EP2387655A2 - Clausius-rankine-kreis - Google Patents

Clausius-rankine-kreis

Info

Publication number
EP2387655A2
EP2387655A2 EP09778849A EP09778849A EP2387655A2 EP 2387655 A2 EP2387655 A2 EP 2387655A2 EP 09778849 A EP09778849 A EP 09778849A EP 09778849 A EP09778849 A EP 09778849A EP 2387655 A2 EP2387655 A2 EP 2387655A2
Authority
EP
European Patent Office
Prior art keywords
rankine cycle
working fluid
clausius
cycle according
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09778849A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jan GÄRTNER
Thomas Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2387655A2 publication Critical patent/EP2387655A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a Rankine cycle, in particular for mobile applications, preferably in motor vehicles, having the features of the preamble of claim 1.
  • the invention also relates to a motor vehicle having such a Rankine cycle.
  • a Clausius-Rankine circle is known. It conventionally comprises a pump for driving a liquid working fluid in the Rankine cycle and for pressurizing the working fluid. Further, a heater is provided for vaporizing the pressurized liquid working fluid. In addition, an expansion device for generating mechanical drive power by means of expansion of the hot, compressed steam is provided. By means of a condenser device, the hot, relaxed steam can be condensed and returned to the pump as a liquid working fluid. Furthermore, the known Clausius-Rankine cycle has a collecting volume for collecting and storing liquid working fluid. In the known Clausius-Rankine cycle, the collecting volume is contained in a collecting container, which can be coupled heat-transmitting with a heat exchanger in order to preheat the stored liquid working fluid.
  • the present invention is concerned with the problem of providing an improved embodiment for a Rankine cycle of the type mentioned above, which is characterized in particular by the fact that it requires comparatively little installation space thus simplifying the realization of mobile applications.
  • the invention is based on the general idea to integrate the collecting volume in the capacitor device.
  • the condenser device is provided with a corresponding housing, which contains the collecting volume for storing and for collecting the condensed working fluid. Since the Clausius-Rankine cycle anyway requires a capacitor device that must be mounted so that the liquid working fluid can be relatively easily pumped to simplify the structure of the Rankine cycle by the proposed integration of the collection volume in the housing capacitor device. On a separate collection container for accommodating the collection volume can be dispensed with. Overall, the Clausius-Rankine circle thus requires less space. Due to its compact design, the realization of such a Clausius-Rankine cycle in a mobile application, such. Ex. In a motor vehicle.
  • the housing also contains a capacitor volume in addition to the collecting volume.
  • This is open to the collecting volume and takes on a heat exchanger, which is traversed by a cooling fluid.
  • the collecting volume occupies a comparatively large proportion of the total volume of the housing in the housing of the condenser device.
  • the collecting volume and the housing are coordinated so that the collecting volume fills at least 30% or at least 50% or at least 60% of the total volume of the housing.
  • the capacitor volume in the housing of the capacitor device can thus be smaller than the collecting volume.
  • the capacitor device can be connected to a cooling circuit in which a cooling fluid circulates.
  • the Clausius-Rankine cycle expediently has a control device.
  • This can According to an advantageous embodiment be designed so that so that the amount of circulating in the Clausius-Rankine cycle working fluid can be adjusted, depending on the current operating state of the Clausius-Rankine cycle.
  • This embodiment is based on the finding that, depending on the operating state or operating point, a different amount of working fluid in the Clausius-Rankine cycle is required in order to be able to operate it optimally.
  • the optimum circulating amount of working fluid varies depending on the drive power to be applied by the expansion device and / or in dependence on the heating power available at the heating device and / or in dependence on pressures and / or temperatures.
  • the control device can now, taking into account the current operating state, for example via maps and / or calculation models, determine the amount of working fluid required for this purpose, which must circulate for optimal operation in the Clausius-Rankine cycle.
  • the efficiency of the Clausius-Rankine cycle can be improved.
  • the controller may be configured to adjust the amount of working fluid circulating in the Rankine cycle by varying the capacitor power of the capacitor device.
  • This embodiment makes use of the finding that the amount of working fluid circulating in the Rankine cycle depends on the ratio of gas phase to liquid phase in the condenser device. The higher the condensation capacity of the condenser device, the more liquid working fluid is available for circulation in the Clausius-Rankine cycle.
  • control device so that it adjusts the condensing capacity of the condenser device by changing the amount of the heat exchanger flowing through the cooling fluid in a condenser device containing a heat exchanger through which a cooling fluid.
  • the control device takes into account the correlation between cooling fluid flow and accumulating condensate in the condenser device.
  • control device adjusts the amount of working fluid circulating in the Rankine cycle, the fact that the collecting volume for liquid working fluid in the housing of the capacitor device is integrated, which simplifies the variation of the circulating amount of working fluid.
  • FIG. 1 shows a highly simplified schematic diagram-like schematic representation of a Clausius-Rankine cycle.
  • a Rankine cycle 1 includes as components a pump 2, a heater 3, an expansion device 4, and a capacitor device 5. Further, leads 6 are provided to connect the individual components 2, 3, 4, 5 to each other , Thus, a line 6a connects a pressure side of the pump 2 to an input of the heater 3. A line 6b connects an output of the heater 3 to an input of the expansion device 4. A line 6c connects an output of the expansion device 4 to an input of the capacitor device 5. A Line 6d connects an output of the capacitor device 5 to the suction side of the pump 2.
  • the Rankine cycle 1 is preferably suitable for a mobile application. Accordingly, it may, for example, be arranged in a motor vehicle.
  • Such a motor vehicle includes, for example, an exhaust system 7, which may be coupled to the heater 3 for heat transfer.
  • an exhaust gas flow through the designed as a heat exchanger heater 3 are passed.
  • the vehicle may have a cooling circuit 8, which may, for example, be coupled with the condenser device 5 in a heat-transmitting manner.
  • a heat exchanger 9 of the capacitor device 5 can be integrated into the cooling circuit 8 of the vehicle.
  • the pump 2 serves to drive a liquid working fluid in the Rankine cycle 1. At the same time, the pump 2 serves to pressurize the working fluid. The pump 2 thus promotes the working fluid in the lines 6 and through the individual components 3, 4, 5.
  • the heater 3 serves to evaporate the pressurized, liquid working fluid.
  • the working fluid is supplied with heat q.
  • the expansion device 4 drives a generator 11 via a drive shaft 10 in order to generate electrical energy.
  • the condenser device 5 serves to condense the hot, relaxed steam.
  • heat is q from purged from the working fluid. In this way, the working fluid is cooled and thus liquefied. The liquid working fluid can then be returned to the pump 2.
  • the capacitor device 5 has a housing 12 in which z. Ex.
  • the heat exchanger 9 is arranged.
  • this housing 12 also has a collecting volume 13 is integrated, which serves for collecting and storing of liquid working fluid.
  • the housing 12 may also include a capacitor volume 14 in addition to the collection volume 13.
  • the capacitor volume 14 is expediently open to the collecting volume 13.
  • the heat exchanger 9 arranged.
  • the collecting volume 13 is at least 30% or at least 50% or at least 60% of a total volume of the housing 12.
  • the capacitor volume 14 for accommodating the heat exchanger 9 is at least 35% of the total volume of the housing 12.
  • the collecting volume 13 which is provided for collecting and providing the liquid working fluid need not always be completely filled with liquid working fluid, but the amount of working fluid circulating in the Rankine cycle 1 can vary.
  • the Rankine cycle 1 may have a control device 15 with the aid of which the amount of the working fluid circulating in the Rankine cycle 1 can be adjusted.
  • the setting of the circulating amount of working fluid is carried out as a function of current operating parameters of the Rankine cycle 1, that is, as a function of a current operating state.
  • Corresponding operating parameters receives the control device 15 in the example via a corresponding signal line 16.
  • the control device 15 may be connected to an engine control unit of the vehicle.
  • the control device 15 may be connected to a suitable sensor for detecting the required operating parameters.
  • control device 15 cooperates with a control valve 17, with the aid of which the amount of cooling fluid flowing through in the heat exchanger 9 can be adjusted.
  • the control valve 17 is integrated at a suitable location in the cooling circuit 8.
  • the control valve 17 may be incorporated in a flow 18 of the cooling circuit 8 as shown. It is also possible to integrate the control valve 17 in a return line 19 of the cooling circuit 8.
  • the control valve 17 is arranged outside the housing 12 of the capacitor device 5. It is also possible to arrange the control valve 17 in the interior of the housing 12 of the capacitor device 5.
  • the control device 15 can thus set by appropriate actuation of the control valve 17, the amount of the heat exchanger 9 flowing through the cooling fluid. Since the amount of cooling fluid flowing through the heat exchanger 9 determines the condensation capacity of the condenser device 5, the control device 15 can thus indirectly set the condensing capacity of the condenser device 5.
  • the condensation capacity of the condenser device 5 in turn is decisive for the ratio of gas phase to liquid phase in the condenser device 5 and thus for the resulting amount of liquid working fluid.
  • the condensation capacity of the condenser device 5 correlates with the circulating in Clausius Rankine cycle amount of working fluid. Accordingly, the controller 15 can indirectly adjust the amount of the working fluid to be circulated in the Rankine cycle.
  • the adjustment of the amount of working fluid circulating in the Rankine cycle 1 can take place in the sense of a control or else be carried out in the sense of a regulation.
  • the control device 15 assigns to the current operating state a control signal with which the control valve 17 must be actuated in order to be able to set the desired working fluid quantity in accordance with calculations or characteristic diagrams.
  • the control device 15 compares the actual amount of working fluid currently circulating in the Clausius-Rankine cycle 1 with a desired amount of the working fluid which would have to circulate in the Rankine cycle 1 due to the current operating state. In response to a desired-actual comparison, the control valve 17 is then activated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
EP09778849A 2008-11-13 2009-10-06 Clausius-rankine-kreis Withdrawn EP2387655A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008057202A DE102008057202A1 (de) 2008-11-13 2008-11-13 Clausius-Rankine-Kreis
PCT/EP2009/007162 WO2010054724A2 (de) 2008-11-13 2009-10-06 Clausius-rankine-kreis

Publications (1)

Publication Number Publication Date
EP2387655A2 true EP2387655A2 (de) 2011-11-23

Family

ID=42105020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09778849A Withdrawn EP2387655A2 (de) 2008-11-13 2009-10-06 Clausius-rankine-kreis

Country Status (6)

Country Link
US (1) US20120060502A1 (zh)
EP (1) EP2387655A2 (zh)
JP (1) JP5661044B2 (zh)
CN (1) CN102265002B (zh)
DE (1) DE102008057202A1 (zh)
WO (1) WO2010054724A2 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027068A1 (de) * 2010-07-13 2012-01-19 Behr Gmbh & Co. Kg System zur Nutzung von Abwärme eines Verbrennungsmotors
DE102010031561A1 (de) * 2010-07-20 2012-01-26 Behr Gmbh & Co. Kg System zur Nutzung von Abwärme eines Verbrennungsmotors
DE102010042068A1 (de) * 2010-10-06 2012-04-12 Behr Gmbh & Co. Kg Wärmeübertrager
DE102010056196B4 (de) 2010-12-24 2022-01-27 Daimler Ag Abwärmenutzungsvorrichtung und zugehöriges Betriebsverfahren
AT511189B1 (de) * 2011-07-14 2012-10-15 Avl List Gmbh Verfahren zur regelung einer wärmenutzungsvorrichtung bei einer brennkraftmaschine
DE102011115399A1 (de) 2011-10-06 2013-04-11 Daimler Ag Kraftfahrzeug
DE102011117054A1 (de) 2011-10-27 2012-05-03 Daimler Ag Vorrichtung zur Energierückgewinnung aus einem Abwärmestrom einer Verbrennungskraftmaschine in einem Fahrzeug mit einem Arbeitsmedium-Kreislauf und Verfahren zur Leckage-Erkennung in einem Arbeitsmedium-Kreislauf
CN102505980B (zh) * 2011-11-02 2014-02-12 天津大学 发动机余热分类回收系统
DE102012002833A1 (de) * 2012-02-11 2012-09-06 Daimler Ag Vorrichtung zur Energierückgewinnung aus einem Abwärmestrom einer Verbrennungskraftmaschine in einem Fahrzeug mit einem Arbeitsmedium-Kreislauf
US9551487B2 (en) 2012-03-06 2017-01-24 Access Energy Llc Heat recovery using radiant heat
CA2778101A1 (en) * 2012-05-24 2013-11-24 Jean Pierre Hofman Power generation by pressure differential
CN102748124A (zh) * 2012-07-26 2012-10-24 湖南大学 一种利用内燃机废气余热能实现进气增压的装置
DE102013205648A1 (de) * 2012-12-27 2014-07-03 Robert Bosch Gmbh System zur Energierückgewinnung aus einem Abwärmestrom einer Brennkraftmaschine
DE102013001569A1 (de) 2013-01-30 2014-07-31 Daimler Ag Verfahren zum Betreiben einer Abwärmenutzungsvorrichtung
US20140224469A1 (en) * 2013-02-11 2014-08-14 Access Energy Llc Controlling heat source fluid for thermal cycles
DE102014206038A1 (de) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh System für einen thermodynamischen Kreisprozess, Steuereinrichtung für ein System für einen thermodynamischen Kreisprozess, Verfahren zum Betreiben eines Systems, und Anordnung mit einer Brennkraftmaschine und einem System
DE102014206026A1 (de) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh Kühleinrichtung für einen Kondensator eines Systems für einen thermodynamischen Kreisprozess, System für einen thermodynamischen Kreisprozess, Anordnung mit einer Brennkraftmaschine und einem System, Kraftfahrzeug, und ein Verfahren zum Durchführen eines thermodynamischen Kreisprozesses
CN104976112B (zh) * 2014-04-01 2018-12-18 松下知识产权经营株式会社 液体用泵和兰金循环装置
CN105736358B (zh) * 2014-12-26 2019-08-13 松下电器产业株式会社 液体用泵以及兰金循环装置
DE102015007104A1 (de) 2015-05-29 2015-12-17 Daimler Ag Abwärmenutzungsvorrichtung und Verfahren zu deren Betrieb
JP6599136B2 (ja) * 2015-06-09 2019-10-30 パナソニック株式会社 液体用ポンプ及びランキンサイクル装置
AT518522B1 (de) * 2016-07-18 2017-11-15 Avl List Gmbh Verfahren zur erkennung einer undichten stelle in einem wärmerückgewinnungssystem
DE102016222687B4 (de) * 2016-11-17 2022-06-23 Mtu Friedrichshafen Gmbh Wärmebereitstellungseinrichtung
US10690014B2 (en) 2017-05-12 2020-06-23 DOOSAN Heavy Industries Construction Co., LTD Cooling module, supercritical fluid power generation system including the same, and supercritical fluid supply method using the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788639A (en) * 1955-02-28 1957-04-16 Dole Valve Co Condenser valve
DE2414147A1 (de) * 1974-03-23 1975-10-09 Ewald Dipl Ing Renner Hybrid-motor
US4165616A (en) * 1978-01-19 1979-08-28 Westinghouse Electric Corp. Apparatus and method for restricting turbine exhaust velocity within a predetermined range
US4622820A (en) * 1985-09-27 1986-11-18 Sundquist Charles T Absorption power generator
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US5000003A (en) * 1989-08-28 1991-03-19 Wicks Frank E Combined cycle engine
US5005351A (en) * 1990-02-26 1991-04-09 Westinghouse Electric Corp. Power plant condenser control system
US20030213246A1 (en) * 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
JP2003201808A (ja) * 2001-10-26 2003-07-18 Mcl:Kk コジェネレーションシステム及び肥料を製造する方法
DE10259488A1 (de) 2002-12-19 2004-07-01 Bayerische Motoren Werke Ag Wärmekraftmaschine
DE102004018860A1 (de) 2003-04-22 2004-11-25 Denso Corp., Kariya Fluidmaschine
JP4310132B2 (ja) * 2003-05-13 2009-08-05 株式会社荏原製作所 発電装置
GB2405448B (en) * 2003-08-27 2006-11-08 Freepower Ltd Energy recovery system
EP1668226B1 (en) * 2003-08-27 2008-01-02 TTL Dynamics LTD Energy recovery system
JP4506353B2 (ja) * 2004-08-25 2010-07-21 株式会社日立製作所 発電プラントにおける蒸気発生器への給水制御装置
JP4543920B2 (ja) 2004-12-22 2010-09-15 株式会社デンソー 熱機関の廃熱利用装置
JP4738222B2 (ja) * 2006-03-24 2011-08-03 大阪瓦斯株式会社 動力システム
JP2007262916A (ja) * 2006-03-27 2007-10-11 Jfe Steel Kk 復水蒸気タービンの復水器真空制御方法
JP2008008224A (ja) 2006-06-29 2008-01-17 Denso Corp 廃熱利用装置
JP2008039373A (ja) * 2006-07-14 2008-02-21 Denso Corp 排気熱回収器
DE102006043518A1 (de) 2006-09-12 2008-03-27 Voith Turbo Gmbh & Co. Kg Autarke Energieerzeugungseinheit für ein von einer Verbrennungskraftmaschine angetriebenes Fahrzeug
DE102007062580A1 (de) * 2007-12-22 2009-06-25 Daimler Ag Verfahren zur Rückgewinnung einer Verlustwärme einer Verbrennungskraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010054724A2 *

Also Published As

Publication number Publication date
CN102265002B (zh) 2016-01-06
JP2012508842A (ja) 2012-04-12
JP5661044B2 (ja) 2015-01-28
CN102265002A (zh) 2011-11-30
WO2010054724A2 (de) 2010-05-20
DE102008057202A1 (de) 2010-05-20
US20120060502A1 (en) 2012-03-15
WO2010054724A3 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
EP2387655A2 (de) Clausius-rankine-kreis
DE102005049831B4 (de) Dampfkompressionskühlvorrichtung
DE102005061214A1 (de) Vorrichtung zur Nutzung der Abwärme von einer Wärmekraftmaschine
DE3207656A1 (de) Sorptionsapparate und verfahren fuer ihren betrieb
WO2014102027A2 (de) System zur energierückgewinnung aus einem abwärmestrom einer brennkraftmaschine
DE102006000787A1 (de) Dampfkompressionskühlvorrichtung
DE102009050068A1 (de) Verbrennungsmotor
WO2012048959A1 (de) Vorrichtung und verfahren zur abwärmenutzung einer brennkraftmaschine
DE102008035216A1 (de) Kühlanordnung und Verfahren zum Kühlen eines temperaturempfindlichen Aggregats eines Kraftfahrzeugs
DE102004055695A1 (de) Abwärmesammelsystem mit einem Clausius-Rankine-Kreis und einem Heizkreis
DE102007062580A1 (de) Verfahren zur Rückgewinnung einer Verlustwärme einer Verbrennungskraftmaschine
EP2846017A1 (de) Wärmetauschvorrichtung und Antriebseinheit für ein Kraftfahrzeug
DE102013214267A1 (de) Wärmepumpen-Anlage für ein Fahrzeug, insbesondere ein Elektro- oder Hybridfahrzeug, sowie Verfahren zum Betrieb einer solchen Wärmepumpen-Anlage
WO2010029020A1 (de) Kraftmaschine und verfahren zum betreiben einer kraftmaschine
WO2018007432A1 (de) Abwärmenutzungseinrichtung
DE102017124811A1 (de) Klimatisierungssystem zum Konditionieren der Luft eines Fahrgastraums eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
DE102010047520A1 (de) Verfahren und Vorrichtung zur Energierückgewinnung aus einem Abgasstrom einer Verbrennungskraftmaschine
WO2011045047A2 (de) (o) rc-verfahren für die abwärmenachverstromung bei biomasseverbrennung, sowie entsprechende einrichtung
WO2008055720A2 (de) Arbeitsmedium für dampfkreisprozesse
EP2336680A2 (de) Klimatisiervorrichtung mit Druckübertrager und Verfahren zum Betreiben einer Klimatisiervorrichtung
DE102011101665B4 (de) Wärmeeinheit zum Erzeugen elektrischer Energie und Verfahren zur Erzeugung von Strom aus Wärme
DE102010025185A1 (de) Abwärmenutzungsvorrichtung
DE3047955A1 (de) Klimaanlage fuer kraftfahrzeuge, insbesondere fuer personenkraftwagen
DE102008053066A1 (de) System mit einem Rankine-Kreislauf
WO2014023295A2 (de) Vorrichtung zum betreiben eines clausius-rankine-prozess

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110330

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20151016