EP2386465B1 - Système et procédé pour déterminer une position absolue d'un arbre de moteur de système de direction électrique - Google Patents

Système et procédé pour déterminer une position absolue d'un arbre de moteur de système de direction électrique Download PDF

Info

Publication number
EP2386465B1
EP2386465B1 EP11004000.3A EP11004000A EP2386465B1 EP 2386465 B1 EP2386465 B1 EP 2386465B1 EP 11004000 A EP11004000 A EP 11004000A EP 2386465 B1 EP2386465 B1 EP 2386465B1
Authority
EP
European Patent Office
Prior art keywords
microprocessor
rotatable shaft
time
relative
utilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11004000.3A
Other languages
German (de)
English (en)
Other versions
EP2386465A3 (fr
EP2386465A2 (fr
Inventor
Abraham Gebregergis
Paul Fisher
Christian E. Ross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Steering Solutions IP Holding Corp
Original Assignee
GM Global Technology Operations LLC
Steering Solutions IP Holding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC, Steering Solutions IP Holding Corp filed Critical GM Global Technology Operations LLC
Publication of EP2386465A2 publication Critical patent/EP2386465A2/fr
Publication of EP2386465A3 publication Critical patent/EP2386465A3/fr
Application granted granted Critical
Publication of EP2386465B1 publication Critical patent/EP2386465B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0418Electric motor acting on road wheel carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures

Definitions

  • the subject application relates to a system and a method for determining an absolute rotational position of a motor shaft in an electric steering system when a vehicle has an ignition off state.
  • a vehicle electric power steering system has utilized a microprocessor that monitors a motor shaft position in the electric power steering system.
  • the microprocessor is turned off when the ignition of the vehicle is off (i.e., an ignition off state of the vehicle). Accordingly, if a vehicle operator turns the steering wheel during the ignition off state, when the microprocessor is subsequently turned on during an ignition on state, the microprocessor may not be able to accurate determine an absolute rotational position of the motor shaft.
  • Document DE 10 2003 014 700 A1 discloses a steering angle sensor system which exhibits the features of the preamble of claim 1 and a process for measuring a steering angle in accordance with the preamble of claim 7.
  • Document DE 10 2006 042 104 A1 discloses a steering system having a means to detect a change in a steering angle when a vehicle ignition is turned off.
  • a system for determining an absolute rotational position of a rotatable shaft of a motor in an electric power steering system of a vehicle includes a microprocessor configured to be periodically activated during an ignition off state of the vehicle by a timer circuit.
  • the microprocessor is further configured to energize first and second position sensors at a first time when the microprocessor is activated.
  • the first and second position sensors are configured to generate first and second signals, respectively, indicative of a relative rotational position of the rotatable shaft at the first time.
  • the microprocessor is further configured to measure the first and second signals and to determine a first relative position value indicating the relative rotational position of the rotatable shaft at the first time, and then to be deactivated.
  • the microprocessor is further configured to energize the first and second position sensors at a second time when the microprocessor is activated.
  • the second time is after the first time and is also after the microprocessor was deactivated.
  • the first and second position sensors are further configured to generate third and fourth signals, respectively, indicative of a relative rotational position of the rotatable shaft at the second time.
  • the microprocessor is further configured to measure the third and fourth signals and to determine a second relative position value indicating the relative rotational position of the rotatable shaft at the second time.
  • the microprocessor is further configured to determine an amount of relative rotation of the rotatable shaft during the ignition off state based on the first and second relative position values.
  • the microprocessor is further configured to determine a current absolute position value indicating a current absolute rotational position of the rotatable shaft based on a previously stored absolute position value and the amount of relative rotation of the rotatable shaft.
  • the microprocessor is further configured to be periodically activated during an ignition off state of the vehicle by a timer circuit.
  • the system further comprises a comparator configured to compare first and second back electromotive force voltages from first and second phases, respectively, of the motor to a reference voltage, and to output a control signal when either the first or the second back electromotive force voltage is greater than the reference voltage, wherein the microprocessor is further configured to be activated in response to the control signal.
  • a method for determining an absolute rotational position of a rotatable shaft of a motor in an electric power steering system of a vehicle includes periodically activating a microprocessor utilizing a timer circuit.
  • the method further includes comparing first and second back electromotive force voltages from first and second phases, respectively, of the motor to a reference voltage by means of a comparator and utilizing the comparator to output a control signal to the microprocessor to activate the microprocessor when either the first or the second back electromotive force voltage of the motor is greater than the reference voltage.
  • the method further includes energizing first and second position sensors at a first time when the microprocessor is activated, utilizing the microprocessor.
  • the method further includes generating first and second signals, respectively, indicative of a relative rotational position of the rotatable shaft at the first time utilizing the first and second position sensors, respectively.
  • the method further includes measuring the first and second signals and determining a first relative position value indicating the relative rotational position of the rotatable shaft at the first time utilizing the microprocessor.
  • the method further includes deactivating the microprocessor after determining the first relative position value.
  • the method further includes energizing the first and second position sensors at a second time when the microprocessor is activated, utilizing the microprocessor.
  • the second time is after the first time and is also after the microprocessor was deactivated.
  • the method further includes generating third and fourth signals, respectively, indicative of a relative rotational position of the rotatable shaft at the second time, utilizing the first and second position sensors, respectively.
  • the method further includes measuring the third and fourth signals and determining a second relative position value indicating the relative rotational position of the rotatable shaft at the second time utilizing the microprocessor.
  • the method further includes determining an amount of relative rotation of the rotatable shaft during the ignition off state based on the first and second relative position values utilizing the microprocessor.
  • the method further includes determining a current absolute position value indicating a current absolute rotational position of the rotatable shaft based on a previously stored absolute position value and the amount of relative rotation of the rotatable shaft utilizing the microprocessor.
  • the method further includes storing the current absolute position value in the memory device utilizing the microprocessor.
  • FIG. 1 is a block diagram of a vehicle having a handwheel, an electric power steering system, and a position determination system in accordance with an exemplary embodiment
  • FIG. 2 is a block diagram of the electric power steering system and the position determination system shown in FIG. 1 ;
  • FIG. 3 is an exemplary timing diagram indicating when the position determination system monitors the handwheel position during an ignition off state of the vehicle;
  • FIG. 4 is a graph of first and second signals generated by first and second position sensors utilized in the position determination system of FIG. 1 ;
  • FIG. 5 is a block diagram illustrating exemplary positions of first and second position sensors utilized in the position determination system of FIG. 1 ;
  • FIGS. 6 and 7 are flowcharts of a method for determining an absolute rotational position of a rotatable shaft of a motor in the electric power system of FIG. 1 in accordance with another exemplary embodiment.
  • FIG. 8 is a flowchart of another method for determining an absolute rotational position of a rotatable shaft of a motor in the electric power system of FIG. 1 in accordance with another exemplary embodiment.
  • ignition off state corresponds to a power off state of an electric power steering system
  • ignition on state corresponds to a power on state of an electric power steering system
  • the handwheel 20 is operably coupled to the electric power steering system 24. Rotation of the handwheel 20 induces the electric power steering system 24 to cause rotation of a rotatable motor shaft 42 operably coupled to a rack-and-pinion assembly to move an operational position of vehicle wheels.
  • the electric power steering system 24 includes an electric motor 40 having the rotatable shaft 42 and a magnet 44 coupled to the rotatable shaft 42.
  • the rotatable shaft 42 is operably coupled via a gear assembly to a rack-and-pinion assembly for controlling an operational position of vehicle wheels.
  • the position determination system 30 is provided to determine an absolute rotational position of the rotatable shaft 42 of the motor 40 when the vehicle 10 has an ignition off state.
  • the system 30 includes first and second position sensors 60, 62, a microprocessor 66, a timer circuit 70, a memory device 74, a power source 80, a voltage regulator 82, a switch 84, a comparator 90, and a main controller 92.
  • the first and second position sensors 60, 62 are configured to generate first and second signals indicative of a relative position of the rotatable shaft 42 of the motor 40.
  • the first and second position sensors 60, 62 are Hall effect sensors that generate the first and second signals, respectively, in response to detecting a magnetic field from the magnet 44 coupled to the rotatable shaft 42.
  • the first and second position sensors 60, 62 are disposed 90 degrees apart from one another about a central axis 99 of the rotatable shaft 42.
  • the first position sensor 60 can generate a first signal over time represented by signal curve 122 as the rotatable shaft 42 and the magnet 44 are rotated.
  • the second position sensor 62 can generate a second signal over time represented by signal curve 124 as the rotatable shaft 42 and the magnet 44 are rotated.
  • the timer circuit 70 is operably coupled to the microprocessor 66.
  • the timer circuit 70 is configured to periodically generate a control signal that activates the microprocessor 66 when the vehicle 10 has an ignition off state.
  • the timer circuit 70 generates the control signal every 256 milliseconds to activate the microprocessor 66. Of course, other time intervals are contemplated.
  • the memory device 74 is operably coupled to the microprocessor 66.
  • the microprocessor 66 is configured to store data values in the memory device 74 as will be explained in greater detail below.
  • the power source 80 is configured to output a voltage which is regulated utilizing the voltage regulator 82.
  • the voltage regulator 82 outputs an operational voltage that is received by the microprocessor 66 for powering the microprocessor 66.
  • the switch 84 is coupled between the voltage regulator 82 and the position sensors 60, 62.
  • an operational voltage from the voltage regulator 82 is supplied to the first and second position sensors 60, 62 to energize the position sensors 60, 62.
  • an operational voltage from the voltage regulator 82 is removed from the first and second position sensors 60, 62 to de-energize the position sensors 60, 62.
  • the switch 84 is a p-channel MOSFET that is switched to either the closed operational position or the open operational position by control signals from the microprocessor 66.
  • the comparator 90 may be configured to compare the first, second, and third back electromotive force voltages from first, second, and third phases, respectively, of the motor 40 to a reference voltage.
  • the comparator 90 outputs an interrupt/control signal that is received by the microprocessor 66 when either the first back electromotive force voltage is greater than the reference voltage, or the second back electromotive force voltage is greater than the reference voltage, or the third back electromotive force voltage is greater than the reference voltage, indicating that a rotational speed of the shaft 42 is greater than a threshold rotational speed.
  • comparator 90 is configured to compare the first and second back electromotive force voltages from first and second phases, respectively, of the motor 40 to the reference voltage.
  • the microprocessor 66 wakes up from a low power sleep mode to determine the absolute rotational position of the shaft 42.
  • the microprocessor 66 is operably coupled to the voltage regulator 82, the switch 84, the first and second position sensors 60, 62, the timer circuit 70, the memory device 74, the comparator 90, and the main controller 92.
  • the microprocessor 66 determines the absolute rotational position of the shaft 42 during the vehicle ignition off state by being periodically activated by a control signal from the timer circuit 70 or by being activated by an interrupt/control signal from the comparator 90.
  • the microprocessor 66 is periodically activated by the timer circuit 70 to periodically monitor the first and second position signals from the first and second position sensors 60, 62 during the ignition off state of the vehicle 10.
  • the timer circuit 70 can wake up or activate the microprocessor 66 at times T1 and T2 representing a 256 millisecond time interval between activations.
  • the microprocessor 66 measures the first and second position signals from the position sensors 60, 62 for 50-100 ⁇ second and then is de-activated.
  • the microprocessor 66 has an activation duty cycle that is defined by a desired quiescent current draw of the microprocessor 66 and a desired maximum speed of the shaft 42.
  • the microprocessor 66 can be activated at a time T3 by an interrupt/control signal from the comparator 90. The operation of the microprocessor 66 will be discussed in greater detail below.
  • FIGS. 2 , 6 and 7 a flowchart of a method for determining an absolute rotational position of the rotatable shaft 42 of the motor 40 in the electric power steering system 24 in accordance with an exemplary embodiment will be explained.
  • the timer circuit 70 generates a control signal to activate the microprocessor 66 during an ignition off state of the vehicle 10.
  • the microprocessor 66 generates a control signal that induces the switch 84 to supply an operational voltage to the first and second position sensors 60, 62 to energize the first and second position sensors 60, 62 at a first time when the microprocessor 66 is activated.
  • the first and second position sensors 60, 62 generate first and second signals, respectively, indicative of a relative rotational position of the rotatable shaft 42 at the first time.
  • the microprocessor 66 measures the first and second signals and determines a first relative position value indicating the relative rotational position of the rotatable shaft 42 at the first time and stores the first relative position value in the memory device 74.
  • the microprocessor 66 deactivates itself after storing the first relative position value in the memory device 74.
  • the timer circuit 70 generates a control signal to activate the microprocessor 66 during the ignition off state of the vehicle 10.
  • the microprocessor 66 generates a control signal that induces the switch 84 to supply an operational voltage to the first and second position sensors 60, 62 to energize the first and second position sensors 60, 62 at a second time after the first time and after the microprocessor 66 was deactivated.
  • the first and second position sensors 60, 62 generate third and fourth signals, respectively, indicative of a relative rotational position of the rotatable shaft 42 at the second time.
  • the microprocessor 66 measures the third and fourth signals and determines a second relative position value indicating the relative rotational position of the rotatable shaft 42 at the second time based on the third and fourth signals, and stores the second relative position value in the memory device 74.
  • the microprocessor 66 determines an amount of relative rotation of the rotatable shaft 42 during the ignition off state based on the first and second relative position values, and stores the amount of relative rotation in the memory device 74.
  • the microprocessor 66 determines a current absolute position value indicating a current absolute rotational position of the rotatable shaft 42 based on a previously stored absolute position value and the amount of relative rotation of the rotatable shaft 42, and stores the current absolute position value in the memory device 74.
  • the microprocessor 66 determines a total number of turns of the rotatable shaft 42 of the motor 40 by dividing the current absolute rotational position of the rotatable shaft 42 by 360 degrees, and stores the total number of turns of the rotatable shaft 42 of the motor 40 in the memory device 74.
  • the microprocessor 66 determines a total number of vehicle handwheel turns based on the total number of turns of the rotatable shaft 42 of the motor 40 and a gear ratio associated with the electric power steering system, and stores the total number of vehicle handwheel turns in the memory device 74.
  • FIGS. 2 and 8 a flowchart of another method for determining an absolute rotational position of the rotatable shaft 42 of the motor 40 in the electric power steering system 24 in accordance with another exemplary embodiment will be explained.
  • the comparator 90 compares first and second back electromotive force voltages from first and second phases, respectively, of the motor 40 to a reference voltage, and outputs a control signal when either the first back electromotive force voltage is greater than the reference voltage or the second back electromotive force voltage is greater than the reference voltage.
  • the microprocessor 66 is activated in response to the control signal during an ignition off state of the vehicle 10.
  • the microprocessor 66 generates a control signal that induces the switch 84 to supply an operational voltage to the first and second position sensors 60, 62 to energize the first and second position sensors 60, 62 at a first time when the microprocessor 66 is activated.
  • the first and second position sensors 60, 62 generate first and second signals, respectively, indicative of a relative rotational position of the rotatable shaft 42 over time.
  • the microprocessor 66 measures the first and second signals and determines a first relative position value indicating a relative rotational position of the rotatable shaft 42 at the first time, and stores the first relative position value in the memory device 74.
  • the microprocessor 66 measures the first and second signals and determines a second relative position value indicating a relative position of the rotatable shaft 42 at a second time and stores the second relative position value in the memory device 74.
  • the second time is after the first time.
  • the microprocessor 66 determines an amount of relative rotation of the rotatable shaft 42 during the ignition off state based on the first and second relative position values, and stores the amount of relative rotation in the memory device 74.
  • the microprocessor 66 determines a current absolute position value indicating a current absolute rotational position of the rotatable shaft 42 based on a previously stored absolute position value and the amount of relative rotation of the rotatable shaft 42, and stores the current absolute position value in the memory device 74.
  • the microprocessor 66 determines a total number of turns of the rotatable shaft 42 of the motor 40 by dividing the current absolute rotational position of the rotatable shaft 42 by 360 degrees, and stores the total number of turns of the rotatable shaft 42 of the motor 40 in the memory device 74.
  • the microprocessor 66 determines a total number of vehicle handwheel turns based on the total number of turns of the rotatable shaft 42 of the motor 40 and a gear ratio associated with the electric power steering system, and stores the total number of vehicle handwheel turns in the memory device 74.
  • the microprocessor 66 can operate in a low power mode drawing less than 70 ⁇ A when there is no movement of the shaft 42.
  • the microprocessor 66 can also monitor rotational speeds of the shaft 42 up to 11,000 RPM and has a resolution of one-half of a mechanical revolution of the shaft 42.
  • the microprocessor 66 can determine +/- 1080° of handwheel movement (e.g., three handwheel revolutions).

Claims (12)

  1. Système (30) pour déterminer une position de rotation absolue d'un arbre rotatif (42) d'un moteur (40) dans un système de direction assistée électrique (24) d'un véhicule (10), comprenant :
    un microprocesseur (66) configuré pour exciter un premier et un second capteur de position (60, 62) à un premier instant quand le microprocesseur (66) est activé ;
    le premier et le second capteur de position (60, 62) étant configurés pour générer un premier et un second signal, respectivement, indicatifs d'une position de rotation relative de l'arbre rotatif (42) au premier instant ;
    le microprocesseur (66) étant en outre configuré pour mesurer le premier et le second signal et pour déterminer une première valeur de position relative indiquant la position de rotation relative de l'arbre rotatif (42) au premier instant, et pour être alors désactivé, le microprocesseur (66) étant en outre configuré pour exciter le premier et
    le second capteur de position (60, 62) à un second instant quand le microprocesseur (66) est activé, le second instant étant après le premier instant et après que le microprocesseur (66) a été désactivé ;
    le premier et le second capteur de position (60, 62) étant en outre configurés pour générer un troisième et un quatrième signal, respectivement, indicatifs d'une position de rotation relative de l'arbre rotatif (42) au second instant ;
    le microprocesseur (66) étant en outre configuré pour mesurer le troisième et le quatrième signal et pour déterminer une seconde valeur de position relative indiquant la position de rotation relative de l'arbre rotatif (42) au second instant, le microprocesseur (66) étant en outre configuré pour déterminer une amplitude de rotation relative de l'arbre rotatif (42) pendant l'état de coupure d'allumage sur la base de la première et de la seconde valeur de position relative, et le microprocesseur (66) étant en outre configuré pour déterminer une valeur de position absolue courante indiquant une position de rotation absolue courante de l'arbre rotatif (42) sur la base d'une valeur de position absolue précédemment stockée et de l'amplitude de rotation relative de l'arbre rotatif (42)
    caractérisé en ce que
    le microprocesseur (66) est configuré pour être périodiquement activé pendant un état de coupure d'allumage du véhicule (10) par un circuit temporisateur (70), et
    le système (30) comprend en outre un comparateur (90) configuré pour comparer un premier et un second voltage de force contre-électromotrice depuis une première et seconde phase, respectivement,
    du moteur (40) à un voltage de référence, et pour délivrer un signal de commande quand l'un ou l'autre du premier ou du second voltage de force contre-électromotrice est supérieur au voltage de référence,
    dans lequel le microprocesseur (66) est en outre configuré pour être activé en réponse au signal de commande.
  2. Système (30) selon la revendication 1, dans lequel le microprocesseur (66) est en outre configuré pour déterminer un nombre de rotations total de l'arbre rotatif (42) du moteur (40) en divisant la position de rotation absolue courante de l'arbre rotatif (42) par 360°.
  3. Système (30) selon la revendication 2, dans lequel le microprocesseur (66) est en outre configuré pour déterminer un nombre total de rotations du volant (20) du véhicule sur la base du nombre total de rotations de l'arbre rotatif (42) du moteur (40) et d'un rapport de transmission associé avec le système de direction assistée électrique (24).
  4. Système (30) selon la revendication 1, dans lequel le premier et le second capteur de position (60, 62) sont respectivement un premier et un second capteur à effet Hall, qui sont configurés pour mesurer un champ magnétique d'un aimant (44) qui est couplé à l'arbre rotatif (42), en particulier dans lequel le premier et le second capteur à effet Hall sont disposés en écartement à 90° l'un de l'autre autour d'un axe central (99) de l'arbre rotatif (42).
  5. Système (30) selon la revendication 1, dans lequel le microprocesseur (66) est configuré pour exciter le premier et le second capteur de position (60, 62) au premier instant en générant un signal de commande qui induit un commutateur (84) couplé au premier et au second capteur de position (60, 62) à alimenter un voltage fonctionnel au premier et au second capteur de position (60, 62).
  6. Système (30) selon la revendication 1, dans lequel un intervalle temporel entre des activations du microprocesseur (66) est utilisé pour réduire la consommation de puissance du microprocesseur (66).
  7. Procédé pour déterminer une position de rotation absolue d'un arbre rotatif (42) d'un moteur (40) dans un système de direction assistée électrique (24) d'un véhicule (10) pendant un état de coupure d'allumage du véhicule, comprenant les étapes consistant à :
    activer périodiquement un microprocesseur (66) en utilisant un circuit temporisateur (70) ;
    comparer un premier et un premier voltage de force contre-électromotrice depuis la première et la seconde phase, respectivement, du moteur (40) à un voltage référence au moyen d'un comparateur (90) et utiliser le comparateur (90) pour délivrer un signal de commande au microprocesseur (66) afin d'activer le microprocesseur (66) quand l'un ou l'autre du premier ou du second voltage de force contre-électromotrice du moteur (40) est plus grand que le voltage de référence ;
    exciter un premier et un second capteur de position (60, 62) à un premier instant quand le microprocesseur (66) est activé, en utilisant le microprocesseur (66) ;
    générer un premier et un second signal, respectivement, indicatifs d'une position de rotation relative de l'arbre rotatif (42) au premier instant en utilisant le premier et le second capteur de position (60, 62), respectivement ;
    mesurer le premier et le second signal et déterminer une première valeur de position relative indiquant la position de rotation relative de l'arbre rotatif (42) au premier instant en utilisant le microprocesseur (66) ;
    désactiver le microprocesseur (66) après détermination de la première valeur de position relative ;
    exciter le premier et le second capteur de position (60, 62) à un second instant quand le microprocesseur (66) est activé, en utilisant le microprocesseur (66), le second instant étant après le premier instant et après que le microprocesseur a été désactivé ;
    générer un troisième et un quatrième signal, respectivement, indicatifs d'une position de rotation relative de l'arbre rotatif (42) au second instant, en utilisant le premier et le second capteur de position (60, 62), respectivement ;
    mesurer le troisième et le quatrième signal et déterminer une seconde valeur de position relative indiquant la position de rotation relative de l'arbre rotatif (42) au second instant en utilisant le microprocesseur (66) ;
    déterminer une amplitude de la rotation relative de l'arbre rotatif (42) pendant l'état de coupure d'allumage sur la base de la première et de la seconde valeur de position relative en utilisant le microprocesseur (66) ;
    déterminer une valeur de position absolue courante indiquant une position de rotation absolue courante de l'arbre rotatif (42) sur la base d'une valeur de position absolue précédemment stockée et de l'amplitude de rotation relative de l'arbre rotatif (42), en utilisant le microprocesseur (66) ; et
    stocker la valeur de position absolue courante dans le dispositif à mémoire (74) en utilisant le microprocesseur (66).
  8. Procédé selon la revendication 7, comprenant en outre l'étape consistant à déterminer un nombre total de rotations de l'arbre rotatif (42) du moteur en divisant la position de rotation absolue courante de l'arbre rotatif (42) par 360°.
  9. Procédé selon la revendication 8, comprenant en outre l'étape consistant à déterminer un nombre total de rotations du volant de direction (20) du véhicule sur la base du nombre total de rotations de l'arbre rotatif (42) du moteur (40) et d'un rapport de mécanisme associé avec le système de direction assistée électrique (24), en utilisant le microprocesseur (66).
  10. Procédé selon la revendication 7, dans lequel le premier et le second capteur de position (60, 62) sont respectivement un premier et un second capteur à effet Hall, qui sont configurés pour mesurer un champ magnétique d'un aimant (44) qui est couplé à l'arbre rotatif (42), en particulier dans lequel le premier et le second capteur à effet Hall sont disposés à 90° en écartement l'un de l'autre autour d'un axe central (99) de l'arbre rotatif (42).
  11. Procédé selon la revendication 7, comprenant en outre l'étape consistant à exciter le premier et le second capteur de position (60, 62) au premier instant en générant un signal de commande qui induit un commutateur (84) couplé au premier et au second capteur de position (60, 62) à fournir un voltage fonctionnel au premier et au second capteur de position (60, 62), en utilisant le microprocesseur (66).
  12. Procédé selon la revendication 7, dans lequel un intervalle temporel entre des activations du microprocesseur (66) est utilisé pour réduire la consommation de puissance du microprocesseur (66).
EP11004000.3A 2010-05-14 2011-05-13 Système et procédé pour déterminer une position absolue d'un arbre de moteur de système de direction électrique Active EP2386465B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33483510P 2010-05-14 2010-05-14

Publications (3)

Publication Number Publication Date
EP2386465A2 EP2386465A2 (fr) 2011-11-16
EP2386465A3 EP2386465A3 (fr) 2012-10-10
EP2386465B1 true EP2386465B1 (fr) 2014-07-09

Family

ID=44117130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11004000.3A Active EP2386465B1 (fr) 2010-05-14 2011-05-13 Système et procédé pour déterminer une position absolue d'un arbre de moteur de système de direction électrique

Country Status (2)

Country Link
US (1) US8862328B2 (fr)
EP (1) EP2386465B1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390240B2 (en) 2007-08-06 2013-03-05 GM Global Technology Operations LLC Absolute position sensor for field-oriented control of an induction motor
US8179127B2 (en) * 2007-11-06 2012-05-15 GM Global Technology Operations LLC Method and apparatus to monitor position of a rotatable shaft
US9434407B2 (en) 2010-05-14 2016-09-06 Steering Solutions Ip Holding Corporation Wake-up circuit in an electric steering system
US9106175B2 (en) * 2010-11-23 2015-08-11 Steering Solutions Ip Holding Corporation Diagnostic system and method for an electric power steering system
US20130342190A1 (en) * 2011-08-17 2013-12-26 Nicholas William Payne Through Shaft Rotary Position Sensor
EP2853471B1 (fr) * 2012-05-22 2017-12-27 NSK Ltd. Dispositif de détection d'angle de direction de véhicule et dispositif de direction assistée électrique
US9625534B2 (en) * 2012-11-21 2017-04-18 Allegro Microsystems, Llc Systems and methods for detection of magnetic fields
PL2799310T3 (pl) 2013-04-30 2018-06-29 Steering Solutions Ip Holding Corporation Dostarczanie momentu obrotowego wspomagania bez czujnika momentu obrotowego kierownicy
EP2998197B1 (fr) * 2014-08-11 2019-10-09 Steering Solutions IP Holding Corporation Circuit de réveil dans un système de direction électrique
US10144445B2 (en) 2014-09-15 2018-12-04 Steering Solutions Ip Holding Corporation Modified static tire model for providing assist without a torque sensor for zero to low vehicle speeds
US10336363B2 (en) 2015-09-03 2019-07-02 Steering Solutions Ip Holding Corporation Disabling controlled velocity return based on torque gradient and desired velocity error
US10464594B2 (en) * 2015-09-03 2019-11-05 Steering Solutions Ip Holding Corporation Model based driver torque estimation
US10155534B2 (en) 2016-06-14 2018-12-18 Steering Solutions Ip Holding Corporation Driver intent estimation without using torque sensor signal
US10613113B2 (en) * 2016-06-27 2020-04-07 Smc Corporation Position detecting device
JP7076683B2 (ja) * 2016-06-27 2022-05-30 Smc株式会社 位置検出装置
JP6984176B2 (ja) * 2017-05-26 2021-12-17 株式会社ジェイテクト 回転監視回路
KR20190001964A (ko) * 2017-06-28 2019-01-08 현대자동차주식회사 차량용 조향 장치 및 그 제어 방법
DE102019109006B4 (de) * 2018-04-05 2022-12-01 Steering Solutions Ip Holding Corporation Störungsvorkompensation für eine positionsregelung in lenkungssystemen

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241270A (en) * 1990-04-02 1993-08-31 Kim Kwee Ng Electronic compass using hall-effect sensors
US5936524A (en) * 1996-05-02 1999-08-10 Visonic Ltd. Intrusion detector
US6364050B1 (en) * 1999-01-15 2002-04-02 Trw Lucas Varity Electric Steering Ltd. Electrical power assisted steering assemblies
US6314355B1 (en) * 1999-07-12 2001-11-06 Alps Electric Co., Ltd. Steering angle detecting mechanism
US6400142B1 (en) 1999-08-31 2002-06-04 Delphi Technologies, Inc. Steering wheel position sensor
DE60024564T2 (de) * 1999-11-01 2006-08-10 Koninklijke Philips Electronics N.V. Datenschaltung mit einem nicht flüchtigen Speicher und mit einer fehlerkorrigierenden Schaltung
US6498971B2 (en) 2001-03-13 2002-12-24 Delphi Technologies, Inc. Apparatus for determining steer angle of a motor vehicle
US6864616B2 (en) * 2001-10-09 2005-03-08 General Electric Company Method and apparatus for forming an electric motor having stacked laminations
EP1485673A4 (fr) * 2002-02-14 2007-05-09 Bvr Technologies Company Procedes et appareil de detection de la position angulaire d'un arbre en rotation
JP4518818B2 (ja) 2004-03-17 2010-08-04 三菱電機株式会社 トルクセンサ
US20060065471A1 (en) * 2004-09-28 2006-03-30 Delphi Technologies, Inc. Electric power steering controller having integrated column controls
US7609952B2 (en) * 2005-08-01 2009-10-27 Scott Jezierski Apparatus and method for remote viewing system
RU2278797C1 (ru) 2005-08-19 2006-06-27 Открытое акционерное общество "Калужский завод электронных изделий" Электромеханический усилитель руля автомобиля и электродвигатель для усилителя руля
DE102006042104B4 (de) 2005-09-24 2013-08-29 Zf Lenksysteme Gmbh Lenksystem
DE102006014700A1 (de) * 2006-03-17 2007-09-27 Continental Teves Ag & Co. Ohg Lenkwinkelsensorsystem und Verfahren zur Messung eines Lenkwinkels
JP2008030675A (ja) * 2006-07-31 2008-02-14 Nsk Ltd 電動パワーステアリング装置
DE102006039257A1 (de) * 2006-08-22 2008-02-28 Robert Bosch Gmbh Verstellvorrichtung für ein bewegliches Karosserieteil eines Kraftfahrzeugs sowie Verfahren zur Verstellung des beweglichen Karosserieteils
PL1992549T3 (pl) * 2007-05-18 2013-03-29 Gm Global Tech Operations Llc Sposób określania bezwzględnego położenia obrotowego kolumny kierownicy pojazdu
US8412145B2 (en) * 2007-05-31 2013-04-02 Telenav, Inc. Mobile battery management system
US8179127B2 (en) * 2007-11-06 2012-05-15 GM Global Technology Operations LLC Method and apparatus to monitor position of a rotatable shaft
US8224529B2 (en) * 2008-06-20 2012-07-17 Ford Global Technologies Self powered steering wheel angle sensor
US8428822B2 (en) * 2009-03-13 2013-04-23 Honda Motor Co., Ltd. Method of determining a steering angle in a motor vehicle
CN102016513B (zh) * 2009-03-30 2013-04-10 日立金属株式会社 旋转角度检测装置
US7966963B1 (en) * 2009-09-25 2011-06-28 Dalen Products, Inc. Owl with intermittent powered movement

Also Published As

Publication number Publication date
EP2386465A3 (fr) 2012-10-10
US8862328B2 (en) 2014-10-14
US20110282552A1 (en) 2011-11-17
EP2386465A2 (fr) 2011-11-16

Similar Documents

Publication Publication Date Title
EP2386465B1 (fr) Système et procédé pour déterminer une position absolue d'un arbre de moteur de système de direction électrique
EP2309231B1 (fr) Dispositif de détection d'angle de rotation et système à direction assistée électrique
KR101597906B1 (ko) 인코더
JP5389101B2 (ja) モータ制御装置
JP5339094B2 (ja) 電動パワーステアリング装置
US10103657B2 (en) Motor drive control apparatus, electric power steering apparatus, and vehicle
US8224529B2 (en) Self powered steering wheel angle sensor
JP2012211857A (ja) ステアリングシャフト回転角度検出装置
JP2003202224A (ja) 回転角検出装置
JPWO2014148087A1 (ja) パワーステアリング装置およびパワーステアリング装置の制御装置
US10177638B2 (en) Rotor position encoder for an electronically commutated electric machine having a reference encoder
JP3967642B2 (ja) 車両用操舵制御システム
US9434407B2 (en) Wake-up circuit in an electric steering system
JP2015049042A (ja) 回転角検出装置、電動パワーステアリング装置
EP2456067A2 (fr) Système de diagnostic et procédé pour système de direction assistée électrique
JP5339095B2 (ja) 電動パワーステアリング装置
EP2998197B1 (fr) Circuit de réveil dans un système de direction électrique
JP7225567B2 (ja) 角度演算装置
JP2011259635A5 (fr)
CN113840981B (zh) 电动机控制装置、方法和可变阀定时控制装置、方法
JP2014172513A (ja) 電動パワーステアリング装置
US10666172B2 (en) Motor control device and motor control method
JP5626702B2 (ja) 電動パワーステアリング装置
JP2007127597A (ja) 回転角検出装置
CN113353144A (zh) 电动助力转向控制装置和控制方法

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B62D 15/02 20060101AFI20120906BHEP

Ipc: B62D 5/04 20060101ALI20120906BHEP

17P Request for examination filed

Effective date: 20130409

17Q First examination report despatched

Effective date: 20130812

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140123

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC

Owner name: STEERING SOLUTIONS IP HOLDING CORPORATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 676464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011008210

Country of ref document: DE

Effective date: 20140821

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 676464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140709

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140709

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141009

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011008210

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150513

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150513

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110513

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230530

Year of fee payment: 13