EP2382659A1 - Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils - Google Patents

Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils

Info

Publication number
EP2382659A1
EP2382659A1 EP09764842A EP09764842A EP2382659A1 EP 2382659 A1 EP2382659 A1 EP 2382659A1 EP 09764842 A EP09764842 A EP 09764842A EP 09764842 A EP09764842 A EP 09764842A EP 2382659 A1 EP2382659 A1 EP 2382659A1
Authority
EP
European Patent Office
Prior art keywords
sintered
joining partner
joining
molded part
composite component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09764842A
Other languages
English (en)
French (fr)
Inventor
Martin Rittner
Erik Peter
Michael Guenther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2382659A1 publication Critical patent/EP2382659A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the invention relates to an electrical or electronic composite component according to the preamble of claim 1 and to a method for producing an electrical or electronic composite component according to claim 8.
  • NTV Low Temperature Connection Technology
  • the sintering of silver metal nanoparticles offers the option to perform the sintering process with significantly less pressure from a pressure range between about 10OkPa and 5MPa.
  • oxygen and a process temperature of about 280 ° C. are also required for sintering nanoparticles.
  • the known silver metal nanoparticle paste formulation contains an even higher organic content, such as solvents and / or binders, than silver metal flake-based paste formulations.
  • sintering paste is applied directly to the first and / or the second joining partner, whereupon the joining partners are pressed against one another under the influence of temperature.
  • the invention is based on the object, an electronic or electrical
  • Composite component and to propose a manufacturing method for such a composite component in which cracking during joining can be avoided.
  • the composite component should be inexpensive to produce and reliable at thermal cycling.
  • the invention is based on the idea not to connect at least two joining partners as in the prior art directly by means of sintering paste, i. but to fix the joining partners firmly, dispensing with sintering paste with a previously prepared sintered molding with a continuous open porosity.
  • the thickness extension of the sintered shaped part (sintered foil) used in the stacking direction of the joining partners is preferably between about 10 ⁇ m and about 300 ⁇ m or more.
  • Such a sintered molded part has the advantage of already integrated and in the subsequent joining process with the joining partners of stable gas ducts for the ventilation, which, for example, by soldering, welding or gluing forming joint.
  • a porous sintered molded part as an insert or insert has a positive effect on the joining process for joining the joining partners with the sintered molded part, especially when large-area joining partners, such as silicon power semiconductors and circuit carriers or circuit substrate and heat sinks are connected to the sintered molded part. It is also possible to connect punched grid over a sintered molded part.
  • Another advantage of the use of a sintered molded part is that the freedom in the design of the joint can be extended, since the sintered molded part can have a larger area than at least one of the joining partners, preferably as both joining partners, and / or the joining partners much further apart can be, than at the
  • the invention can be used in a variety of electrical and / or electronic
  • power electronic modules which are required, for example, for many forms of energy conversion, in particular mechanically / electrically (generator, rectifier), electrical / electrical (converter, AC / AC, DC / DC) and also electrical / mechanical ( electric drives, change direction).
  • suitably designed power electronic modules for the rectifier be used in a motor vehicle generator, for controlling electric drives, for DC / DC converters, for a pulse change direction, for hybrid / FC / E drives and for photovoltaic inverters, etc.
  • individual Components with higher power losses, in particular on the lead frames of discrete packages, are joined according to the invention, which then, for example, in the case of the absence of lead, can be used as completely lead-free solutions in printed circuit board technology.
  • the implementation of the invention is particularly preferred in constructions with semiconductor laser diodes or in MEMs and sensors, in particular for high-temperature applications. Further application examples are semiconductor light-emitting diodes and high-frequency semiconductors for radar applications.
  • Sintered molded parts made of silver metal or silver metal are advantageous in view of the high electrical and thermal conductivity.
  • silver is suitable for realizing a continuous, gas channel forming, porosity.
  • the first and / or the second joining partner is / are sintered with the sintered part without additional sintering paste.
  • the sintered molded part enters into a binding to the at least one joining partner, i. becomes sinterable.
  • solder at least one joining partner preferably both joining partners
  • solder paste solder powder or a solder preform (in general: brazing material).
  • the solder material passes through the effect of temperature in a liquid phase and connects the sintered molded part with the at least one joining partner.
  • the solder material is lead-free solder paste,
  • lead-containing solder pastes especially standard solder pastes to see. Due to its porous structure, the sintered part used is ideal for entering into a robust solder joint.
  • the "buffering" effect of the sintered molded article significantly reduces the effect of thermo-mechanical stresses which destroy the pure solder material, in particular during later use of the electrical or electronic composite component Joining partners as well as on the then serving as a depot sintered molding, in particular imprinted or dispenst, or alternatively only on both sides of the sintered molding, or alternatively only on one side of the sintered molding and on only one joining partner It is also possible, in a solder paste printing process upstream of the actual soldering process, to apply a solder deposit to the subsequent joints for the placement of SMD components and subsequent reflow soldering n. In this case, only one more flux is needed at these locations.
  • the porous structure of the sintered molding brings with it sufficient opportunities for the degassing of the flux system with it.
  • Another way of connecting at least one joining partner with the sintered molded part is to glue the joining partner with the sintered molded part, in particular by Leitkleben.
  • more preferably silver-containing (filled with silver) adhesives are used, which find an ideal connection surface in the sintered molded part.
  • the surface of the preferably silver-containing or consisting of silver sintered molding can be optimally in a welding process with at least one joining partner, preferably with two joining partners connect.
  • the first joining partner is very particularly preferably an electronic component, preferably a semiconductor component, very particularly preferably a power semiconductor, which can be connected via a sintered molded part to the second joining part, in particular a circuit carrier (printed circuit board).
  • first joining partner designed as a circuit carrier via a sintered shaped part to a second joining partner, preferably a second base plate, preferably a copper base plate.
  • a second joining partner preferably a second base plate, preferably a copper base plate.
  • the copper base plate serves as a heat sink or is with a as
  • Heat sink serving heatsink connected It is also possible to connect the heat sink (first joining partner) to the base plate (second joining partner) via a sintered shaped part. Furthermore, it is possible to connect via a sintered molded part at least one bonding wire or at least one bonding ribbon to a further joining partner, in particular an electronic component, preferably a semiconductor component, in particular a power semiconductor component or a circuit carrier (electrical component), i. to contact.
  • the sintered molded part increases reliability.
  • the first joining partner to be, for example, an electrical component, in particular a stamped grid, which can be connected via a sintered shaped part to a second joining partner, in particular a circuit carrier, more precisely a metal of the circuit carrier.
  • sintered components is not limited to composite components with only two
  • Joining partners limited.
  • a sandwich-like structure comprising three or more joining partners can be produced, wherein the joining partners and the sintered shaped parts are preferably stacked in a stacking direction.
  • one of a Semiconductor formed second joining partner on both sides via a respective sintered molded part with a first or a second joining partner forming circuit carrier are connected so that the power semiconductor is sandwiched between the circuit carriers, and wherein in each case between a circuit carrier and the power semiconductor is a sintered molded part.
  • the sandwich construction does not necessarily have to be realized in one process step, but can also be produced, for example, in two or more stages.
  • the invention also leads to a method for producing an electrical or electronic composite component, preferably a composite component designed as described above.
  • the core of the method is to connect at least two joining partners with an open porous sintered part (sintered film), preferably by direct sintering without sintering paste, by soldering by means of a solder material, in particular lead-free solder material, preferably with solder paste, by gluing, in particular Leitkleben preferably using a silver-containing adhesive or alternatively by welding, in particular friction welding, ultrasonic welding or resistance welding.
  • the advantage of the method according to the invention is that gases escape during the bonding process with the joining partners as a result of the continuously open-porous structure of the sintered molded part and, if required, gases, such as oxygen, can be passed to the joints, so that cracking is avoided.
  • gases such as oxygen
  • 1 is a power electronic composite component (here power electronic module / module),
  • FIG. 2 is a fragmentary view of a sintered molded part for interconnecting two joining partners
  • 3 schematically shows a manufacturing process for producing an electrical or electronic composite component, comprising two joining partners
  • FIG. 4 shows a schematic representation of a production process for producing an electrical or electronic composite component with three joining partners and two sintered shaped parts.
  • the 1 shows an electronic composite component 1. This comprises a first joining partner 2, a second joining partner 3 and a third joining partner 4.
  • the first joining partner 2 is a power semiconductor component, here an IGB transistor
  • the second joining partner 3 is a circuit carrier
  • the third joining partner 4 is a base plate made of copper.
  • the base plate made of copper is in turn fixed to a heat sink 5 (heat sink).
  • a sintered shaped part 6 is arranged with a thickness extension of about 50 microns in a stacking direction S.
  • the first joint partner 2 and the second joint partner 3 are fixed on two opposite sides of the sintered molded part 6 respectively by soldering by means of solder paste (alternatively, for example, solder powder or solder preform).
  • the sintered shaped part 6 is formed of silver sintered material.
  • the second joining partner 3 is in turn connected via a further sintered shaped part 7, which is identical to the sintered shaped part 6, with the third joining partner 4, wherein also the third joining partner 4 and the second joining partner 3 are respectively fixedly connected to the further sintered shaped part 7 by soldering , Alternatively, a mutually different shape of the sintered moldings 6, 7 is possible.
  • the third joining partner 4 is soldered directly to the heat sink 5.
  • Alternatively may be provided between the third joining partner 4 and the heat sink 5 and a sintered molded part, with which the third joining partner 4 and the heat sink 5, for example are determined by direct sintering without sintering paste, by soldering, gluing or welding.
  • a plastic housing 8 is fixed to the third joining partner 4 formed by the base plate, which encloses the stack arrangement comprising the first and the second joining partners 2, 3 as well as the sintered shaped part 6.
  • the so-called stacked arrangement is surrounded by an elastic protective compound 9.
  • connecting wires 10, 11 are guided up to the outside of the housing 8, which are fixed via the sintered shaped part 6 to the second joining partner 3 (circuit carrier), contacting it.
  • Fig. 2 shows the structure of a sintered compact 6, which is made of silver metal flakes. Evident is the continuous open porosity. This forms gas passageways, through which gases can flow away from the joints to the outside or to the joints. The gases preferably emerge laterally, ie transversely to the stacking direction S (see FIG. 1), out of the pores or the gas channels formed by them, as a result of which crack formation, in particular during a possible soldering process, is avoided.
  • FIG. 3 shows a highly schematic representation of the manufacturing process for producing an electrical or electronic composite component 1 shown on the right in the drawing plane.
  • the latter comprises a first in the drawing plane upper joint partner 2 and a second in the plane of the drawing lower joining partner 3, which receive a sintered molded part 6 sandwiched between them.
  • the first joining partner 2 is, for example, a chip and the second joining partner 3 is a circuit carrier.
  • the first joining partner 2 is a circuit carrier and the second joining partner 3 is a base plate, in particular made of copper, and / or a heat sink (heat sink). Further combinations of the first and second joining partners 2, 3 resulting from the arrival claims are alternatively feasible.
  • a solder material 12 in particular solder paste or a solder preform, was first applied as a depot to both surface sides of the sintered shaped part 6.
  • a flux application preferably follows at the joints. After stacking in the stacking direction S, the joining partners 2, 3, the sintered shaped part 6 and the brazing material 12 are fed to a joining process 13, here a brazing process.
  • the gas Exchange for brazing the brazing material 12 may take place over the entire porous volume of the sintered compact 6.
  • the second joining partner 3 may be a circuit carrier, in particular the metal of a circuit carrier, typically copper or a copper alloy, and the first joining partner 2 may be a stamped grid, typically copper or a copper alloy.
  • Adhesive 14, in particular silver-containing adhesive 14, can for example be printed or dispensed onto the second joining partner 3.
  • the sintered molded part 6 can already bring an adhesive depot on the opposite side for the first joining partner 2 (stamped grid) with it.
  • the adhesive 14 is applied in a downstream process, such as dispensing, as an adhesive depot.
  • the first joining partner 2 is placed on the adhesive 14 and exposed to a curing process, preferably under temperature and / or pressure.
  • the adhesive 14 or its constituents can / can outgas through the porous structure of the sintered molding.
  • the joining partners 2, 3 with the sintered molded part 6 by welding.
  • the welding process may, but not necessarily, be carried out by means of an auxiliary material 15.
  • the auxiliary material depots according to FIG. 3 are not necessary.
  • FIG. 4 shows in the plane of the drawing on the right a multipart electrical or electronic composite component 1.
  • This comprises a total of three joining partners 2, 3, 4, wherein between two joining partners 2, 3; 3, 4 a sintered molded part 6, 7 is arranged.
  • the first and third joining partners 2, 4 may be a circuit carrier and the central one, i. inner joining partner 3 act for a power semiconductor.
  • the sandwich structure does not necessarily have to be joined in a common joining process, but also a two-stage sequential process management can be realized, for example, first the first joining partner 2, the sintered shaped part 6, the second joining partner 3 and then subsequently the third joining partner 4, or alternatively next to the third joining partner 4, the further sintered shaped part 7, the second joining partner 3 and then downstream of the first joining partner. 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung betrifft ein elektrisches oder elektronisches Verbundbauteil (1 ), umfassend einen ersten Fügepartner (2) und mindestens einen zweiten Fügepartner (3). Erfindungsgemäß ist vorgesehen, dass zwischen dem ersten und dem zweiten Fügepartner (2, 3) ein offen poröses Sinterformteil (6, 7) aufgenommen ist, welches fest mit dem ersten und dem zweiten Fügepartner (2, 3) verbunden ist.

Description

Beschreibung
Titel
Elektrisches oder elektronisches Verbundbauteil sowie Verfahren zum Herstellen eines elektrischen oder elektronischen Verbundbauteils
Stand der Technik
Die Erfindung betrifft ein elektrisches oder elektronisches Verbundbauteil gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zum Herstellen eines elektrischen oder elektronischen Verbundbauteils gemäß Anspruch 8.
Das Fügen von Leistungshalbleitern, wie JFETs, MOSFETs, IGBTs oder Dioden mit einem Schaltungsträger einer leistungselektronischen Baugruppe und auch das Fügen des Schaltungsträgers auf eine Grundplatte/Wärmesenke wird typi- scherweise in Weichlottechnologie realisiert. Aufgrund neuer EU-Gesetzgebung wird zukünftig die Verwendung von bleihaltigen Weichlotlegierungen (Sn63Pb37 und Sn5Pb95) verboten werden. Bleifreie Weichlotlegierungen auf SnAgCu- Basis können als Ersatzlegierungen nur bedingt eingesetzt werden, da diese in ihrer Zuverlässigkeit, insbesondere unter passiven und aktiven Temperaturwech- sellasten, limitiert sind. Alternative hochschmelzende Weichlote als Ersatzlegierungen sind entweder zu spröde in der Handhabung (Bi97,5Ag2,5) oder zu teuer (Au80Sn20).
Als alternative, hochtemperaturbeständige sowie hochzuverlässige Fügetechno- logie ist das unmittelbare Versintern von Fügepartnern mittels Silberpaste bekannt. Diese Technologie wird als Niedertemperatur-Verbindungstechnologie (NTV) bezeichnet. Dabei wird zwischen zwei unterschiedlichen Ausführungsmöglichkeiten unterschieden, nämlich dem Sintern von Silbermetall-Flakes, wie dies in der EP 2 246 26 B1 beschrieben ist, sowie dem Sintern von Silbermetall- Nanopartikeln, wie dies in der WO 2005/079353 A2 beschrieben ist. Beim Sintern gelangen die (Sinter-)Partikel im Gegensatz zu einem Lötvorgang nicht in die flüssige Phase, d.h. sie schmelzen nicht.
Beim Sintern von Silbermetall-Flakes wird atmosphärischer Sauerstoff zum Verbrennen der Mahlwachse, eine Temperatur von etwa 2400C sowie ein hoher
Prozessdruck von etwa 40MPa benötigt. Das Sintern von Silbermetall- Nanopartikeln bietet die Option mit deutlich weniger Druck aus einem Druckbereich zwischen etwa 10OkPa und 5MPa den Sintervorgang durchzuführen. Wie beim Sintern von Silbermetall-Flakes wird auch beim Sintern von Nanopartikeln Sauerstoff sowie eine Prozesstemperatur von etwa 2800C benötigt. Zudem enthält die bekannte Silbermetall-Nanopartikel-Pastenformulierung einen noch höheren Organikanteil, wie beispielsweise Lösungsmittel und/oder Bindemittel, als Pastenformulierungen auf Silbermetall-Flake-Basis. Bei dem bekannten Verfahren wird Sinterpaste unmittelbar auf den ersten und/oder den zweiten Fügepart- ner aufgebracht, woraufhin die Fügepartner unter Temperatureinwirkung gegeneinander gepresst werden. Bei der Prozessführung mit Sinterpaste besteht die Schwierigkeit, hohe Gasvolumina durch die sinternde Schicht austauschen zu müssen; so muss Sauerstoff an die Fügestellen gelangen und die Lösungsmittel sowie verbrannte/oxidierte Organik muss die Möglichkeit zum Austreten haben. Dies führt insbesondere unter den gewünschten niedrigen Prozessdrücken zu einer verstärkten Rissbildung, insbesondere bei großflächigen Fügungen.
Offenbarung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein elektronisches oder elektrisches
Verbundbauteil sowie ein Herstellungsverfahren für ein derartiges Verbundbauteil vorzuschlagen, bei denen eine Rissbildung beim Fügen vermieden werden kann. Bevorzugt soll das Verbundbauteil kostengünstig herstellbar und zuverlässig bei Temperaturwechselbeanspruchung sein.
Diese Aufgabe wird hinsichtlich des elektrischen oder elektronischen Verbundbauteils mit den Merkmalen des Anspruchs 1 und hinsichtlich des Herstellungsverfahrens mit den Merkmalen des Anspruchs 8 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in der Beschreibung, den Ansprüchen und/oder den Figuren offenbarten Merkmalen. Zur Vermeidung von Wiederholungen sollen vorrichtungsgemäß offenbarte Merkmale als verfahrensgemäß offenbart gelten und beanspruchbar sein. Ebenso sollen verfahrensgemäß offenbarte Merkmale als vorrichtungsgemäß offenbart gelten und beanspruchbar sein.
Der Erfindung liegt der Gedanke zugrunde, mindestens zwei Fügepartner nicht wie im Stand der Technik unmittelbar mittels Sinterpaste miteinander zu verbinden, d.h. aneinander festzulegen, sondern die Fügepartner fest unter Verzicht auf Sinterpaste mit einem zuvor hergestellten Sinterformteil mit einer durchge- hend offenen Porosität zu verbinden. Bevorzugt beträgt dabei die Dickenerstreckung des zum Einsatz kommenden Sinterformteils (Sinterfolie) in Stapelrichtung der Fügepartner zwischen etwa 10μm und etwa 300μm oder mehr. Ein derartiges Sinterformteil besitzt den Vorteil bereits integrierter und im nachfolgenden Fü- geprozess mit den Fügepartnern stabiler Gaskanäle für die Be- und Entlüftung, der sich beispielsweise durch Löten, Schweißen oder Kleben ausbildenden Fügestelle. Der Einsatz eines porösen Sinterformteils als Einsatz- bzw. Einlegeteil wirkt sich positiv auf den Fügeprozess zum Fügen der Fügepartner mit dem Sinterformteil aus, insbesondere wenn großflächige Fügepartner, wie Silizium- Leistungshalbleiter und Schaltungsträger oder Schaltungsträger und Wärmesen- ken mit dem Sinterformteil verbunden werden. Auch ist es möglich Stanzgitter über ein Sinterformteil zu verbinden. Ein weiterer Vorteil des Einsatzes eines Sinterformteils besteht darin, dass die Freiheiten beim Design der Fügestelle erweitert werden, da das Sinterformteil eine größere Fläche als zumindest einer der Fügepartner, vorzugsweise als beide Fügepartner, haben kann und/oder die Fü- gepartner deutlich weiter voneinander beabstandet werden können, als bei der
Prozessführung nach dem Stand der Technik, also bei einem unmittelbaren Versintern der Fügepartner mittels Sinterpaste. Der Vorteil besteht insbesondere in einer erhöhten Temperaturwechselbeständigkeit.
Die Erfindung kann in einer Vielzahl von elektrischen und/oder elektronischen
Anwendungen eingesetzt werden. Besonders bevorzugt ist die Realisierung in leistungselektronischen Modulen, die beispielsweise für viele Formen der Energiewandlung benötigt werden, insbesondere mechanisch/elektrisch (Generator, Gleichrichter), elektrisch/elektrisch (Umrichter, AC/AC, DC/DC) sowie elekt- risch/mechanisch (elektrische Antriebe, Wechselrichtung). Darüber hinaus können entsprechend ausgebildete leistungselektronische Module für die Gleichrich- tung in einem Kraftfahrzeug-Generator eingesetzt werden, zur Steuerung elektrischer Antriebe, für DC/DC-Wandler, für eine Pulswechselrichtung, für hybri- de/FC-/E-Antriebe sowie für Photovoltaik-Wechselrichter, etc. Zusätzlich oder alternativ können auch einzelne Bauelemente mit höheren Verlustleistungen, ins- besondere auf den Stanzgittern diskreter Packages, gemäß der Erfindung gefügt werden, die dann beispielsweise, für den Fall des Verzichts auf Blei, als vollständig bleifreie Lösungen in der Leiterplattentechnologie eingesetzt werden können.
Besonders bevorzugt ist die Realisierung der Erfindung in Aufbauten mit Halblei- ter-Laser-Dioden oder bei MEMs und Sensoren, insbesondere für Hochtemperaturanwendungen. Weitere Anwendungsbeispiele sind Halbleiterleuchtdioden und Hochfrequenzhalbleiter für Radaranwendungen.
Ganz besonders bevorzugt ist eine Ausführungsform des Verbundbauteils, bei der das Sinterformteil aus Silbermetall, insbesondere aus Silbermetall-Flakes, hergestellt ist und/oder Silbermetall, insbesondere Silbermetall-Flakes, umfasst.
Aus Silbermetall hergestellte oder Silbermetall umfassende Sinterformteile sind im Hinblick auf die hohe elektrische und thermische Leitfähigkeit von Vorteil.
Darüber hinaus eignet sich Silber zum Realisieren einer durchgehend offenen, Gaskanäle bildenden, Porosität.
Im Hinblick auf das Fügen der mindestens zwei Fügepartner mit dem Sinterformteil gibt es unterschiedliche Möglichkeiten, wobei es im Rahmen der Erfindung liegt für beide Fügepartner die identische Methode oder unterschiedliche Metho- den zu wählen. Gemäß einer ersten Alternative wird/werden der erste und/oder der zweite Fügepartner mit dem Sinterteil versintert und zwar ohne zusätzliche Sinterpaste. Hierzu muss lediglich ausreichend Druck und Temperatur aufgewendet werden, damit das Sinterformteil zu dem mindestens einen Fügepartner eine Bindung eingeht, d.h. sinterfähig wird.
Alternativ ist es möglich, zumindest einen Fügepartner, vorzugsweise beide Fügepartner, mit dem Sinterformteil, vorzugsweise durch den Einsatz von Lotpaste, Lotpulver oder einem Lotformkörper (allgemein: Lotwerkstoff) zu verlöten. Der Lotwerkstoff geht dabei durch Temperatureinwirkung in eine flüssige Phase über und verbindet das Sinterformteil mit dem mindestens einen Fügepartner. Ganz besonders bevorzugt handelt es sich bei dem Lotwerkstoff um bleifreie Lotpaste, wobei es jedoch auch denkbar ist, bleihaltige Lotpasten, insbesondere Standardlotpasten, einzusehen. Aufgrund seiner porösen Struktur eignet sich das eingesetzte Sinterformteil hervorragend zum Eingehen einer robusten Lötverbindung. Dies ist vor allen Dingen auf die gute Benetzbarkeit des Sinterformteils mit allen gängigen Lotwerkstoffen zurückzuführen, insbesondere wenn das Sinterformteil, zumindest teilweise aus Silbermetall, insbesondere Silbermetall-Flakes hergestellt ist. Die „puffernde" Wirkung des Sinterformteils mildert die auf den reinen Lotwerkstoff zerstörende Wirkung von thermo-mechanischen Spannungen, insbesondere während des späteren Einsatzes des elektrischen oder elektronischen Verbundbauteils, deutlich ab. Bevorzugt wird der zum Einsatz kommende Lotwerkstoff, insbesondere Lotpaste, entweder sowohl auf die Fügepartner als auch auf das dann als Depot dienende Sinterformteil aufgetragen, insbesondere aufgedruckt oder dispenst, oder alternativ nur beidseitig auf das Sinterformteil, oder weiter alternativ nur auf eine Seite des Sinterformteils und auf nur einen Füge- partner. Die beim Lötprozess entstehenden Gase können optimal durch die von der Porosität des Sinterformteils gebildeten Gaskanäle abgeleitet werden. Auch ist es möglich, in einem dem eigentlichen Lötprozess vorgelagerten Lotpasten- druckprozess für das Bestücken von S M D-Komponenten und anschießendem Reflow-Loten ein Lotdepot an den späteren Fügestellen aufzubringen. In diesem Fall wird lediglich noch ein Flussmittelauftrag an diesen Stellen benötigt. Die poröse Struktur des Sinterformteils bringt dabei ausreichende Möglichkeiten für die Entgasung des Flussmittelsystems mit sich.
Eine weitere Möglichkeit der Verbindung zumindest eines Fügepartners mit dem Sinterformteil besteht darin, den Fügepartner mit dem Sinterformteil zu verkleben, insbesondere durch Leitkleben. Dabei werden weiter bevorzugt silberhaltige (mit Silber gefüllte) Kleber eingesetzt, die im Sinterformteil eine ideale Anbin- dungsfläche finden.
Darüber hinaus ist es möglich, zumindest einen der Fügepartner mit dem Sinterformteil durch Schweißen, insbesondere Reibschweißen, Ultraschallschweißen oder Widerstandsschweißen zu verbinden. Die Oberfläche, des vorzugsweise silberhaltigen bzw. aus Silber bestehenden Sinterformteils lässt sich optimal in einem Schweißprozess mit zumindest einem Fügepartner, vorzugsweise mit bei- den Fügepartnern, verbinden. Im Hinblick auf die Ausbildung des ersten und des zweiten Fügepartners gibt es die unterschiedlichsten Möglichkeiten, die zu unterschiedlichsten Verbundbauteilen führen. Ganz besonders bevorzugt handelt es sich bei dem ersten Fügepartner um ein Elektronikbauteil, vorzugsweise ein Halbleiterbauteil, ganz besonders bevorzugt um einen Leistungshalbleiter, welcher über ein Sinterformteil mit dem zweiten Fügeteil, insbesondere einem Schaltungsträger (Leiterplatte) verbindbar ist. Ebenso ist es möglich, einen ersten, als Schaltungsträger ausgebildeten Fügepartner über ein Sinterformteil mit einem zweiten, vorzugsweise als Grundplatte, insbesondere aus Kupfer, ausgebildeten zweiten Fügepartner zu verbinden. Bevorzugt dient die Kupfergrundplatte als Wärmesenke oder ist mit einem als
Wärmesenke dienenden Kühlkörper verbunden. Auch ist es möglich, den Kühlkörper (erster Fügepartner) mit der Grundplatte (zweiter Fügepartner) über ein Sinterformteil miteinander zu verbinden. Ferner ist es möglich, über ein Sinterformteil mindestens ein Bonddraht oder mindestens ein Bondbändchen mit ei- nem weiteren Fügepartner, insbesondere einem Elektronikbauteil, vorzugsweise einem Halbleiterbauteil, insbesondere einem Leistungshalbleiterbauteil oder einem Schaltungsträger (Elektrikbauteil) zu verbinden, d.h. zu kontaktieren. Hierbei wirkt das Sinterformteil zuverlässigkeitserhöhend. Ebenso ist es möglich, dass es sich bei dem ersten Fügepartner beispielsweise um ein elektrisches Bauteil, ins- besondere ein Stanzgitter (Leitungsgitter), handelt, welches über ein Sinterformteil mit einem zweiten Fügepartner, insbesondere einem Schaltungsträger, genauer einem Metall des Schaltungsträgers verbindbar ist. Bisher wurden Stanzgitter unmittelbar auf eine Leiterplatte (Schaltungsträger) gelötet, wodurch häufig eingeschlossene Poren/Hohlräume (Lunker) resultierten. Ferner schwankt der Fügespalt bei bekannten Prozessführungen stark, so dass eine Zuverlässigkeit unter Temperatur- und Temperaturwechselbelastung nicht in jedem Fall gegeben ist bzw. garantiert werden kann. Weitere, sich aus den Ansprüchen ergebende Kombinationen von ersten und zweiten Fügepartner sind realisierbar.
Der Einsatz von Sinterformteilen ist nicht auf Verbundbauteile mit lediglich zwei
Fügepartner beschränkt. So ist es beispielsweise denkbar, ein Verbundbauteil mit zwei oder noch mehr Sinterformteilen herzustellen, wobei jeweils über ein Sinterformteil mindestes zwei Fügepartner aneinander festgelegt sind. Auf diese Weise kann ein sandwichartiger Aufbau, umfassend drei oder mehr Fügepartner hergestellt werden, wobei die Fügepartner und die Sinterformteile bevorzugt in einer Stapelrichtung gestapelt sind. So kann beispielsweise ein von einem Leis- tungshalbleiter gebildeter zweiter Fügepartner auf beiden Seiten über jeweils ein Sinterformteil mit einem einen ersten bzw. einen zweiten Fügepartner bildenden Schaltungsträger verbunden werden, so dass der Leistungshalbleiter sandwichartig zwischen den Schaltungsträgern aufgenommen ist, und wobei sich jeweils zwischen einem Schaltungsträger und dem Leistungshalbleiter ein Sinterformteil befindet. Der Sandwichaufbau muss nicht zwingend in einem Prozessschritt realisiert werden, sondern kann beispielsweise auch zwei- oder mehrstufig hergestellt werden.
Die Erfindung führt auch auf ein Verfahren zum Herstellen eines elektrischen oder elektronischen Verbundbauteils, vorzugsweise eines wie zuvor beschrieben ausgebildeten Verbundbauteils. Kern des Verfahrens ist es, mindestens zwei Fügepartner mit einem offen porösen Sinterteil (Sinterfolie) zu verbinden, vorzugsweise durch unmittelbares Sintern unter Verzicht auf Sinterpaste, durch Verlöten mittels eines Lotwerkstoffs, insbesondere mit bleifreiem Lotwerkstoff, bevorzugt mit Lotpaste, mittels Kleben, insbesondere Leitkleben, vorzugsweise unter Einsatz eines silberhaltigen Klebers oder alternativ durch Verschweißen, insbesondere Reibschweißen, Ultraschallschweißen oder Widerstandsschweißen. Der Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass durch die durch- gängig offen-poröse Struktur des Sinterformteils Gase beim Verbindungsprozess mit den Fügepartnern entweichen und bei Bedarf Gase, wie Sauerstoff an die Fügestellen geführt werden kann, so dass eine Rissbildung vermieden wird. Bevorzugt erfolgt die Gasabfuhr und die Gaszufuhr aus seitlicher Richtung, also quer zur Stapelrichtung der Fügepartner.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.
Diese zeigen in:
Fig. 1 ein leistungselektronisches Verbundbauteil (hier leistungselektronische Baugruppe/Modul),
Fig. 2 eine ausschnittsweise Darstellung eines Sinterformteils zum miteinander verbinden zweier Fügepartner, Fig. 3 schematisch einen Herstellungsprozess zum Herstellen eines elektrischen oder elektronischen Verbundbauteils, umfassend zwei Fügepartner, und
Fig. 4 in einer schematischen Darstellung einen Herstellungsprozess zum Herstellen eines elektrischen oder elektronischen Verbundbauteils mit drei Fügepartnern und zwei Sinterformteilen.
In den Figuren sind gleiche Elemente und Elemente mit der gleichen Funktion mit den gleichen Bezugszeichen gekennzeichnet.
Fig. 1 zeigt ein elektronisches Verbundbauteil 1. Dieses umfasst einen ersten Fügepartner 2, einen zweiten Fügepartner 3 sowie einen dritten Fügepartner 4. In dem gezeigten Ausführungsbeispiel handelt es sich bei dem ersten Fügepartner 2 um ein Leistungshalbleiter-Bauelement, hier einen IGB-T ransistor. Bei dem zweiten Fügepartner 3 handelt es sich um einen Schaltungsträger und bei dem dritten Fügepartner 4 um eine Grundplatte aus Kupfer. Die Grundplatte aus Kupfer ist wiederum an einem Kühlkörper 5 (Wärmesenke) festgelegt.
Zwischen dem ersten Fügepartner 2 und dem zweiten Fügepartner 3 ist ein Sinterformteil 6 mit einer Dickenerstreckung von etwa 50μm in eine Stapelrichtung S angeordnet. Der erste Fügepartner 2 und der zweite Fügepartner 3 sind an zwei voneinander abgewandten Seiten des Sinterformteils 6 jeweils durch Verlöten mittels Lotpaste (alternativ beispielsweise Lotpulver oder Lotformteil) festgelegt.
Das Sinterformteil 6 ist aus Silbersintermaterial gebildet. Der zweite Fügepartner 3 ist wiederum über ein weiteres Sinterformteil 7, welches identisch ausgebildet ist wie das Sinterformteil 6, mit dem dritten Fügepartner 4 verbunden, wobei auch der dritte Fügepartner 4 sowie der zweite Fügepartner 3 jeweils mit dem weiteren Sinterformteil 7 durch Löten fest verbunden sind. Alternativ ist auch eine voneinander unterschiedliche Ausformung der Sinterformteile 6, 7 möglich.
In dem gezeigten Ausführungsbeispiel ist der dritte Fügepartner 4 mit dem Kühlkörper 5 unmittelbar verlötet. Alternativ (nicht dargestellt) kann zwischen dem dritten Fügepartner 4 und dem Kühlkörper 5 auch ein Sinterformteil vorgesehen werden, mit dem der dritte Fügepartner 4 und der Kühlkörper 5, beispielsweise durch unmittelbares Sintern ohne Sinterpaste, durch Verlöten, Verkleben oder Verschweißen festgelegt sind.
Wie sich weiter aus Fig. 1 ergibt, ist an dem von der Grundplatte gebildeten drit- ten Fügepartner 4 ein Kunststoffgehäuse 8 festgelegt, welches die Stapelanordnung, umfassend den ersten und den zweiten Fügepartner 2, 3 sowie das Sinterformteil 6 umschließt. Die sogenannte Stapelanordnung ist umgeben von einer elastischen Schutzmasse 9. Durch diese hindurch sind bis an die Außenseite des Gehäuses 8 Anschlussdrähte 10, 1 1 geführt, die über das Sinterformteil 6 an den zweiten Fügepartner 3 (Schaltungsträger), diesen kontaktierend, festgelegt sind.
Fig. 2 zeigt den Aufbau eines Sinterformteils 6, welches aus Silbermetall-Flakes hergestellt ist. Zu erkennen ist die durchgehend offene Porosität. Diese bildet Gasdurchlasskanäle, durch die Gase von den Fügestellen weg nach außen bzw. zu den Fügestellen hin strömen können. Bevorzugt treten die Gase seitlich, also quer zur Stapelrichtung S (vgl. Fig. 1 ) aus den Poren bzw. den von diesen gebildeten Gaskanälen aus, wodurch eine Rissbildung, insbesondere bei einem etwaigen Lötprozess, vermieden wird.
Fig. 3 zeigt stark schematisiert den Herstellungsprozess zum Herstellen eines in der Zeichnungsebene rechts dargestellten elektrischen oder elektronischen Verbundbauteils 1 . Letzteres umfasst einen ersten in der Zeichnungsebene oberen Fügepartner 2 und einen zweiten in der Zeichnungsebene unteren Fügepartner 3, die ein Sinterformteil 6 sandwichartig zwischen sich aufnehmen. Bei dem ers- ten Fügepartner 2 handelt es sich beispielsweise um einen Chip und bei dem zweiten Fügepartner 3 um einen Schaltungsträger. Alternativ ist es denkbar, dass es sich bei dem ersten Fügepartner 2 um einen Schaltungsträger und bei dem zweiten Fügepartner 3 um eine Grundplatte, insbesondere aus Kupfer, und/oder einen Kühlkörper (Wärmesenke) handelt. Weitere, sich aus den An- Sprüchen ergebende Kombinationen vom ersten und zweiten Fügepartner 2, 3 sind alternativ realisierbar. In dem gezeigten Ausführungsbeispiel wurde auf beide Flächenseiten des Sinterformteils 6 zunächst ein Lotwerkstoff 12, insbesondere Lotpaste oder ein Lotformteil, als Depot aufgebracht. Vor dem Löten folgt bevorzugt ein Flussmittelauftrag an den Fügestellen. Nach dem Stapeln in Stapel- richtung S werden die Fügepartner 2, 3, das Sinterformteil 6 sowie der Lotwerkstoff 12 einem Fügeprozess 13, hier einem Lötprozess zugeführt. Der Gasaus- tausch für das Löten des Lotwerkstoffs 12 kann über das gesamte poröse Volumen des Sinterformteils 6 stattfinden.
Anhand von Fig. 3 ist auch ein alternativer Fügeprozess erläuterbar. So kann es sich beispielsweise bei dem zweiten Fügepartner 3 um einen Schaltungsträger, insbesondere das Metall eines Schaltungsträgers, typischerweise Kupfer oder einer Kupferlegierung, handeln und bei dem ersten Fügepartner 2 um ein Stanzgitter, typischerweise aus Kupfer oder einer Kupferlegierung. Klebstoff 14, insbesondere silberhaltiger Klebstoff 14, kann beispielsweise auf den zweiten Füge- partner 3 gedruckt oder dispenst werden. Bei Bedarf kann das Sinterformteil 6 bereits ein Klebstoffdepot auf der Gegenseite für den ersten Fügepartner 2 (Stanzgitter) mit sich bringen. Alternativ wird der Klebstoff 14 in einem nachgelagerten Prozess, beispielsweise Dispensen, als Klebstoffdepot aufgebracht. Anschließend wird der erste Fügepartner 2 auf den Klebstoff 14 aufgesetzt und ei- nem Aushärtungsprozess, vorzugsweise unter Temperatur und/oder Druckeinwirkung ausgesetzt. Der Klebstoff 14 bzw. dessen Bestandteile kann/können durch die poröse Struktur des Sinterformteils ausgasen.
Weiterhin ist es alternativ möglich zumindest einen der Fügepartner 2, 3 mit dem Sinterformteil 6 durch Verschweißen zu verbinden. Der Schweißprozess kann, muss aber nicht zwingend, mittels eines Hilfswerkstoffes 15 durchgeführt werden. Für den Fall des Verzichts auf einen Hilfswerkstoff sind die Hilfswerkstoff- depots gemäß Fig. 3 nicht notwendig.
Fig. 4 zeigt in der Zeichnungsebene rechts ein vielteiliges elektrisches oder elektronisches Verbundbauteil 1 . Dieses umfasst insgesamt drei Fügepartner 2, 3, 4, wobei zwischen jeweils zwei Fügepartnern 2, 3; 3, 4 ein Sinterformteil 6, 7 angeordnet ist. Beispielsweise kann es sich bei dem ersten und dem dritten Fügepartner 2, 4 um einen Schaltungsträger und bei dem zentrischen, d.h. inneren Füge- partner 3 um einen Leistungshalbleiter handeln. Der Sandwichaufbau muss nicht zwingend in einem gemeinsamen Fügeprozess gefügt werden, sondern es kann auch eine zweistufige sequentielle Prozessführung realisiert werden, beispielsweise zunächst der erste Fügepartner 2, das Sinterformteil 6, der zweite Fügepartner 3 und dann anschließend der dritte Fügepartner 4, oder alternativ zu- nächst der dritte Fügepartner 4, das weitere Sinterformteil 7, der zweite Fügepartner 3 und dann nachgelagert der erste Fügepartner 2.

Claims

Ansprüche
1 . Elektrisches oder elektronisches Verbundbauteil (1 ), umfassend einen ersten Fügepartner (2) und mindestens einen zweiten Fügepartner (3),
dadurch gekennzeichnet,
dass zwischen dem ersten und dem zweiten Fügepartner (2, 3) ein offen poröses Sinterformteil (6, 7) aufgenommen ist, welches fest mit dem ersten und dem zweiten Fügepartner (2, 3) verbunden ist.
2. Verbundbauteil nach Anspruch 1 , dadurch gekennzeichnet, dass das Sinterformteil (6, 7) aus Silbermetall, insbesondere Silbermetall-Flakes, hergestellt ist und/oder Silbermetall, insbesondere Silbermetall-Flakes, umfasst.
3. Verbundbauteil nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der erste und/oder der zweite Fügepartner (2, 3) mit dem Sinterformteil (6) unmittelbar, ohne zusätzliche Sinterpaste versintert oder, insbesondere mittels Lotpaste, verlötet, oder verschweißt, insbesondere ultraschallverschweißt, oder geklebt ist.
4. Verbundbauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Fügepartner (2) ein Elektronikbauteil, vorzugsweise ein Halbleiterbauteil, insbesondere ein Leistungshalbleiterbauteil, oder ein Schaltungsträger, insbesondere eine Metallisierung des Schaltungsträgers, oder ein Stanzgitter, oder ein Bonddraht, oder ein Bondbändchen oder eine Grundplatte ist.
5. Verbundbauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Fügepartner (3) ein Elektronikbauteil, vorzugsweise ein Halbleiterbauteil, insbesondere ein Leistungshalbleiterbauteil, oder ein Schaltungsträger, insbesondere eine Metallisierung des Schaltungsträgers, oder eine Grundplatte, vorzugsweise aus Kupfer, oder ein Kühlkörper (5) ist.
6. Verbundbauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem ersten Fügepartner (2) und einem dritten, oder vierten Fügepartner (4) ein weiteres Sinterformteil (7, 6), und/oder zwischen dem zweiten Fügepartner (3) und einem dritten, oder einem vierten Fügepartner ein weiteres Sinterformteil (7) aufgenommen ist, welches bevorzugt mit den benachbarten Fügepartnern (2, 3, 4) unmittelbar ohne Sinterpaste versintert, verlötet, verschweißt o- der verklebt ist.
7. Verbundbauteil nach Anspruch 6, dadurch gekennzeichnet, dass der dritte und/oder der vierte Fügepartner (4) ein Elektronikbauteil, vorzugs- weise ein Halbleiterbauteil, insbesondere ein Leistungshalbleiterbauteil, oder ein
Schaltungsträger, insbesondere eine Metallisierung des Schaltungsträgers, oder eine Grundplatte, vorzugsweise aus Kupfer, oder ein Kühlkörper (5) sind/ist.
8. Verfahren zum Herstellen eines elektrischen oder elektronischen Verbundbauteils (1 ), vorzugsweise nach einem der vorhergehenden Ansprüche, bei dem ein erster und ein zweiter Fügepartner (2, 3) fest mit einem offen porösen Sinterformteil (6) verbunden werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der erste und der zweite Fügepartner (2, 3) auf zwei voneinander abgewandten Seiten des Sinterformteils (6, 7) festgelegt werden.
10. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass der erste und/oder der zweite Fügepartner (2, 3) unmittelbar ohne Sinterpaste mit dem Sinterformteil (6, 7), versintert werden/wird, vorzugsweise in einem gemeinsamen Sinterschritt unter Temperatur und/oder Druckeinwirkung.
1 1. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der erste und/oder der zweite Fügepartner (2, 3), insbesondere mittels Lotpaste mit dem Sinterformteil (6, 7), verlötet werden/wird.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass die Lotpaste, vorzugsweise zusätzlich ein Flussmittel, vor dem Fügen auf den ersten Fügepartner (2) und/oder den zweiten Fügepartner (3) und/oder das Sinterformteil (6, 7) aufgetragen, vorzugsweise gedruckt oder dispenst, wird.
13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass der erste und/oder der zweite Fügepartner (2, 3) mit dem Sinterformteil (6), verschweißt werden/wird, insbesondere mit oder ohne Hilfswerkstoff (15).
14. Verfahren nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass der erste und/oder der zweite Fügepartner (2, 3) mit dem Sinterformteil (6), verschweißt, vorzugsweise ultraschallverschweißt, werden/wird, insbesondere mit oder ohne Hilfswerkstoff (15).
15. Verfahren nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass zwischen dem ersten Fügepartner (2) und einem dritten, oder vierten Füge- partner (4) ein weiteres Sinterformteil (7, 6), und/oder zwischen dem zweiten Fügepartner (3) und einem dritten, oder einem vierten Fügepartner ein weiteres Sinterformteil (7, 6) angeordnet wird, welches bevorzugt mit den benachbarten Fügepartnern (2, 3, 4) unmittelbar versintert, verlötet, verschweißt oder verklebt wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass das Festlegen des weiteren Sinterformteils (7, 6) an dem ersten oder dem zweiten Fügepartner (2, 3) sowie das Festlegen des Sinterformteils (6, 7) an dem ersten und dem zweiten Fügepartner (2, 3) in einem gemeinsamen Prozessschritt oder in separaten Prozessschritten durchgeführt wird.
17. Verfahren nach einem der Ansprüche 8 bis 16, dadurch gekennzeichnet, dass ein Sinterteil in eine Vielzahl von Sinterformteilen (6, 7) vereinzelt wird.
EP09764842A 2008-12-23 2009-12-07 Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils Withdrawn EP2382659A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008055134A DE102008055134A1 (de) 2008-12-23 2008-12-23 Elektrisches oder elektronisches Verbundbauteil sowie Verfahren zum Herstellen eines elektrischen oder elektronischen Verbundbauteils
PCT/EP2009/066518 WO2010072555A1 (de) 2008-12-23 2009-12-07 Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils

Publications (1)

Publication Number Publication Date
EP2382659A1 true EP2382659A1 (de) 2011-11-02

Family

ID=41467197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09764842A Withdrawn EP2382659A1 (de) 2008-12-23 2009-12-07 Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils

Country Status (7)

Country Link
US (1) US20110304985A1 (de)
EP (1) EP2382659A1 (de)
JP (1) JP5602763B2 (de)
CN (1) CN102265393A (de)
AU (1) AU2009331707A1 (de)
DE (1) DE102008055134A1 (de)
WO (1) WO2010072555A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083926A1 (de) * 2011-09-30 2013-04-04 Robert Bosch Gmbh Schichtverbund aus einer Trägerfolie und einer Schichtanordnung umfassend eine sinterbare Schicht aus mindestens einem Metallpulver und eine Lotschicht
DE102011083931A1 (de) * 2011-09-30 2013-04-04 Robert Bosch Gmbh Schichtverbund aus einem elektronischen Substrat und einer Schichtanordnung umfassend ein Reaktionslot
CN204991692U (zh) * 2014-11-26 2016-01-20 意法半导体股份有限公司 具有引线键合和烧结区域的电子器件
JP6287789B2 (ja) * 2014-12-03 2018-03-07 三菱電機株式会社 パワーモジュール及びその製造方法
DE102015210061A1 (de) * 2015-06-01 2016-12-01 Siemens Aktiengesellschaft Verfahren zur elektrischen Kontaktierung eines Bauteils und Bauteilmodul
DE102015113421B4 (de) * 2015-08-14 2019-02-21 Danfoss Silicon Power Gmbh Verfahren zum Herstellen von Halbleiterchips
US9655280B1 (en) * 2015-12-31 2017-05-16 Lockheed Martin Corporation Multi-directional force generating line-replaceable unit chassis by means of a linear spring
CN110447094B (zh) 2017-03-30 2023-12-12 三菱电机株式会社 半导体装置及其制造方法、及电力变换装置
DE102017206930A1 (de) * 2017-04-25 2018-10-25 Siemens Aktiengesellschaft Lotformteil zum Diffusionslöten, Verfahren zu dessen Herstellung und Verfahren zu dessen Montage
DE102017217537B4 (de) 2017-10-02 2021-10-21 Danfoss Silicon Power Gmbh Leistungsmodul mit integrierter Kühleinrichtung
US20220415747A1 (en) * 2019-12-26 2022-12-29 Mitsubishi Electric Corporation Power module and power conversion device
DE102020102876B4 (de) 2020-02-05 2023-08-10 Infineon Technologies Ag Elektronisches Bauelement, Herstellungsverfahren dafür und Verfahren zur Herstellung eines elektronischen Moduls dieses aufweisend mittels eines Sinterverfahrens mit einer Opferschicht auf der Rückseitenmetallisierung eines Halbleiterdies
EP4283662A1 (de) * 2022-05-23 2023-11-29 Hitachi Energy Switzerland AG Verfahren zum befestigen eines anschlusses an einer metallsubstratstruktur für ein halbleiterleistungsmodul und halbleiterleistungsmodul

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275433A1 (de) * 1986-12-22 1988-07-27 Siemens Aktiengesellschaft Verfahren zur Befestigung von elektronischen Bauelementen auf einem Substrat, Folie zur Durchführung des Verfahrens und Verfahren zur Herstellung der Folie
JP3120826B2 (ja) * 1995-08-09 2000-12-25 三菱マテリアル株式会社 パワーモジュール用基板の端子構造

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH387809A (de) * 1961-11-17 1965-02-15 Bbc Brown Boveri & Cie Lötverbindung an einem Halbleiterelement
DE3575829D1 (de) 1985-10-30 1990-03-08 Ibm Synchronisiertes system fuer mehrere signalprozessoren.
IN168174B (de) * 1986-04-22 1991-02-16 Siemens Ag
CA1303248C (en) * 1987-06-30 1992-06-09 Hitoyuki Sakanoue Semiconductor heat dissipating apparatus
DE4040753A1 (de) * 1990-12-19 1992-06-25 Siemens Ag Leistungshalbleiterbauelement
US5561321A (en) * 1992-07-03 1996-10-01 Noritake Co., Ltd. Ceramic-metal composite structure and process of producing same
US5527627A (en) * 1993-03-29 1996-06-18 Delco Electronics Corp. Ink composition for an ultra-thick thick film for thermal management of a hybrid circuit
DE4315272A1 (de) * 1993-05-07 1994-11-10 Siemens Ag Leistungshalbleiterbauelement mit Pufferschicht
DE59611448D1 (de) * 1995-09-11 2007-12-06 Infineon Technologies Ag Verfahren zur Befestigung elektronischer Bauelemente auf einem Substrat durch Drucksintern
US6717819B1 (en) * 1999-06-01 2004-04-06 Amerasia International Technology, Inc. Solderable flexible adhesive interposer as for an electronic package, and method for making same
JP2000349100A (ja) * 1999-06-04 2000-12-15 Shibafu Engineering Kk 接合材とその製造方法及び半導体装置
DE10009678C1 (de) * 2000-02-29 2001-07-19 Siemens Ag Wärmeleitende Klebstoffverbindung und Verfahren zum Herstellen einer wärmeleitenden Klebstoffverbindung
JP2004298962A (ja) * 2003-03-17 2004-10-28 Mitsubishi Materials Corp はんだ接合材及びこれを用いたパワーモジュール基板
KR20070033329A (ko) 2004-02-18 2007-03-26 버지니아 테크 인터렉추얼 프라퍼티스, 인크. 인터커넥트를 위한 나노 크기의 금속 페이스트 및 이의사용 방법
WO2005098942A1 (ja) * 2004-04-05 2005-10-20 Mitsubishi Materials Corporation Ai/ain接合体、パワーモジュール用基板及びパワーモジュール並びにai/ain接合体の製造方法
DE102004056879B4 (de) * 2004-10-27 2008-12-04 Curamik Electronics Gmbh Verfahren zum Herstellen eines Metall-Keramik-Substrates
JP4770533B2 (ja) * 2005-05-16 2011-09-14 富士電機株式会社 半導体装置の製造方法および半導体装置
WO2007037306A1 (ja) * 2005-09-28 2007-04-05 Ngk Insulators, Ltd. ヒートシンクモジュール及びその製造方法
DE102005047566C5 (de) * 2005-10-05 2011-06-09 Semikron Elektronik Gmbh & Co. Kg Anordnung mit einem Leistungshalbleiterbauelement und mit einem Gehäuse sowie Herstellungsverfahren hierzu
DE102006009159A1 (de) * 2006-02-21 2007-08-23 Curamik Electronics Gmbh Verfahren zum Herstellen eines Verbundsubstrates sowie Verbundsubstrat
JP4826426B2 (ja) * 2006-10-20 2011-11-30 株式会社デンソー 半導体装置
JP2008153470A (ja) * 2006-12-18 2008-07-03 Renesas Technology Corp 半導体装置および半導体装置の製造方法
DE102007022337A1 (de) * 2007-05-12 2008-11-20 Semikron Elektronik Gmbh & Co. Kg Gesintertes Leistungshalbleitersubstrat sowie Herstellungsverfahren hierzu
JP2009094385A (ja) * 2007-10-11 2009-04-30 Mitsubishi Electric Corp 半導体装置およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275433A1 (de) * 1986-12-22 1988-07-27 Siemens Aktiengesellschaft Verfahren zur Befestigung von elektronischen Bauelementen auf einem Substrat, Folie zur Durchführung des Verfahrens und Verfahren zur Herstellung der Folie
JP3120826B2 (ja) * 1995-08-09 2000-12-25 三菱マテリアル株式会社 パワーモジュール用基板の端子構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010072555A1 *

Also Published As

Publication number Publication date
DE102008055134A1 (de) 2010-07-01
JP2012513682A (ja) 2012-06-14
US20110304985A1 (en) 2011-12-15
AU2009331707A1 (en) 2010-07-01
CN102265393A (zh) 2011-11-30
JP5602763B2 (ja) 2014-10-08
WO2010072555A1 (de) 2010-07-01

Similar Documents

Publication Publication Date Title
EP2382659A1 (de) Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils
DE102010044709B4 (de) Leistungshalbleitermodul mit Metallsinterverbindungen sowie Herstellungsverfahren
DE102009029577B3 (de) Verfahren zur Herstellung eines hochtemperaturfesten Leistungshalbleitermoduls
EP2387477B1 (de) Verfahren zum herstellen einer sinterverbindung
DE102009000587B4 (de) Verfahren zur Herstellung eines Moduls mit einer gesinterten Verbindung zwischen einem Halbleiterchip und einer Kupferoberfläche
EP2743973A2 (de) Verfahren zur Kontaktierung eines Halbleiterelements mittels Schweißens eines Kontaktelements an eine Sinterschicht auf dem Halbleiterelement und Halbleiterbauelement mit erhöhter Stabilität gegenüber thermomechanischen Einflüssen
EP2761056B1 (de) Schichtverbund aus einer trägerfolie und einer schichtanordnung umfassend eine sinterbare schicht aus mindestens einem metallpulver und eine lotschicht
DE10238320B4 (de) Keramische Leiterplatte und Verfahren zu ihrer Herstellung
DE102014221636B4 (de) Halbleitermodul und Verfahren zum Herstellen desselben
EP1989741B1 (de) Verfahren zum herstellen von peltier-modulen
EP2382660A1 (de) Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils
DE102005047106A1 (de) Leistungshalbleitermodul
EP2721646A1 (de) Verfahren zum elektrischen verbinden mehrerer solarzellen und photovoltaikmodul
DE102016218968A1 (de) Leistungsmodul und Verfahren zur Herstellung eines Leistungsmoduls
DE102009026480A1 (de) Modul mit einer gesinterten Fügestelle
DE102009018541A1 (de) Kontaktierungsmittel und Verfahren zur Kontaktierung elektrischer Bauteile
DE102017004626A1 (de) Bleifreie Lötfolie zum Diffusionslöten
DE102015118664A1 (de) Verfahren zur herstellung eines leistungshalbleitermoduls
DE102007036045A1 (de) Elektronischer Baustein mit zumindest einem Bauelement, insbesondere einem Halbleiterbauelement, und Verfahren zu dessen Herstellung
DE102011083899A1 (de) Schichtverbund zum Verbinden von elektronischen Bauteilen umfassend eine Ausgleichsschicht, Anbindungsschichten und Verbindungsschichten
DE102018115509A1 (de) Wärmedissipationsvorrichtung, Halbleiterpackagingsystem und Verfahren zum Herstellen derselben
DE102006011743A1 (de) Verfahren zum Herstellen von Peltier-Modulen sowie Peltier-Modul
EP2382654A1 (de) Hochtemperaturbeständige lötmittelfreie bauelementstruktur und verfahren zum elektrischen kontaktieren
DE102014203306A1 (de) Herstellen eines Elektronikmoduls
DE102005046710B4 (de) Verfahren zur Herstellung einer Bauelementanordnung mit einem Träger und einem darauf montierten Halbleiterchip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140808

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141219