WO2020031579A1 - Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy - Google Patents

Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy Download PDF

Info

Publication number
WO2020031579A1
WO2020031579A1 PCT/JP2019/026836 JP2019026836W WO2020031579A1 WO 2020031579 A1 WO2020031579 A1 WO 2020031579A1 JP 2019026836 W JP2019026836 W JP 2019026836W WO 2020031579 A1 WO2020031579 A1 WO 2020031579A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
plastic working
less
heat treatment
working
Prior art date
Application number
PCT/JP2019/026836
Other languages
French (fr)
Japanese (ja)
Inventor
悠輔 巽
アイヌル アラファ ビンティ ムハマド
韓 剛
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69415470&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020031579(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2019564552A priority Critical patent/JP6748951B2/en
Publication of WO2020031579A1 publication Critical patent/WO2020031579A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a method for producing a Ni-base super-heat-resistant alloy and a Ni-base super-heat-resistant alloy. More specifically, the present invention relates to a Ni-base super-heat-resistant alloy having a gamma prime phase equilibrium precipitation at 700 ° C. of 35 mol% or more. The present invention relates to a method for producing a heat-resistant alloy and a Ni-based super heat-resistant alloy.
  • Ni-based super heat-resistant alloys such as Inconel (registered trademark) 718 alloy are often used. With the high performance and low fuel consumption of gas turbines, heat-resistant parts having high heat-resistant temperatures are required.
  • a gamma prime (hereinafter also referred to as “ ⁇ ′”) phase which is a precipitation strengthening phase of an intermetallic compound having Ni 3 Al as a main composition.
  • the high-temperature strength of the Ni-based super heat-resistant alloy can be further improved by further containing Al, Ti, and Nb, which are ⁇ '-forming elements, in the Ni-based super heat-resistant alloy.
  • a Ni-based super heat-resistant alloy having a larger amount of ⁇ 'phase is required.
  • Ni-base super heat-resistant alloy is difficult to work because the deformation resistance of hot working increases as the ⁇ 'phase increases.
  • the amount of the ⁇ 'phase is 35 to 40 mol% or more, the processability is particularly reduced.
  • alloys such as Inconel (registered trademark) 713C alloy, IN939, IN100, and Mar-M247 have a specially large ⁇ 'phase, which makes plastic working impossible, and is usually as-cast as a cast alloy. Used in.
  • Patent Document 1 discloses a Ni-based super heat-resistant alloy ingot having a composition in which the ⁇ ′ mole ratio is 40 mol% or more, and a work rate of 5%.
  • a manufacturing method is described in which cold working is performed at less than 30% and then heat treatment is performed at a temperature exceeding the ⁇ ′ solid solution temperature. This method obtains a recrystallization rate of 90% or more at which hot working can be applied to a Ni-base super heat-resistant alloy by a combination of a cold working step and a heat treatment step.
  • a thin wire of a Ni-base super heat-resistant alloy is required as a forming material.
  • This thin wire can be used after being processed into a part shape such as a spring.
  • the wire diameter (diameter) of the fine wire of the Ni-base super heat-resistant alloy is as thin as, for example, 5 mm or less, and further 3 mm or less.
  • Patent Document 1 is effective for Ni-base super heat-resistant alloys to which hot working is applied.
  • the method of Patent Document 2 is effective for producing a fine wire with a limited component composition, but can be applied only to the component composition, and the amount of the ⁇ ′ phase is “35 mol% or more” described later.
  • the method of Patent Document 2 has a problem that the process is complicated and the manufacturing cost is increased. Further, in producing a fine wire or a wire rod, if a crack occurs in the middle of the process, the processing rate is limited, and there has been a problem that a plastic working cannot be performed to a predetermined wire diameter.
  • a method of manufacturing a Ni-base superalloy comprising (A) a material having a carbon content of 0.01 to 0.25% by mass and a component composition in which the equilibrium precipitation amount of a gamma prime phase at 700 ° C. is 35 mol% or more is 500 ° C. or less; A step of performing a plurality of times of plastic working so that the cumulative working ratio from the material is 40% or more to produce a first working material; (B) performing a heat treatment on the first processed material at a temperature of 900 ° C.
  • the first heat-treated material is subjected to one or more times of plastic working at a temperature of 500 ° C. or less so that the cumulative working ratio from the first heat-treated material is 10% or more. 2) a step of producing a processed material.
  • the method further includes (d) a step of performing a heat treatment on the second workpiece at a temperature of 900 ° C. or higher.
  • step (c) it is preferable to perform the set of the steps (b) and (c) one or more times to produce a second processed material.
  • the working ratio of one plastic working in the plastic working of steps (a) and (c) is 30% or less.
  • the step (b) includes a step of removing the surface of the material after the heat treatment.
  • the Ni-based super heat-resistant alloy is C: 0.01 to 0.25%, Cr: 8.0 to 25.0%, Al: 0.5 to 8.0%, Ti: 0.4 to 7.0%, Co: 0 to 28.0%, Mo: 0 to 8.0%, W: 0 to 15.0%, Nb: 0 to 4.0%, Ta: 0 to 5.0%, Fe: 0 to 10.0%, V: 0 to 1.2%, Hf: 0 to 3.0%, B: 0 to 0.300%, Zr: 0 to 0.300% And the balance preferably has a composition consisting of Ni and impurities.
  • a method of manufacturing a Ni-based superalloy (A) A material having a carbon content of 0.01 to 0.25% by mass and a component composition having an equilibrium precipitation amount of a gamma prime phase at 700 ° C. of 35 mol% or more at a temperature of 500 ° C. or less, A step of performing a plastic working to produce a first processed material; (B) heat-treating the first processed material at a temperature of 900 ° C. or higher to produce a first heat-treated material; (C) performing a plastic working on the first heat-treated material at a temperature of 500 ° C.
  • step (A) Performing the set of step (A) and step (B) one or more times, Finally if the first dimension d perpendicular to the longitudinal direction of the workpiece to be subjected to a heat treatment step (B) is more than 1.5 times the final product dimensions d f for performing, or size d the difference d-d f of the final product dimensions d f is of 1mm greater.
  • Ni-base superalloy has a component composition in which the carbon content is 0.01 to 0.25 mass% and the equilibrium precipitation amount of the gamma prime phase at 700 ° C. is 35 mol% or more.
  • the defect rate is 0.5 area% or less.
  • EBSD electron backscatter diffraction
  • 7 is a cross-sectional microstructure (curling liquid etching) of an outer peripheral portion of a wire having a wire diameter of 1.0 mm in Example 1.
  • 7 is a cross-sectional microstructure (curling liquid etching) of a central portion of a wire having a wire diameter of 1.0 mm in Example 1.
  • 14 is a cross-sectional microstructure (curling liquid etching) of an outer peripheral portion of a wire having a wire diameter of 2.5 mm in Example 3.
  • 14 shows a cross-sectional microstructure (curling liquid etching) of a central portion of a wire having a wire diameter of 2.5 mm in Example 3.
  • 14 is an EBSD image showing an example of a cross-sectional structure of a hot extruded material (raw material) in Example 4.
  • FIG. 8 is a diagram showing a grain size distribution of crystal grains recognized in the EBSD image of FIG. 7.
  • 14 is a microstructure photograph showing an example of a cross-sectional structure of a hot extruded material (raw material) in Example 4.
  • 11 is a microstructure photograph of a material (diameter: 4.5 mm) after the first plastic working in Example 4.
  • 11 is a microstructure photograph of a material (diameter: 4.5 mm) after the first heat treatment in Example 4.
  • 19 is a microstructure photograph of the material (diameter: 4.0 mm) after the fourth pass in the second plastic working in Example 4.
  • the present invention provides a new method capable of producing a Ni-base super heat-resistant alloy having excellent plastic workability by a new approach different from conventional hot plastic working.
  • the present inventors have studied the plastic workability of a Ni-base superalloy having a large amount of ⁇ 'phase. As a result, the inventors have found a phenomenon in which cold plastic working can be performed on a Ni-base super heat-resistant alloy material at a working ratio of 40% or more. At that time, it was found that nanocrystalline grains were generated in the structure of the Ni-base superalloy by cold plastic working at a working ratio of 30% or more. It is presumed that the formation of the nanocrystal grains contributes to a drastic improvement in the plastic workability of the Ni-base superalloy.
  • the method for producing a Ni-base superalloy having a component composition in which the equilibrium precipitation amount of the gamma prime phase at 700 ° C. is not less than 35 mol% according to the present invention is as follows.
  • the first heat-treated material is subjected to one or more times of plastic working at a temperature of 500 ° C. or less so that the cumulative working rate from the first heat-treated material becomes 10% or more. And a step of producing a second processed material.
  • the Ni-base superalloy targeted by the present invention has a carbon content of 0.01 to 0.25% by mass and an equilibrium precipitation amount of gamma prime ( ⁇ ′) phase at 700 ° C. of 35 mol% or more. Having a composition.
  • the amount of the ⁇ ′ phase of the Ni-based super heat-resistant alloy can be represented by a numerical index such as “volume ratio” or “area ratio” of the ⁇ ′ phase.
  • the amount of the ⁇ ′ phase is expressed by a numerical index of “ ⁇ ′ molar ratio”.
  • the ⁇ ′ molar ratio is a stable equilibrium precipitation amount of a gamma prime phase at which a Ni-base superalloy can precipitate in a thermodynamic equilibrium state.
  • the value in which the equilibrium precipitation amount of the gamma prime phase is represented by “molar ratio” is determined by the component composition of the Ni-base superalloy.
  • the value of mol% of the equilibrium precipitation amount can be determined by analysis by thermodynamic equilibrium calculation. In the analysis by thermodynamic equilibrium calculation, it is possible to accurately and easily obtain the accuracy by using various thermodynamic equilibrium calculation software.
  • the ⁇ ′ molar ratio of the Ni-base superalloy is defined as “equilibrium precipitation at 700 ° C.”.
  • the high-temperature strength of the Ni-base superalloy can be evaluated by the equilibrium precipitation amount of the gamma prime phase in the structure, and the higher the high-temperature strength, the more difficult the hot plastic working becomes.
  • the equilibrium precipitation amount of the gamma prime phase in the structure generally has a small temperature dependence at about 700 ° C. or less and becomes substantially constant. Therefore, the value at the above “700 ° C.” is used as a reference.
  • nano crystal grains are most easily generated from a phase interface between an austenite phase (gamma ( ⁇ )), which is a matrix of the Ni-base superalloy, and a gamma prime phase.
  • FIG. 1 shows an example of an EBSD image of a cross-sectional microstructure generated by cold plastic working of a wire in the manufacturing method of the present invention.
  • the measurement conditions of EBSD are as follows: Scanning electron microscope “ULTRA55 (manufactured by Zeiss)” EBSD measurement system “OIM Version 5.3.1 (manufactured by TSL Solution)” attached to the scanning electron microscope, magnification: 10000 times, scanning Step: The grain boundary was defined as 0.01 ⁇ m, and the crystal grain was defined as having a misorientation of 15 ° or more.
  • the maximum diameter (maximum length) of the nanocrystal grains (encircled portion) confirmed in the EBSD image in FIG. 1 is as small as about 25 nm.
  • a component composition in which the equilibrium precipitation amount of the gamma prime phase at 700 ° C. is 40 mol% or more is more preferable. More preferably, the equilibrium precipitation amount of the gamma prime phase is 50 mol% or more, and still more preferably 60 mol% or more.
  • the particularly preferred equilibrium precipitation amount of the gamma prime phase is 63 mol% or more, more preferably 66 mol% or more, and even more preferably 68 mol% or more.
  • the upper limit of the equilibrium precipitation amount of the gamma prime phase at 700 ° C. is not particularly limited, but is practically about 75 mol%.
  • Ni-base superalloy having an equilibrium precipitation amount of the gamma prime phase at 700 ° C. of 35 mol% or more, for example, in mass%, C: 0.01 to 0.25%, Cr: 8.0 to 25.0%, Al: 0.5 to 8.0%, Ti: 0.4 to 7.0%, Co: 0 to 28.0%, Mo: 0 to 8.0%, W: 0 to 15 0.0%, Nb: 0 to 4.0%, Ta: 0 to 5.0%, Fe: 0 to 10.0%, V: 0 to 1.2%, Hf: 0 to 3.0%, B : 0 to 0.300% and Zr: 0 to 0.300%, with the balance being preferably composed of Ni and impurities.
  • C is contained as an element for improving the castability of a Ni-base superalloy.
  • Ni-base super heat-resistant alloys having a large amount of ⁇ 'phase are usually used as cast parts because plastic working is difficult, and a certain amount of C is added. This added C remains in the cast structure as carbides, and some are formed as coarse eutectic carbides. Such a coarse carbide becomes a starting point of a crack and a propagation path of the crack when the Ni-base superalloy is plastically worked, particularly when it is plastically worked at room temperature. Adversely affect sex.
  • the Ni-base superalloy having a large amount of the ⁇ 'phase is not used as a cast part, but for the present invention aimed at producing the Ni-base superalloy by plastic working, the Ni-base superalloy in the Ni-base superalloy It is preferable to reduce C.
  • the content of C is set to 0.25% or less. Preferably it is 0.20% or less. It is more preferably at most 0.15%.
  • C is also an element that increases the strength of the heat-resistant component, and it is preferable that C be contained in consideration of producing or repairing such a heat-resistant component.
  • the method for producing a Ni-based super heat-resistant alloy of the present invention plastic working becomes possible even with an alloy having a high C content due to the effect of the nanocrystal grains described above. Even in such a case, in the case of an alloy having a high C content, if a fine wire or a wire is to be produced by plastic working, the working ratio is limited by the problem that the above-mentioned carbide can be a starting point of a crack and a crack propagation path.
  • the first and second intermediate heat treatments described below can cope with the above-described problem of carbide cracking. For example, the same C content as that in a cast part can be allowed. .
  • C is contained at 0.01% or more. It is preferably at least 0.03%, more preferably at least 0.05%, further preferably at least 0.07%. Furthermore, C may be contained at 0.1% or more.
  • Chrome (Cr) Cr is an element that improves oxidation resistance and corrosion resistance. However, when Cr is excessively contained, an embrittlement phase such as a sigma (sigma) phase is formed, and strength and hot workability at the time of material preparation are reduced. Therefore, the content of Cr is preferably set to, for example, 8.0 to 25.0%. More preferably, it is 8.0 to 22.0%. A preferred lower limit is 9.0%, and a more preferred lower limit is 9.5%. A more preferred lower limit is 10.0%. Further, a preferred upper limit is 18.0%, and a more preferred upper limit is 16.0%. A more preferred upper limit is 14.0%. A particularly preferred upper limit is 12.5%.
  • Mo Molybdenum
  • Mo contributes to solid solution strengthening of the matrix and has an effect of improving high-temperature strength.
  • Mo is set to 0 to 8.0% (it may be not added (or may be an unavoidable impurity level)). More preferably, it is 2.0 to 7.0%.
  • a still more preferred lower limit is 2.5%, and a more preferred lower limit is 3.0%.
  • a more preferred lower limit is 3.5%.
  • a more preferable upper limit is 6.0%, and a more preferable upper limit is 5.0%.
  • Aluminum (Al) Al is an element that forms a ⁇ ′ (Ni 3 Al) phase as a strengthening phase and improves high-temperature strength.
  • the content of Al is preferably 0.5 to 8.0%. More preferably, it is 2.0 to 8.0%.
  • a still more preferred lower limit is 2.5%, and a more preferred lower limit is 3.0%.
  • a still more preferred lower limit is 4.0%, and a still more preferred lower limit is 4.5%.
  • a particularly preferred lower limit is 5.1%.
  • a more preferred upper limit is 7.5%, and a more preferred upper limit is 7.0%.
  • a more preferred upper limit is 6.5%.
  • the reduced Al content can be allowed.
  • the upper limit of Cr is set to 13.5%
  • the lower limit of the Al content is preferably set to 3.5%.
  • Titanium (Ti) Ti is an element that forms a ⁇ ′ phase and solid-solution strengthens the ⁇ ′ phase to increase the high-temperature strength.
  • Ti is preferably, for example, 0.4 to 7.0%.
  • a preferable lower limit of Ti is 0.6%, and a more preferable lower limit is 0.7%.
  • a more preferred lower limit is 0.8%.
  • a preferable upper limit is 6.5%, and a more preferable upper limit is 6.0%.
  • a more preferred upper limit is 4.0%, and a particularly preferred upper limit is 2.0%.
  • Co Cobalt (Co) Co improves the stability of the structure, and makes it possible to maintain the hot workability at the time of preparing the material, even if a large amount of Ti as a strengthening element is contained.
  • Co is one of the optional elements that can be contained in a range of, for example, 28.0% or less in combination with another element.
  • a preferable lower limit when Co is added is set to 8.0%.
  • a more preferred lower limit is 10.0%.
  • a preferable upper limit of Co is 18.0%.
  • a more preferred upper limit is 16.0%. If Co may be added at a non-addition level (the unavoidable impurity level of the raw material) based on the balance with the ⁇ ′ generating element and the Ni matrix, the lower limit of Co is set to 0%.
  • Tungsten (W) W is one of the selective elements that contribute to the solid solution strengthening of the matrix.
  • the upper limit is set to 15.0%.
  • a preferred upper limit is 13.0%, a more preferred upper limit is 11.0%, and a still more preferred upper limit is 9.0%.
  • the lower limit of W is preferably set to 1.0%.
  • the lower limit of W may be 3.0%, 5.0%, or 7.0%.
  • W is preferably added at 0.8% or more. Note that, in the case where W can be set to the non-addition level (the unavoidable impurity level of the raw material) by sufficient addition of Mo, the lower limit of W is set to 0%.
  • Nb Niobium (Nb) Like Al and Ti, Nb is one of the selected elements that forms a ⁇ ′ phase and strengthens the ⁇ ′ phase by solid solution strengthening to increase the high-temperature strength. However, excessive addition of Nb forms a harmful ⁇ (delta) phase, and impairs hot workability in preparing a material. Therefore, the upper limit of Nb is, for example, 4.0%. A preferred upper limit is 3.5%, and a more preferred upper limit is 2.5%. In order to more reliably exert the effect of Nb, the lower limit of Nb is preferably set to 1.0%. A preferable lower limit is set to 2.0%. In a case where Nb may be at a non-addition level (inevitable impurity level) by adding another ⁇ ′ generating element, the lower limit of Nb is set to 0%.
  • Tantalum (Ta) Ta is one of the selected elements that forms a ⁇ ′ phase and solid-solution strengthens the ⁇ ′ phase to increase the high-temperature strength.
  • Ta is set to, for example, 5.0% or less. It is preferably at most 4.0%, more preferably at most 3.0%, even more preferably at most 2.5%.
  • the lower limit of Ta is preferably set to 0.3%.
  • the lower limit of Ta may be set to 0.8%, 1.5%, and 2.0%.
  • the lower limit of Ta is set to 0%.
  • Iron (Fe) Fe is one of the selective elements used as a substitute for expensive Ni and Co, and is effective in reducing alloy costs. In order to obtain this effect, it is better to determine whether to add in combination with other elements. However, when Fe is contained excessively, an embrittlement phase such as a sigma (sigma) phase is formed, and the strength and the hot workability in preparing the material are reduced. Therefore, the upper limit of Fe is, for example, 10.0%. A preferred upper limit is 9.0%, and a more preferred upper limit is 8.0%. On the other hand, in the case where Fe may be added at a non-addition level (inevitable impurity level) based on the balance with the ⁇ ′ generating element and the Ni matrix, the lower limit of Fe is set to 0%.
  • Vanadium (V) V is one of the selective elements useful for solid solution strengthening of the matrix and grain boundary strengthening by carbide formation.
  • the upper limit of V is, for example, 1.2%.
  • a preferred upper limit is 1.0%, and a more preferred upper limit is 0.8%.
  • the lower limit of V is preferably set to 0.5% in order to more reliably exert the effect of V described above.
  • V may be a non-addition level (inevitable impurity level) depending on the balance with other alloy elements in the alloy
  • the lower limit of V is set to 0%.
  • Hafnium (Hf) Hf is one of the selective elements useful for improving the oxidation resistance of the alloy and strengthening the grain boundary by forming carbides.
  • the upper limit of Hf is, for example, 3.0%, preferably 2.0%, and more preferably 1.5%.
  • the lower limit of Hf is preferably set to 0.1% in order to more reliably exert the effect of Hf.
  • the lower limit of Hf can be set to 0.5%, 0.7%, and 1.0%.
  • the lower limit of Hf is set to 0%.
  • B B is an element that improves grain boundary strength and improves creep strength and ductility.
  • B does not exceed 0.300%, for example, because B has a large effect of lowering the melting point, and the formation of coarse borides impairs the hot workability during material preparation.
  • a preferred upper limit is 0.200%, and a more preferred upper limit is 0.100%.
  • a more preferred upper limit is 0.050%, and a particularly preferred upper limit is 0.020%.
  • the content is preferably at least 0.001%.
  • a more preferred lower limit is 0.003%, and a still more preferred lower limit is 0.005%.
  • a particularly preferred lower limit is 0.010%.
  • the lower limit of B is set to 0%.
  • Zirconium (Zr) Zr like B, has the effect of improving the grain boundary strength.
  • the upper limit of Zr is, for example, 0.300%.
  • a preferred upper limit is 0.250%, and a more preferred upper limit is 0.200%.
  • a more preferred upper limit is 0.100%, and a particularly preferred upper limit is 0.050%.
  • the content is preferably 0.001% or more.
  • a more preferred lower limit is 0.005%, and a still more preferred lower limit is 0.010%.
  • the lower limit of Zr is set to 0%.
  • Ni but may include unavoidable impurities.
  • a material having the component composition described above is prepared.
  • the method for producing this material is not particularly limited.
  • this material can be obtained by a melting method in which a molten metal is poured into a mold to produce an ingot.
  • vacuum melting and ordinary methods such as vacuum arc remelting and electroslag remelting may be combined and applied.
  • the material may be obtained by a powder metallurgy method. Then, for the ingot or the alloy ingot produced by the powder metallurgy method, if necessary, hot working such as hot forging, hot rolling, hot extrusion or machining (for example, dimensional adjustment) Or cutting, polishing, grinding, etc.
  • a material having a predetermined shape for example, a bar material shape.
  • a heat treatment such as soaking can be performed between these operations. For example, soaking (for example, holding at 1100 ° C. to 1280 ° C. for 5 to 60 hours) may be performed to eliminate elemental segregation of the ingot. Alternatively, for example, soaking may be performed after finishing into a shape of a material (billet) to be subjected to hot extrusion.
  • the structure of the material and the crystal grain size are not limited. Therefore, when the material is subjected to soaking or heat treatment, the subsequent cooling may be any of rapid cooling, cooling, and furnace cooling.
  • the above-mentioned material is hot-extruded and finished into a bar-shaped material having a predetermined shape.
  • the hot extrusion is preferably performed at an extrusion temperature (heating temperature of the material) of 1050 ° C. to 1200 ° C., an extrusion ratio of 4 to 20, and an extrusion speed (stem speed) of 5 to 80 mm / s.
  • the cross-sectional diameter of extruded (material) is, for example, 10 mm or more, or more than 20 mm. And it is 200 mm or less, for example.
  • the surface of the extruded material can be finished by machining or the like, or a bar having a predetermined size can be obtained from the extruded material.
  • the cross-sectional diameter of the bar may be, for example, 150 mm or less, 100 mm or less, 50 mm or less, 30 mm or less, 10 mm or less. Further, the cross-sectional diameter of the bar may be, for example, 3 mm or more, 4 mm or more, 5 mm or more. Reducing the cross-sectional diameter of the bar is advantageous in that the number of plastic workings (the number of passes) can be reduced when a wire or a thin wire having a smaller cross-sectional diameter is produced by cold plastic working described later. preferable.
  • the crystal grain size of the material is not limited. However, by performing hot extrusion, the material can have a recrystallized grain size of, for example, 200 ⁇ m or less.
  • the recrystallized structure preferably has a size of 150 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the recrystallized structure preferably has a recrystallized structure of 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.8 ⁇ m or more, and still more preferably 1.5 ⁇ m or more.
  • the crystal grains generated by recrystallization have less intragrain distortion, and the crystal grain boundaries are increased by making the crystal grains fine, so that if cold plastic working described later is performed on this, Processing strain is evenly applied to the entire tissue. Further, the refinement of the crystal grains is also effective in generating nanocrystal grains described later. Therefore, by performing this step, the deformation in the plastic processing in the next step becomes more uniform, and the occurrence of abnormal deformation or bending during the processing can be avoided, and the yield can be drastically improved. To further improve this effect, the hot extruded material may be subjected to a heat treatment for removing residual stress due to processing. The heat-treated material is cooled by standing to cool.
  • the crystal grain size of the material can be confirmed by an EBSD image of the cross section of the material (FIG. 7).
  • the measurement condition of EBSD is scan step: 0.1 ⁇ m, and the crystal grain size distribution showing the relationship between the maximum diameter and the number of the individual crystal grains with respect to the crystal grains recognizable at the grain boundary having the orientation difference of 15 ° or more. From FIG. 8, the average diameter of the maximum diameter of the crystal grains can be obtained.
  • the crystal grain size distribution may be confirmed by those recognized as crystal grains under the above measurement conditions, and for example, can be confirmed by crystal grains having a maximum diameter of 0.2 ⁇ m or more.
  • the crystal grain size of the material refers to the above-mentioned “average diameter of the maximum diameter of the crystal grains”.
  • the carbide can also be recognized as a crystal grain defined by “a grain boundary having a misorientation of 15 ° or more” in the EBSD image (for example, an arrow in FIG. 7). In such a case, this carbide may also be included in the above-described crystal grain size distribution as crystal grains.
  • the average diameter of the crystal grains of the Ni-base superalloy having a large amount of the ⁇ 'phase can be determined. It is suitable.
  • the crystal grain size of the material can be measured from the cross-sectional structure of the material.
  • the cross section of the material is corroded with a curling liquid, and the cross-sectional structure after the corrosion is observed with an optical microscope having a predetermined magnification.
  • the evaluation can be performed using “grain size number G” based on JIS-G-0551 (ASTM-E112), and the result can be converted into “average diameter d of crystal grains” corresponding to the grain size number G.
  • the crystal grain size of the material refers to the above-mentioned “average diameter d of crystal grains”.
  • the crystal grain size of the material can also be evaluated by the method using the particle size number G.
  • the hardness of the raw material is not limited, but is preferably low in order to secure the initial workability by cold plastic working in a state where the nanocrystal grains described later are not generated in the structure.
  • it can be 550 HV or less or less than 500 HV. It is more preferably at most 470 HV, even more preferably at most 450 HV.
  • the lower limit of the hardness of the material is not particularly limited, but about 250 HV is realistic. Then, for example, it can be set to 300 HV or more or 350 HV or more. Hardness greater than 400 HV can also be achieved.
  • the hardness of the material can be measured on the cross section of the material.
  • the above material is subjected to cold plastic working. More specifically, cold plastic working is performed a plurality of times so that the cumulative working ratio from the material becomes 40% or more.
  • the present invention is different from the conventional "hot" plastic working in that a Ni-based superalloy is produced by "cold" plastic working.
  • a cumulative working ratio of 40% or more can be obtained by cold plastic working, and processing is performed in hot plastic working.
  • the plastic working temperature in the present invention is preferably set to “500 ° C. or less”.
  • the temperature is more preferably 300 ° C. or lower, further preferably 100 ° C. or lower, even more preferably 50 ° C. or lower (for example, room temperature).
  • the method for producing a Ni-based super heat-resistant alloy of the present invention is suitable for a wire material form, but can also be applied to a plate material, a band material and the like. Therefore, the Ni-base superalloy manufactured by the manufacturing method of the present invention has an intermediate product shape of a wire (wire @ material), a plate (sheet @ material), and a strip (strip @ material), and also has a fine wire (wire @ material). product, a thin product (sheet @ product), and a thin product (strip @ product). Regarding the relationship between the dimensions of a plate (thin plate) and a band (thin band), the wire diameter (diameter) of a wire (thin wire) can be read as a plate thickness or a band thickness.
  • the hot-extruded material of the Ni-based super heat-resistant alloy is a bar
  • bar processing for compressing the cross-sectional area can be performed.
  • the "bar" of the Ni-base super heat-resistant alloy is used as a starting material, and as a mode of plastic working performed on this bar, pressure can be uniformly applied to the bar.
  • Process of compressing the cross-sectional area of a simple cross-section ".
  • the bar material is subjected to a process of plastically compressing the cross-sectional area (bar diameter) to increase the length.
  • the processing rate is represented by the area reduction rate when swaging or die drawing is performed on the bar. Reduction of area, in relation to the cross-sectional area A 0 of the plastic working before the bar, the cross-sectional area A 1 of the wire and fine lines after the plastic working, [(A 0 -A 1 ) / A 0 ] ⁇ 100 (%) (1) Is calculated by the following equation. On the other hand, when rolling is performed, the processing rate is represented by the rolling reduction.
  • the cumulative working rate indicates the working rate for the material of the final workpiece when plastic working is performed a plurality of times or over a plurality of passes.
  • the cumulative working ratio from the above cold plastic working material is increased to 40% or more.
  • the plastic working at this working rate can be completed not by one plastic working but by a plurality of plastic workings. No heat treatment is performed during multiple plastic workings.
  • the heat treatment referred to here is a heat treatment in a high temperature region where recovery or recrystallization occurs, for example, heat treatment at a temperature exceeding 500 ° C.
  • heat treatment is not required between passes of cold working, and a plurality of strong cold workings can be continuously performed to increase a cumulative working rate (cumulative surface reduction rate). It should be noted that formation of nanocrystal grains in the structure of the Ni-based super heat-resistant alloy that has been subjected to strong working can be observed.
  • the cumulative working ratio is preferably set to 40% or more.
  • the cumulative processing rate is preferably 45% or more, more preferably 50% or more, and even more preferably 55% or more.
  • the upper limit of the cumulative processing rate is not particularly limited, but is preferably about 80%.
  • the cumulative working rate it is preferable to temporarily set to 80% or less in order to make the effect of repairing material defects by the first heat treatment described later effective. It is more preferably at most 75%, further preferably at most 70%, even more preferably at most 65%. It is preferable that the processing rate (area reduction rate) by one plastic processing (pass) is 30% or less. More preferably, it can be 28% or less. This is because performing plastic working with a large working rate at one time may cause cracks or defects in the material.
  • the working ratio of the one plastic working (pass) can be further reduced. For example, when the number of times of plastic working (pass) is three or more, the working rate by one plastic working (pass) can be set to a maximum of 25%. Further, when the number of times of the plastic working (pass) is four or more, the working rate by one plastic working (pass) can be set to a maximum of 23%.
  • the working rate (reduction rate) in a given plastic working (pass) is calculated from the working rate (reduction rate) in the previous plastic working (pass). It is also possible to increase the processing efficiency by increasing the size.
  • the processing rate may be increased for each plastic working (pass).
  • the term “pass” refers to “1” when plastic working is performed by one (or a pair of) dies or rolls in the above-described plastic working such as swaging, die drawing, and rolling. Path ".
  • one pass when used, it indicates the above-mentioned one “plastic working”.
  • the material of the Ni-base super heat-resistant alloy is a bar
  • plastic working such as compressing the cross-sectional area of the bar from the peripheral surface of the bar toward the axis is effective.
  • a plastic working method in which pressure is evenly applied to the entire periphery of the bar to be plastically worked is advantageous. As a specific example, there is a swaging process.
  • the swaging process is preferable for generating nanocrystal grains because the swaging process forges the circumferential surface of the bar while rotating a plurality of dies surrounding the entire circumference of the bar.
  • other plastic working such as cassette roller die drawing and hole type die drawing can be applied.
  • Step (b) [B] A heat treatment is performed on the processed material at a temperature of 900 ° C. or higher. The effect of this heat treatment will be described with reference to FIG.
  • the Ni-based super heat-resistant alloy which has been subjected to the strong working with the cumulative working rate of 40% or more is in a state where the working can be further continued. Therefore, it is possible to perform cold working to a higher working ratio without performing heat treatment during plastic working.
  • the Ni-base superalloy targeted by the present invention contains 0.01 to 0.25% by mass of carbon, coarse carbides 2 are precipitated in the structure of the raw material 1.
  • the processed material 3 of the Ni-base superalloy after the cold plastic working (i) with the cumulative working ratio of 40% or more has a linear structure in which the ⁇ phase and the ⁇ 'phase extend in the stretching direction.
  • the carbides are pulverized by plastic working to become fine carbides 4, but exist in the processed structure as carbide aggregates in which the fine carbides are connected in the direction in which the structure extends.
  • Material defects 6 are formed between the fine carbides. If the plastic working (ii) is further performed in this state, the defects 6 between the fine carbides 4 may spread and combine with the adjacent defects 6, and may be a starting point of a crack.
  • the material defect 6 formed between the fine carbides 4 is repaired by performing a heat treatment.
  • the defect rate can be 0.5 area% or less. This is considered because the material softens and the alloy component fills the gap due to the diffusion of the alloy component. Therefore, when plastic working is further performed after the heat treatment (iii), cracks do not occur starting from material defects.
  • the time of heat treatment that is, the stage at which the carbide aggregate connected in the stretching direction is formed differs depending on the carbide content, the size and type of the carbide depending on the material production method, and the like. For example, the cumulative processing rate is 40% or more.
  • the target is 45% or more, 50% or more, 55% or more.
  • the upper limit of the cumulative processing rate is preferably set to about 80%.
  • the timing of the heat treatment varies depending on the carbide content, the size and type of the carbide depending on the material production method, and the like, but it is preferable to perform the heat treatment at a time when the wire diameter does not become too small. In the case where oxide scale or the like to be described later is removed after the heat treatment, if the wire diameter is too small, the rate of material loss due to this removal increases, and the product yield may be reduced. Then, for example, it is assumed that the wire diameter is 2.7 mm or more.
  • the upper limit can be, for example, about 4.5 mm.
  • the heat treatment is performed at 900 ° C. or higher. If the temperature is lower than 900 ° C., the above-mentioned defect is not repaired, that is, the alloy component is insufficient to diffuse the defect.
  • the upper limit of the temperature of the heat treatment is not particularly limited, it is about 1200 ° C. Since the heat treatment aims at repairing the defect by processing as described above, it is sufficient if the defect can be repaired regardless of the solid solution of the ⁇ 'phase.
  • the heat treatment time can be, for example, 10 minutes or more, 30 minutes or more, or 60 minutes or more depending on the size and shape of the material, and the upper limit may be appropriately determined, such as 120 minutes or less and 90 minutes or less.
  • the heat treatment is preferably performed in an inert atmosphere such as a vacuum, a reducing atmosphere, or Ar to avoid surface oxidation, but may be performed in an oxidizing atmosphere (for example, an air atmosphere).
  • an oxide scale is formed on the surface. If cold plastic working is performed while the oxide scale is formed, there is a possibility that cracks and defects may be formed. Then, you may remove mechanically or chemically by grinding
  • the above heat treatment time is preferably completed in a short time, for example, 100 minutes or less, 90 minutes or less, or 80 minutes or less.
  • the heat-treated material is further subjected to plastic working at a temperature of 500 ° C. or less. More specifically, plastic working is performed one or more times so that the cumulative working ratio from the heat-treated material is 10% or more.
  • plastic working in the case of a wire, swaging, cassette roller die drawing, hole die drawing, and the like can also be used in the production of a sheet material, a band material, and the like. it can.
  • the first heat treatment causes the reworked structure to recrystallize, but the material defects formed between the fine carbides are repaired, so that even if cold plastic working is further performed, cracks are generated from the material defects. There is no.
  • plastic working is performed up to the final product dimensions.
  • the hardness of the material of the final product dimensions can be 500 HV or more, 550 HV or more, 600 HV or more.
  • the cumulative working ratio of the second plastic working can be 10% or more.
  • the upper limit of the cumulative working rate is not particularly limited, a working rate similar to that of the first plastic working is aimed at.
  • the cumulative working rate of the second plastic working is , Can be smaller than the cumulative working rate of the first plastic working.
  • Other processing conditions are the same as in the first plastic working. For example, when performing plastic working a plurality of times, it is possible to increase the working rate in a given pass to be greater than the working rate in the previous pass to increase the working efficiency. The processing rate may be increased for each pass.
  • Second heat treatment and third plastic working [re-process (b) [B] and process (c) [C]] If the second plastic working cannot be performed to the final product dimensions, the first heat treatment and the second plastic working described above can be further repeated one or more times to perform the processing to the target dimensions. Processing conditions, heat treatment conditions, and the like are as described above. For example, for the second heat treatment, the temperature, time, atmosphere, and the like can be determined in the manner of the first heat treatment. Further, when heat treatment is performed in an oxidizing atmosphere to form oxide scale on the surface, the oxide scale can be removed. Then, the timing of performing the heat treatment can be determined, for example, based on the cumulative working ratio of the second plastic working (that is, the immediately preceding plastic working).
  • the cumulative working ratio can be 10% or more.
  • the upper limit of the cumulative working rate is not particularly limited, a working rate similar to that of the first plastic working can be aimed at. Then, the cumulative working rate of the third plastic working can be made smaller than the cumulative working rate of the first plastic working. Further, in the case of performing the plastic working a plurality of times in the third plastic working, it is possible to increase the working rate in a given pass to be larger than the working rate in the previous pass to increase the working efficiency. .
  • the processing rate may be increased for each pass.
  • the set of the second heat treatment and the third plastic working as described above can be performed once or a plurality of times depending on the final product dimensions.
  • the Ni-based super heat-resistant alloy (first processed material) to be subjected to the heat treatment in the last step (B) is performed.
  • dimension d in the direction perpendicular to the longitudinal direction is preferably at least 1.5 times the final product dimensions d f.
  • the Ni-base super heat-resistant alloy (first processed material) is elongated by plastic working and has an elongated shape such as a linear shape, a plate shape, and a band shape
  • the dimension d in the direction perpendicular to the longitudinal direction is defined as a line.
  • the shape means a diameter
  • the thickness means a plate or a band.
  • the final product dimensions d f the dimension in the above direction in the final product shape also including cases of and processing less for finishing.
  • heat treatment particularly, heat treatment in an oxidizing atmosphere such as an air atmosphere
  • an oxide scale is formed on the surface. Therefore, the heat is removed mechanically or chemically by polishing or grinding. Is preferred.
  • the ratio of the amount of loss of the alloy due to polishing or the like increases as the plastic working proceeds and the alloy becomes thinner and thinner, and the yield decreases. Therefore, it is preferable that the heat treatment between the plastic working and the plastic working be performed at a stage sufficiently larger than the finished dimension.
  • the dimension d as described above is preferably 1.5 times or more of the final product dimensions d f, more preferably not less than 1.8 times. Further, from the same viewpoint, it is preferably, more preferably the difference d-d f 1.2 mm or more difference d-d f of the dimensions d and final product size d f as described above is 1mm greater. Then, the relationship between the dimensions d and d f described above, it is preferable that meets when the heat treatment of any of the steps (B), in particular, it meets the time of the heat treatment of the last performed step (B) Is preferred. While satisfying these conditions, it is more preferable that the following final product dimensions d f 2 mm.
  • the alloy obtained by the cold plastic working described above can be made into a “fine wire”, a “thin plate”, or a “thin strip” which is a final product shape.
  • the fine wire has a wire diameter (diameter) of, for example, 5 mm or less, 4 mm or less, 3 mm or less, and finally 2 mm or less, 1 mm or less.
  • the thin plate and the thin band have a thickness of, for example, 5 mm or less, 4 mm or less, 3 mm or less, and finally 2 mm or less, 1 mm or less.
  • the thin wire, the thin plate, and the thin strip have a longer length, for example, 50 times or more, 100 times or more, and 300 times or more of the above-described wire diameter or thickness.
  • the alloy in this case has, for example, a linear structure in which the ⁇ phase and the ⁇ ′ phase in the structure extend in the stretching direction.
  • the hardness of the alloy is 500 HV or more. And it is also conceivable that a processing defect exists in the alloy.
  • the processing defect has a defect rate of more than 0.5 area%. However, actually, it is 1.0 area% or less. The presence of such processing defects does not cause any problem in that no further plastic working is performed.
  • heat treatment for example, holding at 900 ° C. to 1200 ° C. for 30 minutes to 3 hours
  • the hardness can be adjusted to less than 500 HV, 450 HV or less, or 420 HV or less. And, for example, the hardness is 300 HV or more, or 350 HV or more.
  • the processing defect can be repaired by this heat treatment, and for example, the defect rate can be reduced to 0.5 area% or less in a cross-sectional structure including the central axis in the length direction of the alloy (that is, the plastic working direction). The defect rate can be further reduced to 0.4 area% or less, 0.3 area% or less, and 0.2 area% or less, in combination with the effect of the heat treatment performed during the conventional plastic working. If it is desired to reduce processing defects in the usage form of the Ni-based super heat-resistant alloy, this heat treatment can be performed. It is conceivable that crystal grains in the above equiaxed crystal structure have grown by performing the above heat treatment.
  • the grain size of the crystal grain may reach the wire diameter at the maximum. Then, if the effect of suppressing coarsening of crystal grains (pinning effect) effectively functions by the carbide aggregates connected in the stretching direction, the growth of crystal grains is suppressed.
  • the size of the crystal grains after the heat treatment is an average particle size in the cross-sectional structure, for example, a particle size of 100 ⁇ m or less, 75 ⁇ m or less, 50 ⁇ m or less, 25 ⁇ m or less, 10 ⁇ m or less.
  • the surface of the final product can be mechanically or chemically finished by, for example, polishing or grinding.
  • Ni-based superalloy according to the present invention has been described above. According to the present invention, plastic working of a Ni-base superalloy having a cumulative working rate of 40% or more at a temperature of 500 ° C. or less is performed, so that complicated manufacturing steps such as repetition of hot working and heat treatment are not required. Cold plastic working is possible, and the number of heat treatments during plastic working can be reduced. Therefore, the simplification of the process can be achieved, and the manufacturing cost can be reduced. Further, if necessary, a product having a small defect rate of 1.0 area% or less, particularly a wire rod, can be obtained. This effect is particularly remarkable in a Ni-based super heat-resistant alloy having a large carbon content in which processing defects easily occur.
  • Table 1 shows the component composition of the Ni-base super heat-resistant alloy A (% by mass). Table 1 also shows the "[gamma] 'molar ratio" of the ingot. This value was calculated using commercially available thermodynamic equilibrium calculation software “JMatPro (Version 8.0.1, a product of Sente Software Ltd.)”. The content of each element listed in Table 1 was input to the thermodynamic equilibrium calculation software, and the above “ ⁇ ′ molar ratio” (%) was determined.
  • the ingot of the Ni-base super heat-resistant alloy A was subjected to a heat treatment at a holding temperature of 1200 ° C. for a holding time of 8 hours, cooled in a furnace, and then formed into a cylindrical shape having a length of 150 mm and a diameter of 60 mm in a direction parallel to the length direction of the ingot. Material was collected. This cylindrical material was sealed in a SUS304 capsule and subjected to hot extrusion.
  • the hot extrusion conditions were an extrusion temperature of 1150 ° C., an extrusion ratio of 10 (including capsules), and an extrusion stem speed of 15 mm / s.
  • An extruded material having a diameter of 27 mm was obtained by hot extrusion.
  • the crystal grain size (average crystal grain size) of the extruded material was 200 ⁇ m or less.
  • FIG. 3 shows a cross-sectional microstructure of the bar in the longitudinal direction at the center (axial portion) observed by an optical microscope. The observation was performed by etching with a curling liquid after polishing the cross section. Although the ⁇ 'phase is uniformly precipitated in the ⁇ structure, carbides (MC, M 23 C 6, etc.) of several microns to several tens of microns were observed. The hardness at the center was 449 HV.
  • FIG. 4A and FIG. 4B show the microstructures in the central section in the longitudinal direction by an optical microscope before and after the heat treatment. Before the heat treatment (FIG.
  • the ⁇ phase and the ⁇ ′ phase have a linear structure extending in the stretching direction.
  • the carbide a carbide aggregate continued in the stretching direction was observed, and a defect (enclosure) starting from the carbide was observed.
  • the structure after the heat treatment (FIG. 4B) is a recrystallized structure in which the ⁇ ′ phase is uniformly precipitated in the granular ⁇ phase.
  • the carbide continued in the stretching direction also remained, the carbide particles spread and were separated by the metal structure, and the defective portion was not observed.
  • the material subjected to the first heat treatment is further subjected to two-pass cold plastic working (second plastic working), and when the cumulative working ratio from the material after the first heat treatment reaches 37.7%. Then, heat treatment and centerless polishing were performed again (second heat treatment).
  • the material whose wire diameter became 2.8 mm by the centerless polishing is further subjected to four passes of cold plastic working (third plastic working), and the cumulative working rate from the material after the second heat treatment is 49.0%. Then, heat treatment and centerless polishing were performed again (third heat treatment).
  • the material having a wire diameter of 1.75 mm by the centerless polishing is finally subjected to two-pass cold plastic working in which the cumulative working ratio from the material after the third heat treatment becomes 40.5% (fourth).
  • FIG. 5A and FIG. 5B show the microstructures of the outer peripheral portion and the central portion of the wire rod having a wire diameter of 1.0 mm in the longitudinal direction by an optical microscope, respectively.
  • a linear structure in which the ⁇ phase and the ⁇ ′ phase extended in the stretching direction was obtained as in FIG. 4A.
  • a carbide aggregate connected in the stretching direction was observed, no defect was observed between the carbide particles even in FIG. 5B in which the magnification was enlarged.
  • the hardness at the center of the wire having a diameter of 1.0 mm was 570 HV.
  • the dimension d (2.0 mm) of the material subjected to the third heat treatment was 2.0 times the final product dimension d f (1.0 mm).
  • Example 2 After performing a final heat treatment (1150 ° C., 60 minutes) on the wire having a wire diameter of 1.35 mm obtained in Example 1 in the air, a centerless polishing for finish processing was performed to finally obtain a wire having a wire diameter of 1.0 mm.
  • a final dimension wire having a length of about 1 m was produced.
  • the ⁇ ′ phase is uniformly precipitated in the granular ⁇ phase in any case as in FIG. 4B.
  • a recrystallized structure was obtained.
  • a carbide aggregate continued in the stretching direction was observed, but no defect was observed between the carbide particles.
  • the hardness at the center of the wire having a diameter of 1.0 mm was 379 HV.
  • the size of the crystal grains in the microstructure at the center in the cross section in the longitudinal direction of this wire was about 8 ⁇ m in average grain size excluding twins.
  • Example 3 A bar having a diameter of 6 mm and a length of 60 mm cut out of a hot extruded material of the Ni-base superalloy A produced under the method and conditions described in Example 1 was subjected to multiple passes in the same manner as in Example 1. Unlike Example 1, the intermediate heat treatment (that is, the first heat treatment) was performed at 1150 ° C. for 30 minutes, and thereafter, the plastic working was continuously performed without forming the centerless polishing while the oxide scale was formed (see Table 1). 3). In Example 3, a wire rod having a wire diameter of 2.7 mm could be manufactured. The structure of this wire was a linear structure in which the ⁇ phase and the ⁇ ′ phase extended in the stretching direction, as in FIG.
  • FIGS. 6A and 6B show the microstructures of the outer peripheral portion and the central portion, respectively, of the longitudinal section taken by an optical microscope.
  • the structure of this wire was also a linear structure in which the ⁇ phase and ⁇ ′ phase extended in the stretching direction, as in FIG.
  • the ingot of the Ni-base super heat-resistant alloy B was subjected to a heat treatment at a holding temperature of 1200 ° C. and a holding time of 8 hours, cooled in a furnace, and then formed into a cylindrical shape having a length of 150 mm and a diameter of 66 mm in a direction parallel to the length direction of the ingot. Material was collected. This cylindrical material was sealed in a SUS304 capsule and subjected to hot extrusion. The hot extrusion conditions were an extrusion temperature of 1150 ° C., an extrusion ratio of 10 (including capsules), and an extrusion stem speed of 15 mm / s. An extruded material having a diameter of 27 mm was obtained by hot extrusion.
  • FIG. 9 shows a cross-sectional microstructure of an axis portion of the cut surface observed by a scanning electron microscope (magnification: 2000). The microstructure various carbide (MC, M 6 C, M 23 C 6 , etc.) was observed (dispersion in the figure). The hardness of the microstructure was 496 HV at the center (axial line).
  • the crystal grain size of the material was evaluated by an EBSD image.
  • the measurement location was a position at a distance of D / 4 (D is the diameter of the extruded material) from the surface of the extruded material toward the axis on the cut surface.
  • the EBSD measurement conditions were determined using an EBSD measurement system “Aztec Version 3.2 (manufactured by Oxford Instruments)” attached to a scanning electron microscope “JIB-4700F (manufactured by JEOL Ltd.)” at a magnification of 2000 ⁇ . Scan step: 0.1 ⁇ m, and a crystal grain was defined with a grain boundary having an orientation difference of 15 ° or more.
  • the crystal grain size distribution based on the relationship between the maximum diameter (maximum length) and the number of individual crystal grains is confirmed, and the crystal grains are determined.
  • the average diameter of the maximum diameter was determined.
  • the EBSD image at this time is shown in FIG. 7, and the crystal grain size distribution is shown in FIG.
  • the crystal grain diameter (maximum diameter of crystal grains) on the horizontal axis is collectively shown every 0.2 ⁇ m.
  • a crystal grain having a maximum diameter of 0.2 ⁇ m or more and less than 0.4 ⁇ m is “0.4 ⁇ m”.
  • the crystal grains having a maximum diameter of 0.6 ⁇ m or more and less than 0.8 ⁇ m are grouped in a group of “0.8 ⁇ m”.
  • the largest value among the individual crystal grains was 6.43 ⁇ m.
  • the smallest value was 0.36 ⁇ m.
  • the average diameter of the maximum diameter of the crystal grains was 1.1 ⁇ m.
  • a bar having a diameter of 6 mm and a length of 60 mm was cut out from the extruded material.
  • the longitudinal direction of the bar was set parallel to the axial direction of the extruded material.
  • the ⁇ ′ phase is uniformly precipitated in the ⁇ structure in the cross-sectional microstructure of the Ni-based superalloy B rod, and as described above, various carbides (MC, M 6 C , M 23 C 6, etc.) were observed.
  • the hardness of the bar of the Ni-base super heat-resistant alloy B was 496 HV at the center in the longitudinal direction as in the above.
  • This rod was subjected to cold plastic working in a plurality of passes at room temperature (about 25 ° C.) using a rotary swaging apparatus (first plastic working).
  • the processing rate (area reduction rate) of each pass was 30% or less.
  • a heat treatment (1150 ° C., 30 minutes) was performed in vacuum (first heat treatment).
  • the material subjected to the first heat treatment is not subjected to centerless polishing of the surface, but is subjected to two-pass cold plastic working (second plastic working).
  • second heat treatment When the cumulative processing rate of 39.5% became 39.5%, only heat treatment was performed again (second heat treatment).
  • the third to sixth plastic workings and the third to fifth heat treatments (in vacuum, without centerless polishing) performed during the plastic working are performed to obtain a wire diameter of 1.
  • a 3 mm wire was used.
  • a centerless polishing of a finishing process is performed to remove an oxide scale formed on the surface.
  • a wire having a final diameter of 1.0 mm and a length of about 1 m was manufactured.
  • the hardness of the material at each point in time is the hardness at the center of the material, and after the material (diameter 5.5 mm) at the end of the first pass in the first plastic working was 563 HV, It was 500 HV or more when the plastic working was completed (it was approximately 610 HV). In addition, when heat treatment was performed after completion of each plastic working, the value was less than 500 HV.
  • FIG. 10 shows a cross-sectional microstructure of the material (diameter 4.5 mm) after the first plastic working, observed by a scanning electron microscope (1000-fold magnification).
  • the cross-sectional microstructure in FIG. 10 was a linear processed structure in which the ⁇ phase and the ⁇ ′ phase extended in the stretching direction (the longitudinal direction of the material).
  • the carbides tended to aggregate in the stretching direction. Then, no defective portion originating from carbide was found, but at this time, the first heat treatment was performed.
  • FIG. 11 shows a cross-sectional microstructure of the material (4.5 mm in diameter) after the first heat treatment, observed by a scanning electron microscope (1000-fold magnification).
  • FIG. 12 shows a cross-sectional microstructure of a material (diameter: 4.0 mm) after the fourth pass in the second plastic working, observed by a scanning electron microscope (1000-fold magnification).
  • the cross-sectional microstructure in FIG. 12 was a linear processed structure in which the ⁇ phase and the ⁇ ′ phase extended in the stretching direction (the longitudinal direction of the material).
  • the carbides tended to aggregate in the stretching direction. Then, the first heat treatment was performed at the time after the first plastic working, and no defect starting from carbide was found.
  • the microstructure of the outer peripheral part and the central part by the optical microscope in the longitudinal section of the wire rod having the final dimension of the wire diameter of 1.0 mm has a ⁇ ′ phase in a granular ⁇ phase in any case as in FIG. 4B.
  • a uniformly precipitated recrystallization structure was obtained.
  • a carbide aggregate continued in the stretching direction was observed, but no defect was observed between the carbide particles.
  • the hardness at the center of the wire having a diameter of 1.0 mm was 382 HV.
  • the dimension d (1.5 mm) of the material subjected to the fifth heat treatment was 1.5 times the final product dimension d f (1.0 mm).
  • the examples show that a thin wire of a Ni-based super heat-resistant alloy can be manufactured by cold plastic working.
  • the Ni-based super heat-resistant alloy produced by the production method of the present invention can be worked into a wire having an arbitrary wire diameter by cold plastic working.
  • the present embodiment is applied to the manufacture of a wire, it is also applicable to the manufacture of other shapes such as a plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided are: a method for producing a Ni-based super-heat-resisting alloy having such a compositional formula that the equilibrium volume for precipitations in a gamma prime phase at 700°C can become 35 mol% or more; and a Ni-based super-heat-resisting alloy. The method according to the present invention comprises the steps of: (a) subjecting a material having such a compositional formula that the content of carbon is 0.01 to 0.25% by mass and the equilibrium volume for precipitations in a gamma prime phase at 700°C can become 35 mol% or more to a plastic working procedure multiple times at a temperature of 500°C or lower in such a manner that the cumulative working ratio from the material can become 40% or more, thereby producing a first worked material; (b) subjecting the first worked material to a heat treatment at a temperature of 900°C or higher, thereby producing a first heat-treated material; and (c) further subjecting the first heat-treated material to a plastic working procedure once or multiple times at a temperature of 500°C or lower in such a manner the cumulative working ratio from the first heat-treated material can become 10% or more, thereby producing a second worked material. The Ni-based super-heat-resisting alloy according to the present invention has the above-mentioned compositional formula, wherein the defect rate in a cross-sectional structure is 0.5% by area or less.

Description

Ni基超耐熱合金の製造方法およびNi基超耐熱合金Method for producing Ni-base super heat-resistant alloy and Ni-base super heat-resistant alloy
 本発明は、Ni基超耐熱合金を製造する方法およびNi基超耐熱合金に関するものであり、詳細には700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有するNi基超耐熱合金を製造する方法およびNi基超耐熱合金に係るものである。 The present invention relates to a method for producing a Ni-base super-heat-resistant alloy and a Ni-base super-heat-resistant alloy. More specifically, the present invention relates to a Ni-base super-heat-resistant alloy having a gamma prime phase equilibrium precipitation at 700 ° C. of 35 mol% or more. The present invention relates to a method for producing a heat-resistant alloy and a Ni-based super heat-resistant alloy.
 航空機エンジンや発電用のガスタービンに用いられる耐熱部品として、例えば、インコネル(登録商標)718合金のようなNi基超耐熱合金が多く用いられている。ガスタービンの高性能化と低燃費化に伴って、高い耐熱温度を有する耐熱部品が求められている。Ni基超耐熱合金の耐熱性(高温強度)を向上させるためには、NiAlを主組成とする金属間化合物の析出強化相であるガンマプライム(以下、「γ’」とも記す。)相の量を増やすことが最も有効である。そして、Ni基超耐熱合金が、更に、γ’生成元素であるAl、Ti、Nbを含有することで、Ni基超耐熱合金の高温強度をさらに向上させることができる。今後、高耐熱性、高強度を満足させるために、γ’相の量がより多いNi基超耐熱合金が求められる。 As heat-resistant components used in aircraft engines and gas turbines for power generation, for example, Ni-based super heat-resistant alloys such as Inconel (registered trademark) 718 alloy are often used. With the high performance and low fuel consumption of gas turbines, heat-resistant parts having high heat-resistant temperatures are required. In order to improve the heat resistance (high-temperature strength) of the Ni-based super heat-resistant alloy, a gamma prime (hereinafter also referred to as “γ ′”) phase which is a precipitation strengthening phase of an intermetallic compound having Ni 3 Al as a main composition. It is most effective to increase the amount of Then, the high-temperature strength of the Ni-based super heat-resistant alloy can be further improved by further containing Al, Ti, and Nb, which are γ'-forming elements, in the Ni-based super heat-resistant alloy. In the future, in order to satisfy high heat resistance and high strength, a Ni-based super heat-resistant alloy having a larger amount of γ 'phase is required.
 しかし、Ni基超耐熱合金は、γ’相の増加と共に、熱間加工の変形抵抗が大きくなり、難加工であることが知られている。とりわけ、γ’相の量が35~40モル%以上のγ’モル率になると加工性は特に低下する。例えば、インコネル(登録商標)713C合金、IN939、IN100、Mar-M247等の合金は、特別にγ’相が多く、塑性加工が不可能とされ、通常は鋳造合金として鋳造まま(as-cast)で使用されている。 However, it is known that the Ni-base super heat-resistant alloy is difficult to work because the deformation resistance of hot working increases as the γ 'phase increases. In particular, when the amount of the γ 'phase is 35 to 40 mol% or more, the processability is particularly reduced. For example, alloys such as Inconel (registered trademark) 713C alloy, IN939, IN100, and Mar-M247 have a specially large γ 'phase, which makes plastic working impossible, and is usually as-cast as a cast alloy. Used in.
 このようなNi基超耐熱合金の熱間塑性加工性を向上させる提案として、特許文献1では、γ’モル率が40モル%以上となる組成を有するNi基超耐熱合金インゴットを加工率5%以上30%未満で冷間加工を行った後にγ’固溶温度を超える温度で熱処理する製造方法が記載されている。この方法は、冷間加工工程と熱処理工程との組合せにより、Ni基超耐熱合金に熱間加工を適用することが可能な90%以上の再結晶率を得るものである。 As a proposal for improving the hot plastic workability of such a Ni-based super heat-resistant alloy, Patent Document 1 discloses a Ni-based super heat-resistant alloy ingot having a composition in which the γ ′ mole ratio is 40 mol% or more, and a work rate of 5%. A manufacturing method is described in which cold working is performed at less than 30% and then heat treatment is performed at a temperature exceeding the γ ′ solid solution temperature. This method obtains a recrystallization rate of 90% or more at which hot working can be applied to a Ni-base super heat-resistant alloy by a combination of a cold working step and a heat treatment step.
 また、近年、上述したγ’相の量が多いNi基超耐熱合金の耐熱部品を補修したり、または、その耐熱部品自体を3次元成形で作製したりするニーズが高まっている。その場合の造形素材としてNi基超耐熱合金の細線が求められている。この細線は、ばね等の部品形状に加工して使用することもできる。Ni基超耐熱合金の細線の線径(直径)は、例えば、5mm以下、更には3mm以下という細いものである。このような細線は、例えば、線径が10mm以下の「線材」を中間製品として準備し、この線材に塑性加工を行って作製することが効率的である。この中間製品である「線材」も、塑性加工によって得ることができれば、Ni基超耐熱合金の細線を効率的に製造することができる。
 このような超耐熱合金の細線の製造方法として、線径が5mm以上の鋳造ワイヤを出発材にして、これら鋳造ワイヤを束ねたものを熱間押出した後、分離する手法が提案されている(特許文献2)。
In recent years, there has been an increasing need to repair heat-resistant parts of the above-mentioned Ni-base super-heat-resistant alloy having a large amount of γ 'phase, or to manufacture the heat-resistant parts themselves by three-dimensional molding. In this case, a thin wire of a Ni-base super heat-resistant alloy is required as a forming material. This thin wire can be used after being processed into a part shape such as a spring. The wire diameter (diameter) of the fine wire of the Ni-base super heat-resistant alloy is as thin as, for example, 5 mm or less, and further 3 mm or less. It is efficient to prepare such a thin wire by preparing, for example, a "wire" having a wire diameter of 10 mm or less as an intermediate product and subjecting the wire to plastic working. If this "wire" as an intermediate product can also be obtained by plastic working, a thin wire of a Ni-based super heat-resistant alloy can be efficiently produced.
As a method for producing such a super-heat-resistant alloy fine wire, a method has been proposed in which a cast wire having a wire diameter of 5 mm or more is used as a starting material, a bundle of these cast wires is hot-extruded, and then separated ( Patent Document 2).
国際公開第2016/129485号WO 2016/129485 米国特許第4777710号明細書U.S. Pat. No. 4,777,710
 特許文献1の方法は、熱間加工を適用するNi基超耐熱合金には効果がある。しかし、上記のとおりNi基超耐熱合金はγ’相の量の増加と共に、熱間塑性加工性が低下する。特許文献2の手法は、限られた成分組成においては細線の製造に効果的なものであるが、その成分組成にしか適用できず、γ’相の量が後述する「35モル%以上」のNi基超耐熱合金にもなると、これを熱間塑性加工して細線まで加工することは極めて困難である。また、特許文献2の手法は、工程が複雑で、製造コストが大きくなる等の問題があった。また、細線や線材を作製するにおいては、その途中工程で割れが発生すると加工率が制限されて、所定の線径にまで塑性加工できないという問題も考えられた。 方法 The method of Patent Document 1 is effective for Ni-base super heat-resistant alloys to which hot working is applied. However, as described above, the Ni-base superalloy decreases in hot plastic workability as the amount of the γ 'phase increases. The method of Patent Document 2 is effective for producing a fine wire with a limited component composition, but can be applied only to the component composition, and the amount of the γ ′ phase is “35 mol% or more” described later. When it comes to a Ni-based super heat-resistant alloy, it is extremely difficult to hot-work it to form a fine wire. In addition, the method of Patent Document 2 has a problem that the process is complicated and the manufacturing cost is increased. Further, in producing a fine wire or a wire rod, if a crack occurs in the middle of the process, the processing rate is limited, and there has been a problem that a plastic working cannot be performed to a predetermined wire diameter.
 本発明の目的は、従来とは全く異なる斬新な手法を用いて、塑性加工性に優れたNi基超耐熱合金の製造方法を提供することであり、とりわけNi基超耐熱合金の細線を製造できる新たな方法を提供することである。本発明の他の目的は、線径の小さいNi基超耐熱合金でも、欠陥の少ない細線を少ない工数によりコストを低減して製造できる方法を提供することである。そして、本発明のさらに他の目的は、欠陥の少ないNi基超耐熱合金を提供することである。 An object of the present invention is to provide a method for producing a Ni-based super heat-resistant alloy having excellent plastic workability by using a novel method completely different from the conventional one, and particularly to produce a Ni-based super heat-resistant alloy fine wire. It is to provide a new way. Another object of the present invention is to provide a method capable of producing a fine wire with few defects and a reduced number of steps at a reduced cost even with a Ni-based super heat-resistant alloy having a small wire diameter. Still another object of the present invention is to provide a Ni-based super heat-resistant alloy having few defects.
 本発明の一観点によれば、Ni基超耐熱合金を製造する方法が提供される。この方法は、
(a)炭素含有量が0.01~0.25質量%であり、かつ700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有する素材に対して、500℃以下の温度で、素材からの累積の加工率が40%以上となるように複数回の塑性加工を行ない第1の加工材を作製する工程と、
(b)第1の加工材に900℃以上の温度で熱処理を行い、第1の熱処理材を作製する工程と、
(c)第1の熱処理材に、500℃以下の温度で、さらに、第1の熱処理材からの累積の加工率が10%以上となるように1回または複数回の塑性加工を行ない、第2の加工材を作製する工程と
を含むものである。
According to one aspect of the present invention, there is provided a method of manufacturing a Ni-base superalloy. This method
(A) a material having a carbon content of 0.01 to 0.25% by mass and a component composition in which the equilibrium precipitation amount of a gamma prime phase at 700 ° C. is 35 mol% or more is 500 ° C. or less; A step of performing a plurality of times of plastic working so that the cumulative working ratio from the material is 40% or more to produce a first working material;
(B) performing a heat treatment on the first processed material at a temperature of 900 ° C. or more to produce a first heat-treated material;
(C) The first heat-treated material is subjected to one or more times of plastic working at a temperature of 500 ° C. or less so that the cumulative working ratio from the first heat-treated material is 10% or more. 2) a step of producing a processed material.
 一具体例によれば、(d)第2の加工材に900℃以上の温度で熱処理を行う工程をさらに含むことが好ましい。 According to one specific example, it is preferable that the method further includes (d) a step of performing a heat treatment on the second workpiece at a temperature of 900 ° C. or higher.
 一具体例によれば、工程(c)の後に、工程(b)および(c)の組を、一回または複数回行ない、第2の加工材を作製することが好ましい。 According to one specific example, after the step (c), it is preferable to perform the set of the steps (b) and (c) one or more times to produce a second processed material.
 一具体例によれば、工程(a)および(c)の塑性加工における1回の塑性加工の加工率が30%以下であることが好ましい。 According to one specific example, it is preferable that the working ratio of one plastic working in the plastic working of steps (a) and (c) is 30% or less.
 また、一具体例によれば、工程(b)が、熱処理後の材料の表面の除去工程を含むことが好ましい。 According to one specific example, it is preferable that the step (b) includes a step of removing the surface of the material after the heat treatment.
 また、一具体例によれば、Ni基超耐熱合金が、質量%で、
  C:0.01~0.25%、
  Cr:8.0~25.0%、
  Al:0.5~8.0%、
  Ti:0.4~7.0%、
  Co:0~28.0%、
  Mo:0~8.0%、
  W:0~15.0%、
  Nb:0~4.0%、
  Ta:0~5.0%、
  Fe:0~10.0%、
  V:0~1.2%、
  Hf:0~3.0%、
  B:0~0.300%、
  Zr:0~0.300%
を含み、残部がNiおよび不純物からなる組成を有することが好ましい。
Further, according to one specific example, the Ni-based super heat-resistant alloy is
C: 0.01 to 0.25%,
Cr: 8.0 to 25.0%,
Al: 0.5 to 8.0%,
Ti: 0.4 to 7.0%,
Co: 0 to 28.0%,
Mo: 0 to 8.0%,
W: 0 to 15.0%,
Nb: 0 to 4.0%,
Ta: 0 to 5.0%,
Fe: 0 to 10.0%,
V: 0 to 1.2%,
Hf: 0 to 3.0%,
B: 0 to 0.300%,
Zr: 0 to 0.300%
And the balance preferably has a composition consisting of Ni and impurities.
 また、本発明の一観点によれば、Ni基超耐熱合金を製造する方法が提供される。この方法は、
(A)炭素含有量が0.01~0.25質量%であり、かつ700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有する素材に、500℃以下の温度で、塑性加工を行ない第1の加工材を作製する工程と、
(B)第1の加工材に900℃以上の温度で熱処理を行い、第1の熱処理材を作製する工程と、
(C)第1の熱処理材に、500℃以下の温度で、さらに、塑性加工を行ない、第2の加工材を作製する工程と
を含み、
 工程(A)と工程(B)との組を一回または複数回行い、
 最後に行う工程(B)の熱処理に供される第1の加工材の長手方向に垂直な方向の寸法dは最終製品寸法dの1.5倍以上のものであるか、あるいは、寸法dと最終製品寸法dとの差d-dは1mm超のものである。
Further, according to one aspect of the present invention, there is provided a method of manufacturing a Ni-based superalloy. This method
(A) A material having a carbon content of 0.01 to 0.25% by mass and a component composition having an equilibrium precipitation amount of a gamma prime phase at 700 ° C. of 35 mol% or more at a temperature of 500 ° C. or less, A step of performing a plastic working to produce a first processed material;
(B) heat-treating the first processed material at a temperature of 900 ° C. or higher to produce a first heat-treated material;
(C) performing a plastic working on the first heat-treated material at a temperature of 500 ° C. or lower to produce a second processed material;
Performing the set of step (A) and step (B) one or more times,
Finally if the first dimension d perpendicular to the longitudinal direction of the workpiece to be subjected to a heat treatment step (B) is more than 1.5 times the final product dimensions d f for performing, or size d the difference d-d f of the final product dimensions d f is of 1mm greater.
 また、本発明の別の一観点によれば、Ni基超耐熱合金が提供される。このNi基超耐熱合金は、炭素含有量が0.01~0.25質量%であり、かつ700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有し、断面組織における欠陥率が0.5面積%以下のものである。 According to another aspect of the present invention, there is provided a Ni-base superalloy. This Ni-base super heat-resistant alloy has a component composition in which the carbon content is 0.01 to 0.25 mass% and the equilibrium precipitation amount of the gamma prime phase at 700 ° C. is 35 mol% or more. The defect rate is 0.5 area% or less.
 以下の非限定的な具体例の説明および添付の図面を参照することにより、本発明の利点、特徴及び詳細が明らかになるであろう。 Advantages, features and details of the present invention will become apparent by reference to the following description of non-limiting embodiments and the accompanying drawings.
減面率31%の塑性加工を行なったNi基超耐熱合金の断面ミクロ組織の電子線後方散乱回折(EBSD)像。An electron backscatter diffraction (EBSD) image of the cross-sectional microstructure of a Ni-base superalloy subjected to plastic working with a surface reduction of 31%. 本発明における中間熱処理の効果を説明する図。The figure explaining the effect of the intermediate heat treatment in the present invention. 棒材(熱間押出材)の断面ミクロ組織(カーリング液エッチング)。Cross-sectional microstructure (curling liquid etching) of a rod (hot extruded material). 実施例1における累積加工率が56%の線材の中間熱処理前の断面ミクロ組織(カーリング液エッチング)。Sectional microstructure (curling liquid etching) of the wire having a cumulative working ratio of 56% in Example 1 before the intermediate heat treatment. 実施例1における累積加工率が56%の線材の中間熱処理後の断面ミクロ組織(カーリング液エッチング)。Sectional microstructure (curling liquid etching) after the intermediate heat treatment of the wire rod having a cumulative processing rate of 56% in Example 1. 実施例1における線径1.0mmの線材の外周部の断面ミクロ組織(カーリング液エッチング)。7 is a cross-sectional microstructure (curling liquid etching) of an outer peripheral portion of a wire having a wire diameter of 1.0 mm in Example 1. 実施例1における線径1.0mmの線材の中央部の断面ミクロ組織(カーリング液エッチング)。7 is a cross-sectional microstructure (curling liquid etching) of a central portion of a wire having a wire diameter of 1.0 mm in Example 1. 実施例3における線径2.5mmの線材の外周部の断面ミクロ組織(カーリング液エッチング)。14 is a cross-sectional microstructure (curling liquid etching) of an outer peripheral portion of a wire having a wire diameter of 2.5 mm in Example 3. 実施例3における線径2.5mmの線材の中央部の断面ミクロ組織(カーリング液エッチング)。14 shows a cross-sectional microstructure (curling liquid etching) of a central portion of a wire having a wire diameter of 2.5 mm in Example 3. 実施例4における熱間押出材(素材)の断面組織の一例を示すEBSD像。14 is an EBSD image showing an example of a cross-sectional structure of a hot extruded material (raw material) in Example 4. 図7のEBSD像で認識される結晶粒の粒径分布を示す図。FIG. 8 is a diagram showing a grain size distribution of crystal grains recognized in the EBSD image of FIG. 7. 実施例4における熱間押出材(素材)の断面組織の一例を示すミクロ組織写真。14 is a microstructure photograph showing an example of a cross-sectional structure of a hot extruded material (raw material) in Example 4. 実施例4における第1の塑性加工後の材料(直径4.5mm)のミクロ組織写真。11 is a microstructure photograph of a material (diameter: 4.5 mm) after the first plastic working in Example 4. 実施例4における第1の熱処理後の材料(直径4.5mm)のミクロ組織写真。11 is a microstructure photograph of a material (diameter: 4.5 mm) after the first heat treatment in Example 4. 実施例4における第2の塑性加工で4パス目終了後の材料(直径4.0mm)のミクロ組織写真。19 is a microstructure photograph of the material (diameter: 4.0 mm) after the fourth pass in the second plastic working in Example 4.
 本発明は、従来の熱間塑性加工とは異なる新しいアプローチによって、塑性加工性に優れたNi基超耐熱合金を製造できる新たな方法を提供するものである。
 本発明者は、γ’相の量が多いNi基超耐熱合金の塑性加工性について研究した。その結果、Ni基超耐熱合金の素材に40%以上の加工率で冷間塑性加工を行なうことが可能である現象を突きとめた。
 その際、30%以上の加工率での冷間塑性加工により、Ni基超耐熱合金の組織中にナノ結晶粒が生成されることを見いだした。このナノ結晶粒の生成がNi基超耐熱合金の塑性加工性の飛躍的向上に寄与しているものと推察される。
The present invention provides a new method capable of producing a Ni-base super heat-resistant alloy having excellent plastic workability by a new approach different from conventional hot plastic working.
The present inventors have studied the plastic workability of a Ni-base superalloy having a large amount of γ 'phase. As a result, the inventors have found a phenomenon in which cold plastic working can be performed on a Ni-base super heat-resistant alloy material at a working ratio of 40% or more.
At that time, it was found that nanocrystalline grains were generated in the structure of the Ni-base superalloy by cold plastic working at a working ratio of 30% or more. It is presumed that the formation of the nanocrystal grains contributes to a drastic improvement in the plastic workability of the Ni-base superalloy.
 したがって、本発明による700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有するNi基超耐熱合金を製造する方法は、
(a)炭素含有量が0.01~0.25質量%であり、かつ700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有する素材に対して、500℃以下の温度で、素材からの累積の加工率が40%以上となるように複数回の塑性加工を行ない第1の加工材を作製する工程と、
(b)前記第1の加工材に900℃以上の温度で熱処理を行い、第1の熱処理材を作製する工程と、
(c)前記第1の熱処理材に、500℃以下の温度で、さらに、前記第1の熱処理材からの累積の加工率が10%以上となるように1回または複数回の塑性加工を行ない、第2の加工材を作製する工程と
を含むものである。
Therefore, the method for producing a Ni-base superalloy having a component composition in which the equilibrium precipitation amount of the gamma prime phase at 700 ° C. is not less than 35 mol% according to the present invention is as follows.
(A) a material having a carbon content of 0.01 to 0.25% by mass and a component composition in which the equilibrium precipitation amount of a gamma prime phase at 700 ° C. is 35 mol% or more is 500 ° C. or less; A step of performing a plurality of times of plastic working so that the cumulative working ratio from the material is 40% or more to produce a first working material;
(B) performing a heat treatment on the first processed material at a temperature of 900 ° C. or higher to produce a first heat-treated material;
(C) The first heat-treated material is subjected to one or more times of plastic working at a temperature of 500 ° C. or less so that the cumulative working rate from the first heat-treated material becomes 10% or more. And a step of producing a second processed material.
 本発明が対象とするNi基超耐熱合金は、炭素含有量が0.01~0.25質量%であり、700℃におけるガンマプライム(γ’)相の平衡析出量が35モル%以上の成分組成を有する。
 ここで、Ni基超耐熱合金のγ’相の量は、そのγ’相の「体積率」や「面積率」等の数値的指標で表すことができる。本明細書では、γ’相の量を、「γ’モル率」の数値的指標で表す。γ’モル率とは、Ni基超耐熱合金が熱力学的な平衡状態において析出することができる、安定的なガンマプライム相の平衡析出量のことである。ガンマプライム相の平衡析出量を「モル率」で表した値は、Ni基超耐熱合金が有する成分組成により決定される。この平衡析出量のモル%の値は、熱力学平衡計算による解析で求めることができる。熱力学平衡計算による解析では、各種の熱力学平衡計算ソフトを用いることで、精度よく、かつ、容易に求めることができる。
The Ni-base superalloy targeted by the present invention has a carbon content of 0.01 to 0.25% by mass and an equilibrium precipitation amount of gamma prime (γ ′) phase at 700 ° C. of 35 mol% or more. Having a composition.
Here, the amount of the γ ′ phase of the Ni-based super heat-resistant alloy can be represented by a numerical index such as “volume ratio” or “area ratio” of the γ ′ phase. In the present specification, the amount of the γ ′ phase is expressed by a numerical index of “γ ′ molar ratio”. The γ ′ molar ratio is a stable equilibrium precipitation amount of a gamma prime phase at which a Ni-base superalloy can precipitate in a thermodynamic equilibrium state. The value in which the equilibrium precipitation amount of the gamma prime phase is represented by “molar ratio” is determined by the component composition of the Ni-base superalloy. The value of mol% of the equilibrium precipitation amount can be determined by analysis by thermodynamic equilibrium calculation. In the analysis by thermodynamic equilibrium calculation, it is possible to accurately and easily obtain the accuracy by using various thermodynamic equilibrium calculation software.
 本発明では、Ni基超耐熱合金のγ’モル率を、「700℃における平衡析出量」とする。Ni基超耐熱合金の高温強度は、組織中のガンマプライム相の平衡析出量で評価でき、この高温強度が大きいほど、熱間塑性加工は困難になる。組織中のガンマプライム相の平衡析出量は、一般的に、概ね700℃以下で温度依存性が小さくなり、概ね一定となるので、上記の「700℃」のときの値を基準とする。 で は In the present invention, the γ ′ molar ratio of the Ni-base superalloy is defined as “equilibrium precipitation at 700 ° C.”. The high-temperature strength of the Ni-base superalloy can be evaluated by the equilibrium precipitation amount of the gamma prime phase in the structure, and the higher the high-temperature strength, the more difficult the hot plastic working becomes. The equilibrium precipitation amount of the gamma prime phase in the structure generally has a small temperature dependence at about 700 ° C. or less and becomes substantially constant. Therefore, the value at the above “700 ° C.” is used as a reference.
 上記の通り、通常はNi基超耐熱合金のγ’モル率が大きいほど熱間塑性加工は困難である。しかし、本発明によれば、γ’モル率を大きくすることが、Ni基超耐熱合金の冷間の塑性加工性の向上に大きく関与する。Ni基超耐熱合金の断面組織中に「ナノ結晶粒」を有することで、冷間塑性加工性を飛躍的に改善できる。このナノ結晶粒は、Ni基超耐熱合金のマトリックスであるオーステナイト相(ガンマ(γ))とガンマプライム相との相界面から最も発生しやすい。したがって、Ni基超耐熱合金のγ’モル率を大きくすることは、上記の相界面の増加に繋がって、ナノ結晶粒の生成に寄与する。図1は、本発明の製造方法において線材の冷間塑性加工により生成された断面ミクロ組織のEBSD像の例を示したものである。EBSDの測定条件は、走査型電子顕微鏡「ULTRA55(Zeiss社製)」に付属したEBSD測定システム「OIM Version 5.3.1(TSL Solution社製)」を使用して、倍率:10000倍、スキャンステップ:0.01μmとし、結晶粒の定義は方位差15°以上を粒界とした。図1でEBSD像に確認されたナノ結晶粒(囲み部)の最大径(最大長さ)は、小さいもので約25nmである。 の 通 り As described above, hot plastic working is generally more difficult as the γ ′ mole ratio of the Ni-base superalloy is larger. However, according to the present invention, increasing the γ 'molar ratio greatly contributes to improving the cold plastic workability of the Ni-base superalloy. By having “nano crystal grains” in the cross-sectional structure of the Ni-base superalloy, cold plastic workability can be significantly improved. The nanocrystal grains are most easily generated from a phase interface between an austenite phase (gamma (γ)), which is a matrix of the Ni-base superalloy, and a gamma prime phase. Therefore, increasing the γ 'molar ratio of the Ni-base super heat-resistant alloy leads to the above-mentioned increase in the phase interface and contributes to the formation of nanocrystal grains. FIG. 1 shows an example of an EBSD image of a cross-sectional microstructure generated by cold plastic working of a wire in the manufacturing method of the present invention. The measurement conditions of EBSD are as follows: Scanning electron microscope “ULTRA55 (manufactured by Zeiss)” EBSD measurement system “OIM Version 5.3.1 (manufactured by TSL Solution)” attached to the scanning electron microscope, magnification: 10000 times, scanning Step: The grain boundary was defined as 0.01 μm, and the crystal grain was defined as having a misorientation of 15 ° or more. The maximum diameter (maximum length) of the nanocrystal grains (encircled portion) confirmed in the EBSD image in FIG. 1 is as small as about 25 nm.
 γ’モル率が35%のレベルにまで達すると、上記のナノ結晶粒の生成が促進される。700℃におけるガンマプライム相の平衡析出量が40モル%以上の成分組成がより好ましい。更に好ましいガンマプライム相の平衡析出量は、50モル%以上であり、更により好ましくは60モル%以上である。特に好ましいガンマプライム相の平衡析出量は63モル%以上であり、いっそう好ましくは66モル%以上、よりいっそう好ましくは68モル%以上である。700℃におけるガンマプライム相の平衡析出量の上限は、特に限定しないが、75モル%程度が現実的である。 When the '[gamma]' molar ratio reaches the level of 35%, the formation of the above-mentioned nanocrystal grains is promoted. A component composition in which the equilibrium precipitation amount of the gamma prime phase at 700 ° C. is 40 mol% or more is more preferable. More preferably, the equilibrium precipitation amount of the gamma prime phase is 50 mol% or more, and still more preferably 60 mol% or more. The particularly preferred equilibrium precipitation amount of the gamma prime phase is 63 mol% or more, more preferably 66 mol% or more, and even more preferably 68 mol% or more. The upper limit of the equilibrium precipitation amount of the gamma prime phase at 700 ° C. is not particularly limited, but is practically about 75 mol%.
 700℃におけるガンマプライム相の平衡析出量が35モル%以上の析出強化型のNi基超耐熱合金として、例えば、質量%で、C:0.01~0.25%、Cr:8.0~25.0%、Al:0.5~8.0%、Ti:0.4~7.0%、Co:0~28.0%、Mo:0~8.0%、W:0~15.0%、Nb:0~4.0%、Ta:0~5.0%、Fe:0~10.0%、V:0~1.2%、Hf:0~3.0%、B:0~0.300%、Zr:0~0.300%を含み、残部がNiおよび不純物からなる組成を有することが好ましい。 As a precipitation-strengthened Ni-base superalloy having an equilibrium precipitation amount of the gamma prime phase at 700 ° C. of 35 mol% or more, for example, in mass%, C: 0.01 to 0.25%, Cr: 8.0 to 25.0%, Al: 0.5 to 8.0%, Ti: 0.4 to 7.0%, Co: 0 to 28.0%, Mo: 0 to 8.0%, W: 0 to 15 0.0%, Nb: 0 to 4.0%, Ta: 0 to 5.0%, Fe: 0 to 10.0%, V: 0 to 1.2%, Hf: 0 to 3.0%, B : 0 to 0.300% and Zr: 0 to 0.300%, with the balance being preferably composed of Ni and impurities.
 以下、本発明のNi基超耐熱合金の好ましい組成の各成分について説明する(成分組成の単位は「質量%」である)。 Hereinafter, each component of the preferred composition of the Ni-base superalloy of the present invention will be described (the unit of the component composition is “% by mass”).
炭素(C)
 Cは、従来、Ni基超耐熱合金の鋳造性を高める元素として含有するものである。そして、特に、γ’相の量の多いNi基超耐熱合金は、塑性加工が困難であるため、通常、鋳造部品として使用され、一定量のCが添加されている。この添加されたCは、鋳造組織中に炭化物として残り、一部は粗大な共晶炭化物として形成される。そして、このような粗大な炭化物は、Ni基超耐熱合金を塑性加工したときに、特に、室温で塑性加工したときに、亀裂の起点および亀裂の進展経路となり、Ni基超耐熱合金の塑性加工性に悪影響を及ぼす。
Carbon (C)
Conventionally, C is contained as an element for improving the castability of a Ni-base superalloy. In particular, Ni-base super heat-resistant alloys having a large amount of γ 'phase are usually used as cast parts because plastic working is difficult, and a certain amount of C is added. This added C remains in the cast structure as carbides, and some are formed as coarse eutectic carbides. Such a coarse carbide becomes a starting point of a crack and a propagation path of the crack when the Ni-base superalloy is plastically worked, particularly when it is plastically worked at room temperature. Adversely affect sex.
 したがって、γ’相の量の多いNi基超耐熱合金を、鋳造部品としてではなく、塑性加工によりNi基超耐熱合金を製造することを目的とした本発明にとって、そのNi基超耐熱合金中のCを低減することは好ましい。本発明の場合、Cの含有量は0.25%以下とする。好ましくは0.20%以下である。より好ましくは0.15%以下である。
 しかし、Cは、耐熱部品の強度を高める元素でもあり、そのような耐熱部品を作製したり、補修したりすることを考えれば、Cを含有していることが好ましい。本発明のNi基超耐熱合金の製造方法によれば、上述のナノ結晶粒の効果によって、高C含有量の合金でも塑性加工が可能になる。その場合でも、高C含有量の合金の場合、塑性加工により細線や線材を製造するとなると、上記の炭化物が亀裂の起点および亀裂の進展経路となり得る問題によって、加工率が制限される。これに対して、後述する第1や第2の中間熱処理によって、上記の炭化物の亀裂の問題にも対応できるので、例えば、鋳造部品における含有量と同程度のC含有量を許容することができる。
 よって、本発明によるNi基超耐熱合金を製造方法では、Cは0.01%以上含有するものとする。好ましくは0.03%以上、より好ましくは0.05%以上、さらに好ましくは0.07%以上とする。よりさらに、Cは0.1%以上含有していてもよい。
Therefore, the Ni-base superalloy having a large amount of the γ 'phase is not used as a cast part, but for the present invention aimed at producing the Ni-base superalloy by plastic working, the Ni-base superalloy in the Ni-base superalloy It is preferable to reduce C. In the case of the present invention, the content of C is set to 0.25% or less. Preferably it is 0.20% or less. It is more preferably at most 0.15%.
However, C is also an element that increases the strength of the heat-resistant component, and it is preferable that C be contained in consideration of producing or repairing such a heat-resistant component. According to the method for producing a Ni-based super heat-resistant alloy of the present invention, plastic working becomes possible even with an alloy having a high C content due to the effect of the nanocrystal grains described above. Even in such a case, in the case of an alloy having a high C content, if a fine wire or a wire is to be produced by plastic working, the working ratio is limited by the problem that the above-mentioned carbide can be a starting point of a crack and a crack propagation path. On the other hand, the first and second intermediate heat treatments described below can cope with the above-described problem of carbide cracking. For example, the same C content as that in a cast part can be allowed. .
Therefore, in the method for producing a Ni-base superalloy according to the present invention, C is contained at 0.01% or more. It is preferably at least 0.03%, more preferably at least 0.05%, further preferably at least 0.07%. Furthermore, C may be contained at 0.1% or more.
クロム(Cr)
 Crは、耐酸化性、耐食性を向上させる元素である。しかし、Crを過剰に含有すると、σ(シグマ)相などの脆化相を形成し、強度や素材準備の際の熱間加工性を低下させる。したがって、Crは、例えば、8.0~25.0%とすることが好ましい。より好ましくは8.0~22.0%である。好ましい下限は9.0%であり、より好ましい下限は9.5%である。さらに好ましい下限は10.0%である。また、好ましい上限は18.0%であり、より好ましい上限は16.0%である。さらに好まし上限は14.0%である。特に好ましい上限は12.5%である。
Chrome (Cr)
Cr is an element that improves oxidation resistance and corrosion resistance. However, when Cr is excessively contained, an embrittlement phase such as a sigma (sigma) phase is formed, and strength and hot workability at the time of material preparation are reduced. Therefore, the content of Cr is preferably set to, for example, 8.0 to 25.0%. More preferably, it is 8.0 to 22.0%. A preferred lower limit is 9.0%, and a more preferred lower limit is 9.5%. A more preferred lower limit is 10.0%. Further, a preferred upper limit is 18.0%, and a more preferred upper limit is 16.0%. A more preferred upper limit is 14.0%. A particularly preferred upper limit is 12.5%.
モリブデン(Mo)
 Moは、マトリックスの固溶強化に寄与し、高温強度を向上させる効果がある。しかし、Moが過剰になると金属間化合物相が形成されて高温強度を損なう。よって、Moは、0~8.0%とすることが好ましい(無添加(不可避不純物レベル)でもよい)。より好ましくは、2.0~7.0%である。さらに好ましい下限は2.5%であり、より好ましい下限は3.0%である。さらに好ましい下限は3.5%である。また、さらに好ましい上限は6.0%であり、より好ましい上限は5.0%である。
Molybdenum (Mo)
Mo contributes to solid solution strengthening of the matrix and has an effect of improving high-temperature strength. However, when Mo is excessive, an intermetallic compound phase is formed, which impairs high-temperature strength. Therefore, it is preferable that Mo is set to 0 to 8.0% (it may be not added (or may be an unavoidable impurity level)). More preferably, it is 2.0 to 7.0%. A still more preferred lower limit is 2.5%, and a more preferred lower limit is 3.0%. A more preferred lower limit is 3.5%. Further, a more preferable upper limit is 6.0%, and a more preferable upper limit is 5.0%.
アルミニウム(Al)
 Alは、強化相であるγ’(NiAl)相を形成し、高温強度を向上させる元素である。しかし、過度の添加は素材準備の際の熱間加工性を低下させ、加工中の割れなどの材料欠陥の原因となる。よって、Alは、0.5~8.0%が好ましい。より好ましくは2.0~8.0%である。さらに好ましい下限は2.5%であり、より好ましい下限は3.0%である。さらに好ましい下限は4.0%であり、よりさらに好ましい下限は4.5%である。特に好ましい下限は5.1%である。また、さらに好ましい上限は7.5%であり、より好ましい上限は7.0%である。さらに好ましい上限は6.5%である。
 なお、上述したCrとの関係で、素材準備の際の熱間加工性を確保するために、Crの含有量を低減したときには、その低減分のAlの含有量を許容することができる。そして、例えば、Crの上限を13.5%にしたときに、Alの含有量の下限を3.5%とすることが好ましい。
Aluminum (Al)
Al is an element that forms a γ ′ (Ni 3 Al) phase as a strengthening phase and improves high-temperature strength. However, excessive addition lowers the hot workability at the time of material preparation and causes material defects such as cracks during processing. Therefore, the content of Al is preferably 0.5 to 8.0%. More preferably, it is 2.0 to 8.0%. A still more preferred lower limit is 2.5%, and a more preferred lower limit is 3.0%. A still more preferred lower limit is 4.0%, and a still more preferred lower limit is 4.5%. A particularly preferred lower limit is 5.1%. Further, a more preferred upper limit is 7.5%, and a more preferred upper limit is 7.0%. A more preferred upper limit is 6.5%.
In addition, when the content of Cr is reduced in order to ensure the hot workability at the time of material preparation in relation to the above-described Cr, the reduced Al content can be allowed. For example, when the upper limit of Cr is set to 13.5%, the lower limit of the Al content is preferably set to 3.5%.
チタン(Ti)
 Tiは、Alと同様、γ’相を形成し、γ’相を固溶強化して高温強度を高める元素である。しかし、過度の添加は、γ’相が高温で不安定となって高温での粗大化を招くとともに、有害なη(イータ)相を形成し、素材準備の際の熱間加工性を損なう。よって、Tiは、例えば、0.4~7.0%が好ましい。他のγ’生成元素やNiマトリックスとのバランスを考慮すると、Tiの好ましい下限は0.6%であり、より好ましい下限は0.7%である。さらに好ましい下限は0.8%である。また、好ましい上限は6.5%であり、より好ましい上限は6.0%である。さらに好ましい上限は4.0%であり、特に好ましい上限は2.0%である。
Titanium (Ti)
Ti, like Al, is an element that forms a γ ′ phase and solid-solution strengthens the γ ′ phase to increase the high-temperature strength. However, excessive addition causes the γ 'phase to become unstable at high temperatures, causing coarsening at high temperatures, and also forms a harmful η (eta) phase, which impairs hot workability during material preparation. Therefore, Ti is preferably, for example, 0.4 to 7.0%. Considering the balance with other γ′-forming elements and the Ni matrix, a preferable lower limit of Ti is 0.6%, and a more preferable lower limit is 0.7%. A more preferred lower limit is 0.8%. Further, a preferable upper limit is 6.5%, and a more preferable upper limit is 6.0%. A more preferred upper limit is 4.0%, and a particularly preferred upper limit is 2.0%.
 以下、本発明のNi基超耐熱合金に添加可能な任意成分について説明する。 Hereinafter, optional components that can be added to the Ni-base superalloy of the present invention will be described.
コバルト(Co)
 Coは、組織の安定性を改善し、強化元素であるTiを多く含有しても素材準備の際の熱間加工性を維持することを可能とする。一方で、Coは高価なものであるため、コストが上昇する。よって、Coは、他元素との組み合わせにより、例えば、28.0%以下の範囲で含有することができる任意元素の一つである。Coを添加する場合の好ましい下限は8.0%とすると良い。より好ましい下限は10.0%である。また、Coの好ましい上限は18.0%とする。より好ましい上限は16.0%である。なお、γ’生成元素やNiマトリックスとのバランスにより、Coを無添加レベル(原料の不可避不純物レベル)としても良い場合は、Coの下限を0%とする。
Cobalt (Co)
Co improves the stability of the structure, and makes it possible to maintain the hot workability at the time of preparing the material, even if a large amount of Ti as a strengthening element is contained. On the other hand, since Co is expensive, the cost increases. Therefore, Co is one of the optional elements that can be contained in a range of, for example, 28.0% or less in combination with another element. A preferable lower limit when Co is added is set to 8.0%. A more preferred lower limit is 10.0%. Further, a preferable upper limit of Co is 18.0%. A more preferred upper limit is 16.0%. If Co may be added at a non-addition level (the unavoidable impurity level of the raw material) based on the balance with the γ ′ generating element and the Ni matrix, the lower limit of Co is set to 0%.
タングステン(W)
 Wは、Moと同様、マトリックスの固溶強化に寄与する選択元素の一つである。しかし、Wが過剰となると有害な金属間化合物相が形成されて高温強度を損なうため、例えば、上限を15.0%とする。好ましい上限は13.0%であり、より好ましい上限は11.0%であり、さらに好ましい上限は9.0%である。上記のWの効果をより確実に発揮させるには、Wの下限を1.0%とすると良い。好ましくは、Wの下限を、3.0%、5.0%、7.0%にすることもできる。また、WとMoとを複合添加することにより、より固溶強化効果が発揮できる。複合添加の場合のWは0.8%以上の添加が好ましい。なお、Moの十分な添加により、Wを無添加レベル(原料の不可避不純物レベル)としても良い場合は、Wの下限を0%とする。
Tungsten (W)
W, like Mo, is one of the selective elements that contribute to the solid solution strengthening of the matrix. However, when W is excessive, a harmful intermetallic compound phase is formed and the high-temperature strength is impaired. Therefore, for example, the upper limit is set to 15.0%. A preferred upper limit is 13.0%, a more preferred upper limit is 11.0%, and a still more preferred upper limit is 9.0%. In order to more reliably exert the effect of W, the lower limit of W is preferably set to 1.0%. Preferably, the lower limit of W may be 3.0%, 5.0%, or 7.0%. Further, by adding W and Mo in combination, a solid solution strengthening effect can be exhibited. In the case of composite addition, W is preferably added at 0.8% or more. Note that, in the case where W can be set to the non-addition level (the unavoidable impurity level of the raw material) by sufficient addition of Mo, the lower limit of W is set to 0%.
ニオブ(Nb)
 Nbは、AlやTiと同様、γ’相を形成し、γ’相を固溶強化して高温強度を高める選択元素の一つである。しかし、Nbの過度の添加は有害なδ(デルタ)相を形成し、素材準備の際の熱間加工性を損なう。よって、Nbの上限は、例えば、4.0%とする。好ましい上限は3.5%であり、より好ましい上限は2.5%である。なお、上記のNbの効果をより確実に発揮させるには、Nbの下限を1.0%とすると良い。好ましい下限は2.0%とすると良い。他のγ’生成元素の添加により、Nbを無添加レベル(不可避不純物レベル)としてもよい場合は、Nbの下限を0%とする。
Niobium (Nb)
Like Al and Ti, Nb is one of the selected elements that forms a γ ′ phase and strengthens the γ ′ phase by solid solution strengthening to increase the high-temperature strength. However, excessive addition of Nb forms a harmful δ (delta) phase, and impairs hot workability in preparing a material. Therefore, the upper limit of Nb is, for example, 4.0%. A preferred upper limit is 3.5%, and a more preferred upper limit is 2.5%. In order to more reliably exert the effect of Nb, the lower limit of Nb is preferably set to 1.0%. A preferable lower limit is set to 2.0%. In a case where Nb may be at a non-addition level (inevitable impurity level) by adding another γ ′ generating element, the lower limit of Nb is set to 0%.
タンタル(Ta)
 Taは、AlやTiと同様、γ’相を形成し、γ’相を固溶強化して高温強度を高める選択元素の一つである。ただし、Taの過度の添加は、γ’相が高温で不安定となって高温での粗大化を招くとともに、有害なη(イータ)相を形成し、素材準備の際の熱間加工性を損なう。よって、Taは、例えば、5.0%以下とする。好ましくは4.0%以下、より好ましくは3.0%以下、さらに好ましくは2.5%以下である。なお、上記のTaの効果をより確実に発揮させるには、Taの下限を0.3%とすると良い。好ましくは、Taの下限を、0.8%、1.5%、2.0%にすることもできる。TiやNbなどのγ’生成元素添加やマトリックスとのバランスにより、Taを無添加レベル(不可避不純物レベル)としても良い場合は、Taの下限を0%とする。
Tantalum (Ta)
Ta, like Al and Ti, is one of the selected elements that forms a γ ′ phase and solid-solution strengthens the γ ′ phase to increase the high-temperature strength. However, excessive addition of Ta causes the γ 'phase to become unstable at high temperatures, causing coarsening at high temperatures, and also forms a harmful η (eta) phase, thereby deteriorating the hot workability during material preparation. Spoil. Therefore, Ta is set to, for example, 5.0% or less. It is preferably at most 4.0%, more preferably at most 3.0%, even more preferably at most 2.5%. In order to more reliably exert the effect of Ta, the lower limit of Ta is preferably set to 0.3%. Preferably, the lower limit of Ta may be set to 0.8%, 1.5%, and 2.0%. When Ta may be added at a non-added level (inevitable impurity level) due to the addition of a γ ′ generating element such as Ti or Nb or the balance with the matrix, the lower limit of Ta is set to 0%.
鉄(Fe)
 Feは、高価なNi、Coの代替として用いる選択元素の一つであり、合金コストの低減に有効である。この効果を得るには、他元素との組み合わせで添加するかどうかを決定すると良い。ただし、Feを過剰に含有するとσ(シグマ)相などの脆化相を形成し、強度や素材準備の際の熱間加工性を低下させる。よって、Feの上限は、例えば、10.0%とする。好ましい上限は9.0%であり、より好ましい上限は8.0%である。一方、γ’生成元素やNiマトリックスとのバランスにより、Feを無添加レベル(不可避不純物レベル)としてもよい場合は、Feの下限を0%とする。
Iron (Fe)
Fe is one of the selective elements used as a substitute for expensive Ni and Co, and is effective in reducing alloy costs. In order to obtain this effect, it is better to determine whether to add in combination with other elements. However, when Fe is contained excessively, an embrittlement phase such as a sigma (sigma) phase is formed, and the strength and the hot workability in preparing the material are reduced. Therefore, the upper limit of Fe is, for example, 10.0%. A preferred upper limit is 9.0%, and a more preferred upper limit is 8.0%. On the other hand, in the case where Fe may be added at a non-addition level (inevitable impurity level) based on the balance with the γ ′ generating element and the Ni matrix, the lower limit of Fe is set to 0%.
バナジウム(V)
 Vは、マトリックスの固溶強化、炭化物生成による粒界強化に有用な選択元素の一つである。ただし、Vの過度の添加は製造過程の高温不安定相の生成を招き、製造性および高温力学性能に悪影響を招く。よって、Vの上限は、例えば、1.2%とする。好ましい上限は1.0%であり、より好ましい上限は0.8%である。なお、上記のVの効果をより確実に発揮させるには、Vの下限を0.5%とすると良い。合金中の他合金元素とのバランスにより、Vを無添加レベル(不可避不純物レベル)としても良い場合は、Vの下限を0%とする。
Vanadium (V)
V is one of the selective elements useful for solid solution strengthening of the matrix and grain boundary strengthening by carbide formation. However, excessive addition of V causes the formation of a high-temperature unstable phase in the production process, and adversely affects the manufacturability and high-temperature mechanical performance. Therefore, the upper limit of V is, for example, 1.2%. A preferred upper limit is 1.0%, and a more preferred upper limit is 0.8%. Note that the lower limit of V is preferably set to 0.5% in order to more reliably exert the effect of V described above. In the case where V may be a non-addition level (inevitable impurity level) depending on the balance with other alloy elements in the alloy, the lower limit of V is set to 0%.
ハフニウム(Hf)
 Hfは、合金の耐酸化性向上、炭化物生成による粒界強化に有用な選択元素の一つである。ただし、Hfの過度の添加は、製造過程の酸化物生成、高温不安定相の生成を招き、製造性および高温力学性能に悪影響を招く。よって、Hfの上限は、例えば、3.0%、好ましくは2.0%、より好ましくは1.5%とする。なお、上記のHfの効果をより確実に発揮させるには、Hfの下限を0.1%とすると良い。好ましくは、Hfの下限を、0.5%、0.7%、1.0%にすることもできる。合金中の他合金元素とのバランスにより、Hfを無添加レベル(不可避不純物レベル)としても良い場合は、Hfの下限を0%とする。
Hafnium (Hf)
Hf is one of the selective elements useful for improving the oxidation resistance of the alloy and strengthening the grain boundary by forming carbides. However, excessive addition of Hf causes the formation of an oxide and the formation of a high-temperature unstable phase in the production process, and adversely affects the manufacturability and high-temperature mechanical performance. Therefore, the upper limit of Hf is, for example, 3.0%, preferably 2.0%, and more preferably 1.5%. Note that the lower limit of Hf is preferably set to 0.1% in order to more reliably exert the effect of Hf. Preferably, the lower limit of Hf can be set to 0.5%, 0.7%, and 1.0%. In the case where Hf may be at a non-addition level (inevitable impurity level) depending on the balance with other alloy elements in the alloy, the lower limit of Hf is set to 0%.
ホウ素(B)
 Bは、粒界強度を向上させ、クリープ強度、延性を改善する元素である。一方で、Bは融点を低下させる効果が大きいこと、また、粗大なホウ化物が形成されると素材準備の際の熱間加工性が阻害されることから、例えば、0.300%を超えないように制御すると良い。好ましい上限は0.200%であり、より好ましい上限は0.100%である。さらに好ましい上限は0.050%であり、特に好ましい上限は0.020%である。なお、上記の効果を得るには最低0.001%の含有が好ましい。より好ましい下限は0.003%であり、さらに好ましい下限は0.005%である。特に好ましい下限は0.010%である。合金中の他合金元素とのバランスにより、Bを無添加レベル(不可避不純物レベル)としても良い場合は、Bの下限を0%とする。
Boron (B)
B is an element that improves grain boundary strength and improves creep strength and ductility. On the other hand, B does not exceed 0.300%, for example, because B has a large effect of lowering the melting point, and the formation of coarse borides impairs the hot workability during material preparation. Should be controlled as follows. A preferred upper limit is 0.200%, and a more preferred upper limit is 0.100%. A more preferred upper limit is 0.050%, and a particularly preferred upper limit is 0.020%. In order to obtain the above effects, the content is preferably at least 0.001%. A more preferred lower limit is 0.003%, and a still more preferred lower limit is 0.005%. A particularly preferred lower limit is 0.010%. In the case where B may be at a non-addition level (inevitable impurity level) depending on the balance with other alloy elements in the alloy, the lower limit of B is set to 0%.
ジルコニウム(Zr)
 Zrは、Bと同様、粒界強度を向上させる効果を有している。一方で、Zrが過剰となると、やはり融点の低下を招き、高温強度や素材準備の際の熱間加工性が阻害される。よって、Zrの上限は、例えば、0.300%とする。好ましい上限は0.250%であり、より好ましい上限は0.200%である。さらに好ましい上限は0.100%であり、特に好ましい上限は0.050%である。なお、上記の効果を得るには0.001%以上の含有が好ましい。より好ましい下限は0.005%であり、さらに好ましい下限は0.010%である。合金中の他合金元素とのバランスにより、Zrを無添加レベル(不可避不純物レベル)としても良い場合は、Zrの下限を0%とする。
Zirconium (Zr)
Zr, like B, has the effect of improving the grain boundary strength. On the other hand, when Zr is excessive, the melting point is also lowered, and high-temperature strength and hot workability at the time of material preparation are impaired. Therefore, the upper limit of Zr is, for example, 0.300%. A preferred upper limit is 0.250%, and a more preferred upper limit is 0.200%. A more preferred upper limit is 0.100%, and a particularly preferred upper limit is 0.050%. In order to obtain the above effects, the content is preferably 0.001% or more. A more preferred lower limit is 0.005%, and a still more preferred lower limit is 0.010%. When Zr may be at a non-addition level (inevitable impurity level) depending on the balance with other alloy elements in the alloy, the lower limit of Zr is set to 0%.
 以上に説明した元素以外の残部はNiであるが、不可避不純物を含んでもよい。 残 The balance other than the elements described above is Ni, but may include unavoidable impurities.
 次に、上記に説明した成分組成を有するNi基超耐熱合金を製造する本発明の製造方法について一具体例を説明する。 Next, a specific example of the production method of the present invention for producing a Ni-base superalloy having the above-described component composition will be described.
素材
 本発明では、まず、上記に説明した成分組成を有する素材を準備する。この素材の作製方法は特に限定されない。例えば、この素材は、溶湯を鋳型に注湯して鋳塊を作製する溶製法によって得ることができる。そして、鋳塊の製造には、例えば、真空溶解と、真空アーク再溶解やエレクトロスラグ再溶解等の常法を、組み合わせる等して適用してもよい。あるいは、素材は、粉末冶金法によって得られたものであってもよい。そして、上記の鋳塊や、粉末冶金法で作製された合金塊に対して、必要に応じて、熱間鍛造、熱間圧延、熱間押出などの熱間加工や機械加工(例えば、寸法調整や各種手入れのための切断や研磨、研削など)を施して、所定の形状、例えば、棒材(bar material)の形状の素材に仕上げてもよい。また、これら作業の間で、均熱処理(ソーキング)等の熱処理を施すことができる。たとえば、鋳塊の元素偏析を解消するためにソーキング(例えば1100℃~1280℃で5~60時間保持)を行なってもよい。あるいは、例えば、熱間押出に供する材料(ビレット(billet))の形状に仕上げてからソーキングを行なってもよい。本発明では、素材の組織や結晶粒径は限定されない。そのため、素材にソーキングや熱処理を行った場合、その後の冷却は急冷、放冷、炉冷などいずれでもよい。
Material In the present invention, first, a material having the component composition described above is prepared. The method for producing this material is not particularly limited. For example, this material can be obtained by a melting method in which a molten metal is poured into a mold to produce an ingot. For the production of ingots, for example, vacuum melting and ordinary methods such as vacuum arc remelting and electroslag remelting may be combined and applied. Alternatively, the material may be obtained by a powder metallurgy method. Then, for the ingot or the alloy ingot produced by the powder metallurgy method, if necessary, hot working such as hot forging, hot rolling, hot extrusion or machining (for example, dimensional adjustment) Or cutting, polishing, grinding, etc. for various cares) to give a material having a predetermined shape, for example, a bar material shape. In addition, a heat treatment such as soaking can be performed between these operations. For example, soaking (for example, holding at 1100 ° C. to 1280 ° C. for 5 to 60 hours) may be performed to eliminate elemental segregation of the ingot. Alternatively, for example, soaking may be performed after finishing into a shape of a material (billet) to be subjected to hot extrusion. In the present invention, the structure of the material and the crystal grain size are not limited. Therefore, when the material is subjected to soaking or heat treatment, the subsequent cooling may be any of rapid cooling, cooling, and furnace cooling.
 一例として、上記の材料に対して、熱間で押出成形を行ない、所定の形状の棒材(bar material)の素材に仕上げる場合について説明する。熱間押出の条件は、押出温度(材料の加熱温度)1050℃~1200℃、押出比4~20、押出速度(ステム速度)5~80mm/sで行なうことが好ましく、成形された押出材(extruded material)の断面径は、例えば、10mm以上や、20mm超である。そして、例えば、200mm以下である。そして、棒材を製造する場合、上記の押出材の表面を機械加工等によって仕上げたり、上記の押出材から所定の寸法の棒材を採取したりして、作製することができる。この場合、棒材の断面径を、例えば、150mm以下、100mm以下、50mm以下、30mm以下、10mm以下といった寸法にすることもできる。また、棒材の断面径を、例えば、3mm以上、4mm以上、5mm以上といった寸法にすることもできる。棒材の断面径を小さくしておくことは、後述する冷間塑性加工で、断面径がさらに小さい線材や細線等を作製するときに、その塑性加工の回数(パス数)を少なくできる点で好ましい。 As an example, a case will be described in which the above-mentioned material is hot-extruded and finished into a bar-shaped material having a predetermined shape. The hot extrusion is preferably performed at an extrusion temperature (heating temperature of the material) of 1050 ° C. to 1200 ° C., an extrusion ratio of 4 to 20, and an extrusion speed (stem speed) of 5 to 80 mm / s. The cross-sectional diameter of extruded (material) is, for example, 10 mm or more, or more than 20 mm. And it is 200 mm or less, for example. When a bar is manufactured, the surface of the extruded material can be finished by machining or the like, or a bar having a predetermined size can be obtained from the extruded material. In this case, the cross-sectional diameter of the bar may be, for example, 150 mm or less, 100 mm or less, 50 mm or less, 30 mm or less, 10 mm or less. Further, the cross-sectional diameter of the bar may be, for example, 3 mm or more, 4 mm or more, 5 mm or more. Reducing the cross-sectional diameter of the bar is advantageous in that the number of plastic workings (the number of passes) can be reduced when a wire or a thin wire having a smaller cross-sectional diameter is produced by cold plastic working described later. preferable.
 本発明では素材の結晶粒径は限定されない。しかし、熱間で押出成形を行なうことにより、素材の結晶粒径を、例えば200μm以下の再結晶組織にすることができる。好ましくは150μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下の再結晶組織である。また、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、よりさらに好ましくは1.5μm以上の再結晶組織である。再結晶によって生成された結晶粒は粒内の歪みが少なく、かつ、この結晶粒を微細にすることで結晶粒界も増加するので、これに後述の冷間塑性加工を行なえば、そのときの加工歪みが組織の全体に均等に加わる。また、この結晶粒の微細化が、後述するナノ結晶粒の生成にも効果的である。よって、この工程を行なうことにより、次工程の塑性加工での変形がより均一になり、加工中の異常変形や曲がりの発生を避けることができ、歩留まりを飛躍的に向上させることができる。この効果をさらに向上させるために、熱間押出された素材は、加工による残留応力を除去するための熱処理を施してもよい。熱処理された材料は、放冷などで冷却される。 で は In the present invention, the crystal grain size of the material is not limited. However, by performing hot extrusion, the material can have a recrystallized grain size of, for example, 200 μm or less. The recrystallized structure preferably has a size of 150 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less. The recrystallized structure preferably has a recrystallized structure of 0.1 μm or more, more preferably 0.5 μm or more, further preferably 0.8 μm or more, and still more preferably 1.5 μm or more. The crystal grains generated by recrystallization have less intragrain distortion, and the crystal grain boundaries are increased by making the crystal grains fine, so that if cold plastic working described later is performed on this, Processing strain is evenly applied to the entire tissue. Further, the refinement of the crystal grains is also effective in generating nanocrystal grains described later. Therefore, by performing this step, the deformation in the plastic processing in the next step becomes more uniform, and the occurrence of abnormal deformation or bending during the processing can be avoided, and the yield can be drastically improved. To further improve this effect, the hot extruded material may be subjected to a heat treatment for removing residual stress due to processing. The heat-treated material is cooled by standing to cool.
 素材の結晶粒径は、素材の断面のEBSD像によって確認することができる(図7)。そして、EBSDの測定条件を、スキャンステップ:0.1μmとし、方位差15°以上の粒界で認識できる結晶粒について、その個々の結晶粒の最大径と個数との関係を示す結晶粒径分布(図8)から、結晶粒の最大径の平均直径を求めることができる。このとき、結晶粒径分布は、上記の測定条件によって結晶粒と認識されたもので確認すればよく、例えば、最大径が0.2μm以上の結晶粒で確認することができる。本発明において素材の結晶粒径は、上記の「結晶粒の最大径の平均直径」をさす。
 なお、素材が炭化物を含むとき、上記のEBSD像では、この炭化物も「方位差15°以上の粒界」で定義した結晶粒として認識され得る(例えば、図7の矢印)。このようなとき、この炭化物も結晶粒として上記の結晶粒径分布に含めてもよい。
 EBSD像を用いることで、γ’相の存在によって素材の断面組織の結晶粒界の確認が容易でないときでも(例えば、上記の光学顕微鏡による観察で結晶粒界の特定が容易でないときでも)、結晶粒界を一義的に特定することが容易なので、γ’相の量が多いNi基超耐熱合金の結晶粒の平均直径を求めるのに好適である。また、素材の断面組織の結晶粒径が小さいときでも(例えば、結晶粒の平均直径が30μm以下や、20μm以下、10μm以下といった小さい数値であるときでも)、結晶粒の平均直径を求めるのに好適である。
The crystal grain size of the material can be confirmed by an EBSD image of the cross section of the material (FIG. 7). The measurement condition of EBSD is scan step: 0.1 μm, and the crystal grain size distribution showing the relationship between the maximum diameter and the number of the individual crystal grains with respect to the crystal grains recognizable at the grain boundary having the orientation difference of 15 ° or more. From FIG. 8, the average diameter of the maximum diameter of the crystal grains can be obtained. At this time, the crystal grain size distribution may be confirmed by those recognized as crystal grains under the above measurement conditions, and for example, can be confirmed by crystal grains having a maximum diameter of 0.2 μm or more. In the present invention, the crystal grain size of the material refers to the above-mentioned “average diameter of the maximum diameter of the crystal grains”.
When the material contains carbide, the carbide can also be recognized as a crystal grain defined by “a grain boundary having a misorientation of 15 ° or more” in the EBSD image (for example, an arrow in FIG. 7). In such a case, this carbide may also be included in the above-described crystal grain size distribution as crystal grains.
By using the EBSD image, even when it is not easy to confirm the grain boundary of the cross-sectional structure of the material due to the presence of the γ ′ phase (for example, even when the grain boundary is not easily identified by the above-mentioned optical microscope observation), Since it is easy to uniquely identify the crystal grain boundaries, it is suitable for obtaining the average diameter of the crystal grains of the Ni-base superalloy having a large amount of the γ 'phase. Further, even when the crystal grain size of the cross-sectional structure of the material is small (for example, even when the average diameter of the crystal grains is as small as 30 μm or less, 20 μm or less, 10 μm or less), the average diameter of the crystal grains can be determined. It is suitable.
 あるいは、素材の結晶粒径は、素材の断面組織から測定することもできる。まず、素材の断面をカーリング液で腐食して、その腐食後の断面組織を所定の倍率の光学顕微鏡で観察する。そして、JIS-G-0551(ASTM-E112)に準拠した「粒度番号G」で評価して、その粒度番号Gに相当した「結晶粒の平均直径d」に換算することができる。本発明において素材の結晶粒径は、上記の「結晶粒の平均直径d」をさす。素材の断面組織の結晶粒径が大きい場合、素材の結晶粒径は、この粒度番号Gによる方法で評価することもできる。 Alternatively, the crystal grain size of the material can be measured from the cross-sectional structure of the material. First, the cross section of the material is corroded with a curling liquid, and the cross-sectional structure after the corrosion is observed with an optical microscope having a predetermined magnification. Then, the evaluation can be performed using “grain size number G” based on JIS-G-0551 (ASTM-E112), and the result can be converted into “average diameter d of crystal grains” corresponding to the grain size number G. In the present invention, the crystal grain size of the material refers to the above-mentioned “average diameter d of crystal grains”. When the crystal grain size of the cross-sectional structure of the material is large, the crystal grain size of the material can also be evaluated by the method using the particle size number G.
 素材の硬さは、限定されないが、その組織中に後述するナノ結晶粒が生成されていない状態で、冷間塑性加工による初期の加工性を確保するために、低いことが好ましい。例えば、550HV以下や500HV未満にできる。より好ましくは470HV以下、さらに好ましくは450HV以下である。素材の硬さの下限は、特に限定しないが、250HV程度が現実的である。そして、例えば、300HV以上や350HV以上にできる。400HVを超える硬さにすることもできる。素材の硬さは、素材の断面で測定することができる。 The hardness of the raw material is not limited, but is preferably low in order to secure the initial workability by cold plastic working in a state where the nanocrystal grains described later are not generated in the structure. For example, it can be 550 HV or less or less than 500 HV. It is more preferably at most 470 HV, even more preferably at most 450 HV. The lower limit of the hardness of the material is not particularly limited, but about 250 HV is realistic. Then, for example, it can be set to 300 HV or more or 350 HV or more. Hardness greater than 400 HV can also be achieved. The hardness of the material can be measured on the cross section of the material.
第1の冷間塑性加工[工程(a)[A]]
 次に、上記の素材に対して、冷間塑性加工を行う。より具体的には、素材からの累積加工率が40%以上となる複数回の冷間塑性加工を行う。本発明は、従来の「熱間による」塑性加工によるものとは異なり、「冷間による」塑性加工によってNi基超耐熱合金を製造するものである。そして、特に、γ’相の量が35モル%以上のNi基超耐熱合金においては、それを冷間塑性加工によって40%以上の累積加工率を得ることができ、熱間塑性加工では加工することが困難であった上記のNi基超耐熱合金を、比較的単純な工程かつ低コストで、例えば線材や細線にまで加工することができる。この達成のために、上記の冷間による塑性加工は、その塑性加工中に回復や再結晶が発生できないと考えられる低い温度領域で行うことが必要である。
 そこで本発明における上記の塑性加工温度は、「500℃以下」とすることが好ましい。より好ましくは300℃以下、さらに好ましくは100℃以下、よりさらに好ましくは50℃以下(例えば、室温)である。
First cold plastic working [Step (a) [A]]
Next, the above material is subjected to cold plastic working. More specifically, cold plastic working is performed a plurality of times so that the cumulative working ratio from the material becomes 40% or more. The present invention is different from the conventional "hot" plastic working in that a Ni-based superalloy is produced by "cold" plastic working. In particular, in the case of a Ni-base super heat-resistant alloy in which the amount of the γ 'phase is 35 mol% or more, a cumulative working ratio of 40% or more can be obtained by cold plastic working, and processing is performed in hot plastic working. The Ni-based super heat-resistant alloy, which has been difficult to perform, can be processed into a wire or a thin wire, for example, with a relatively simple process and at low cost. In order to achieve this, it is necessary to perform the above-mentioned cold plastic working in a low temperature range where recovery and recrystallization cannot occur during the plastic working.
Therefore, the plastic working temperature in the present invention is preferably set to “500 ° C. or less”. The temperature is more preferably 300 ° C. or lower, further preferably 100 ° C. or lower, even more preferably 50 ° C. or lower (for example, room temperature).
 本発明のNi基超耐熱合金の製造方法は、線材形態に好適であるが、板材、帯材などにも適用できる。そのため、本発明の製造方法により製造されるNi基超耐熱合金は、線材(wire material)、板材(sheet material)、帯材(strip material)の中間製品形状であることの他に、細線(wire product)、薄板(sheet product)、薄帯(strip product)の最終製品形状であってもよい。板材(薄板)、帯材(薄帯)において、その寸法の関係は、線材(細線)のときの線径(直径)を、板厚または帯厚に読み替えることができる。 製造 The method for producing a Ni-based super heat-resistant alloy of the present invention is suitable for a wire material form, but can also be applied to a plate material, a band material and the like. Therefore, the Ni-base superalloy manufactured by the manufacturing method of the present invention has an intermediate product shape of a wire (wire @ material), a plate (sheet @ material), and a strip (strip @ material), and also has a fine wire (wire @ material). product, a thin product (sheet @ product), and a thin product (strip @ product). Regarding the relationship between the dimensions of a plate (thin plate) and a band (thin band), the wire diameter (diameter) of a wire (thin wire) can be read as a plate thickness or a band thickness.
 とりわけNi基超耐熱合金の熱間押出された素材が棒材の場合、断面積を圧縮する棒材加工を行なうことができる。この場合、Ni基超耐熱合金の「棒材」を出発材料として、この棒材に行う塑性加工の様態として、棒材中に均一に圧力を付与することができる「棒材の長手方向に垂直な断面の断面積を圧縮する加工」を施すことが好ましい。そして、この棒材の素材に、断面積(棒径)を塑性的に圧縮して、長さを伸ばしていく加工を行う。特に、Ni基超耐熱合金の線材を得る場合、線材よりも断面積(直径)が大きい「棒材」を塑性加工して作製することが効率的である。棒材の周面から軸心に向けて、累積加工率が40%以上の塑性加工を行って、棒材の断面積を圧縮する。このような加工として、スエジング、カセットローラダイス伸線、孔型ダイス伸線などがある。
 他方、Ni基超耐熱合金の板材、帯材等の製造には、圧延加工を用いることもできる。
In particular, when the hot-extruded material of the Ni-based super heat-resistant alloy is a bar, bar processing for compressing the cross-sectional area can be performed. In this case, the "bar" of the Ni-base super heat-resistant alloy is used as a starting material, and as a mode of plastic working performed on this bar, pressure can be uniformly applied to the bar. Process of compressing the cross-sectional area of a simple cross-section ". Then, the bar material is subjected to a process of plastically compressing the cross-sectional area (bar diameter) to increase the length. In particular, when obtaining a wire of a Ni-based super heat-resistant alloy, it is efficient to plastically process a “bar” having a larger cross-sectional area (diameter) than the wire. From the peripheral surface of the bar to the axis, plastic working with a cumulative working ratio of 40% or more is performed to compress the cross-sectional area of the bar. Such processing includes swaging, cassette roller die drawing, and hole die drawing.
On the other hand, rolling of a Ni-based super heat-resistant alloy plate, strip, or the like can be used.
 ここで、加工率とは、棒材をスエジングやダイス伸線を行なう場合には、減面率により表す。減面率は、塑性加工前の棒材の断面積Aと、塑性加工後の線材や細線の断面積Aとの関係で、
  [(A-A)/A]×100(%)           (1)
の式で算出される。
 他方、圧延加工を行なう場合には、加工率は圧下率で表す。圧下率は、塑性加工前の素材の厚さをtとし、塑性加工後の板材や帯材、薄板や薄帯の厚さをtとすると、
  [(t-t)/t]×100(%)           (2)
の式で算出される。
 累積加工率とは塑性加工を複数回、あるいは複数パスにわたって行なった場合の、最終加工物の素材に対する加工率を示す。
Here, the processing rate is represented by the area reduction rate when swaging or die drawing is performed on the bar. Reduction of area, in relation to the cross-sectional area A 0 of the plastic working before the bar, the cross-sectional area A 1 of the wire and fine lines after the plastic working,
[(A 0 -A 1 ) / A 0 ] × 100 (%) (1)
Is calculated by the following equation.
On the other hand, when rolling is performed, the processing rate is represented by the rolling reduction. Rolling reduction, the thickness of the plastic forming the material before and t 0, sheet or strip material after plastic working, and the thickness of the sheet or ribbon to t 1,
[(T 0 −t 1 ) / t 0 ] × 100 (%) (2)
Is calculated by the following equation.
The cumulative working rate indicates the working rate for the material of the final workpiece when plastic working is performed a plurality of times or over a plurality of passes.
 本発明では、例えば、上記の冷間塑性加工の素材からの累積加工率を40%以上に高くする。
 この加工率の塑性加工は、一回の塑性加工で完了するのではなくて、複数回の塑性加工に分けて完了することができる。複数回の塑性加工の間には熱処理を行わない。ここでいう熱処理とは、回復や再結晶が発生するような高い温度領域での熱処理のことであり、例えば、500℃を超える温度に加熱する熱処理である。このように冷間加工のパス間に熱処理が必要なく、複数の冷間強加工を連続的に実施して、累積加工率(累積減面率)を大きくすることができる。なお、強加工を行なったNi基超耐熱合金は、組織中にナノ結晶粒の生成が観察できる。この機構はまだ完全に解明できていないが、ナノ結晶粒の生成により複数の冷間強加工を連続的に実施できると考えられる。このとき、40%未満の加工率であると、製造工程の単純化、コスト低減の効果が小さくなる。すなわち冷間塑性加工を行なうことの実益の観点からは、累積加工率は、40%以上にするとよい。累積加工率は、45%以上が好ましく、50%以上がより好ましく、55%以上がさらに好ましい。累積加工率の上限は特に限定しないが、80%程度とすることが好ましい。本発明に係る高C含有量の合金の製造の場合、累積加工率を、一旦、80%以下としておくことが、後述する第1の熱処理による材料欠陥の修復効果を有効化する点で好ましい。より好ましくは75%以下、さらに好ましくは70%以下、よりさらに好ましくは65%以下である。そして、1回の塑性加工(パス)による加工率(減面率)は30%以下とすることが好ましい。より好ましくは28%以下とすることができる。一度の大きな加工率の塑性加工を行なうことは、材料の割れや欠陥を引き起こす虞があるからである。
In the present invention, for example, the cumulative working ratio from the above cold plastic working material is increased to 40% or more.
The plastic working at this working rate can be completed not by one plastic working but by a plurality of plastic workings. No heat treatment is performed during multiple plastic workings. The heat treatment referred to here is a heat treatment in a high temperature region where recovery or recrystallization occurs, for example, heat treatment at a temperature exceeding 500 ° C. As described above, heat treatment is not required between passes of cold working, and a plurality of strong cold workings can be continuously performed to increase a cumulative working rate (cumulative surface reduction rate). It should be noted that formation of nanocrystal grains in the structure of the Ni-based super heat-resistant alloy that has been subjected to strong working can be observed. Although this mechanism has not been completely elucidated yet, it is considered that a plurality of high-strength cold working can be continuously performed by forming nanocrystal grains. At this time, if the processing rate is less than 40%, the effects of simplifying the manufacturing process and reducing costs are reduced. That is, from the viewpoint of the benefit of performing cold plastic working, the cumulative working ratio is preferably set to 40% or more. The cumulative processing rate is preferably 45% or more, more preferably 50% or more, and even more preferably 55% or more. The upper limit of the cumulative processing rate is not particularly limited, but is preferably about 80%. In the case of manufacturing the alloy having a high C content according to the present invention, it is preferable to temporarily set the cumulative working rate to 80% or less in order to make the effect of repairing material defects by the first heat treatment described later effective. It is more preferably at most 75%, further preferably at most 70%, even more preferably at most 65%. It is preferable that the processing rate (area reduction rate) by one plastic processing (pass) is 30% or less. More preferably, it can be 28% or less. This is because performing plastic working with a large working rate at one time may cause cracks or defects in the material.
 なお、複数回の冷間塑性加工を行なう場合、塑性加工(パス)の回数が多ければ、上記の1回の塑性加工(パス)による加工率をさらに小さくすることができる。例えば、塑性加工(パス)の回数が3回以上の場合、1回の塑性加工(パス)による加工率を最大25%とすることができる。また、塑性加工(パス)の回数が4回以上の場合、1回の塑性加工(パス)による加工率を最大23%とすることができる。
 また、複数回の冷間塑性加工を行なう場合、ある任意の塑性加工(パス)における加工率(減面率)を、その前の回の塑性加工(パス)における加工率(減面率)よりも大きくして、加工効率を上げることも可能である。各塑性加工(パス)毎に加工率(減面率)を大きくしてもよい。
 本明細書で使用する用語「パス」については、上述したスエジングやダイス伸線、圧延といった種類の塑性加工において、一つの(または、一対でなる)ダイスやロールによって塑性加工されたときを「1パス」と称することができる。以後、「1パス」という用語を使用するとき、それは上記の1回の「塑性加工」を示している。
In the case of performing a plurality of times of cold plastic working, if the number of times of plastic working (pass) is large, the working ratio of the one plastic working (pass) can be further reduced. For example, when the number of times of plastic working (pass) is three or more, the working rate by one plastic working (pass) can be set to a maximum of 25%. Further, when the number of times of the plastic working (pass) is four or more, the working rate by one plastic working (pass) can be set to a maximum of 23%.
In addition, when performing cold plastic working a plurality of times, the working rate (reduction rate) in a given plastic working (pass) is calculated from the working rate (reduction rate) in the previous plastic working (pass). It is also possible to increase the processing efficiency by increasing the size. The processing rate (area reduction rate) may be increased for each plastic working (pass).
As used herein, the term “pass” refers to “1” when plastic working is performed by one (or a pair of) dies or rolls in the above-described plastic working such as swaging, die drawing, and rolling. Path ". Hereinafter, when the term “one pass” is used, it indicates the above-mentioned one “plastic working”.
 とりわけNi基超耐熱合金の素材が棒材の場合、塑性加工性を向上させるためには、上記の塑性加工で、棒材中に均一かつ均等に圧力を付与することが重要と思われる。そして、このためには、棒材の周面から軸心に向けて、棒材の断面積を圧縮するような塑性加工が効果的である。このとき、塑性加工方式を限定する必要はない。但し、塑性加工される棒材の全周に均等に圧力を加える塑性加工方式が有利である。この具体例として、スエジング加工が挙げられる。スエジング加工は、棒材の全周を囲む複数のダイスを回転させながら、棒材の周面を鍛造するので、ナノ結晶粒の生成に好ましい。その他、カセットローラダイス伸線、孔型ダイス伸線などその他の塑性加工も適用可能である。 Especially, when the material of the Ni-base super heat-resistant alloy is a bar, it is important to apply pressure uniformly and evenly to the bar by the above-mentioned plastic working in order to improve the plastic workability. For this purpose, plastic working such as compressing the cross-sectional area of the bar from the peripheral surface of the bar toward the axis is effective. At this time, it is not necessary to limit the plastic working method. However, a plastic working method in which pressure is evenly applied to the entire periphery of the bar to be plastically worked is advantageous. As a specific example, there is a swaging process. The swaging process is preferable for generating nanocrystal grains because the swaging process forges the circumferential surface of the bar while rotating a plurality of dies surrounding the entire circumference of the bar. In addition, other plastic working such as cassette roller die drawing and hole type die drawing can be applied.
第1の熱処理[工程(b)[B]]
 上記加工材に900℃以上の温度で熱処理を行う。この熱処理の効果について図2を参照して説明する。
 上記のとおり累積加工率が40%以上の強加工を行なったNi基超耐熱合金は、更に続けて加工を行なうことが可能な状態になる。したがって、塑性加工中に熱処理を行わないで、さらに大きな加工率まで冷間加工を行なうことができる。
 しかし、本発明が対象とするNi基超耐熱合金は、炭素を0.01~0.25質量%含有するために、素材1の組織中に粗大な炭化物2が析出している。累積加工率が40%以上の冷間塑性加工(i)を施した後のNi基超耐熱合金の加工材3は、γ相とγ’相とが延伸方向に延びた線状組織になる。炭化物は、塑性加工により粉砕され微細炭化物4となるものの微細炭化物が組織の延伸方向に連なった炭化物集合体として加工組織に存在する。この微細炭化物同士の間には、材料欠陥6(例えば材料の欠落による隙間など)が形成される。このまま、更に塑性加工(ii)を行なうと、各微細炭化物4間の欠陥6が広がり、隣接する欠陥6と結合し、割れの起点となる虞がある。そこで、延伸方向に連なった炭化物集合体が形成された段階で、熱処理を行うことにより、微細炭化物4同士の間に形成された材料欠陥6が修復される。例えば、延伸方向の断面組織において、欠陥率を0.5面積%以下にできる。
 これは、材料が軟化するとともに、合金成分の拡散により合金成分が隙間を充填するためと考えられる。したがって、熱処理を行った後に更に塑性加工を行なう(iii)場合は、材料欠陥を起点として割れが発生することはない。
 なお、熱処理を行う時期、すなわち延伸方向に連なった炭化物集合体が形成された段階は、炭化物含有量、素材作製方法などによる炭化物のサイズ、種類等により異なるが、例えば、累積加工率40%以上、例えば45%以上、50%以上、55%以上などを目途とする。しかし上記のとおり、累積加工率の上限は80%程度とすることが好ましい。
 また、熱処理を行う時期は、炭化物含有量、素材作製方法などによる炭化物のサイズ、種類等により異なるが、線径が小さくなり過ぎない時期で行うことが好ましい。熱処理後に後述する酸化スケール等の除去を行う場合、線径が小さすぎると、この除去による材料の滅失割合が増えて、製品歩留が低下する虞がある。そして、例えば、線径が2.7mm以上のときを目途とする。好ましくは3.0mm以上、より好ましくは3.3mm以上、さらに好ましくは3.6mm以上、よりさらに好ましくは3.9mm以上といった線径を目途とする。上限については、例えば、4.5mm程度とすることができる。
First heat treatment [Step (b) [B]]
A heat treatment is performed on the processed material at a temperature of 900 ° C. or higher. The effect of this heat treatment will be described with reference to FIG.
As described above, the Ni-based super heat-resistant alloy which has been subjected to the strong working with the cumulative working rate of 40% or more is in a state where the working can be further continued. Therefore, it is possible to perform cold working to a higher working ratio without performing heat treatment during plastic working.
However, since the Ni-base superalloy targeted by the present invention contains 0.01 to 0.25% by mass of carbon, coarse carbides 2 are precipitated in the structure of the raw material 1. The processed material 3 of the Ni-base superalloy after the cold plastic working (i) with the cumulative working ratio of 40% or more has a linear structure in which the γ phase and the γ 'phase extend in the stretching direction. The carbides are pulverized by plastic working to become fine carbides 4, but exist in the processed structure as carbide aggregates in which the fine carbides are connected in the direction in which the structure extends. Material defects 6 (for example, gaps due to lack of material) are formed between the fine carbides. If the plastic working (ii) is further performed in this state, the defects 6 between the fine carbides 4 may spread and combine with the adjacent defects 6, and may be a starting point of a crack. Then, at the stage where the carbide aggregates connected in the stretching direction are formed, the material defect 6 formed between the fine carbides 4 is repaired by performing a heat treatment. For example, in the cross-sectional structure in the stretching direction, the defect rate can be 0.5 area% or less.
This is considered because the material softens and the alloy component fills the gap due to the diffusion of the alloy component. Therefore, when plastic working is further performed after the heat treatment (iii), cracks do not occur starting from material defects.
The time of heat treatment, that is, the stage at which the carbide aggregate connected in the stretching direction is formed differs depending on the carbide content, the size and type of the carbide depending on the material production method, and the like. For example, the cumulative processing rate is 40% or more. For example, the target is 45% or more, 50% or more, 55% or more. However, as described above, the upper limit of the cumulative processing rate is preferably set to about 80%.
The timing of the heat treatment varies depending on the carbide content, the size and type of the carbide depending on the material production method, and the like, but it is preferable to perform the heat treatment at a time when the wire diameter does not become too small. In the case where oxide scale or the like to be described later is removed after the heat treatment, if the wire diameter is too small, the rate of material loss due to this removal increases, and the product yield may be reduced. Then, for example, it is assumed that the wire diameter is 2.7 mm or more. A wire diameter of preferably at least 3.0 mm, more preferably at least 3.3 mm, still more preferably at least 3.6 mm, even more preferably at least 3.9 mm. The upper limit can be, for example, about 4.5 mm.
 熱処理の温度は、900℃以上で行う。900℃未満では、上記の欠陥の修復を行なう、すなわち欠陥を充填するほど合金成分が拡散するには不十分である。熱処理の温度上限は、特に限定はしないが、約1200℃程度である。熱処理は、上記のとおり加工による欠陥の修復を目的とするので、γ’相の固溶に関係なく欠陥が修復できればよい。熱処理時間は材料の寸法、形状に応じて例えば、10分以上、30分以上、60分以上とすることができ、上限についても120分以下、90分以下といったように、適宜決定すればよい。熱処理は、表面酸化を避けるために、真空、還元雰囲気、Arなどの不活性雰囲気で行なうことが好ましいが、酸化雰囲気(例えば、大気雰囲気)で行なってもよい。酸化雰囲気で熱処理を行った場合、表面に酸化スケールが形成される。酸化スケールが形成されたまま冷間塑性加工を行なうと、割れや欠陥の起点となる虞がある。そこで、例えば研磨や研削などにより機械的に、または化学的に除去してもよい。線材の製造の場合は、センタレス研磨を用いてスケールの除去を行なうことが好ましい。また、酸化雰囲気で熱処理を行う場合、上記の熱処理時間は、例えば、100分以下、90分以下、80分以下といったように、短時間で完了することが好ましい。 (4) The heat treatment is performed at 900 ° C. or higher. If the temperature is lower than 900 ° C., the above-mentioned defect is not repaired, that is, the alloy component is insufficient to diffuse the defect. Although the upper limit of the temperature of the heat treatment is not particularly limited, it is about 1200 ° C. Since the heat treatment aims at repairing the defect by processing as described above, it is sufficient if the defect can be repaired regardless of the solid solution of the γ 'phase. The heat treatment time can be, for example, 10 minutes or more, 30 minutes or more, or 60 minutes or more depending on the size and shape of the material, and the upper limit may be appropriately determined, such as 120 minutes or less and 90 minutes or less. The heat treatment is preferably performed in an inert atmosphere such as a vacuum, a reducing atmosphere, or Ar to avoid surface oxidation, but may be performed in an oxidizing atmosphere (for example, an air atmosphere). When heat treatment is performed in an oxidizing atmosphere, an oxide scale is formed on the surface. If cold plastic working is performed while the oxide scale is formed, there is a possibility that cracks and defects may be formed. Then, you may remove mechanically or chemically by grinding | polishing, grinding, etc., for example. In the case of manufacturing a wire, it is preferable to remove scale using centerless polishing. In the case where heat treatment is performed in an oxidizing atmosphere, the above heat treatment time is preferably completed in a short time, for example, 100 minutes or less, 90 minutes or less, or 80 minutes or less.
第2の塑性加工[工程(c)[C]]
 上記熱処理材に、500℃以下の温度で、さらに、塑性加工を行なう。より具体的には、この熱処理材からの累積加工率が10%以上となるように1回または複数回の塑性加工を行なう。この塑性加工も、第1の塑性加工と同様に、線材の場合は、スエジング、カセットローラダイス伸線、孔型ダイス伸線など、板材、帯材等の製造には、圧延加工を用いることもできる。上記第1の熱処理により、加工組織は再結晶を起こすが、微細炭化物同士の間に形成された材料欠陥が修復されるので、さらに冷間塑性加工を行なっても、材料欠陥から割れが生じることはない。この塑性加工により、最終製品寸法まで塑性加工を行なう。最終製品寸法の材料の硬さは500HV以上や、550HV以上、600HV以上等にできる。
 第2の塑性加工の累積加工率は10%以上にできる。累積加工率の上限は特に限定はないが第1の塑性加工と同様な加工率を目途とする。そして、第1の塑性加工で例えば40%以上の累積加工率の強加工が行われて、断面径(線径)が小さくなっていることを考えれば、第2の塑性加工の累積加工率は、第1の塑性加工の累積加工率より小さくすることができる。その他、加工条件は第1の塑性加工と同様である。例えば、複数回の塑性加工を行なう場合、ある任意のパスにおける加工率を、その前の回のパスにおける加工率よりも大きくして、加工効率を上げることも可能である。各パス毎に加工率を大きくしてもよい。
Second plastic working [Step (c) [C]]
The heat-treated material is further subjected to plastic working at a temperature of 500 ° C. or less. More specifically, plastic working is performed one or more times so that the cumulative working ratio from the heat-treated material is 10% or more. As in the first plastic working, in the case of a wire, swaging, cassette roller die drawing, hole die drawing, and the like can also be used in the production of a sheet material, a band material, and the like. it can. The first heat treatment causes the reworked structure to recrystallize, but the material defects formed between the fine carbides are repaired, so that even if cold plastic working is further performed, cracks are generated from the material defects. There is no. By this plastic working, plastic working is performed up to the final product dimensions. The hardness of the material of the final product dimensions can be 500 HV or more, 550 HV or more, 600 HV or more.
The cumulative working ratio of the second plastic working can be 10% or more. Although the upper limit of the cumulative working rate is not particularly limited, a working rate similar to that of the first plastic working is aimed at. In view of the fact that the cross-sectional diameter (wire diameter) is reduced by performing the first plastic working with a strong working rate of, for example, a cumulative working rate of 40% or more, the cumulative working rate of the second plastic working is , Can be smaller than the cumulative working rate of the first plastic working. Other processing conditions are the same as in the first plastic working. For example, when performing plastic working a plurality of times, it is possible to increase the working rate in a given pass to be greater than the working rate in the previous pass to increase the working efficiency. The processing rate may be increased for each pass.
第2の熱処理および第3の塑性加工[再度の工程(b)[B]および工程(c)[C]]
 第2の塑性加工により最終製品寸法まで加工できない場合は、さらに上記に記載した第1の熱処理および第2の塑性加工を1回または複数回繰り返し、目標寸法まで加工を行なうことができる。加工条件、熱処理条件などは、上記に記載したとおりである。
 例えば、第2の熱処理については、その温度、時間、雰囲気等を、第1の熱処理の要領で決めることができる。また、酸化雰囲気で熱処理を行って、表面に酸化スケールが形成された場合、それを除去することができる。そして、熱処理を行う時期については、例えば、第2の塑性加工(つまり、直前の塑性加工)の累積加工率などを目途にして、決めることができる。
 また、第3の塑性加工については、その累積加工率を10%以上にできる。累積加工率の上限は特に限定はないが第1の塑性加工と同様な加工率を目途とすることができる。そして、第3の塑性加工の累積加工率は、第1の塑性加工の累積加工率より小さくすることができる。また、第3の塑性加工で複数回の塑性加工を行なう場合、ある任意のパスにおける加工率を、その前の回のパスにおける加工率よりも大きくして、加工効率を上げることも可能である。各パス毎に加工率を大きくしてもよい。
 以上のような第2の熱処理および第3の塑性加工の組を、最終製品寸法に応じて、一回または複数回行なうことができる。
 ここで、工程(A)と工程(B)との組を一回または複数回行う場合、最後に行う工程(B)の熱処理に供されるNi基超耐熱合金(第1の加工材)の長手方向に垂直な方向の寸法dは最終製品寸法dの1.5倍以上であることが好ましい。Ni基超耐熱合金(第1の加工材)は塑性加工で展伸され、線状、板状、帯状等の細長い形状となるため、上述の長手方向に垂直な方向の寸法dとは、線状であれば直径、板状や帯状であれば厚さを意味する。最終製品寸法dとは、仕上げ加工をする場合および加工レスの場合も含めた最終製品形状での上記方向での寸法である。上述のように、熱処理(特に、大気雰囲気などの酸化雰囲気での熱処理)を行った場合、表面に酸化スケールが形成されるため、研磨や研削などにより機械的に、または化学的に除去することが好ましい。かかる研磨等による合金の滅失量の割合は、塑性加工が進んで、合金が薄く、細くなるほどに大きくなり、歩留まりが低下する。したがって、塑性加工と塑性加工の間の熱処理は、仕上げ寸法よりも十分大きな段階で済ませておくことが好ましい。かかる観点から、上述のように寸法dは最終製品寸法dの1.5倍以上が好ましく、1.8倍以上がより好ましい。また、同じ観点から、上述のように寸法dと最終製品寸法dとの差d-dは1mm超であることも好ましく、より好ましくは差d-dは1.2mm以上である。そして、上述した寸法dとdとの関係が、いずれかの工程(B)の熱処理ときに満たしていることが好ましく、特に、最後に行う工程(B)の熱処理のときに満たしていることが好ましい。これらの条件を満たしながら、2mm以下の最終製品寸法dにすることがさらに好ましい。
Second heat treatment and third plastic working [re-process (b) [B] and process (c) [C]]
If the second plastic working cannot be performed to the final product dimensions, the first heat treatment and the second plastic working described above can be further repeated one or more times to perform the processing to the target dimensions. Processing conditions, heat treatment conditions, and the like are as described above.
For example, for the second heat treatment, the temperature, time, atmosphere, and the like can be determined in the manner of the first heat treatment. Further, when heat treatment is performed in an oxidizing atmosphere to form oxide scale on the surface, the oxide scale can be removed. Then, the timing of performing the heat treatment can be determined, for example, based on the cumulative working ratio of the second plastic working (that is, the immediately preceding plastic working).
In the third plastic working, the cumulative working ratio can be 10% or more. Although the upper limit of the cumulative working rate is not particularly limited, a working rate similar to that of the first plastic working can be aimed at. Then, the cumulative working rate of the third plastic working can be made smaller than the cumulative working rate of the first plastic working. Further, in the case of performing the plastic working a plurality of times in the third plastic working, it is possible to increase the working rate in a given pass to be larger than the working rate in the previous pass to increase the working efficiency. . The processing rate may be increased for each pass.
The set of the second heat treatment and the third plastic working as described above can be performed once or a plurality of times depending on the final product dimensions.
Here, when the combination of the step (A) and the step (B) is performed once or a plurality of times, the Ni-based super heat-resistant alloy (first processed material) to be subjected to the heat treatment in the last step (B) is performed. dimension d in the direction perpendicular to the longitudinal direction is preferably at least 1.5 times the final product dimensions d f. Since the Ni-base super heat-resistant alloy (first processed material) is elongated by plastic working and has an elongated shape such as a linear shape, a plate shape, and a band shape, the dimension d in the direction perpendicular to the longitudinal direction is defined as a line. The shape means a diameter, and the thickness means a plate or a band. The final product dimensions d f, the dimension in the above direction in the final product shape also including cases of and processing less for finishing. As described above, when heat treatment (particularly, heat treatment in an oxidizing atmosphere such as an air atmosphere) is performed, an oxide scale is formed on the surface. Therefore, the heat is removed mechanically or chemically by polishing or grinding. Is preferred. The ratio of the amount of loss of the alloy due to polishing or the like increases as the plastic working proceeds and the alloy becomes thinner and thinner, and the yield decreases. Therefore, it is preferable that the heat treatment between the plastic working and the plastic working be performed at a stage sufficiently larger than the finished dimension. From this point of view, the dimension d as described above is preferably 1.5 times or more of the final product dimensions d f, more preferably not less than 1.8 times. Further, from the same viewpoint, it is preferably, more preferably the difference d-d f 1.2 mm or more difference d-d f of the dimensions d and final product size d f as described above is 1mm greater. Then, the relationship between the dimensions d and d f described above, it is preferable that meets when the heat treatment of any of the steps (B), in particular, it meets the time of the heat treatment of the last performed step (B) Is preferred. While satisfying these conditions, it is more preferable that the following final product dimensions d f 2 mm.
最終熱処理[工程(d)]
 上記の冷間塑性加工によって得られた合金を、最終製品形状である「細線」や「薄板」、「薄帯」とすることができる。細線とは、その線径(直径)が、例えば、5mm以下、4mm以下、3mm以下といったものから、果ては2mm以下、1mm以下といった更に細いものである。また、薄板、薄帯とは、その厚さが、例えば、5mm以下、4mm以下、3mm以下といったものから、果ては2mm以下、1mm以下といった更に薄いものである。そして、細線、薄板、薄帯とは、その長さが、上記の線径や厚さに対して、例えば、50倍以上、100倍以上、300倍以上といった更に長いものである。
 所定の寸法、形状に塑性加工した後、最終製品として供給する際、この冷間塑性加工を終えたままの状態で供給することができる。この場合の合金は、例えば、その組織中のγ相とγ’相とが延伸方向に延びた線状組織である。また、合金の硬さは500HV以上である。そして、合金中に加工欠陥が存在することも考えられる。例えば、合金の長さ方向(つまり、塑性加工方向)の中心軸を含むような断面組織において、欠陥率が0.5面積%を超える加工欠陥である。但し、現実的には、1.0面積%以下である。そして、このような加工欠陥が存在することは、これ以上の塑性加工を行わない点で、問題がない。
 そして、必要に応じて熱処理(例えば900℃~1200℃で30分~3時間保持)を施すことにより所望の等軸結晶組織にすることができる。この熱処理によって、例えば、硬さを500HV未満や450HV以下、420HV以下に調整することが可能である。そして、例えば、300HV以上や、350HV以上の硬さである。このことによって、最終製品を輸送形態や使用形態に見合った形態に曲げたり切断したりすることが容易になる。また、この熱処理によっても加工欠陥を修復でき、例えば、合金の長さ方向(つまり、塑性加工方向)の中心軸を含むような断面組織において、欠陥率を0.5面積%以下にできる。そして、これまでの塑性加工の間で行ってきた熱処理の効果も相まって、上記の欠陥率を、さらに、0.4面積%以下、0.3面積%以下、0.2面積%以下にできる。Ni基超耐熱合金の使用形態において、加工欠陥を低減しておくことが望まれる場合は、この熱処理を行うことができる。
 上記の熱処理を行うことで、上記の等軸結晶組織中の結晶粒が成長していることが考えられる。例えば、結晶粒の粒径が、最大のもので線径に達しているかも知れない。そして、延伸方向に連なった炭化物集合体によって、結晶粒の粗大化が抑制される効果(ピン止め効果)が有効に機能すれば、結晶粒の成長が抑制される。この場合、上記の熱処理後の結晶粒の大きさは、断面組織における平均粒径で、例えば、100μm以下、75μm以下、50μm以下、25μm以下、10μm以下といった粒径となる。
 上記の熱処理を行うことに関わらず、最終製品の表面を、例えば、研磨や研削などにより機械的に、または化学的に仕上げ加工することができる。
Final heat treatment [Step (d)]
The alloy obtained by the cold plastic working described above can be made into a “fine wire”, a “thin plate”, or a “thin strip” which is a final product shape. The fine wire has a wire diameter (diameter) of, for example, 5 mm or less, 4 mm or less, 3 mm or less, and finally 2 mm or less, 1 mm or less. Further, the thin plate and the thin band have a thickness of, for example, 5 mm or less, 4 mm or less, 3 mm or less, and finally 2 mm or less, 1 mm or less. The thin wire, the thin plate, and the thin strip have a longer length, for example, 50 times or more, 100 times or more, and 300 times or more of the above-described wire diameter or thickness.
After plastic working to a predetermined size and shape, when supplying as a final product, it can be supplied in a state where the cold plastic working has been completed. The alloy in this case has, for example, a linear structure in which the γ phase and the γ ′ phase in the structure extend in the stretching direction. The hardness of the alloy is 500 HV or more. And it is also conceivable that a processing defect exists in the alloy. For example, in a cross-sectional structure including the central axis in the length direction of the alloy (that is, the plastic working direction), the processing defect has a defect rate of more than 0.5 area%. However, actually, it is 1.0 area% or less. The presence of such processing defects does not cause any problem in that no further plastic working is performed.
Then, if necessary, heat treatment (for example, holding at 900 ° C. to 1200 ° C. for 30 minutes to 3 hours) can obtain a desired equiaxed crystal structure. By this heat treatment, for example, the hardness can be adjusted to less than 500 HV, 450 HV or less, or 420 HV or less. And, for example, the hardness is 300 HV or more, or 350 HV or more. This makes it easier to bend or cut the final product into a form suitable for the transport or use form. Further, the processing defect can be repaired by this heat treatment, and for example, the defect rate can be reduced to 0.5 area% or less in a cross-sectional structure including the central axis in the length direction of the alloy (that is, the plastic working direction). The defect rate can be further reduced to 0.4 area% or less, 0.3 area% or less, and 0.2 area% or less, in combination with the effect of the heat treatment performed during the conventional plastic working. If it is desired to reduce processing defects in the usage form of the Ni-based super heat-resistant alloy, this heat treatment can be performed.
It is conceivable that crystal grains in the above equiaxed crystal structure have grown by performing the above heat treatment. For example, the grain size of the crystal grain may reach the wire diameter at the maximum. Then, if the effect of suppressing coarsening of crystal grains (pinning effect) effectively functions by the carbide aggregates connected in the stretching direction, the growth of crystal grains is suppressed. In this case, the size of the crystal grains after the heat treatment is an average particle size in the cross-sectional structure, for example, a particle size of 100 μm or less, 75 μm or less, 50 μm or less, 25 μm or less, 10 μm or less.
Regardless of performing the heat treatment, the surface of the final product can be mechanically or chemically finished by, for example, polishing or grinding.
 以上、本発明によるNi基超耐熱合金を説明してきた。本発明によれば、500℃以下の温度で累積加工率が40%以上のNi基超耐熱合金の塑性加工を行なうため、熱間加工と熱処理を繰り返すなどの複雑な製造工程が必要なく、強冷間塑性加工が可能であり、塑性加工間の熱処理の回数を低減できる。そのため、工程の単純化が達成でき製造コストの低減が可能になる。また、必要に応じては、欠陥率1.0面積%以下の加工欠陥の少ない製品、特に線材を得ることができる。この効果は、特に加工欠陥の発生しやすい炭素含有量が大きなNi基超耐熱合金について顕著である。 The Ni-based superalloy according to the present invention has been described above. According to the present invention, plastic working of a Ni-base superalloy having a cumulative working rate of 40% or more at a temperature of 500 ° C. or less is performed, so that complicated manufacturing steps such as repetition of hot working and heat treatment are not required. Cold plastic working is possible, and the number of heat treatments during plastic working can be reduced. Therefore, the simplification of the process can be achieved, and the manufacturing cost can be reduced. Further, if necessary, a product having a small defect rate of 1.0 area% or less, particularly a wire rod, can be obtained. This effect is particularly remarkable in a Ni-based super heat-resistant alloy having a large carbon content in which processing defects easily occur.
 真空溶解によって準備した溶湯を鋳造して、直径100mm、質量10kgの円柱状のNi基超耐熱合金Aのインゴットを作製した。Ni基超耐熱合金Aの成分組成を表1に示す(質量%)。表1には、上記のインゴットの「γ’モル率」も示す。この値は、市販の熱力学平衡計算ソフト「JMatPro(Version 8.0.1,Sente Software Ltd.社製品)」を用いて計算した。この熱力学平衡計算ソフトに、表1に列挙された各元素の含有量を入力して、上記の「γ’モル率」(%)を求めた。 (4) A molten metal prepared by vacuum melting was cast to produce a cylindrical Ni-based super heat-resistant alloy A ingot having a diameter of 100 mm and a mass of 10 kg. Table 1 shows the component composition of the Ni-base super heat-resistant alloy A (% by mass). Table 1 also shows the "[gamma] 'molar ratio" of the ingot. This value was calculated using commercially available thermodynamic equilibrium calculation software “JMatPro (Version 8.0.1, a product of Sente Software Ltd.)”. The content of each element listed in Table 1 was input to the thermodynamic equilibrium calculation software, and the above “γ ′ molar ratio” (%) was determined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このNi基超耐熱合金Aのインゴットに保持温度1200℃、保持時間8時間の熱処理を施し、炉冷してから、このインゴットの長さ方向に平行方向に長さ150mm、直径60mmの円柱形状の材料を採取した。この円柱形状の材料をSUS304製カプセルに封止して、熱間押出に供した。熱間押出の条件は、押出温度1150℃、押出比10(カプセルを含む)、押出ステム速度15mm/sであった。熱間押出により、直径27mmの押出材を得た。押出材の結晶粒径(平均結晶粒径)は200μm以下であった。 The ingot of the Ni-base super heat-resistant alloy A was subjected to a heat treatment at a holding temperature of 1200 ° C. for a holding time of 8 hours, cooled in a furnace, and then formed into a cylindrical shape having a length of 150 mm and a diameter of 60 mm in a direction parallel to the length direction of the ingot. Material was collected. This cylindrical material was sealed in a SUS304 capsule and subjected to hot extrusion. The hot extrusion conditions were an extrusion temperature of 1150 ° C., an extrusion ratio of 10 (including capsules), and an extrusion stem speed of 15 mm / s. An extruded material having a diameter of 27 mm was obtained by hot extrusion. The crystal grain size (average crystal grain size) of the extruded material was 200 μm or less.
 次に、押出材から直径6mm、長さ60mmの棒材を切り出した。棒材の長手方向は押出材の軸線方向に平行に取った。図3に光学顕微鏡観察による棒材の長手方向の中央部(軸線部)断面ミクロ組織を示す。観察は、断面を研磨後カーリング液でエッチングを行なった。γ組織中にγ’相が均一に析出しているが、数ミクロンから数10ミクロン程度の炭化物(MC、M23等)が観察された。なお、この中央部における硬さは449HVであった。
 この棒材に、回転式スエジング装置を用いて、室温(約25℃)で複数パスの冷間塑性加工を施した(第1の塑性加工)。各パスの加工率(減面率)は30%以下とした。素材からの累積加工率が55%を超えた4パス目(直径4.0mm)の終了後に、大気中で熱処理(1150℃、60分)を施し(第1の熱処理)、表面に形成された酸化スケールをセンタレス研磨により除去した。このため、線径は3.8mmになった。図4Aおよび図4Bに熱処理前後の光学顕微鏡による長手方向の中央部断面ミクロ組織を示す。熱処理前(図4A)は、γ相とγ’相とが延伸方向に延びた線状組織になっていることがわかる。炭化物も延伸方向に連なった炭化物集合体が観察され、炭化物を起点とする欠陥部(囲み部)が見られた。他方、熱処理後(図4B)の組織は、粒状のγ相中にγ’相が均一に析出している再結晶組織となっている。延伸方向に連なった炭化物も残存しているが、炭化物粒子間が広がり金属組織により分断され、欠陥部は観察されなくなった。
Next, a bar having a diameter of 6 mm and a length of 60 mm was cut out from the extruded material. The longitudinal direction of the bar was set parallel to the axial direction of the extruded material. FIG. 3 shows a cross-sectional microstructure of the bar in the longitudinal direction at the center (axial portion) observed by an optical microscope. The observation was performed by etching with a curling liquid after polishing the cross section. Although the γ 'phase is uniformly precipitated in the γ structure, carbides (MC, M 23 C 6, etc.) of several microns to several tens of microns were observed. The hardness at the center was 449 HV.
This rod was subjected to cold plastic working in a plurality of passes at room temperature (about 25 ° C.) using a rotary swaging apparatus (first plastic working). The processing rate (area reduction rate) of each pass was 30% or less. After the completion of the fourth pass (diameter: 4.0 mm) in which the cumulative processing rate from the material exceeded 55%, heat treatment (1150 ° C., 60 minutes) was performed in the air (first heat treatment) to form on the surface. The oxide scale was removed by centerless polishing. For this reason, the wire diameter was 3.8 mm. FIG. 4A and FIG. 4B show the microstructures in the central section in the longitudinal direction by an optical microscope before and after the heat treatment. Before the heat treatment (FIG. 4A), it can be seen that the γ phase and the γ ′ phase have a linear structure extending in the stretching direction. As for the carbide, a carbide aggregate continued in the stretching direction was observed, and a defect (enclosure) starting from the carbide was observed. On the other hand, the structure after the heat treatment (FIG. 4B) is a recrystallized structure in which the γ ′ phase is uniformly precipitated in the granular γ phase. Although the carbide continued in the stretching direction also remained, the carbide particles spread and were separated by the metal structure, and the defective portion was not observed.
 この第1の熱処理を行った材料にさらに、2パスの冷間塑性加工を施し(第2の塑性加工)、第1の熱処理後の材料からの累積加工率が37.7%となったところで、再び熱処理およびセンタレス研磨を行なった(第2の熱処理)。センタレス研磨により線径が2.8mmとなった材料にさらに4パスの冷間塑性加工を施し(第3の塑性加工)、第2の熱処理後の材料からの累積加工率が49.0%となったところで、再び熱処理およびセンタレス研磨を行なった(第3の熱処理)。センタレス研磨により線径が1.75mmとなった材料に最終的に、第3の熱処理後の材料からの累積加工率が40.5%となる2パスの冷間塑性加工を施して(第4の塑性加工)、線径1.35mmとした。この線径1.35mmの線材に最終的にセンタレス研磨を行ない線径1.0mm、長さが約1mの最終寸法の線材を製造した。図5Aおよび図5Bに線径1.0mmの線材の長手方向断面における光学顕微鏡による外周部および中央部のミクロ組織をそれぞれ示す。いずれにおいても図4Aと同様にγ相とγ’相とが延伸方向に延びた線状組織が得られた。延伸方向に連なった炭化物集合体が観察されるが、倍率を拡大した図5Bでみても、炭化物粒子間に欠陥部は観察されなかった。この線径1.0mmの線材の中央部における硬さは570HVであった。また、第3の熱処理に供された材料の寸法d(2.0mm)は最終製品寸法d(1.0mm)の2.0倍であった。 The material subjected to the first heat treatment is further subjected to two-pass cold plastic working (second plastic working), and when the cumulative working ratio from the material after the first heat treatment reaches 37.7%. Then, heat treatment and centerless polishing were performed again (second heat treatment). The material whose wire diameter became 2.8 mm by the centerless polishing is further subjected to four passes of cold plastic working (third plastic working), and the cumulative working rate from the material after the second heat treatment is 49.0%. Then, heat treatment and centerless polishing were performed again (third heat treatment). The material having a wire diameter of 1.75 mm by the centerless polishing is finally subjected to two-pass cold plastic working in which the cumulative working ratio from the material after the third heat treatment becomes 40.5% (fourth). ), And the wire diameter was 1.35 mm. Centerless polishing was finally performed on the 1.35 mm diameter wire to produce a wire having a final diameter of 1.0 mm and a length of about 1 m. FIG. 5A and FIG. 5B show the microstructures of the outer peripheral portion and the central portion of the wire rod having a wire diameter of 1.0 mm in the longitudinal direction by an optical microscope, respectively. In each case, a linear structure in which the γ phase and the γ ′ phase extended in the stretching direction was obtained as in FIG. 4A. Although a carbide aggregate connected in the stretching direction was observed, no defect was observed between the carbide particles even in FIG. 5B in which the magnification was enlarged. The hardness at the center of the wire having a diameter of 1.0 mm was 570 HV. The dimension d (2.0 mm) of the material subjected to the third heat treatment was 2.0 times the final product dimension d f (1.0 mm).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1で得た線径1.35mmの線材に、大気中で最終熱処理(1150℃、60分)を行なった後に、仕上加工のセンタレス研磨を行なって、最終的に線径1.0mm、長さが約1mの最終寸法の線材を製造した。この線径1.0mmの線材の長手方向断面における光学顕微鏡による外周部および中央部のミクロ組織は、いずれにおいても図4Bと同様に粒状のγ相中にγ’相が均一に析出している再結晶組織が得られた。延伸方向に連なった炭化物集合体が観察されるが、炭化物粒子間に欠陥部は観察されなかった。この線径1.0mmの線材の中央部における硬さは379HVであった。また、この線材の長手方向断面における中央部のミクロ組織における結晶粒の大きさは、双晶のものを除いた平均粒径で、約8μmであった。 After performing a final heat treatment (1150 ° C., 60 minutes) on the wire having a wire diameter of 1.35 mm obtained in Example 1 in the air, a centerless polishing for finish processing was performed to finally obtain a wire having a wire diameter of 1.0 mm. A final dimension wire having a length of about 1 m was produced. Regarding the microstructure of the outer peripheral portion and the central portion of the wire having a diameter of 1.0 mm in the longitudinal direction cross section by an optical microscope, the γ ′ phase is uniformly precipitated in the granular γ phase in any case as in FIG. 4B. A recrystallized structure was obtained. A carbide aggregate continued in the stretching direction was observed, but no defect was observed between the carbide particles. The hardness at the center of the wire having a diameter of 1.0 mm was 379 HV. The size of the crystal grains in the microstructure at the center in the cross section in the longitudinal direction of this wire was about 8 μm in average grain size excluding twins.
 実施例1で説明した方法、条件で作製したNi基超耐熱合金Aの熱間押出材から切り出した直径6mm、長さ60mmの棒材に実施例1と同様に複数パスの加工を施した。実施例1と異なり、中間熱処理(つまり、第1の熱処理)は1150℃、30分で行い、その後にセンタレス研磨を行わずに、酸化スケールの形成されたままで塑性加工を続けて行なった(表3)。
 実施例3において、線径2.7mmの線材を製造することができた。この線材の組織は、図4Aと同様にγ相とγ’相とが延伸方向に延びた線状組織であり、延伸方向に連なった炭化物集合体が観察された。そして、線材の長さ方向(つまり、塑性加工方向)の中央部断面組織において、欠陥率が1.0面積%以下の加工欠陥が認められた。
 上記の線径2.7mmの線材に、さらに、加工率が14.3%の塑性加工を行って、線径2.5mmの線材を製造することができた。図6Aおよび図6Bに長手方向断面における光学顕微鏡による外周部および中央部のミクロ組織をそれぞれ示す。この線材の組織もまた、図4Aと同様にγ相とγ’相とが延伸方向に延びた線状組織であり、延伸方向に連なった炭化物集合体が観察された。なお、この線材の外周部には割れが認められたが、内部は欠陥部が抑制されていることが確認された。また、第1の熱処理に供された材料の寸法d(4.0mm)は最終製品寸法d(2.5mm)の1.6倍であった。
 また、実施例1および実施例3の結果から、追加の中間熱処理を行って、好ましくは表面の酸化スケールの除去も行うことで、線材の外周部の割れも抑制しつつ、さらに塑性加工を続けることができ、より小さい線径の線材を製造できることを確認できた。
A bar having a diameter of 6 mm and a length of 60 mm cut out of a hot extruded material of the Ni-base superalloy A produced under the method and conditions described in Example 1 was subjected to multiple passes in the same manner as in Example 1. Unlike Example 1, the intermediate heat treatment (that is, the first heat treatment) was performed at 1150 ° C. for 30 minutes, and thereafter, the plastic working was continuously performed without forming the centerless polishing while the oxide scale was formed (see Table 1). 3).
In Example 3, a wire rod having a wire diameter of 2.7 mm could be manufactured. The structure of this wire was a linear structure in which the γ phase and the γ ′ phase extended in the stretching direction, as in FIG. 4A, and a carbide aggregate connected in the stretching direction was observed. Further, in the cross-sectional structure at the center in the length direction of the wire (that is, the plastic working direction), a processing defect having a defect rate of 1.0 area% or less was recognized.
The above-described wire having a diameter of 2.7 mm was further subjected to plastic working at a processing rate of 14.3%, whereby a wire having a wire diameter of 2.5 mm could be produced. FIGS. 6A and 6B show the microstructures of the outer peripheral portion and the central portion, respectively, of the longitudinal section taken by an optical microscope. The structure of this wire was also a linear structure in which the γ phase and γ ′ phase extended in the stretching direction, as in FIG. 4A, and a carbide aggregate continuing in the stretching direction was observed. In addition, although cracks were recognized in the outer peripheral portion of this wire, it was confirmed that defective portions were suppressed inside. The dimension d (4.0 mm) of the material subjected to the first heat treatment was 1.6 times the final product dimension d f (2.5 mm).
Further, from the results of Example 1 and Example 3, by performing additional intermediate heat treatment, preferably by also removing oxide scale on the surface, cracking of the outer peripheral portion of the wire is suppressed, and plastic working is further continued. It was confirmed that a wire having a smaller wire diameter could be manufactured.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 真空溶解によって準備した溶湯を鋳造して、直径80mm、質量10.5kgの円柱状のNi基超耐熱合金Bのインゴットを作製した。Ni基超耐熱合金Bの成分組成を表4に示す(質量%)。表4には、実施例1と同じ要領で求めた、上記のインゴットの「γ’モル率」(%)も示す。 (5) The molten metal prepared by vacuum melting was cast to produce a cylindrical Ni-based super heat-resistant alloy B ingot having a diameter of 80 mm and a mass of 10.5 kg. Table 4 shows the component composition of the Ni-based super heat-resistant alloy B (% by mass). Table 4 also shows "[gamma] 'mole ratio" (%) of the above ingot, which was obtained in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 このNi基超耐熱合金Bのインゴットに保持温度1200℃、保持時間8時間の熱処理を施し、炉冷してから、このインゴットの長さ方向に平行方向に長さ150mm、直径66mmの円柱形状の材料を採取した。この円柱形状の材料をSUS304製カプセルに封止して、熱間押出に供した。熱間押出の条件は、押出温度1150℃、押出比10(カプセルを含む)、押出ステム速度15mm/sであった。熱間押出により、直径27mmの押出材を得た。 The ingot of the Ni-base super heat-resistant alloy B was subjected to a heat treatment at a holding temperature of 1200 ° C. and a holding time of 8 hours, cooled in a furnace, and then formed into a cylindrical shape having a length of 150 mm and a diameter of 66 mm in a direction parallel to the length direction of the ingot. Material was collected. This cylindrical material was sealed in a SUS304 capsule and subjected to hot extrusion. The hot extrusion conditions were an extrusion temperature of 1150 ° C., an extrusion ratio of 10 (including capsules), and an extrusion stem speed of 15 mm / s. An extruded material having a diameter of 27 mm was obtained by hot extrusion.
 この押出材を、押出材の軸線方向に平行に半割切断して、その切断面のミクロ組織および硬さを評価した。図9に走査型電子顕微鏡観察(倍率2000倍)による上記切断面の軸線部の断面ミクロ組織を示す。ミクロ組織には各種の炭化物(MC、MC、M23等)が観察された(図中の分散物)。また、ミクロ組織の硬さは中央部(軸線部)で496HVであった。 This extruded material was cut in half in parallel with the axial direction of the extruded material, and the microstructure and hardness of the cut surface were evaluated. FIG. 9 shows a cross-sectional microstructure of an axis portion of the cut surface observed by a scanning electron microscope (magnification: 2000). The microstructure various carbide (MC, M 6 C, M 23 C 6 , etc.) was observed (dispersion in the figure). The hardness of the microstructure was 496 HV at the center (axial line).
 そして、素材の結晶粒径をEBSD像で評価した。測定場所は、上記の切断面において、押出材の表面から軸心に向かってD/4(Dは押出材直径)の距離入った位置とした。EBSDの測定条件は、走査型電子顕微鏡「JIB-4700F(日本電子社製)」に付属したEBSD測定システム「Aztec Version 3.2(Oxford Instruments社製)」を使用して、倍率:2000倍、スキャンステップ:0.1μmとし、方位差15°以上を粒界として結晶粒を定義した。そして、この測定条件および定義によって結晶粒と認識されたもの(炭化物を含む)について、個々の結晶粒の最大径(最大長さ)と個数との関係による結晶粒径分布を確認し、結晶粒の最大径の平均直径を求めた。
 このときのEBSD像を図7に、結晶粒径分布を図8に示す。図8において、横軸の結晶粒径(結晶粒の最大径)は0.2μm毎に纏めて示しており、例えば、最大径が0.2μm以上0.4μm未満の結晶粒は「0.4μm」のグループに、最大径が0.6μm以上0.8μm未満の結晶粒は「0.8μm」のグループに纏めてある。個々の結晶粒の最大径で、最も大きな値は6.43μmであった。また、最も小さな値は0.36μmであった。そして、結晶粒の最大径の平均直径(つまり、素材の結晶粒径)は、1.1μmであった。
Then, the crystal grain size of the material was evaluated by an EBSD image. The measurement location was a position at a distance of D / 4 (D is the diameter of the extruded material) from the surface of the extruded material toward the axis on the cut surface. The EBSD measurement conditions were determined using an EBSD measurement system “Aztec Version 3.2 (manufactured by Oxford Instruments)” attached to a scanning electron microscope “JIB-4700F (manufactured by JEOL Ltd.)” at a magnification of 2000 ×. Scan step: 0.1 μm, and a crystal grain was defined with a grain boundary having an orientation difference of 15 ° or more. Then, for those recognized as crystal grains (including carbides) according to the measurement conditions and definitions, the crystal grain size distribution based on the relationship between the maximum diameter (maximum length) and the number of individual crystal grains is confirmed, and the crystal grains are determined. The average diameter of the maximum diameter was determined.
The EBSD image at this time is shown in FIG. 7, and the crystal grain size distribution is shown in FIG. In FIG. 8, the crystal grain diameter (maximum diameter of crystal grains) on the horizontal axis is collectively shown every 0.2 μm. For example, a crystal grain having a maximum diameter of 0.2 μm or more and less than 0.4 μm is “0.4 μm”. The crystal grains having a maximum diameter of 0.6 μm or more and less than 0.8 μm are grouped in a group of “0.8 μm”. The largest value among the individual crystal grains was 6.43 μm. The smallest value was 0.36 μm. The average diameter of the maximum diameter of the crystal grains (that is, the crystal grain diameter of the material) was 1.1 μm.
 次に、押出材から直径6mm、長さ60mmの棒材を切り出した。棒材の長手方向は押出材の軸線方向に平行に取った。実施例1と同様、このNi基超耐熱合金Bの棒材の断面ミクロ組織にも、γ組織中にγ’相が均一に析出しており、上記の通り各種の炭化物(MC、MC、M23等)が観察された。なお、Ni基超耐熱合金Bの棒材の硬さは、その長手方向の中央部において、上記と同様、496HVであった。 Next, a bar having a diameter of 6 mm and a length of 60 mm was cut out from the extruded material. The longitudinal direction of the bar was set parallel to the axial direction of the extruded material. In the same manner as in Example 1, the γ ′ phase is uniformly precipitated in the γ structure in the cross-sectional microstructure of the Ni-based superalloy B rod, and as described above, various carbides (MC, M 6 C , M 23 C 6, etc.) were observed. The hardness of the bar of the Ni-base super heat-resistant alloy B was 496 HV at the center in the longitudinal direction as in the above.
 この棒材に、回転式スエジング装置を用いて、室温(約25℃)で複数パスの冷間塑性加工を施した(第1の塑性加工)。各パスの加工率(減面率)は30%以下とした。素材からの累積加工率が40%を超えた3パス目(直径4.5mm)の終了後に、真空中で熱処理(1150℃、30分)を施した(第1の熱処理)。そして、この第1の熱処理を行なった材料に、表面のセンタレス研磨は行なわないで、続けて、2パスの冷間塑性加工を施し(第2の塑性加工)、第1の熱処理後の材料からの累積加工率が39.5%となったところで、再び熱処理のみを行なった(第2の熱処理)。そして、これ以降、表5に示す通りの、第3~6の塑性加工と、この塑性加工間に伴う第3~5の熱処理(真空中、センタレス研磨なし)とを行なって、線径1.3mmの線材とした。そして、この線径1.3mmの線材に、大気中で最終熱処理(1150℃、30分)を行なった後に、仕上加工のセンタレス研磨を行なって、表面に形成された酸化スケールを除去して、最終的に線径1.0mm、長さが約1mの最終寸法の線材を製造した。
 このとき、各時点における材料の硬さは、その中央部における硬さで、第1の塑性加工で1パス目が終了したときの材料(直径5.5mm)が563HVであった以降、それぞれの塑性加工が終了したときで500HV以上であった(概ね610HVであった)。また、それぞれの塑性加工の終了後に熱処理を行ったときで500HV未満であった。
This rod was subjected to cold plastic working in a plurality of passes at room temperature (about 25 ° C.) using a rotary swaging apparatus (first plastic working). The processing rate (area reduction rate) of each pass was 30% or less. After the completion of the third pass (4.5 mm in diameter) in which the cumulative processing rate from the material exceeded 40%, a heat treatment (1150 ° C., 30 minutes) was performed in vacuum (first heat treatment). Then, the material subjected to the first heat treatment is not subjected to centerless polishing of the surface, but is subjected to two-pass cold plastic working (second plastic working). When the cumulative processing rate of 39.5% became 39.5%, only heat treatment was performed again (second heat treatment). Thereafter, as shown in Table 5, the third to sixth plastic workings and the third to fifth heat treatments (in vacuum, without centerless polishing) performed during the plastic working are performed to obtain a wire diameter of 1. A 3 mm wire was used. Then, after performing a final heat treatment (1150 ° C., 30 minutes) on the 1.3 mm diameter wire in the air, a centerless polishing of a finishing process is performed to remove an oxide scale formed on the surface. Finally, a wire having a final diameter of 1.0 mm and a length of about 1 m was manufactured.
At this time, the hardness of the material at each point in time is the hardness at the center of the material, and after the material (diameter 5.5 mm) at the end of the first pass in the first plastic working was 563 HV, It was 500 HV or more when the plastic working was completed (it was approximately 610 HV). In addition, when heat treatment was performed after completion of each plastic working, the value was less than 500 HV.
 図10に、走査型電子顕微鏡観察(倍率1000倍)による、第1の塑性加工後の材料(直径4.5mm)の断面ミクロ組織を示す。図10の断面ミクロ組織は、γ相とγ’相とが延伸方向(材料の長手方向)に延びた線状の加工組織になっていた。また、炭化物も延伸方向に集合する傾向が見られた。そして、炭化物を起点とする欠陥部は見られなかったが、この時点で、第1の熱処理を行った。
 図11に、走査型電子顕微鏡観察(倍率1000倍)による、第1の熱処理後の材料(直径4.5mm)の断面ミクロ組織を示す。図11の断面ミクロ組織は、等軸結晶組織になっていた。そして、上記の等軸晶組織に、線状に集合した炭化物を有した組織となっていた。
 図12に、走査型電子顕微鏡観察(倍率1000倍)による、第2の塑性加工で4パス目終了後の材料(直径4.0mm)の断面ミクロ組織を示す。図12の断面ミクロ組織は、γ相とγ’相とが延伸方向(材料の長手方向)に延びた線状の加工組織になっていた。また、炭化物も延伸方向に集合する傾向が見られた。そして、第1の塑性加工後の時点で第1の熱処理を行ったことで、炭化物を起点とする欠陥部は見られなかった。
FIG. 10 shows a cross-sectional microstructure of the material (diameter 4.5 mm) after the first plastic working, observed by a scanning electron microscope (1000-fold magnification). The cross-sectional microstructure in FIG. 10 was a linear processed structure in which the γ phase and the γ ′ phase extended in the stretching direction (the longitudinal direction of the material). In addition, the carbides tended to aggregate in the stretching direction. Then, no defective portion originating from carbide was found, but at this time, the first heat treatment was performed.
FIG. 11 shows a cross-sectional microstructure of the material (4.5 mm in diameter) after the first heat treatment, observed by a scanning electron microscope (1000-fold magnification). The cross-sectional microstructure in FIG. 11 was an equiaxed crystal structure. And it was the structure which had the carbide | assembly gathered linearly in the said equiaxed crystal structure.
FIG. 12 shows a cross-sectional microstructure of a material (diameter: 4.0 mm) after the fourth pass in the second plastic working, observed by a scanning electron microscope (1000-fold magnification). The cross-sectional microstructure in FIG. 12 was a linear processed structure in which the γ phase and the γ ′ phase extended in the stretching direction (the longitudinal direction of the material). In addition, the carbides tended to aggregate in the stretching direction. Then, the first heat treatment was performed at the time after the first plastic working, and no defect starting from carbide was found.
 そして、上記の最終寸法が線径1.0mmの線材の長手方向断面における光学顕微鏡による外周部および中央部のミクロ組織は、いずれにおいても図4Bと同様に粒状のγ相中にγ’相が均一に析出している再結晶組織が得られた。延伸方向に連なった炭化物集合体が観察されるが、炭化物粒子間に欠陥部は観察されなかった。この線径1.0mmの線材の中央部における硬さは382HVであった。また、第5の熱処理に供された材料の寸法d(1.5mm)は最終製品寸法d(1.0mm)の1.5倍であった。 And the microstructure of the outer peripheral part and the central part by the optical microscope in the longitudinal section of the wire rod having the final dimension of the wire diameter of 1.0 mm has a γ ′ phase in a granular γ phase in any case as in FIG. 4B. A uniformly precipitated recrystallization structure was obtained. A carbide aggregate continued in the stretching direction was observed, but no defect was observed between the carbide particles. The hardness at the center of the wire having a diameter of 1.0 mm was 382 HV. The dimension d (1.5 mm) of the material subjected to the fifth heat treatment was 1.5 times the final product dimension d f (1.0 mm).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上、実施例によりNi基超耐熱合金の細線を、冷間塑性加工により製造できることを示した。本発明の製造方法により製造したNi基超耐熱合金は冷間で塑性加工することで、任意の線径の線材等に加工できる。本実施例は、線材の製造について行なったが、板材など他の形状の製造への適用も可能である。 As described above, the examples show that a thin wire of a Ni-based super heat-resistant alloy can be manufactured by cold plastic working. The Ni-based super heat-resistant alloy produced by the production method of the present invention can be worked into a wire having an arbitrary wire diameter by cold plastic working. Although the present embodiment is applied to the manufacture of a wire, it is also applicable to the manufacture of other shapes such as a plate.

Claims (9)

  1.  Ni基超耐熱合金の製造方法であって、
    (a)炭素含有量が0.01~0.25質量%であり、かつ700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有する素材に、500℃以下の温度で、前記素材からの累積の加工率が40%以上となるように複数回の塑性加工を行ない第1の加工材を作製する工程と、
    (b)前記第1の加工材に900℃以上の温度で熱処理を行い、第1の熱処理材を作製する工程と、
    (c)前記第1の熱処理材に、500℃以下の温度で、さらに、前記第1の熱処理材からの累積の加工率が10%以上となるように1回または複数回の塑性加工を行ない、第2の加工材を作製する工程と
    を含む、Ni基超耐熱合金の製造方法。
    A method for producing a Ni-based super heat-resistant alloy,
    (A) a material having a carbon content of 0.01 to 0.25% by mass and a component composition in which the equilibrium precipitation amount of a gamma prime phase at 700 ° C. is 35 mol% or more at a temperature of 500 ° C. or less, Forming a first work material by performing plastic working a plurality of times so that the cumulative working ratio from the material is 40% or more;
    (B) performing a heat treatment on the first processed material at a temperature of 900 ° C. or higher to produce a first heat-treated material;
    (C) The first heat-treated material is subjected to one or more times of plastic working at a temperature of 500 ° C. or less so that the cumulative working rate from the first heat-treated material becomes 10% or more. And a step of producing a second work material.
  2.  前記工程(c)の後に、工程(b)および(c)の組を、一回または複数回行ない、前記第2の加工材を作製する請求項1に記載されたNi基超耐熱合金の製造方法。 2. The manufacturing of the Ni-base superalloy according to claim 1, wherein after the step (c), the set of the steps (b) and (c) is performed once or a plurality of times to produce the second work material. Method.
  3.  (d)前記第2の加工材に900℃以上の温度で熱処理を行う工程をさらに含む、請求項1または請求項2に記載されたNi基超耐熱合金の製造方法。 (D) The method for producing a Ni-base superalloy according to claim 1 or 2, further comprising a step of performing a heat treatment on the second work material at a temperature of 900 ° C or higher.
  4.  前記工程(a)および(c)の塑性加工における1回の塑性加工の加工率が30%以下である、請求項1から請求項3までのいずれか1項に記載されたNi基超耐熱合金の製造方法。 The Ni-based super heat-resistant alloy according to any one of claims 1 to 3, wherein a working ratio of one plastic working in the plastic working in the steps (a) and (c) is 30% or less. Manufacturing method.
  5.  前記工程(b)が、前記熱処理後の材料の表面の除去工程を含む、請求項1から請求項4までのいずれか1項に記載されたNi基超耐熱合金の製造方法。 (5) The method for producing a Ni-based super heat-resistant alloy according to any one of (1) to (4), wherein the step (b) includes a step of removing a surface of the material after the heat treatment.
  6.  前記Ni基超耐熱合金が、質量%で、
     C:0.01~0.25%、
     Cr:8.0~25.0%、
     Al:0.5~8.0%、
     Ti:0.4~7.0%、
     Co:0~28.0%、
     Mo:0~8.0%、
     W:0~15.0%、
     Nb:0~4.0%、
     Ta:0~5.0%、
     Fe:0~10.0%、
     V:0~1.2%、
     Hf:0~3.0%、
     B:0~0.300%、
     Zr:0~0.300%
    を含み、残部がNiおよび不純物からなる、請求項1から請求項5までのいずれか1項に記載されたNi基超耐熱合金の製造方法。
    The Ni-base super heat-resistant alloy is expressed in mass%,
    C: 0.01 to 0.25%,
    Cr: 8.0 to 25.0%,
    Al: 0.5 to 8.0%,
    Ti: 0.4 to 7.0%,
    Co: 0 to 28.0%,
    Mo: 0 to 8.0%,
    W: 0 to 15.0%,
    Nb: 0 to 4.0%,
    Ta: 0 to 5.0%,
    Fe: 0 to 10.0%,
    V: 0 to 1.2%,
    Hf: 0 to 3.0%,
    B: 0 to 0.300%,
    Zr: 0 to 0.300%
    The method for producing a Ni-based super heat-resistant alloy according to any one of claims 1 to 5, further comprising Ni and impurities.
  7.  Ni基超耐熱合金の製造方法であって、
    (A)炭素含有量が0.01~0.25質量%であり、かつ700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有する素材に、500℃以下の温度で、塑性加工を行ない第1の加工材を作製する工程と、
    (B)前記第1の加工材に900℃以上の温度で熱処理を行い、第1の熱処理材を作製する工程と、
    (C)前記第1の熱処理材に、500℃以下の温度で、さらに、塑性加工を行ない、第2の加工材を作製する工程と
    を含み、
     前記工程(A)と前記工程(B)との組を一回または複数回行い、
     最後に行う工程(B)の熱処理に供される第1の加工材の長手方向に垂直な方向の寸法dは最終製品寸法dの1.5倍以上であるNi基超耐熱合金の製造方法。
    A method for producing a Ni-based super heat-resistant alloy,
    (A) A material having a carbon content of 0.01 to 0.25% by mass and a component composition having an equilibrium precipitation amount of a gamma prime phase at 700 ° C. of 35 mol% or more at a temperature of 500 ° C. or less, A step of performing a plastic working to produce a first processed material;
    (B) heat-treating the first processed material at a temperature of 900 ° C. or higher to produce a first heat-treated material;
    (C) performing a plastic working on the first heat-treated material at a temperature of 500 ° C. or less to produce a second processed material;
    Performing the step (A) and the step (B) once or a plurality of times;
    Production method of the last performed step (B) Ni-base superalloy dimension d in the direction perpendicular to the longitudinal direction of the first workpiece subjected to the heat treatment is at least 1.5 times the final product dimensions d f of .
  8.  Ni基超耐熱合金の製造方法であって、
    (A)炭素含有量が0.01~0.25質量%であり、かつ700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有する素材に、500℃以下の温度で、塑性加工を行ない第1の加工材を作製する工程と、
    (B)前記第1の加工材に900℃以上の温度で熱処理を行い、第1の熱処理材を作製する工程と、
    (C)前記第1の熱処理材に、500℃以下の温度で、さらに、塑性加工を行ない、第2の加工材を作製する工程と
    を含み、
     前記工程(A)と前記工程(B)との組を一回または複数回行い、
     最後に行う工程(B)の熱処理に供される第1の加工材の長手方向に垂直な方向の寸法dと最終製品寸法dとの差d-dは1mm超であるNi基超耐熱合金の製造方法。
    A method for producing a Ni-based super heat-resistant alloy,
    (A) A material having a carbon content of 0.01 to 0.25% by mass and a component composition having an equilibrium precipitation amount of a gamma prime phase at 700 ° C. of 35 mol% or more at a temperature of 500 ° C. or less, A step of performing a plastic working to produce a first processed material;
    (B) heat-treating the first processed material at a temperature of 900 ° C. or higher to produce a first heat-treated material;
    (C) performing a plastic working on the first heat-treated material at a temperature of 500 ° C. or less to produce a second processed material;
    Performing the step (A) and the step (B) once or a plurality of times;
    Ni base superalloy difference d-d f is 1mm greater than the last performed step first direction perpendicular to the longitudinal direction of the workpiece dimensions d and final product size d f to be subjected to heat treatment (B) Alloy manufacturing method.
  9.  炭素含有量が0.01~0.25質量%であり、かつ700℃におけるガンマプライム相の平衡析出量が35モル%以上の成分組成を有し、
     断面組織における欠陥率が0.5面積%以下であるNi基超耐熱合金。
     
    A carbon composition of 0.01 to 0.25% by mass, and an equilibrium precipitation amount of a gamma prime phase at 700 ° C. of 35 mol% or more;
    A Ni-based super heat-resistant alloy having a defect rate of 0.5 area% or less in a sectional structure.
PCT/JP2019/026836 2018-08-07 2019-07-05 Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy WO2020031579A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019564552A JP6748951B2 (en) 2018-08-07 2019-07-05 Method for producing Ni-base superheat-resistant alloy and Ni-base superheat-resistant alloy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-148418 2018-08-07
JP2018148418 2018-08-07
JP2018244048 2018-12-27
JP2018-244048 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020031579A1 true WO2020031579A1 (en) 2020-02-13

Family

ID=69415470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026836 WO2020031579A1 (en) 2018-08-07 2019-07-05 Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy

Country Status (2)

Country Link
JP (1) JP6748951B2 (en)
WO (1) WO2020031579A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220138825A (en) * 2021-04-06 2022-10-13 다이도 토쿠슈코 카부시키가이샤 Heat-resistant alloy component, material therefor, and methods for producing them
CN115505788A (en) * 2022-09-20 2022-12-23 北京北冶功能材料有限公司 Strain aging cracking resistant nickel-based high-temperature alloy and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022103420A1 (en) 2022-02-14 2023-08-17 MTU Aero Engines AG Nickel alloy, powder for producing a nickel alloy, component, method for producing a nickel alloy and method for producing a component
CN114737084A (en) * 2022-06-07 2022-07-12 中国航发北京航空材料研究院 High-strength creep-resistant high-temperature alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976280A (en) * 1993-06-10 1999-11-02 United Technologies Corp. Method for making a hydrogen embrittlement resistant γ' strengthened nickel base superalloy material
WO2016129485A1 (en) * 2015-02-12 2016-08-18 日立金属株式会社 METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
WO2018061317A1 (en) * 2016-09-30 2018-04-05 日立金属株式会社 Method of manufacturing ni-based super heat resistant alloy extruded material, and ni-based super heat resistant alloy extruded material
WO2018061540A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 HOT EXTRUSION-MOLDING METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY AND PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY EXTRUSION MATERIAL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976280A (en) * 1993-06-10 1999-11-02 United Technologies Corp. Method for making a hydrogen embrittlement resistant γ' strengthened nickel base superalloy material
WO2016129485A1 (en) * 2015-02-12 2016-08-18 日立金属株式会社 METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
WO2018061540A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 HOT EXTRUSION-MOLDING METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY AND PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY EXTRUSION MATERIAL
WO2018061317A1 (en) * 2016-09-30 2018-04-05 日立金属株式会社 Method of manufacturing ni-based super heat resistant alloy extruded material, and ni-based super heat resistant alloy extruded material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220138825A (en) * 2021-04-06 2022-10-13 다이도 토쿠슈코 카부시키가이샤 Heat-resistant alloy component, material therefor, and methods for producing them
KR102684607B1 (en) 2021-04-06 2024-07-11 다이도 토쿠슈코 카부시키가이샤 Heat-resistant alloy component, material therefor, and methods for producing them
CN115505788A (en) * 2022-09-20 2022-12-23 北京北冶功能材料有限公司 Strain aging cracking resistant nickel-based high-temperature alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP6748951B2 (en) 2020-09-02
JPWO2020031579A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
US11085104B2 (en) Method for manufacturing Ni-based heat-resistant superalloy wire, and Ni-based heat-resistant super alloy wire
JP6422045B1 (en) Ni-base superalloy and manufacturing method thereof
JP6826766B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JP6748951B2 (en) Method for producing Ni-base superheat-resistant alloy and Ni-base superheat-resistant alloy
JP6150192B2 (en) Method for producing Ni-base superalloy
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JP6252704B2 (en) Method for producing Ni-base superalloy
JP6839401B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JP6660042B2 (en) Method for manufacturing extruded Ni-base superalloy and extruded Ni-base superalloy
JP6315320B2 (en) Method for producing Fe-Ni base superalloy
JP6120200B2 (en) Ni-base superalloy and turbine disk using the same
JP2019183263A (en) Ni BASED SUPERALLOY MATERIAL FOR COLD WORKING
WO2017170433A1 (en) Method for producing ni-based super heat-resistant alloy
JP2021011601A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP2020001047A (en) Ni-BASED SUPER HEAT RESISTANT ALLOY WELDING MATERIAL

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019564552

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846146

Country of ref document: EP

Kind code of ref document: A1