Zr content, which is an optional component, on the mechanical properties of the TiAl alloy. As shown in FIG. 4, when the Zr content is 0.1 to 0.2 atom%, the 0.2% yield strength is 800 MPa or more, the tensile strength is 800 MPa or more, and the fatigue strength is 700 MPa or more. Further, the elongation is 2% or more. Thus, it was confirmed that the mechanical properties were not significantly affected even when Zr was contained in an amount of 0.1 to 0.2 atom%.

2.第2実施例
Ti−42Al−2.5Cr(atom%)合金を種々の温度に加熱して最終直径が22mmの寸法を有する試料に種々の押出比で押出成形した。この試料を真空中種々の温度で2.0時間焼鈍し、続いて、Ar雰囲気中で400℃まで60℃/分の冷却速度で空冷した。この試料の組織における各相の体積%をX線回折法による半定量同定(ピーク分離)で測定するとともに、引張強度、0.2%耐力、疲労強度、および伸びを調査した。その結果を図5に示す。なお、図5において「押出まま」とは、焼鈍しなかったことを意味する。
2. Second Example A Ti-42Al-2.5Cr (atom%) alloy was heated to various temperatures and extruded into samples having a final diameter of 22 mm at various extrusion ratios. This sample was annealed at various temperatures in vacuum for 2.0 hours, and then air-cooled in an Ar atmosphere to 400 ° C. at a cooling rate of 60 ° C./min. The volume% of each phase in the structure of this sample was measured by semi-quantitative identification (peak separation) by X-ray diffraction, and the tensile strength, 0.2% proof stress, fatigue strength, and elongation were investigated. The result is shown in FIG. In FIG. 5, “as extruded” means not annealed.

図5は、押出温度および押出比と焼鈍温度がTiAl合金の組織と機械的特性に及ぼす影響を示したものである。なお、図5においてNo.1〜No.6は比較例、No.7〜No.8は実施例である。図5に示すように、1150℃で押出比10以上に押出を行い、1000℃で焼鈍を行った試料No.7〜No.8では、β−Ti相の体積率は26〜35%に達し、α2(TiAl)相は13〜19体積%となった。その結果、伸びは3.5%に達した。また、0.2%耐力は850〜860MPaとなり、引張強度は1030〜1060MPaで疲労強度は860〜870MPaとなった。 FIG. 5 shows the influence of the extrusion temperature, extrusion ratio and annealing temperature on the structure and mechanical properties of the TiAl alloy. In FIG. 1-No. 6 is a comparative example. 7-No. 8 is an example. As shown in FIG. 5, sample No. 1 was extruded at 1150 ° C. to an extrusion ratio of 10 or more and annealed at 1000 ° C. 7-No. In 8, the volume ratio of the β-Ti phase reached 26 to 35%, and the α2 (Ti 3 Al) phase became 13 to 19% by volume. As a result, the elongation reached 3.5%. The 0.2% proof stress was 850 to 860 MPa, the tensile strength was 1030 to 1060 MPa, and the fatigue strength was 860 to 870 MPa.

これに対して、焼鈍を行わず押出比がそれぞれ11および6.4の試料No.1および試料No.2では、β−Ti相の割合が9〜18体積%であるため、伸びが1.0前後となった。また、同じく焼鈍を行っていない押出比5の試料No.3では、β−Ti相の割合が23体積%あるが、α2(TiAl)相が35体積%存在するため、同じく1.0%前後の伸びに留まっている。一方、この試料No.3を各々900℃、1000℃、1100℃で焼鈍した試料No.4〜6では、焼鈍温度の上昇に伴いβ−Ti相が28体積%前後まで増加すると共に、α2(Ti3Al)相が15体積%前後まで低減され、これにより伸びが1.5〜2.0%程度まで向上する。しかしながら試料No.6では焼鈍温度が1050℃を超えるため結晶粒が粗大化し、この結果0.2%耐力が800MPaを下回った。 On the other hand, sample No. No. 11 and 6.4, respectively, without annealing were used. 1 and sample no. In No. 2, since the ratio of the β-Ti phase was 9 to 18% by volume, the elongation was around 1.0. Similarly, sample No. 5 with an extrusion ratio of 5 that was not annealed. 3, the proportion of the β-Ti phase is 23% by volume, but since the α2 (Ti 3 Al) phase is 35% by volume, the elongation is still around 1.0%. On the other hand, this sample No. 3 was annealed at 900 ° C., 1000 ° C., and 1100 ° C., respectively. In 4-6, the β-Ti phase increases to about 28% by volume as the annealing temperature rises, and the α2 (Ti3Al) phase is reduced to about 15% by volume, whereby the elongation is 1.5-2.0. Improve to about%. However, sample no. In No. 6, since the annealing temperature exceeded 1050 ° C., the crystal grains became coarse. As a result, the 0.2% proof stress was less than 800 MPa.

以上のように、本発明では、0.2%耐力が800MPa以上で伸びが2.0%以上を達成することが確認された。したがって、本発明のTiAl合金製内燃機関部品、特にバルブやピストンピンは、ノッキングや燃焼圧等によって大きな衝撃が作用したときでも破損しない耐衝撃性を備えている。   As described above, in the present invention, it was confirmed that the 0.2% yield strength is 800 MPa or more and the elongation is 2.0% or more. Therefore, the internal combustion engine parts made of TiAl alloy according to the present invention, particularly valves and piston pins, have impact resistance that does not break even when a large impact is applied due to knocking or combustion pressure.

本発明のTiAl合金製内燃機関部品は、高い強度および剛性とともに高い延性を有しているので、内燃機関用のバルブおよびピストンピンに用いて極めて有望である。   Since the TiAl alloy-made internal combustion engine component of the present invention has high ductility and high ductility, it is extremely promising for use in valves and piston pins for internal combustion engines.

Claims (4)

Alを40〜42atom%、Cr:2.4〜2.6atom%含有し、残部がTiおよび不可避不純物からなるTiAl合金を、1100〜1150℃で押出比10以上に押し出して成形体を得る押出工程と、前記押出工程終了後または押出工程中に前記成形体を真空中で950〜1050℃で2〜5時間保持する焼鈍工程と、前記焼鈍工程が終了した前記成形体を不活性ガス中で400℃まで10〜60℃/分の冷却速度で冷却する冷却工程とを経て製造されたことを特徴とするTiAl合金製内燃機関部品。   Extrusion step of obtaining a molded body by extruding a TiAl alloy containing 40 to 42 atom% Al and Cr: 2.4 to 2.6 atom%, the balance being Ti and inevitable impurities at an extrusion ratio of 10 to 1150 ° C. And after the end of the extruding step or during the extruding step, the annealing step of holding the compact in vacuum at 950 to 1050 ° C. for 2 to 5 hours, and the compact after completion of the annealing step in an inert gas 400 A TiAl alloy internal combustion engine component manufactured through a cooling step of cooling to 10 ° C at a cooling rate of 10 to 60 ° C / min. 前記TiAl合金は、Nb:1.3〜1.9atom%、Zr:0.1〜0.2atom%の少なくとも1種をさらに含有することを特徴とする請求項1に記載のTiAl合金製内燃機関部品。   2. The internal combustion engine made of TiAl alloy according to claim 1, wherein the TiAl alloy further contains at least one of Nb: 1.3 to 1.9 atom% and Zr: 0.1 to 0.2 atom%. parts. 前記冷却工程を経た前記成形体は、β−Ti相を20〜35体積%含有し、かつα2(TiAl)相を10〜20体積%含有することを特徴とする請求項1または2に記載のTiAl合金製内燃機関部品。 The molded body that has undergone the cooling step contains 20 to 35% by volume of a β-Ti phase and 10 to 20% by volume of an α2 (Ti 3 Al) phase. A TiAl alloy internal combustion engine component as described. 前記内燃機関部品が、バルブまたはピストンピンであることを特徴とする請求項1〜3のいずれかに記載のTiAl合金製内燃機関部品。   The internal combustion engine part made of TiAl alloy according to any one of claims 1 to 3, wherein the internal combustion engine part is a valve or a piston pin.
JP2009132652A 2009-06-02 2009-06-02 INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY Pending JP2010280927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132652A JP2010280927A (en) 2009-06-02 2009-06-02 INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132652A JP2010280927A (en) 2009-06-02 2009-06-02 INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY

Publications (1)

Publication Number Publication Date
JP2010280927A true JP2010280927A (en) 2010-12-16

Family

ID=43537917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132652A Pending JP2010280927A (en) 2009-06-02 2009-06-02 INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY

Country Status (1)

Country Link
JP (1) JP2010280927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004092A (en) * 2013-06-19 2015-01-08 独立行政法人物質・材料研究機構 HOT FORGING TYPE TiAl BASED ALLOY
CN107974653A (en) * 2017-12-01 2018-05-01 中国航空工业标准件制造有限责任公司 A kind of underproof optimization method of titanium-niobium alloy part annealing heat-treats
CN110029294A (en) * 2019-05-23 2019-07-19 湖南科技大学 A kind of processing method of titanium zirconium-niobium alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004092A (en) * 2013-06-19 2015-01-08 独立行政法人物質・材料研究機構 HOT FORGING TYPE TiAl BASED ALLOY
CN107974653A (en) * 2017-12-01 2018-05-01 中国航空工业标准件制造有限责任公司 A kind of underproof optimization method of titanium-niobium alloy part annealing heat-treats
CN110029294A (en) * 2019-05-23 2019-07-19 湖南科技大学 A kind of processing method of titanium zirconium-niobium alloy
CN110029294B (en) * 2019-05-23 2021-04-20 湖南科技大学 Processing method of titanium-zirconium-niobium alloy

Similar Documents

Publication Publication Date Title
US20130206287A1 (en) Co-based alloy
Clemens et al. Design of novel β‐solidifying TiAl alloys with adjustable β/B2‐phase fraction and excellent hot‐workability
JP6057363B1 (en) Method for producing Ni-base superalloy
JP5147037B2 (en) Ni-base heat-resistant alloy for gas turbine combustor
US10526689B2 (en) Heat-resistant Ti alloy and process for producing the same
US20050002821A1 (en) Creep resistant magnesium alloy
EP3202931B1 (en) Ni BASED SUPERHEAT-RESISTANT ALLOY
JP6223743B2 (en) Method for producing Ni-based alloy
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
US11326231B2 (en) Ni-based alloy for hot-working die, and hot-forging die using same
JP3308090B2 (en) Fe-based super heat-resistant alloy
WO2016152985A1 (en) Ni-BASED SUPER HEAT-RESISTANT ALLOY AND TURBINE DISK USING SAME
KR101603049B1 (en) Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
JP2010280927A (en) INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY
JP2009041065A (en) Titanium alloy for heat resistant member having excellent high temperature fatigue strength and creep resistance
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
US20220205075A1 (en) METHOD OF MANUFACTURING TiAl ALLOY AND TiAl ALLOY
US20220010410A1 (en) TiAl ALLOY AND METHOD OF MANUFACTURING THE SAME
KR101346808B1 (en) The Titanium alloy improved mechanical properties and the manufacturing method thereof
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
Phongphisutthinan et al. Caliber rolling process and mechanical properties of high Fe-containing Al–Mg–Si alloys
KR101923477B1 (en) Method for producing alloy comprising titanium nitride or titanium aluminide nitride
JP5929251B2 (en) Iron alloy
Liu et al. Effects of Different Quenching Conditions on the Mechanical Properties of 6061 Aluminum Alloy in Hot Stamping
WO2022211062A1 (en) Aluminum alloy material, production method therefor, and machine component