EP2370106A2 - Wirkstoff-peptid-konstrukt zur extrazellulären anreicherung - Google Patents

Wirkstoff-peptid-konstrukt zur extrazellulären anreicherung

Info

Publication number
EP2370106A2
EP2370106A2 EP09774835A EP09774835A EP2370106A2 EP 2370106 A2 EP2370106 A2 EP 2370106A2 EP 09774835 A EP09774835 A EP 09774835A EP 09774835 A EP09774835 A EP 09774835A EP 2370106 A2 EP2370106 A2 EP 2370106A2
Authority
EP
European Patent Office
Prior art keywords
active ingredient
peptide
construct according
peptide construct
construct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09774835A
Other languages
English (en)
French (fr)
Inventor
Gunter Fischer
Miroslav Malesevic
Frank Erdmann
Jan KÜHLING
Michael Bukrinsky
Stephanie Constant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP2370106A2 publication Critical patent/EP2370106A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • A61K47/6455Polycationic oligopeptides, polypeptides or polyamino acids, e.g. for complexing nucleic acids

Definitions

  • the present invention relates to an active-peptide construct for extracellular enrichment, to a method for accumulating active substances in an extracellular space of a multicellular object, to the use of the active ingredient-peptide construct according to the invention for the production of a medicament and to a pharmaceutical composition comprising the active ingredient according to the invention.
  • peptide construct for extracellular enrichment, to a method for accumulating active substances in an extracellular space of a multicellular object, to the use of the active ingredient-peptide construct according to the invention for the production of a medicament and to a pharmaceutical composition comprising the active ingredient according to the invention.
  • active substances which are usually active pharmaceutical ingredients, usually exert their effect both inside and outside of biological cells, with the primary problem being that active substances which have their effect only within their own limits In addition, the problem arises that the same active substance can have a different effect inside and outside the cell, even before they pass through the cell membrane If the intracellular effect is to be achieved, since the transport to the cell usually involves the crossing of an extracellular space, the extracellular (secondary) effect must necessarily also be accepted.
  • Active ingredients can act extracellularly on molecules or structures.
  • biological molecules of the extracellular space can be, for example: enzymes, inhibitors, activators or receptors.
  • structures is meant, for example, the extracellular matrix formed from all the macromolecules located outside the plasma membrane of cells in tissues and organs.
  • the object of the present invention was therefore to find a way in which active substances can be administered to a multicellular object without the administered active ingredients being able to penetrate into the cell interior of the multicellular object.
  • the active ingredient-peptide construct according to the invention not only has the advantage that active ingredients can be used in a targeted manner in an extracellular space, it also offers the possibility of further disadvantages, which are associated with the use of certain active ingredients targeted by the use of specially composed peptides to compensate.
  • the activity of active ingredients which are sparingly soluble in water and therefore in most extracellular tissues can be improved by linking with peptides which additionally have a very high water solubility.
  • This also has the advantage that, in turn, the amount of active ingredient to be used can be reduced.
  • the object of the present invention is therefore achieved by a drug-peptide construct comprising an active ingredient A and a peptide B, wherein the construct has a negative net charge at pH 6 and wherein the active ingredient-peptide construct is free of a constituent C, which can walk through the membrane of a biological cell.
  • a drug-peptide construct is understood to mean any molecule which comprises an active compound A which is linked to at least one peptide B.
  • the connection between active ingredient A and peptide B can be carried out in any way known to those skilled in the art.
  • the active ingredient A and the peptide B of the active ingredient-peptide construct according to the invention are covalently linked directly to one another, but it is also preferred that the active ingredient A and the peptide B are linked to one another via a linker.
  • a molecule as a linker is characterized by the fact that by its nature no or only a negligible contribution to the function of the linker and serves only to bring the distance between a first part X of a total molecule which has one property to another part Y of a total molecule which has an identical or different property as X to a desired length.
  • diamines eg ethylenediamine or
  • Diaminopropane polyfunctional acids, polyethylene oxide, polypropylene oxide, amino acids, amino acid derivatives or ethylene glycol can be e.g. Form oligomers containing 2 to 10 or combinations of these monomeric units.
  • Linkers can also be composed of branched or unbranched alkanes.
  • linkers examples include e.g. the formation of amides from carboxylic acids and amines, secondary and / or tertiary amines from haloaliphatics and amines, the addition to double bonds, the formation of ethers or thioethers from halo-carboxylic acids and thiols, thioethers from thiols and maleimides, amide bonds from thioesters and 1,2-aminothiols, thioamide linkages of dithioesters and 1,2-aminothiols, thiazolidines of aldehydes and 1,2-aminothiols, oxazolidines of aldehydes / ketones and 1,2-aminoalcohols, imidazoles of aldehydes / ketones and 1 , 2-diamines (such as used in FIG. 3), of thiazoles of thioamides and alpha-halo-ketones
  • Isothiocyanato-ketones of oximes of amino-oxy-compounds and aldehydes, of oximes of amino-oxy-compounds and ketones, of hydrazones of hydrazines and aldehydes, of hydrazones of hydrazides and ketones and numerous others.
  • methods are particularly preferred which generate linkers with atomic distances between 4 and 40.
  • the construct according to the invention comprises a linker
  • the linker it is preferred if the linker has a chain of 4 to 40 C-C bonds.
  • the active ingredient-peptide construct may be both a compound of one or more active substances A of the same or different kind with one or more peptides B of identical or different nature. Further, in this case, the peptide (s) B and the drug (s) A may be linked in the same or different ways. Accordingly, the term “active ingredient-peptide construct” also means a construct of one or more active substances which are understood by the term “active ingredient A v and one or more peptides B which can be subsumed under the term” peptide B ".
  • the drug-peptide construct of the invention must continue to have a net negative charge at pH 6 to achieve the object of the invention.
  • the determination of the net charge of a peptide sequence can be carried out as a first approximation by calculation, as for example in WO 2003/097706, or more precisely and according to the invention by appropriate biochemical experiments such as isoelectric focusing (Encyclopedia of Biochemistry) or titration (according to Fresenius 1 Journal of Analytical Chemistry 274 (1975) 359-361) or according to Helvetica Chimica Acta. 91 (2008) 468-482).
  • the construct in order to ensure that the construct according to the invention remains in the extracellular space, the construct must furthermore not comprise any constituent C which is capable of traversing the membrane of a biological cell.
  • a "constituent C" is understood as meaning an additional constituent which differs from the constituents A (active substance) and B (peptide) of the construct or is also not part of the constituents A or B.
  • An additional constituent C can a peptide having more than one positively charged, ie basic, amino acid capable of traversing the membrane of a biological cell, wherein component C may, for example, comprise one or more different amino acids selected from the group consisting of arginine, lysine
  • a constituent C can also be understood, for example, to mean any other molecule which is different from the constituents A (active ingredient) and B (peptide) of the construct or is also no part of the components A or B and which is described in US Pat It is able to walk through the membrane of a biological cell.
  • the component C is a peptide having more than two amino acids selected from the group consisting of lysine, arginine and histidine, preferably more than three amino acids, preferably more than four amino acids, more preferably more than five amino acids, even more prefers more than six amino acids.
  • the peptide B connected to the active ingredient A is from 2 to 70 amino acids, preferably 2 to 50 amino acids, more preferably 2 to 30 amino acids and particularly preferably 2 to 25 amino acids are built up.
  • the construct according to the invention comprises several peptides B, these may be composed of the same number or a different number of amino acids.
  • Amino acids are organic acids which have at least one and usually not more than four amino groups NH 2 and at least one and usually not more than 4 carboxyl groups. Depending on the position of the amino group in the carbon chain to the terminal carboxyl COOH one distinguishes alpha-, beta-, gamma- amino acids, etc. (Encyclopedia of
  • amino acids is understood to mean all amino acids as defined above independently of the chirality that occurs. It should also be understood amino acids which have several chiral centers with the thus possible, different topological properties.
  • Basic amino acids have a side chain with a positive charge at pH 6, e.g. Arginine, lysine, histidine or other amino acids that possess these properties.
  • An acidic amino acid has a side chain with a negative charge at pH 6, such as glutamic acid, aspartic acid, phosphoserine, phosphothreonine or other amino acids that possess this property.
  • the peptide B of the active ingredient-peptide construct according to the invention can be composed of all amino acids which are known to the person skilled in the art as suitable for the purpose according to the invention and which bring about a drug-peptide construct having a net charge negative at pH 6.
  • the peptide B of the active ingredient-peptide construct according to the invention is composed of amino acids, which are selected from the group consisting of glutamic acid, aspartic acid, phosphoserine or phosphothreonine.
  • the construct according to the invention comprises several peptides B, these may be composed of the same or different amino acids.
  • the peptide B of the active ingredient-peptide construct according to the invention has an amino acid sequence selected from the group consisting of (Glu) 4 , (Glu) 5 , (Glu) 6 , (Glu) 7 , (Asp) 4 , ( Asp) 5 , (Asp) 6 , (Asp) 7 or sequences of lengths 4-7, which include Asp and Glu, regardless of the exact sequence of these amino acids.
  • amino acids which form peptides which are not or hardly degradable in the extracellular space, e.g. D-amino acids.
  • active ingredient A of the active ingredient-peptide construct according to the invention it is possible to use any active ingredient A which is known to the person skilled in the art as suitable for the purpose according to the invention.
  • active ingredients are suitable which are intended to exert their effect solely outside a biological cell and / or can. In the context of the invention, this includes on the one hand active substances which have a toxic effect or at least an undesired (side) effect within biological cells. On the other hand, however, they also include active substances which are ineffective inside a biological cell and whose concentration outside the cell has to be compensated for by migration into the cell by administration of increased doses.
  • active ingredients are suitable, which are better administered by linking with suitable peptides, for example, because not only their whereabouts in the extracellular space is ensured, but also their solubility can be improved.
  • the active ingredient A of the active ingredient-peptide construct according to the invention is a pharmaceutical active substance.
  • the active ingredient A is an active substance which has a positive net charge at pH 6.
  • Preferred active agents A of the active ingredient-peptide construct of the invention are effectors which can inhibit inflammatory processes in biological objects, preferably in animal and human medicine. Effectors of peptidyl-prolyl cis / trans isomerases (PPIases) are particularly preferred. In a further particularly preferred embodiment, the effectors comprise substances which inhibit the enzymatic activity of cyclophilin, and it is particularly preferred that, under inhibition, the reduction of the catalytic activity caused by the active ingredient under optimal conditions is understood to be at least 50%.
  • Effectors cause a variety of effects that can be used therapeutically. For example, they may have an influence on immunosuppression, neuroprotection / neurogeneration, chaperone activity, HIV infection, cancer or Alzheimer's disease.
  • PPIase inhibitors Although these effectors can be isolated between the individual PPIase families (Nature Chemical Biology, 3 (10): 619-29, 2007; Cellular & Molecular Life Sciences. 63 (24): 2889-900, 2006; Current Topics in Medicinal Chemistry. 3 (12): 1315-47, 2003; Advances in Protein Chemistry. 59: 243-82, 2001), but often have similar inhibitory power to sequence-like family members. Since PPIases within a family can influence a wide variety of biochemical reactions, the diagnostic or pharmacological effect of administered active ingredients directly depends on the concentration achieved in a wide variety of distribution areas. For example, some of these PPIase inhibitors (eg Biopolymers 84 (2006) 125-146; Chemical & Pharmaceutical Bulletin 54 (3): 372-376, 2006; Chemistry &
  • effectors include:
  • CSl peptides and its fragments which may affect the adherence of lymphocytes therapeutically desirable, as described in US 7,238,668.
  • inhibitors acting on TGF-beta such as NAALADase inhibitors, which regulate TGF-beta and on a variety of diseases such as neurodegenerative diseases, "Extracellular Matrix Formation Disorders", cell growth related diseases, infectious diseases, diseases of the immune system, "Epithelial Tissue Scarring ",” Collagen Vascular Diseases “,” Fibroproliferative Disorders ",” Connective Tissue Disorders ", inflammation, respiratory syndrome or infertility as shown for example in US 6,444,657, but also compounds which as described in US 6,693,118, on the extracellular TGF-beta - Concentration therapeutically usable act.
  • Cytokines such as Oncostatin-M or its biologically active fragments or protein constructs which have similar activity on tumor cells, e.g. in US 5,744,442 is summarized.
  • pyrrolo [3, 2-d] pyrimidine-2, 4-diones which act as adenosine receptor antagonists and can also act on inflammatory cytokines, as shown for example in US 7,449,473.
  • compounds which influence the action of secreted TNFalpha such as etanercept (Enbrel), inflixamab (Remicade), as shown, for example, in US Pat. No. 6,881,407.
  • Taorolidine and its medicinally active derivatives, which may affect the growth of tumors and metastases, e.g. in US Pat. No. 7,122,541.
  • PPIase inhibitors which are particularly preferably used as effectors (active ingredient A) in the context of the invention are:
  • Oligonucleotides or short nucleic acid molecules such as juglone or aromatic structures such as PIA, PIB PIC, PID, PIE, PIF, PIJ, as described in US 7,417,072 and Biopolymers 84 (2006) 125-146, respectively.
  • Pinl inhibitors can also therapeutically influence the disease-related expression of cytokines, as is observed, for example, in diseases of the asthmatic type or in the unwanted rejection of transplanted organs, or have an anticarcinogenic or antifungal action (eg: Cellular & Molecular Life Sciences 65 (2008) 359-375). Part of the Pinl effect may be due to the influence of TGFl-beta
  • FKBP binding pipecolic acid derivatives (US 6,500,843, US 6,022,878, US 5,846,981, US 5,843,960, US 5,801,197)
  • FKBP inhibitors are currently predominantly used or proposed to be used as agents with neurotrophic effects and are suitable for the treatment of nervous disorders (eg: WO 96/40140, WO 96/40633, PNAS 91 (1994) 3191-95, Nature Medicine 1 (1995 32-37, WO 96/40140, WO 96/40633, WO 97/16190, US 7276498) possibly caused by inhibition of FKBP-12 or FKBP-52, as an active substance with immunosuppressive properties for the prevention of transplant rejection (Clinical Chemistry 39 (Clin. Chem.
  • Tumor antigenic peptides and corresponding derivatives derived from cyclophilin B or cyclophilin (US 7,368,107, US 7,041,297).
  • Non-peptidic compounds suitable for therapeutically influencing the regeneration of neuronal cells (US Pat. No. 6,677,376).
  • HIV virus infections can affect therapeutically (US 6,593,362).
  • Non-immunosuppressive 6-position cyclosporin analogues (US 4,941,88).
  • 3-position cyclosporin derivatives particularly suitable for promoting hair growth (US 6,987,090, US 6,790,830, US 6,762,164).
  • Cyclosporin analogs particularly suitable for the treatment of autoimmune diseases (US 6,809,077).
  • Cyclosporin conjugates with amyloid-binding peptides for the treatment of neurological diseases such as Alzheimer's disease, multiple sclerosis or amyotrophic lateral sclerosis (US 6,316,405).
  • Cyclosporin derivatives particularly suitable for the treatment of HIV infections (US 5,948,884).
  • compositions for the treatment of transplant rejection, autoimmune or inflammatory diseases utilizing cyclosporin A and 40-O- (2-hydroxyethyl) rapamycin are provided.
  • Rapamycin derivatives (rapamycin and its derivatives for the treatment of neurological diseases and as a neuroprotective and neuro-regenerative substance (US Pat
  • Oxepane (US 5,344,833, US 5,221,740), imidazolyl derivatives (US 5,310,903), pyrazoles (US 5,169,851, US 5,164,399), Acetals (US 5,151,413), ethers (US 5,120,842), dimers (US 5,120,727) or hydrazones (US 5,120,726)
  • drug A of the drug-peptide construct of the present invention is selected from the group consisting of cyclosporin A, FK 506, and rapamycin.
  • the active ingredient A of the active ingredient-peptide construct according to the invention is an active substance which is sparingly soluble and in a particularly preferred embodiment the active ingredient A is an active substance which is sparingly soluble in the extracellular space.
  • “Poorly soluble active ingredient” is understood herein to mean a pharmaceutically active substance which has a solubility in water of less than 1 g (active ingredient) per 30 ml (water) at a temperature of 20 ° C.
  • the active ingredient A is cyclosporin A.
  • Cyclosporin (also cyclosporin) is a cyclic oligopeptide with immunosuppressive and calcineurin-inhibiting activity. It is characterized by a selective and reversible mechanism of immunosuppression. It selectively blocks the activation of T lymphocytes via the production of certain cytokines involved in the regulation of these T cells.
  • cyclosporin also cyclosporin is a cyclic oligopeptide with immunosuppressive and calcineurin-inhibiting activity. It is characterized by a selective and reversible mechanism of immunosuppression. It selectively blocks the activation of T lymphocytes via the production of certain cytokines involved in the regulation of these T cells.
  • Cyclosporin acts intracellularly by binding to the so-called cyclophilins or immunophilins belonging to the family of cyclosporin-binding proteins.
  • Inhibitors of cyclophilins have a very wide therapeutic spectrum, e.g. the treatment of diseases of the respiratory tract, e.g. Asthma, COPD, pneumonia or emphysema (Expert Opinion on Investigational Drugs 12 (2003) 647-653, Biodrugs 8 (1997) 205-215, American Journal of Respiratory Cell & Molecular Biology 20 (1999) 481-492), metabolic diseases such as diabetes
  • the complex of cyclosporin and cyclophilin subsequently blocks the serine-threonine phosphatase calcineurin. Their activity state in turn controls the activation of transcription factors such as NF-KappaB or NFATp / c, which play a crucial role in the activation of various cytokine genes, including interleukin-2.
  • transcription factors such as NF-KappaB or NFATp / c
  • interleukin-2 include interleukin-2.
  • T-heifer cells which increase the activity of the cytotoxic T cells responsible for the rejection, are the preferred target for cyclosporin.
  • cyclosporin inhibits the synthesis and release of other lymphokines responsible for the proliferation of mature cytotoxic T lymphocytes and other lymphocyte functions. Cyclosporin's ability to block interleukin-2 is clinical
  • the active ingredient A is FK 506 or rapamycin.
  • the peptide B is covalently bound to the active ingredient A.
  • the peptide can in principle be combined with the active compound A in any manner which is known to the person skilled in the art as suitable for the purpose according to the invention.
  • Peptide construct further include groups that provide the drug-peptide construct with other properties that are desirable for the skilled person for the particular application, as long as it is free of a component C as defined in more detail above.
  • the active ingredient-peptide construct according to the invention can be combined with one or more groups, which can be either the same, the same or different.
  • the inclusion of additional groups in the active ingredient -peptide construct according to the invention can serve on the one hand to already existing
  • the construct is also possible to provide the construct with new, additional properties. It is conceivable, for example, that the construct is provided with an indicator in order to control its accumulation in the desired tissue or to be able to classify the desired tissue by means of indicator distribution. Furthermore, it is conceivable that the construct is provided with a group that allows its accumulation in very specific tissues.
  • the drug-peptide construct comprises an indicator.
  • the indicator is covalently bonded to the active ingredient A.
  • the indicator can in principle be combined with the active substance A in any manner which is known to the person skilled in the art as suitable for the purpose according to the invention.
  • the indicator is covalently bound to the peptide B.
  • the indicator may in principle be linked to the peptide B in any manner known to those skilled in the art as being suitable for the purpose of the invention.
  • the indicator is covalently bound to a linker which links peptide B to drug A.
  • the linker may be any compound which is known to the person skilled in the art as suitable for the purpose according to the invention. However, it is preferably a compound which is free from a protease cleavage site. Particularly preferably, the linker is selected from the group consisting of molecules which form an atomic distance between four and 40 atoms.
  • the term "indicator” means substances such as, preferably, dyes, voltage-sensitive indicators, pH indicators, calcium-sensitive indicators, radioactive elements, NMR labels or electron spin labels, which have been described several times in the scientific literature ( WO / 2005/022158, EP 0649022, US Pat. No. 6,596,499, US Pat. No. 7,090,995, US Pat. No. 4,672,044)
  • the term indicator preferably comprises individual atoms or molecules which are covalently bonded to the Construct are connected.
  • indicator or else several indicators can be covalently bound directly to the active ingredient molecule, but the indicator or else several indicators can also be bound to a multifunctional linker or the indicator or else several indicators can also be present within the acidic peptide or terminally on the acidic peptide be covalently bound.
  • indicator preferably includes dyes, stress-sensitive indicators, pH-sensitive indicators, radioactive elements, calcium-sensitive indicators, NMR labels and electrospins labels.
  • Dyes in the context of the invention are substances that can be detected optically by detecting the emitted by them or not absorbed by them electromagnetic radiation. These include e.g. Dyes such as fluorescein isocyanate (FIC), fluorescein isothiocyanate (FITC), dimethylaminonaphthalene-S-sulphonyl chloride (DANSC), tetramethylrhodamine isothiocyanate (TRITC), lissamine rhodamine B200 sulphonylchloride (RB 200 SC), etc.
  • FIC fluorescein isocyanate
  • FITC fluorescein isothiocyanate
  • DANSC dimethylaminonaphthalene-S-sulphonyl chloride
  • TRITC tetramethylrhodamine isothiocyanate
  • RB 200 SC lissamine rhodamine B200 sulphonylchloride
  • Voltage-sensitive indicators in the sense of the invention are substances which, depending on an applied electrical potential difference or the present electrical potential, change their physical, optical or catalytic properties in such a way that they produce a detectable signal.
  • Those skilled in the art are known voltage-sensitive indicators such.
  • pH-sensitive indicators in the sense of the invention are substances which, depending on the pH, change their physical, optical or catalytic properties in such a way that they produce a detectable signal.
  • indicator dyes such as phenol red
  • Bromothymol blue, bromophenol blue u.v.a. are known in the art.
  • Calcium-sensitive indicators in the context of the invention are substances which, in the presence of calcium, change their physical, optical or catalytic properties such that they produce a detectable signal.
  • the calcium-sensitive indicators known to the expert are z.
  • Radioactive elements in the context of the invention produce eg gamma radiation, such as the following isotopes 124 J, 125 J, 128 J, 131 J, 1 32 J or 51 Cr, with particular preference being given to the 125 J.
  • Others such as 11 C, 18 F, 15 O or 13 N, can by means of their
  • Positron radiation and corresponding detectors positron emission tomography
  • others such as 111 In
  • NMR labels in the sense of the invention are substances in which atoms with an odd number of nucleons (sum of the protons and neutrons) are contained Such atomic nuclei, for example: 13 C, 15 N or 19 F possess a nuclear spin and thus a nuclear magnetic moment.
  • Electron spin label serve in the context of the invention, the measurement of "Electron Paramagnetic Resonance” by means of electron spin resonance. This is the resonant Microwave absorption of a sample measured in an external magnetic field. This makes it possible to detect molecules which have a permanent magnetic moment (unpaired electrons) (Physics in Medicine & Biology, 43 (1998) U 3-U 4, Clinical Chemistry & Laboratory Medicine, 46 (2008) 1203-1210).
  • the active ingredient-peptide construct according to the invention may contain one or more indicators which may be of the same or different nature.
  • indicators is particularly advantageous when the active ingredient -peptide construct of the invention is to be used for the manufacture of a medicament for use in a therapeutic method such as a diagnostic method (e.g., history taking, physical examination, use of imaging techniques such as X-ray / MRI or Analysis with laboratory values of the blood and other body fluids).
  • a diagnostic method e.g., history taking, physical examination, use of imaging techniques such as X-ray / MRI or Analysis with laboratory values of the blood and other body fluids.
  • the active ingredient-peptide constructs according to the invention contain one or more indicators, the distribution space of the active substance A can be recognized on the basis of these indicators.
  • indicators can be used to quantify drug A.
  • the active ingredient-peptide construct according to the invention is furthermore free of a protease cleavage site, in particular free of one
  • a protease cleavage site which, after cleavage, cleaves peptide B from the construct, such as a linker of appropriate amino acids (as known to those of skill in the art), which could serve as the compound of the individual groups of the construct, for example.
  • the active ingredient-peptide construct according to the invention relates, in particularly preferred embodiments, to constructs or a molecule having the following formulas, in which R, if present, is a carboxy-Tamra or acetyl radical.
  • the invention relates to a method for the accumulation of active substances in an extracellular space of a multicellular object, comprising the steps:
  • extracellular space is to be understood as meaning all the areas which are located outside the cytosol and the membrane enclosing the cytosol, including, for example, the culture solution present in cell suspensions.
  • the multicellular object can be any object that consists of at least two identical or different biological cells.
  • biological cell encompasses both human, animal, plant and bacterial cells as well as unicellular organisms.
  • the term "multicellular object” means an accumulation of several cells, such as a cell colony of a bacterial culture understood.
  • multicellular object means a separated body part such as a graft, especially an organ, a body part such as a limb or a tissue graft, blood or a blood fraction such as for example, blood plasma or an in vitro culture of human and / or animal cells, such as a two-dimensional tissue culture or a spheroid culture understood the cells.
  • the term “multicellular object” is understood as meaning a part of a plant, such as, for example, leaves, roots or stems, or even an entire plant.
  • the multicellular object is a separated organ or body part, blood or a blood fraction, a cell culture or a plant.
  • the invention further relates to the use of the active ingredient-peptide construct according to the invention as a medicament.
  • the construct according to the invention can be used for the production of medicaments.
  • the construct according to the invention is preferably used for the treatment of non-immunosuppressive diseases.
  • Field of application of the medicaments according to invention can be therapy and diagnosis of illnesses but also of cosmetic kind, whereby under therapy in the broadest sense also the
  • Control of pests in the animal and plant kingdom or the support of healing processes in the animal and plant kingdom but also the influence of biological processes should be understood in the desired manner.
  • Particular advantages are in animal and human medicine, in the application of substances on or in cell suspensions, tissue cultures, transplants or the entire mammals.
  • the present invention further relates to the use of the active ingredient-peptide construct according to the invention as a diagnostic agent.
  • the invention further relates to the use of the construct according to the invention for the manufacture of a medicament for the treatment of non-immunosuppressive diseases.
  • the medicament may be administered in any form known to the person skilled in the art as suitable for the intended purpose.
  • the drug may be used in a form selected from the group consisting of injections, infusions, tablets, creams, sprays, capsules, syrups, emulsions, powders, powders, suppositories, or the like. It is particularly preferred that the drug is used in the form of sprays or tablets.
  • the present invention further relates in a further aspect to a pharmaceutical composition comprising an active ingredient-peptide construct according to the invention.
  • the composition may be any pharmaceutical composition known to those skilled in the art.
  • the pharmaceutical composition is sprays or tablets.
  • Fig. 2 The cyclosporin derivative Cs9-TAMRA
  • Fig. 3 The cyclosporin derivative CsMl
  • Fig. 4 The cyclosporin derivative CsM2
  • Fig. 5 The cyclosporin derivative CsM3
  • FIG. 6 The trifunctional linker (MM-50)
  • FIG. 7 The trifunctional linker (MM-50) linked to TAMRA
  • Fig. 8 The cyclosporin derivative MM-218
  • Fig. 10 The cyclosporin derivative CsM4
  • FIG. 11 The cyclosporin derivative CsM5
  • FIG. 12 The cyclosporin derivative CsM6, wherein R stands for a carboxy-TAMRA or an acetyl radical.
  • Fig. 13 The cyclosporin derivative CsM7
  • Fig. 15 The FK506 derivative FKM2
  • FIG. 16 The FK506 derivative FKM3, wherein R stands for a carboxy-TAMRA or acetyl radical.
  • Fig. 17 The FK506 derivative FKM4
  • Fig. 18 The rapamycin derivative RPMl
  • Fig. 19 The rapamycin derivative RPM2
  • Fig. 20 The rapamycin derivative RPM3, wherein R is a
  • Carboxy-TAMRA or acetyl radical Carboxy-TAMRA or acetyl radical.
  • Fig. 21A, B Control images: Heia cells without added
  • Cyclosporin derivative recorded by means of phase contrast (A) and fluorescence (B).
  • Fig. 21C, D MM218 incubation: Heia cells incubated with 250 nM MM218 for 2 h recorded by phase contrast (C) and fluorescence (D).
  • Fig. 2IE, F Cs9-Rhh incubation: Heia cells incubated with 250 nM Cs9-Rhd taken for 2 h by means of phase contrast
  • FIG. 22 Influence of MM218 on the number of CD4-positive T cells which migrated into the bronchial mucous membranes through ovalbumin sensitization.
  • Fig. 23 Influence of MM218 on the number of eosinophils granulocytes (eosinophils), which are caused by the
  • Fig. 24 Chemotaxis assay. It is shown that without any addition of a stimulus (-) a chemotaxis index of about 2.7 +/- 0.3 is obtained.
  • MALDI mass spectrometry gave a mass [MH-H] + of 1461.3 (calculated: 1460). Subsequently, the substance was incubated with 5 ml of ZnCl 2 / ether under nitrogen contactor for three hours at room temperature. After adding 0.1 ml of water and 15 ml of acetonitrile, the precipitated salt was filtered off. After vacuum drying and separation by C8 HPLC, a product of mass [M + H] + of 1361.3 (theoretical: 1360.1) could be obtained by MALDI mass spectrometry. Subsequently, 40 mg of this substance (Cs9) was mixed for 15 minutes
  • Cyclosporin derivative CsMl ( Figure 3) CsMl was prepared on a 2-ClTrt matrix using standard Fmoc procedures. In each cycle, the Fmoc-protected amino acids are activated with PyBOP and DIPEA in DMF and then coupled for two hours. The Fmoc protecting group is split off in each case with 20% piperidine in DMF. The Tamra-labeled trifunctional linker was coupled overnight as described above. The cyclosporin derivative (Cs6) was pre-activated and coupled with HATU, HOAt and DIPEA and overnight. The side chain of D-glutamic acid was protected as a t-butyl ester. After synthesis, the product was removed from the matrix by 50%.
  • CsM2a 100 mg of Cs6, 20 parts of NH 2 (CH 2 -CH 2 -O) 2 CH 2 CH 2 NH 2 and 1.1 parts of PyBop were stirred in 5 ml of DMF at room temperature overnight. Subsequently, 40 ml of ethyl acetate were added and the organic layer washed with 5% NaHSO 4 , 5% NaHCO 3 and saturated NaCl solution. After drying with Na 2 SO 4 and subsequent vacuum drying, the product (CsM2a) was separated by HPLC. Subsequently, CsM2a was stirred with 5 parts of succinic anhydride and 10 parts of DIPEA in 5 ml of DMF at room temperature overnight.
  • MM-218 was prepared on a 2-ClTrt matrix using standard Fmoc procedures.
  • the Fmoc-protected amino acids are activated with PyBOP and DIPEA in DMF and then coupled for two hours.
  • the Fmoc protecting group is split off in each case with 20% piperidine in DMF.
  • the Tamra-labeled trifunctional linker was coupled overnight as described above.
  • the cyclosporin derivative (Cs6) was pre-activated and coupled with HATU, HOAt and DIPEA and overnight.
  • the side chain of D-glutamic acid was protected as a t-butyl ester.
  • H-Dap fluorescein
  • D-Glu D-Glu 6 -Gly-OH
  • Fmoc-protected amino acids were first pre-activated with PyBOP and DIPEA in DMF and subsequently coupled for two hours.
  • the side chain of D-glutamic acid was protected as a t-butyl ester.
  • the Fmoc protecting group was cleaved by means of 20% piperidine in DMF.
  • the product was cleaved from the matrix with 50% TFA / CH 2 Cl 2 at room temperature and isolated by RP HPLC.
  • MALDI mass spectrometry a mass [M + H] + of 1294.3 (calculated 1293.4) could be determined.
  • H-Dap (fluorescein) - (D-Glu) 6 -Gly-OH was added to a solution of Cyclosporin derivative-6 (Cs6) in DMF to which 0.9 parts of HATU and 3 parts of DIPEA were added and mixed for 30 minutes , added and stirred overnight.
  • Cs6 Cyclosporin derivative-6
  • cyclosporin at position 1 Derivatization of the cyclosporin at position 1 is achieved by boiling cyclosporin A and 0.1 part of the "Hoveyda Grubbs catalyst second generation" (1,3-bis- (2,4,6-trimethylphenyl) -2-imidazolidinylidenes). chloro (o-isopropoxyphenylmethylene) ruthenium) and 20 parts of dimethyl maleate in toluene under reflux for 45 hours. Then the toluene is removed in vacuo and the residue is dissolved in DCM / MeOH (10: 0.5) and filtered through silica gel.
  • Hoveyda Grubbs catalyst second generation (1,3-bis- (2,4,6-trimethylphenyl) -2-imidazolidinylidenes).
  • the peptide is synthesized on a 2-ClTrt matrix using conventional Fmoc chemistry.
  • Fmoc-protected amino acids are coupled with PyBOP and DIPEA in DMF for two hours.
  • the Fmoc protecting group is split off in each case with 20% piperidine in DMF.
  • the trifunctional linker (Example Ic) is coupled overnight.
  • the side chain of D-glutamic acid is protected as t-butyl ester.
  • Cs6 ( Figure 1) is added with HATU, HOAt and DIPEA and stirred overnight.
  • the product CsM6 can be obtained after cleavage from the matrix with 50% TFA / CH 2 Cl 2 at 5 0 C and purification by RP HPLC.
  • CsM4 ( Figure 10), 20 parts of NH 2 (CH 2 -CH 2 -O) 2 CH 2 CH 2 NH 2 and 1.1 parts of PyBop in DMF are stirred at room temperature overnight. Then 40 ml of ethyl acetate are added and the organic layer is washed with 5% NaHSO 4 , 5% NaHCO 3 and saturated NaCl solution. After drying with Na 2 SO 4 and subsequent vacuum drying, the product (CsM7a) is separated by means of HPLC. Subsequently, CsM7a is stirred with 1 part HATU, 3 parts DIPEA in 3 ml DMF for 10 min, at room temperature. Thereafter, the solution is added to a mixture of an equivalent part of H (D-Glu) 6- Gly-OH dissolved in 2 ml of DMF and stirred overnight. To
  • FKM1 (FIG. 14) 1 part of HATU and 3 parts of DIPEA are mixed with 3 ml of DMF and stirred for 20 minutes at room temperature. Subsequently, a solution containing one part of H- (D-Glu) 6- Gly-OH in 2 ml of DMF is added and stirred overnight. After filtering off insoluble constituents, the product (FKM2) can be obtained by means of preparative HPLC.
  • the peptide is synthesized on a 2-CITrt matrix using conventional Fmoc chemistry.
  • Fmoc-protected amino acids are first pre-activated with PyBOP and DIPEA in DMF and subsequently coupled for 2 h.
  • the trifunctional linker (Example Ic) is coupled overnight.
  • the Fmoc protecting group is split off in each case with 20% piperidine in DMF.
  • the side chain of D-glutamic acid is protected as a t-butyl ester.
  • FKMl (Fig. 14) is added to HATU, HOAt and DIPEA and stirred overnight.
  • the product FKM3 can be obtained after cleavage from the matrix with 50% TFA / CH 2 Cl 2 at 5 0 C and purification by RP HPLC.
  • FKMl ( Figure 14), 20 parts of NH 2 (CH 2 -CH 2 -O) 2 CH 2 CH 2 NH 2 and 1.1 parts of PyBop in DMF are stirred at room temperature overnight. Then 40 ml of ethyl acetate are added and the organic layer is washed with 5% NaHSO 4 , 5% NaHCO 3 and saturated NaCl solution. After drying with Na 2 SO 4 and subsequent vacuum drying, the product (FKM4a) is separated by means of HPLC. Subsequently, FKM4a are stirred with 5 parts of succinic anhydride and 10 parts of DIPEA in 5 ml of DMF overnight at room temperature.
  • the product FKM4 can be obtained.
  • Rapamycin derivative RPMl Figure 18
  • a solution of one part of rapamycin, 5 parts of 2,6-lutidine and 5 parts of bromoethyl triflate are incubated in toluene at 65 0 C for 18 h. After cooling, saturated sodium bicarbonate solution is added and the product extracted with ethyl acetate. The extraction is repeated three times. The combined extracts are filtered and dried in vacuo. Subsequently, the product (RPMIa) is isolated by means of preparative HPLC and taken up in DMF. After adding 1.2 parts of sodium azide, the mixture is stirred for two hours. After adding saturated sodium bicarbonate solution, the solution is washed three times
  • RPMIb Acetylacetate extracted. The combined extracts are then dried over Na 2 SO 4 , filtered and dried by vacuum.
  • the product (RPMIb) can then be obtained by means of preparative HPLC. Thereafter, RPMIb is taken up in 70% THF and stirred after addition of five parts of triphenylphosphine overnight. After addition of ethyl acetate, the solution is washed three times with saturated brine and then dried over Na 2 SO 4 and filtered.
  • the product (RPMIc) is then isolated by pre-pertinent HPLC. After dissolving the RPMIc in DMF, 1.1 parts of succinic anhydride are added and the pH of the solution is adjusted to about pH 7.5 with diisopropylethylamine. After stirring the mixture overnight, the product RPM1 can be obtained by means of preparative HPLC.
  • RPM1 one part of HATU and 3 parts of DIPEA are mixed with 3 ml of DMF and stirred for 20 min at room temperature. Subsequently, a portion of H- (D-Glu) 6- Gly-OH in 2 ml of DMF is added and stirred overnight. After filtering off undissolved residues, the product RPM2 can be isolated by means of preparative HPLC. c) rapamycin derivative RPM2 ( Figure 20)
  • the compound is synthesized on a 2-CITrt matrix using conventional Fmoc chemistry.
  • the Fmoc-protected amino acids are activated with PyBOP and DIPEA in DMF with a coupling time of two hours.
  • the Fmoc protecting group is split off each with 20% piperidine in DMF.
  • the trifunctional linker is coupled overnight.
  • the rapamycin derivative RPM1 is coupled overnight using HATU, HOAt and DIPEA.
  • Glutamic acid side chain is protected as t-butyl ester. Subsequently, the peptide is cleaved from the matrix by means of 50% TFA / CH 2 Cl 2 at 5 0 C and isolated by RP HPLC.
  • the advantage of the present invention becomes clear in the study of the transport behavior of two cyclosporin derivatives.
  • the derivative Cs9 derivative MM218 differs from the Cs9 derivative Cs9-Rhd by the synthesized acidic peptide.
  • the uptake of chemically modified fluorescent CsA derivatives into living eukaryotic cells is demonstrated on a cell line by confocal laser scanning microscopy.
  • 10 5 Heia cells were used in Petri dishes from Ibidi® ( ⁇ -Dish, 35 mm, high) and incubated for 1-2 days in DME medium (high glucose) at 37 ° C. and 5% CO 2 .
  • the examination was carried out on an inverted microscope (Nikon ECLIPSE C1TE2000-E) equipped with a focusing aid, the T-PFS, to prevent a so-called focus drift.
  • the images were taken with a phase contrast objective (40,0x Plan Fluor Oilimmersion NA 1,30) used as well as the microscope own software EZ-Cl 3.7.
  • the fluorophore 5- (6) -carboxytetramethylrhodamine was excited by a 561 nm laser from Melles & Griot.
  • the cells were first washed twice with 2 ml PBS pH 7.4 (Dulbecco) and then taken up in 2 ml MIK medium (phenol red free DME medium, FCS-free, with 20 mM HEPES pH 7.2 and 0.01 % Carbencilin) and incubated for 20 min at 37 0 C and 5% CO 2 .
  • MIK medium phenol red free DME medium, FCS-free, with 20 mM HEPES pH 7.2 and 0.01 % Carbencilin
  • Fig. 20 shows Heia cells incubated with CsA derivatives after 2 h.
  • Fig. 2OA, B control images: Heia cells without added Cyclosporinderivat by means of phase contrast (A) and fluorescence (B). In fluorescent light no structures are visible.
  • Fig. 2OC, D MM218 Incubation: Heia cells incubated with 250 nM MM218 for 2 h, using phase contrast (C) and fluorescence (D). In fluorescent light, the Heia cells are visible only as shadows in the vicinity of the fluorescent cyclosporin derivative. The acidic peptide cyclosporin derivative is not transported to Heia cells.
  • Fig. 2OA, B control images: Heia cells without added Cyclosporinderivat by means of phase contrast (A) and fluorescence (B). In fluorescent light no structures are visible.
  • Fig. 2OC, D MM218 Incubation: Heia cells incubated with 250 nM MM218 for 2
  • Cs9-Rhd incubation Heia cells incubated with 250 nM Cs9-Rhd for 2 h by means of phase contrast (E) and fluorescence (F). In fluorescent light, the Heia cells are visible as fluorescent cells. The non-acidic peptide cyclosporin derivative accumulates within the heia cells.
  • mice Removed spleen from mice (BALB / c line) was squeezed between slides to prepare appropriate cell suspensions. Subsequently, the suspension thus obtained was filtered through a nylon screen to separate coarse matter. The cells thus obtained were centrifuged together with a lymphocyte separation medium (Mediatech) to obtain mononuclear cells.
  • a lymphocyte separation medium Mediatech
  • mice Female mice (BALB / c line) were sensitized by intraperitoneal (i.p.) administration of 50 ⁇ g ovalbumin in phosphate buffer (PBS) (OVA) plus 100 ⁇ L aluminum hydroxide (alum) at a total volume of 200 ⁇ L per mouse on day 0. The OVA / alum-sensitized mice were then treated under mild anesthesia
  • FIG. 23 Influence of MM218 on the number of eosinophilic granulocytes (eosinophils), which migrated into the bronchial mucous membranes through ovalbumin sensitization.
  • the untreated mice (naive) also served as controls, as did the OVA-sensitized (-) and MM218 solvent-only treated animals.
  • MM218 significantly reduced the number of eosinophils.
  • Activated CD4 + T cells were obtained by stimulation of the mononuclear cells (3 ⁇ 10 6 cells / well plate cavity) generated in the proliferation assay with ConA (10 ⁇ g / ml) overnight. Subsequently, the CD4 + T cells were analyzed by MACS negative selection kit (Miltenyi Biotec, Auburn Ca). The chemotaxis assay was performed in Boyden chambers (Neuroprobe) with 48 wells, each well consisting of two compartments separated by a 5- ⁇ m polycarbonate membrane (Neuroprobe). The assays were started by adding 10 4 cells to the upper compartment medium (RPMI 1640 + 1% BSA). The lower compartment medium contained either 100 ng / ml human cyclophilin A (Calbiochem) or no additives. The effect of drugs on cell migration was compared after addition of these compounds to both compartments. The used
  • Drug concentration was either 2 ⁇ M MM218 dissolved in ethanol or 1% ethanol (Diluent). Subsequently, the thus-loaded chemotaxis chambers were incubated at 37 ° C. in 5% CO 2 for 50 minutes. Thereafter, the separation membrane was removed and cells that had not migrated were scraped off. Subsequently, the membrane was stained with Wright-Giemsa solution (CAMCO, Fort Lauderdale, FL). The chemotactic index was then obtained for each membrane by dividing the number of cells migrated by the number of cells migrating without any stimulation. Figure 24 shows that without any addition of stimulus (-), a chemotaxis index of about 2.7 +/- 0.3 is obtained. The addition of the MM218 solvent (+ Diluent) shows a non-significant, the addition of the drug has a highly significant influence on the chemotaxis index.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Wirkstoff-Peptid-Konstrukt zur extrazellulären Anreicherung, ein Verfahren zur Anreicherung von Wirkstoffen in einem extrazellulären Raum eines multizellulären Objekts, die Verwendung des erfindungsgemäßen Wirkstoff-Peptid-Konstrukts zur Herstellung eines Arzneimittels und eine pharmazeutische Zusammensetzung enthaltend das erfindungsgemäße Wirkstoff-Peptid-Konstrukt.

Description

Wirkstoff-Peptid-Konstrukt zur extrazellulären Anreicherung
Die vorliegende Erfindung betrifft ein Wirkstoff-Peptid- Konstrukt zur extrazellulären Anreicherung, ein Verfahren zur Anreicherung von Wirkstoffen in einem extrazellulären Raum eines multizellularen Objekts, die Verwendung des erfindungsgemäßen Wirkstoff-Peptid-Konstrukts zur Herstellung eines Arzneimittels und eine pharmazeutische Zusammensetzung enthaltend das erfindungsgemäße Wirkstoff-Peptid-Konstrukt.
Biologisch wirksame Moleküle, sogenannte „Wirkstoffe", bei denen es sich in der Regel um pharmazeutische Wirkstoffe handelt, entfalten ihre Wirkung meist sowohl innerhalb wie auch außerhalb von biologischen Zellen. Dabei ist bisher vornehmlich das Problem aufgetreten, dass Wirkstoffe, die ihre Wirkung nur innerhalb der Zelle entfalten sollen, bereits vor Durchtritt durch die Zellmembran unerwünschte Veränderungen im extrazellulären Raum verursachen. Hierbei tritt zusätzlich das Problem auf, dass ein und derselbe Wirkstoff innerhalb und außerhalb der Zelle eine unterschiedliche Wirkung entfalten kann. Die eigentliche Wirkung umfasst somit zwei Komponenten - die erwünschte intrazelluläre und die nicht erwünschte extrazelluläre. Soll die intrazelluläre Wirkung erreicht werden, musste - da der Transport zur Zelle in der Regel die Durchquerung eines extrazellulären Raumes beinhaltet - notwendigerweise oft auch die extrazelluläre (Neben) Wirkung in Kauf genommen werden.
Ein ebenso wichtiges Problem, das im Stand der Technik bisher jedoch nicht beschrieben wurde, ist die Verabreichung von Wirkstoffen, die ihre Wirkung allein außerhalb der Zelle entfalten sollen bzw. dürfen. Vor allem in der Medizin ist eine Reihe von Wirkstoffen bekannt, die in der Zelle nicht nur nicht die beabsichtigte Wirkung entfalten, sondern sogar toxisch wirken bzw. eine anderweitig schädigende Wirkung verursachen. Hinzu kommt, dass zur Erzielung einer bestimmten, extrazellulären Wirkung eine weit höhere Dosis verabreicht werden muss als eigentlich benötigt, um den „Verlust" der in das Zellinnere abgewanderten Wirkstoffe zu kompensieren.
Wirkstoffe können extrazellulär auf Moleküle oder Strukturen wirken. Solche biologischen Moleküle des Extrazellularraumes können beispielsweise: Enzyme, Inhibitoren, Aktivatoren oder Rezeptoren sein. Unter „Strukturen" ist beispielsweise die extrazelluläre Matrix zu verstehen, die aus der Gesamtheit der Makromoleküle, die sich außerhalb der Plasmamembran von Zellen in Geweben und Organen befinden, gebildet ist.
Die Aufgabe der vorliegenden Erfindung war es daher, einen Weg zu finden, wie Wirkstoffe einem multizellulären Objekt verabreicht werden können, ohne dass die verabreichten Wirkstoffe in das Zellinnere des multizellulären Objekts vordringen können. Im Speziellen war es eine Aufgabe der vorliegenden Erfindung, einen Weg zu finden, wie auch Wirkstoffe für Therapien einsetzbar gemacht werden können, deren Einsatzbereich - vor allem im Fall von Wirkstoffen, die intrazellulär eine toxische Wirkung entfalten - strikt auf den extrazellulären Raum beschränkt ist bzw. beschränkt bleiben muss .
Es wurde überraschend aufgefunden, dass der Eintritt von Wirkstoffen in Zellen verhindert werden kann, wenn diese in Form eines Wirkstoff-Peptid-Konstrukts mit einer bei pH 6 negativen Nettoladung verabreicht werden und das Wirkstoff - Peptid-Konstrukt frei von einem Bestandteil ist, der die Membran einer biologischen Zelle durchwandern kann. Das erfindungsgemäße Wirkstoff-Peptid-Konstrukt besitzt jedoch nicht nur den Vorteil, dass Wirkstoffe gezielt in einem extrazellulären Raum eingesetzt werden können, sie bietet durch den Einsatz speziell zusammengesetzter Peptide zudem die Möglichkeit, weitere Nachteile, die mit der Verwendung bestimmter Wirkstoffe verbunden sind, gezielt zu kompensieren. Beispielsweise kann die Wirksamkeit von in Wasser und damit in den meisten extrazellulären Geweben schwerlöslichen Wirkstoffen durch die Verknüpfung mit Peptiden, die zudem eine sehr hohe Wasserlöslichkeit besitzen, verbessert werden. Hiermit ist desweiteren der Vorteil verbunden, dass wiederum die Menge an einzusetzendem Wirkstoff verringert werden kann.
Die Aufgabe der vorliegenden Erfindung wird daher gelöst durch ein Wirkstoff-Peptid-Konstrukt, umfassend einen Wirkstoff A und ein Peptid B, wobei das Konstrukt bei pH 6 eine negative Nettoladung aufweist und wobei das Wirkstoff-Peptid-Konstrukt frei von einem Bestandteil C ist, der die Membran einer biologischen Zelle durchwandern kann.
Unter einem Wirkstoff-Peptid-Konstrukt wird im Rahmen der Erfindung jedes Molekül verstanden, das einen Wirkstoff A umfasst, der mit mindestens einem Peptid B verbunden ist. Die Verbindung zwischen Wirkstoff A und Peptid B kann dabei auf jede dem Fachmann als geeignet bekannte Weise erfolgen. Bevorzugt sind der Wirkstoff A und das Peptid B des erfindungsgemäßen Wirkstoff-Peptid-Konstrukts kovalent direkt miteinander verbunden, es ist aber auch bevorzugt, dass der Wirkstoff A und das Peptid B über einen Linker miteinander verbunden sind.
Ein Molekül als Linker ist dadurch gekennzeichnet, dass es durch seine Beschaffenheit keinen oder nur einen unwesentlichen Beitrag auf Funktion der durch den Linker gebildeten Gesamtmoleküls hat und nur dazu dient, um den Abstand zwischen einem ersten Teil X eines Gesamtmoleküls, welches eine Eigenschaft hat, zu einem anderen Teil Y eines Gesamtmoleküls, welches eine gleiche oder andere Eigenschaft wie X hat, auf eine gewünschte Länge zu bringen. Mit Arylacetylen, Diaminen (z.B. Ethylendiamin oder
Diaminopropan) , mehrfunktioneilen Säuren, Polyethylenoxid, Polypropylenoxid, Aminosäuren, Aminosäurederivaten oder Ethylenglykol lassen sich z.B. Oligomere bilden, welche 2 bis 10 oder Kombinationen dieser monomeren Einheiten enthalten. Linker können auch aus verzweigten oder unverzweigten Alkanen aufgebaut sein.
Beispiele für geeignete Reaktionen zur Herstellung von Linkern sind z.B. die Bildung von Amiden aus Carbonsäuren und Aminen, von sekundären und/oder tertiären Aminen aus Halogenaliphaten und Aminen, die Addition an Doppelbindungen, die Bildung von Ethern oder Thioethern aus HaIo-Carbonsäuren und Thiolen, von Thioethern aus Thiolen und Maleinimiden, von Amidbindungen aus Thioestern und 1, 2-Aminothiolen, von Thioamidbindungen aus Dithioestern und 1, 2-Aminothiolen, von Thiazolidinen aus Aldehyden und 1, 2-Aminothiolen, von Oxazolidinen aus Aldehyden/Ketonen und 1, 2-Aminoalkoholen, von Imidazolen aus Aldehyden/Ketonen und 1, 2-Diaminen, (wie z.B. in Fig. 3 genutzt) , von Thiazolen aus Thioamiden und alpha-Halo-Ketonen, von Aminothiazolen aus Amino-oxy-Verbindungen und alpha-
Isothiocyanato-Ketonen, von Oximen aus Amino-oxy-Verbindungen und Aldehyden, von Oximen aus Amino-oxy-Verbindungen und Ketonen, von Hydrazonen aus Hydrazinen und Aldehyden, von Hydrazonen aus Hydraziden und Ketonen und zahlreichen weiteren. Im Rahmen der vorliegenden Erfindung sind Methoden besonders bevorzugt, welche Linker mit Atomabständen zwischen 4 und 40 erzeugen.
Umfasst das erfindungsgemäße Konstrukt einen Linker, so ist es bevorzugt, wenn der Linker eine Kette von 4 bis 40 C-C- Bindungen aufweist.
Das Wirkstoff- Peptid-Konstrukt kann sowohl eine Verbindung von einem oder mehreren Wirkstoffen A gleicher oder unterschiedlicher Art mit einem oder mehreren Peptiden B gleicher oder unterschiedlicher Art sein. Des Weiteren können in diesem Fall das/die Peptid(e) B und der/die Wirkstoff (e) A auf gleiche oder unterschiedliche Weise verbunden sein. Unter dem Begriff „Wirkstoff -Peptid-Konstrukt" wird demnach auch ein Konstrukt aus einem oder mehreren Wirkstoffen, die unter den Begriff „Wirkstoff Av und einem oder mehreren Peptiden B, die unter den Begriff „Peptid B" subsumiert werden können, verstanden.
Das Wirkstoff-Peptid-Konstrukt der Erfindung muss zur Lösung der erfindungsgemäßen Aufgabe weiter bei pH 6 eine negative Nettoladung aufweisen. Die Bestimmung der Nettoladung einer Peptidsequenz kann in erster Näherung mittels Berechnung, wie dies z.B. in WO 2003/097706 aufgeführt ist, oder genauer und erfindungsgemäß durch entsprechende biochemische Experimente wie z.B. der isoelektrischen Fokussierung (Lexikon der Biochemie) oder der Titration (gemäß Fresenius1 Journal of Analytical Chemistry 274(1975)359-361) oder gemäß Helvetica Chimica Acta. 91(2008)468-482) ermittelt werden.
Es ist dem Fachmann bekannt, dass sich die Nettoladung eines Moleküls aus der Summe der Teilladungen der einzelnen funktionellen Gruppen ergibt. Die Erfinder der vorliegenden Anmeldung haben überraschend gefunden, dass - um das Verbleiben des erfindungsgemäßen Konstrukts im extrazellulären Raum zu gewährleisten - das Konstrukt ferner keinen Bestandteil C umfassen darf, der in der Lage ist, die Membran einer biologischen Zelle zu durchwandern. Unter einem „Bestandteil C" wird im Rahmen der Erfindung ein zusätzlicher Bestandteil verstanden, der sich von den Bestandteilen A (Wirkstoff) und B (Peptid) des Konstrukts unterscheidet bzw. auch kein Teil der Bestandteile A oder B ist. Ein zusätzlicher Bestandteil C kann dabei ein Peptid mit mehr als einer positiv geladenen, d.h. basischen, Aminosäure sein, die in der Lage sind, die Membran einer biologischen Zelle zu durchwandern. Dabei kann der Bestandteil C beispielsweise eine oder mehrere verschiedene Aminosäuren ausgewählt aus der Gruppe bestehend aus Arginin, Lysin und Histidin umfassen. Unter einem Bestandteil C kann aber beispielsweise auch jedes andere Molekül verstanden werden, das von den Bestandteilen A (Wirkstoff) und B (Peptid) des Konstrukts verschieden ist bzw. auch kein Teil der Komponenten A oder B ist und das in der Lage ist, die Membran einer biologischen Zelle zu durchwandern.
Bevorzugt ist es, dass der Bestandteil C ein Peptid mit mehr als zwei Aminosäuren ist, ausgewählt aus der Gruppe bestehend aus Lysin, Arginin und Histidin, vorzugsweise mehr als drei Aminosäuren, bevorzugt mehr als vier Aminosäuren, mehr bevorzugt mehr als fünf Aminosäuren, noch mehr bevorzugt mehr als sechs Aminosäuren.
Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Wirkstoff-Peptid-Konstrukts ist das mit dem Wirkstoff A verbundene Peptid B aus 2 bis 70 Aminosäuren, bevorzugt 2 bis 50 Aminosäuren, weiter bevorzugt 2 bis 30 Aminosäuren und besonders bevorzugt 2 bis 25 Aminosäuren aufgebaut. Im Fall, dass das erfindungsgemäße Konstrukt mehrere Peptide B umfasst, können diese aus der gleichen Anzahl oder einer unterschiedlichen Anzahl Aminosäuren aufgebaut sein.
Aminosäuren sind organische Säuren, die mindestens eine und gewöhnlich nicht mehr als vier Aminogruppen NH2 und mindestens eine und gewöhnlich nicht mehr als 4 Carboxylgruppen besitzen. Je nach der Stellung der Aminogruppe in der Kohlenstoffkette zu der endständigen Carboxylgrupppe COOH unterscheidet man alpha-, beta- , gamma- Aminosäuren usw. (Lexikon der
Biochemie) . Unter dem Begriff Aminosäuren sollen im Rahmen der vorliegenden Anmeldung alle Aminosäuren nach obiger Definition unabhängig von der auftretenden Chiralität verstanden werden. Es sollen auch Aminosäuren darunter verstanden werden, welche mehrere Chiralitätszentren mit den dadurch möglichen, unterschiedlichen topologischen Eigenschaften besitzen.
Basische Aminosäuren haben eine Seitenkette mit einer positiven Ladung bei pH 6, wie z.B. Arginin, Lysin, Histidin oder andere Aminosäuren, welche diese Eigenschaften besitzen.
Eine saure Aminosäure hat eine Seitenkette mit einer negativen Ladung bei pH 6, wie Glutaminsäure, Asparaginsäure, Phosphoserin, Phosphothreonin oder andere Aminosäuren, welche diese Eigenschaft besitzen.
Das Peptid B des erfindungsgemäßen Wirkstoff -Peptid-Konstrukts kann aus allen Aminosäuren zusammengesetzt sein, die dem Fachmann als für den erfindungsgemäßen Zweck geeignet bekannt sind und die ein Wirkstoff-Peptid-Konstrukt mit einer bei pH 6 negativen Nettoladung bewirken. In einer besonders bevorzugten Ausführungsform ist das Peptid B des erfindungsgemäßen Wirkstoff -Peptid-Konstrukts aus Aminosäuren zusammengesetzt, die ausgewählt sind aus der Gruppe bestehend aus Glutaminsäure, Asparaginsäure , Phosphoserin oder Phosphothreonin. Im Fall, dass das erfindungsgemäße Konstrukt mehrere Peptide B umfasst, können diese aus den gleichen oder unterschiedlichen Aminosäuren aufgebaut sein.
In einer besonders bevorzugten Ausführungsform besitzt das Peptid B des erfindungsgemäßen Wirkstoff-Peptid-Konstrukts eine Aminosäuresequenz ausgewählt aus der Gruppe bestehend aus (GIu)4, (GIu)5, (GIu)6, (GIu)7, (Asp)4, (Asp)5, (Asp)6, (Asp) 7 oder Sequenzen der Längen 4-7, die Asp und GIu beinhalten, unabhängig von der genauen Aufeinanderfolge dieser Aminosäuren.
Besonders sind Aminosäuren geeignet, welche Peptide bilden, welche nicht oder nur schwer im extrazellulären Raum abbaubar sind, wie z.B. D-Aminosäuren.
Als Wirkstoff A des erfindungsgemäßen Wirkstoff-Peptid- Konstrukts kann jeder Wirkstoff A eingesetzt werden, der dem Fachmann als für den erfindungsgemäßen Zweck geeignet bekannt ist. Dabei sind insbesondere Wirkstoffe geeignet, die ihre Wirkung allein außerhalb einer biologischen Zelle entfalten sollen und/oder können. Darunter sind im Rahmen der Erfindung zum Einen Wirkstoffe zu verstehen, die innerhalb biologischer Zellen eine toxische Wirkung oder zumindest eine unerwünschte (Neben) Wirkung entfalten. Zum Anderen sind darunter aber auch Wirkstoffe zu verstehen, die im Inneren einer biologischen Zelle wirkungslos sind und deren Konzentration außerhalb der Zelle auf Grund der Abwanderung in die Zelle durch Verabreichung erhöhter Dosen kompensiert werden muss.
Schließlich sind insbesondere Wirkstoffe geeignet, die durch Verknüpfung mit geeigneten Peptiden besser verabreichbar sind, beispielsweise, weil nicht nur deren Verbleib im extrazellulären Raum gewährleistet wird, sondern auch deren Löslichkeit verbessert werden kann.
In einer bevorzugten Ausführungsform ist der Wirkstoff A des erfindungsgemäßen Wirkstoff-Peptid-Konstrukts ein pharmazeutischer Wirkstoff.
Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Konstrukts ist es vorgesehen, dass der Wirkstoff A ein Wirkstoff ist, der bei pH 6 eine positive Nettoladung aufweist.
Bevorzugte Wirkstoffe A des Wirkstoff-Peptid-Konstrukts der Erfindung sind Effektoren, welche entzündliche Prozesse in biologischen Objekten, vorzugsweise in der Tier- und Humanmedizin hemmen können. Effektoren von Peptidyl-Prolyl cis/trans Isomerasen (PPIasen) sind besonders bevorzugt. In einer weiter besonders bevorzugten Ausführungsform umfassen die Effektoren Stoffe, welche die enzymatische Aktivität von Cyclophilin hemmen, wobei es insbesondere bevorzugt ist, dass unter Hemmung die durch den Wirkstoff verursachte Minderung der katalytischen Aktivität unter optimalen Bedingungen um mindestens 50% verstanden wird.
Effektoren bewirken eine Vielzahl von Effekten, die therapeutisch genutzt werden können. So können sie beispielsweise einen Einfluss auf Immunosuppression, Neuroprotektion/Neurogeneration, Chaperon Aktivität, HIV- Infektion, Krebs oder Alzheimer haben.
Beispiele für erfindungsgemäß bevorzugte Effektoren sind
PPIase- Inhibitoren. Diese Effektoren können zwar zwischen den einzelnen PPIase-Familien (Nature Chemical Biology. 3(10) : 619- 29, 2007; Cellular & Molecular Life Sciences. 63 (24) : 2889-900, 2006; Current Topics in Medicinal Chemistry. 3 (12) : 1315-47, 2003; Advances in Protein Chemistry. 59:243-82, 2001) unterscheiden, haben aber oft ähnliche Hemmkraft gegenüber Sequenz-ähnlichen Familienmitgliedern. Da PPIasen innerhalb einer Familie unterschiedlichste biochemische Reaktionen beeinflussen können, hängt die diagnostische oder pharmakologische Wirkung verabreichter Wirkstoffe unmittelbar von der erreichten Konzentration in unterschiedlichsten Verteilungsräumen ab. So sind z.B. einige dieser PPIase- Inhibitoren (z.B. Biopolymers 84(2006)125-146; Chemical & Pharmaceutical Bulletin. 54 (3) : 372-376, 2006; Chemistry &
Biology. 10(l) :15-24, 2003; Nucleic Acids Research. 29(3) :767- 773, 2001) wie z.B. das therapeutisch verwendete Cyclosporin in Wasser nur schwer löslich (DE 19859910) . Trotzdem werden nach gewöhnlicher Arzneimittellöser Applikation weitaus höhere Konzentrationen innerhalb von Zellen gefunden. Es wird vermutet, dass die Wirkstoffe durch die Membran einer biologischen Zelle wandern und sich dann an intrazellulär vorhandene PPIasen binden. Für ein Cyclosporinderivat (SDZ IMM 125) konnten so (Anti-Cancer Drugs . 8 (4) : 400-404 , 1997; Journal of Pharmacokinetics & Biopharmaceutics . 22 (5) : 327-65, 1994) in Blutzellen etwa 8x höhere Konzentration als im umgebenden Plasma nachgewiesen werden.
Zu den im Rahmen der Erfindung bevorzugten Effektoren (Wirkstoff A) zählen:
a) Osteoporose beeinflussenden Polypeptide (wie IGFIIE, IGFBP2, umfassend dargestellt in US 6,916,790) der EZ.
b) CSl-Peptide und seine Fragmente, welche die Adherenz von Lymphozyten therapeutisch erwünscht beeinflussen können, wie in US 7,238,668 umfassend beschrieben. c) Auf TGF-beta einwirkende Inhibitoren, wie z.B. NAALADase Inhibitoren, welche TGF-beta regulieren und auf unterschiedlichste Erkrankungen wie z.B. Neurodegenerative Erkrankungen, „Extracellular Matrix Formation Disorders", Zellwachstum bezogene Krankheiten, Infektiöse Erkrankungen, Erkrankungen des Immunsystems, „Epithelial Tissue Scarring", „Collagen Vascular Diseases", „Fibroproliferative Disorders", „Connective Tissue Disorders", Entzündungen, AtemwegsSyndrom oder Infertilität wie dies z.B. in US 6,444,657 dargestellt wird, aber auch Verbindungen, welche wie in US 6,693,118 beschrieben, auf die extrazelluläre TGF-beta- Konzentration therapeutisch nutzbar einwirken.
d) Cytokine wie Oncostatin-M oder seine biologisch aktiven Fragmente bzw. Proteinkonstrukte, die ähnliche Wirkung auf Tumorzellen aufweisen, wie dies z.B. in US 5,744,442 zusammenfassend dargestellt wird.
e) Spirocyclic-6, 7-dihydro-5H-pyrazolo [1, 2-a] pyrazol-1-ones, welches auf inflammatorisch wirkende Cytokine einwirkt, wie dies z.B. in US 6,566,357, US 6,821,971 oder US 6,730,668 dargestellt wird.
f) 1, 1, 3-tri-substituierte HarnstoffVerbindungen, welche auf inflammatorisch wirkende Cytokine einwirken können, wie dies z.B. in US 7,449,474 dargestellt wird.
g) Substituierte Pyrrolo [3 , 2-d] pyrimidin-2, 4-dione, welche als Adenosin-Rezeptor Antagonisten wirken und ebenfalls auf inflammatorisch wirkende Cytokine einwirken können, wie dies z.B. in US 7,449,473 dargestellt wird. h) Verbindungen welche die Wirkung von sekretiertem TNFalpha beeinflussen, wie Etanercept (Enbrel) , Inflixamab (Remicade), wie dies z.B. in US 6,881,407 dargestellt wird.
i) Verbindungen, welche radioaktiv oder paramagnetisch markiert sind, um primäre Tumore oder Metastasen erkennen zu können, wie dies z.B. in US 5,733,892 oder US 7,329,644 ausgeführt wird.
j ) Verbindungen, welche zur Chemotherapie eingesetzt werden, um das Wachstum von Tumoren und ihrer Metastasen zu unterdrücken, wie dies in US 7,148,196 dargestellt wird.
k) Taorolidin und seine medizinisch wirksamen Derivate, welche das Wachstum von Tumoren und Metastasen beeinflussen können, wie dies z.B. in US 7,122,541 dargestellt wird.
1) Kronetherverbindungen, welche geeignet sind, Viren zu binden, wie dies z.B. in US 5,314,878 beschrieben wird.
m) Verbindungen, mit denen es gelingt, Viren zu inaktivieren, wie dies z.B. in US 5,120,649 dargestellt wird.
PPIase- Inhibitoren, die im Rahmen der Erfindung besonders bevorzugt als Effektoren (Wirkstoff A) eingesetzt werden, sind:
- Pinl- Inhibitoren, die Antikörper, Antisense
Oligonukleotide oder auch kurze Nukleinsäuremoleküle (siRNA) oder kleine organische Verbindungen wie z.B. Juglone oder aromatische Strukturen wie PIA, PIB PIC, PID, PIE, PIF, PIJ sein können, wie sie in US 7,417,072 bzw. Biopolymers 84(2006)125-146 beschrieben wurden.
Mit diesen Inhibitoren gelingt es z.B., die PPIase- Aktivität von extrazellulärem Pinl zu hemmen und so heilend auf Fehlsteuerungen des Immunsystems einzuwirken, welche z.B. mit der vermehrten Zahl Eosin-positiver Zellen im Blut einher geht. Pinl-Inhibitoren können aber auch die mit Krankheiten zusammenhängende Expression von Cytokinen, wie dies beispielsweise bei Erkrankungen des asthmatischen Formenkreises oder aber auch bei der nicht erwünschte Abstoßung transplantierter Organe beobachtet wird, therapeutisch beeinflussen oder antikarzinogen bzw. antifungal wirken (z.B. : Cellular & Molecular Life Sciences 65(2008)359-375) . Möglicherweise ist ein Teil der Pinl-Wirkung auf die Beeinflussung der TGFl-beta-
Konzentration zurückzuführen (z.B.: Journal of Clinical Investigation 118(2008)479-490; Journal of Allergy & Clinical Immunology 120(2007)1082-1088) .
- Peptidmimetika des Phospho-Ser-Pro bzw. Phospho-Thr-Pro- Motifs.
- Peptide, wie sie von Wang et al . (JACS 126(2004)15533-
155542; Biopolymers 84(2006)125-146) einschließlich ihrer antiproliferativen Wirkung beschrieben wurden.
Spiroannulated 3-benzofuranones (Molecules. 13(2008)995- 1003) .
- Sulfonamide heterozyklischer Thioester (US 7,410,995, US 7,265,150, US 7,338,976) . - Neurotroph wirkende N-glyoxyl-prolyl Ester (US 7,282,510, US 5,859,031) .
- Heterozyklische Verbindungen (US 6,562,964 und US 6,372,736) .
- Allgemeine FKBP- Inhibitoren (US 6291510 und US 6140357, US 6509477, US 6509477, US6 , 509 , 477) .
- FKBP bindende Pipecolinsäurederivate (US 6,500,843, US 6,022,878, US 5,846,981, US 5,843,960, US 5,801,197)
PPIase- Inhibitoren .
- FKBP Inhibitoren US 6,509,464, US 6,495,549, US 6,166,0111.
FKBP- Inhibitoren werden derzeit vorwiegend genutzt oder vorgeschlagen zu nutzen als Wirkstoffe mit neurotrophen Effekten und sind geeignet zur Behandlung von Nervenkrankheiten (z.B.:WO 96/40140, WO 96/40633, PNAS 91(1994)3191-95, Nature Medicine 1(1995) 32-37, WO 96/40140, WO 96/40633, WO 97/16190, US 7276498) möglicherweise hervorgerufen durch Inhibierung von FKBP- 12 or FKBP- 52, als Wirkstoff mit immunosuppressiven Eigenschaften zur Verhinderung der Transplantatabstoßung (Clinical Chemistry 39(1093)2219-2228, Current Opinion in Immunology 5(1993) 763-773, Transplantation Proceedings 38(2006)1823-1824), zur therapeutischen Beeinflussung von gutartigen und bösartigen Geschwülsten (z.B: Current Problems in Cancer (2008)161-177, Molecular Cancer Therapeutics 7(2008) 1347-1354, Cancer 100(2004)657-666), zur Behandlung von Erkrankungen, welche mit Entzündungen einhergehen (Transplantation Proceedings 37(2005)1880- 1884, Molecular Pharmacology 65(2004)880-889, Journal of Biological Chemistry 278(2003)45117-45127, Inflammation Research 49(2000)20-26) oder zur Beeinflussung der Angiogenese (z.B.: Hepatology Research 38(2008)1130-1139, FEBS Letters 582(20008)3097-3102, Clinical Cancer Research 13 (13) =3977-3988, 2007) .
- Heteroaryl-pyrrolidin, -piperidin und -homopiperidin- Derivate (US 6,686,357) .
FK506-Konjugate mit Amyloid-bindenden Peptiden zur Behandlung neurologischer Erkrankungen wie Alzheimer,
Multiple Sklerose oder Amyotropher Lateral Sklerose (US 6,316,405) .
Tumorantigen Peptide und entsprechende Derivate, welche von Cyclophilin B oder Cyclophilin abgeleitet wurden (US 7,368,107; US 7,041,297) .
- Nicht-peptidische Verbindungen, geeignet, die Regeneration neuronaler Zellen therapeutisch beeinflussen zu können (US 6,677 ,376) .
- Therpautisch nutzbare zyklische Kohlenwasserstoffe (US 6,656,971) .
- Verbindungen, welche Haarausfall, den Befall mit
Parasiten aber auch HIV-Virus- Infektionen therapeutisch beeinflussen können (US 6,593,362) .
- Nichtimmunosuppressiv wirkende 6-position Cyclosporin Analoga (US 4,941,88) .
Cyclosporin-Analoga zur therapeutischen Beeinflussung des Immun- und AtmungsSystems (US 7,226,906, US 7,141,648, US 6,927,208, US 5,994,299; US 5,977, 067, US 5, 965,527, US
4,288,431, US 6,455,518, US 6,432, 968, US 6, 046,328) .
- Cyclosporin-Alkine (US 7,378,391, US 7,361,636) .
- Deuterierte Cyclosporin Analoga (US 7,358,229), besonders geeignet zur Behandlung von Erkrankungen des Immnunsystems .
3-Ether und 3-Thioether des Ciclosporins, besonders geeignet zur Behandlung von Hepatitis C - Infektionen (US 7,196,161) .
3-Position Cyclosporin-Derivate, besonders geeignet zur Förderung des Haarwachstums (US 6,987,090, US 6,790,830, US 6,762,164) .
Cyclosporin Analoga, besonders geeignet zur Behandlung von Autoimmun Erkrankungen (US 6,809,077) .
- Cyclosporin-Derivate, besonders geeignet zur Behandlung einer rheumatoiden Arthritis (US 6,770,279) .
Cyclosporin-Konjugate mit Amyloid-bindenden Peptiden zur Behandlung neurologischer Erkrankungen wie Alzheimer, Multiple Sklerose oder Amyotropher Lateral Sklerose (US 6,316,405) .
Cyclosporin Derivate, besonders geeignet zur Behandlung von HIV-Infektionen (US 5,948,884) .
8-Position Cyclosporin Derivate (US 5,318,901) . - Cyclosporin-Peptolide (US 5,116,816), besonders geeignet als immunosuppressive, anti-inflammatorische und anti- parasitische Wirkstoffe.
6-Position Cyclosporin Analoga mit nicht- immunosuppressiven Eigenschaften (US 4,914,188) .
Pharmazeutische Zusammensetzungen zur Behandlung der Transplantatabstoßung, von autoimmun- oder entzündlichen Erkrankungen unter Nutzung von Cyclosporin A und 40-O- (2- hydroxyethyl) -Rapamycin.
Cyclosporin Analoga mit modifizierten C- 9 Aminosäuren (US 4,885,276; US 4,798,823), welche immunosuppressive Eigenschaften aufweisen.
- Geldanamycin und seine Derivate (US 7,378,407, US 7,259,156, US 6,890,917, US 4,261,989) als Antitumor- Arzneimittel .
- Fredericamycin und seine Derivate (US 7,244,741, US
5,166,208, US 4,673,678) als Antitumor-Arzneimittel und antibakteriell wirkend.
- Rapamycin-Derivate (Rapamycin und seine Derivate zur Behandlung neurologischer Erkrankungen und als neuroprotektive and neuroregenerative Substanz (US
7,273,874, US 7,282,505, US 7,232,86, US 7,135,298, US
7,045,508, US 7,034,037, US 6,890,546, US 6,808,536, US
6,713,607, US 6,70,9873, US 6,585,764, US 6,432,968, US 6,277,983, US 6,200,985, US 6,200,985, US 6,046,328, US
6,015,809, US 5,989,591, US 5,985,890 US 5,985,325, US
5,955,457, US 5,912,253, US 5,780,462, US 5,776,943, US
5,728,710, US 5,712,129, US 5,661,156, US 5,648,361, US 5,646,160, US 5,491,229 , US 5,387,680, US 5,432,183, US 5,362,735, US 5,202,332, US 5,023,262) auch in Form von 42 -O-alkoxyalkyl-Derivaten (US 7,217,286), alkylierten Verbindungen (US 7,193,078, US 5,922,730, US 5,665,772), Carbohydraten (US 7,160,867), deuterierten Derivaten (US 6,939,878, US 6,884,429, US 6,710,053, US 6,503,921, US 6,342,507), Dialdehyden (US 6,680,330), Enole (US 6,677,357), Konjugate (US 6,541,612, US 6,328,970), 40-O- ( 2 -hydroxyethyl) -Derivate (US 6,455,518, US 6,239,124), O-alkylierten Verbindungen (US 6,440,990), Ester (US 6,432,973), Tetrazole (US 6,329,386, US 6,015,815) , Oxime, Hydroxylamine un Hydrazone (US 5,455,249, US 5,446,048, US 5,378,836, US 5,373,014, US 5,455,249, US 5,446,048, US 5,378,836, US 5,373,014, US 5,677,295, US 5,563,145, US 5,023,264), Carbamate (US 5,559,120, US 5,567,709, US 5,559,119, US 5,559,112, US 5,550,133, US 5,541,192, US 5,541,191, US 5,637,590, US 5,532,355, US 5,530,121, US 5,530,007, US 5,519,031, US 5,516,780, US 5,508,399, US 5,508,286, US 5,504,204, US 5,489,680, US 5,489,595, US 5,488,054, US 5,486,524, 5,486,523, US 5,486,522, US 5,484,791, US 5,484,790, US 5,480,989, US 5,480,988, US 5,463,048, US 5,455,249, US 5,434,260, US 5,411,967,US 5,391,730, US 5,302,584, US 5,262,424, US 5,262,423, US 5,194,447, US 5,118,678), N-Oxid-Estem (US 5,521,194, US 5,559,122, US 5,508,290, US 5,508,285, US 5,491,231), Ester (US 5,504,091, US 5,389,639, US
5,416,086, US 5,385,910, US 5,385,909, US 5,385,908, US 5,378,696, US 5,362,718, US 5,358,944, US 5,349,060, US 5,260,300, US 5,233,036, US 5,221,670, US 5,162,333, US 5,130,307, US 5,118,677, US 5,100,883, Sulfonate und Sulfamate (US 5,346,893, US 5,260,299, US 5,177,203),
Oxepane (US 5,344,833, US 5,221,740), Imidazolyl-Derivate (US 5,310,903), Pyrazole (US 5,169,851, US 5,164,399), Azetale (US 5,151,413), Ether (US 5,120,842), Dimere (US 5,120,727) oder Hydrazone (US 5,120,726)
In einer bevorzugten Ausführungsform wird der Wirkstoff A des Wirkstoff-Peptid-Konstrukts der vorliegenden Erfindung ausgewählt aus der Gruppe bestehend aus Cyclosporin A, FK 506 und Rapamycin.
In einer weiteren bevorzugten Ausführungsform handelt es sich bei dem Wirkstoff A des erfindungsgemäßen Wirkstoff-Peptid- Konstrukts um einen Wirkstoff, der schwerlöslich ist und in einer besonders bevorzugten Ausführungsform handelt es sich bei dem Wirkstoff A um einen Wirkstoff, der im extrazellulären Raum schwerlöslich ist.
Unter dem erfindungsgemäß verwendeten Ausdruck
„schwerlöslicher Wirkstoff" wird vorliegend eine pharmazeutisch wirksame Substanz verstanden, die bei einer Temperatur von 20 0C eine Löslichkeit in Wasser von kleiner als 1 g (Wirkstoff) pro 30 ml (Wasser) aufweist.
In einer weiteren besonders bevorzugten Ausführungsform handelt es sich bei dem Wirkstoff A um Cyclosporin A.
Cyclosporin (auch Ciclosporin) ist ein zyklisches Oligopeptid mit immunosuppressiver und calcineurin-hemmender Wirkung. Es zeichnet sich durch einen selektiven und reversiblen Mechanismus der Immunosuppression aus. Es blockiert selektiv die Aktivierung von T-Lymphozyten über die Produktion von bestimmten Zytokinen, die an der Regulierung dieser T-Zellen beteiligt sind. Dabei wird vor allem die Synthese von
Interleukin-2 gehemmt, wodurch gleichzeitig die Proliferation von zytotoxischen T-Lymphozyten, die z. B. für die Abstoßung von fremdem Gewebe verantwortlich sind, supprimiert wird. Cyclosporin wirkt intrazellulär durch Bindung an die so genannten Cyclophiline oder Immunophiline, die zur Familie der Cyclosporin-bindenden Proteine gehören.
Inhibitoren von Cyclophilinen weisen ein sehr großes therapeutisches Spektrum auf, wie z.B. die Behandlung von Erkrankungen des Atmungstraktes, wie z.B. Asthma, COPD, Lungenentzündung oder Emphysem (Expert Opinion on Investigational Drugs 12(2003)647-653, Biodrugs 8(1997) 205- 215, American Journal of Respiratory Cell & Molecular Biology 20(1999)481-492), StoffWechselerkrankungen wie Diabetes
(Transplantation Proceedings 37(2005)1857-1860, Molecular Pharmacology 60(2001)873-879), entzündliche Erkrankungen des Verdauungstraktes (Bone Marrow Transplantation 26 (2000) : 545- 551, Pharmaceutical Research 20(2003)910-917), Störungen des Immunsystems (Immunology Letters 84(2002)137-143, Acta
Biochimica Polonica 49(2002)233-247, Entzündungen (Journal of Periodontal Research 42(2007)580-588, Journal of Neurology, Neurosurgery & Psychiatry 76(2005)1115-1120, Transplant Immunology 12 (2004) : 151-157) , kardiovaskuläre Erkrankungen (Journal of Hypertension 17(1999)1707-1713, Drug & Chemical
Toxicology 21(1998)27-34), neurologische Erkrankungen (Annais of Vascular Surgery. 20(2006) 243-249), Erkrankungen welche mit Störung der Angiogenese einhergehen (Blood Purification. 25(2007)466-472, International Angiology 24(2005)372-379, Nefrologia. 23 (2003) :44-48) , zur Unterdrückung der Immunantwort bei Organtransplantation (Bone Marrow Transplantation. 38(2006)169-174), Biodrugs. 14(2000)185-193, Clinical Immunotherapeutics . 5(1996)351-373) und von Autoimmunerkrankungen (Immunology & Immunopathology . 82 (3) :197-202, 1997), Erkrankungen des arthritischen
Formenkreises (British Journal of Rheumatology . 36(1997)808- 811, Biodrugs. 7(1997)376-385), Dermatididen (Veterinary Dermatology 17(2006)3-16), Psoriasis (Journal of Dermatological Treatment 16(2005)258-277, Hautarzt 44(1993)353-360), bei Allergien (Cornea 27(2008)625, Journal of Small Animal Practice 47(2006)434-438, Clinical & Experimental Ophthalmology 34(2006)347-353), bei multipler Sklerose ( Immunopharmacology & Immunotoxicology 21(1999)527-549, Journal of Neuroimaging 7(1997)1-7), Erkrankungen die durch Ischemie verurssacht wurden, wie z.B. Infarkte des Herzens (Annais of Thoracic Surgery 86(2008)1286-1292, Acta Anaesthesiologica Scandinavica 51(2007)^909-913), des Pankreas (Pancreas 32(2006)145-151) oder des Hirns (Annais of Vascular Surgery 20(2006)243-249, Neurological Research 27(2005)827- 834) , Nierenerkrankungen wie z.B. Glomerulonephritis (Nephrology Dialysis Transplantation 19(2004)3207, Nephron 91(2002)509-511), Geschwulste (Journal of Investigative Dermatology 128(2008)2467-2473, Endocrinology 148(2007)4716- 4726), bei multiplen Myelomen (Leukemia 12(1998)505-509, Leukemia & Lymphoma 16(1994)167-170), bei akuter oder chronischer Leukemie (Cancer Chemotherapy & Pharmacology 52(2003)449-452, Cancer 97(2003)1481-1487), Muskel Degeneration (Neuroscience Research Communications 31(2002)85- 92 , Kachexie (International Journal of Cardiology
85(2002)173-183, Drugs 58(1999)953-963, 1999), Reiter's Syndrome (Rheumatology 40(2001)945-947),
Knochenabbauerkrankungen (European Journal of Pharmacology 564(2007)226-231, Biochemical & Biophysical Research Communications 254(1999)248-252), bei der Alzheimer ' sehen
Erkrankung (Biochemical & Biophysical Research Communications 248(1998)168-173, Chinese Medical Journal 115(2002)884-887), Malaria (Molecular & Biochemical Parasitology 99(1999)167- 181) , dem septischen und toxischen Schock Syndrome (Journal of Pharmacology & Experimental Therapeutics 311(2004)1256-1263), Myalgie (British Journal of Dermatology 147(2002)606-607), bei der Infektion mit Viren (Expert Opinion on Emerging Drugs 13(2008)393-416) wie z.B. HIV-I, HIV- 2, HIV-3 (Journal of Infectious Diseases 194(2006)1677-1685, Molecular Medicine Today 1(1995)287-291, 1995), Cytomegaloviren (Journal of Virology 81(2007)9013-9023) oder Adenoviren (Ophthalmologe 105(2008)592-594, Ophthalmologe 97(2000)764-768) und zur Förderung des Haarwachstums (Archives of Dermatological Research 296 (6) : 265-269, 2004, Annales de Dermatologie et de Venereologie 127(2000)769) .
Der Komplex aus Cyclosporin und Cyclophilin blockiert anschliessend die Serin-Threonin-Phosphatase Calcineurin. Deren Aktivitätszustand steuert wiederum die Aktivierung von Transkriptionsfaktoren wie etwa NF-KappaB oder NFATp/c, welche bei der Aktivierung verschiedener Zytokin-Gene, darunter auch das Interleukin-2 , eine entscheidende Rolle spielen. Hierdurch werden die immunkompetenten Lymphozyten während der GO- oder Gl-Phase des Zellzyklus arretiert, da die für die Zellteilung essentiellen Proteine wie Interleukin-2 nicht mehr produziert werden können. T-HeIfer-Zellen, welche die Aktivität der für die Abstoßung verantwortlichen zytotoxischen T-Zellen erhöhen, sind der bevorzugte Angriffspunkt für Cyclosporin.
Daneben inhibiert Cyclosporin die Synthese und Freisetzung weiterer Lymphokine, die für die Proliferation reifer zytotoxischer T-Lymphozyten und für weitere Funktionen der Lymphozyten zuständig sind. Die Fähigkeit von Cyclosporin, Interleukin-2 zu blockieren, ist für seine klinische
Wirksamkeit maßgeblich: Transplantatempfänger, die ihre Transplantate gut tolerieren, zeichnen sich durch eine niedrige Produktion von Interleukin-2 aus. Dagegen ist bei Patienten mit manifester Abstoßungsreaktion keine Hemmung der Interleukin-2 -Produktion feststellbar. Alle oben unter dem Absatz „Effekte von Cyclophilin- Inhibitoren" beobachtete Wirkungen wurden für Cyclosporin und seine Derivate beschrieben. In einer weiteren besonders bevorzugten Ausführungsform handelt es sich bei dem Wirkstoff A um FK 506 oder Rapamycin.
In einer weiteren bevorzugten Ausführungsform ist das Peptid B an den Wirkstoff A kovalent gebunden. Das Peptid kann jedoch grundsätzlich mit dem Wirkstoff A auf jede Art verbunden werden, die dem Fachmann als für den erfindungsgemäßen Zweck geeignet bekannt ist.
Im Rahmen der vorliegenden Erfindung kann das Wirkstoff -
Peptid-Konstrukt weiter Gruppen umfassen, die das Wirkstoff- Peptid-Konstrukt mit weiteren Eigenschaften versehen, die für den Fachmann für den jeweiligen Einsatzzweck wünschenswert sind, solange es frei ist von einem Bestandteil C wie vorstehend näher definiert. Dabei kann das erfindungsgemäße Wirkstoff-Peptid-Konstrukt mit einer, aber auch mit mehreren Gruppen verbunden werden, die entweder gleich, gleichartig oder unterschiedlich sein können. Die Aufnahme zusätzlicher Gruppen in das erfindungsgemäße Wirkstoff -Peptid-Konstrukt kann dabei zum Einen dazu dienen, bereits vorhandene
Eigenschaften zu verstärken, zum Anderen ist es aber auch möglich, das Konstrukt mit neuen, weiteren Eigenschaften zu versehen. Es ist beispielsweise denkbar, dass das Konstrukt mit einem Indikator versehen wird, um dessen Anreicherung im gewünschten Gewebe zu kontrollieren oder um das gewünschte Gewebe mittels Indikatorverteilung klassifizieren zu können. Weiter ist es denkbar, dass das Konstrukt mit einer Gruppe versehen wird, die seine Anreicherung in ganz bestimmten Geweben ermöglicht.
In einer bevorzugten Ausführungsform umfasst das Wirkstoff- Peptid-Konstrukt einen Indikator. In einer weiter bevorzugten Ausführungsform ist der Indikator an den Wirkstoff A kovalent gebunden. Der Indikator kann jedoch grundsätzlich mit dem Wirkstoff A auf jede Art verbunden werden, die dem Fachmann als für den erfindungsgemäßen Zweck geeignet bekannt ist.
In einer weiteren bevorzugten Ausführungsform ist der Indikator kovalent an das Peptid B gebunden. Der Indikator kann jedoch grundsätzlich mit dem Peptid B auf jede Art verbunden werden, die dem Fachmann als für den erfindungsgemäßen Zweck geeignet bekannt ist.
In einer besonders bevorzugten Ausführungsform ist der Indikator kovalent an einen Linker, der das Peptid B mit dem Wirkstoff A verbindet, gebunden.
Bei dem Linker kann es sich im Rahmen der vorliegenden Erfindung um jede Verbindung handeln, die dem Fachmann als für den erfindungsgemäßen Zweck geeignet bekannt ist. Bevorzugt handelt es sich dabei jedoch um eine Verbindung, die frei von einer Protease-Schnittstelle ist. Besonders bevorzugt wird der Linker ausgewählt aus der Gruppe bestehend aus Molekülen, welche einen Atomabstand zwischen vier und 40 Atomen ausbilden.
Unter dem Begriff „Indikator" sind im Sinne der Erfindung Stoffe wie vorzugsweise Farbstoffe, Spannungs-sensitive Indikatoren, pH-Wert Indikatoren, Calcium- sensitive Indikatoren, radioaktive Elemente, NMR-Label oder Elektronenspinlabel gemeint, welche in der wissenschaftlichen Literatur mehrfach beschrieben sind (WO/2005/022158, EP 0649022, US 6,596,499, US 7,090,995, US 4,672,044) . Der Begriff Indikator umfasst im Sinne der Erfindung vorzugsweise einzelne Atome oder Moleküle, welche kovalent mit dem Konstrukt verbunden sind. Dabei kann ein Indikator oder auch mehrere Indikatoren direkt an dass Wirkstoffmolekül kovalent gebunden sein, der Indikator oder auch mehrere Indikatoren können aber auch an einen mehrfunktionellen Linker gebunden sein oder der Indikator oder auch mehrere Indikatoren können auch innerhalb des sauren Peptids oder endständig an das saure Peptid kovalent gebunden sein. Bevorzugt umfasst der Begriff „Indikator" Farbstoffe, Spannungs-sensitive Indikatoren, pH- Wert sensitive Indikatoren, radioaktive Elemente, Calcium- sensitive Indikatoren, NMR Label und Elektrospinlabel .
"Farbstoffe" im Sinne der Erfindung sind Stoffe, die optisch durch Detektion der von ihnen ausgesandten oder der durch sie nicht absorbierten elektromagnetischen Strahlung nachgewiesen werden können. Dazu gehören z.B. Farbstoffe wie Fluoresceinisocyanat (FIC) , Flouresceinisothiocyanat (FITC) , Dimethylaminonaphthalen-S-sulphonylchlorid (DANSC) , Tetramethylrhodaminisothiocyanat (TRITC) , Lissaminrhodamin B200 sulphonylchloride (RB 200 SC) usw. Eine Beschreibung zahlreicher geeigneter Moleküle ist z.B. zu finden bei DeLuca, "Immunofluorescence Analysis", in „Antibody As A Tool",
Marchalonis et al . , Eds . , John Wiley & Sons, Ltd., pp. 189- 231, (1985) .
"Spannungs -sensitive Indikatoren" im Sinne der Erfindung sind Stoffe, die in Abhängigkeit einer anliegenden elektrischen Potentialdifferenz oder des vorliegenden elektrischen Potentials derart ihre physikalischen, optischen oder katalytischen Eigenschaften ändern, dass diese ein detektierbares Signal hervorrufen. Dem Fachmann bekannt sind spannungssensitive Indikatoren wie z. B. DIBAC [Japanese
Journal of Pharmacology 86(2001)342-350, American Journal of Physiology - Heart & Circulatory Physiology 287(2004) H985- H993) . "pH-Wert-sensitive Indikatoren" im Sinne der Erfindung sind Stoffe, die in Abhängigkeit des pH- Wertes derart ihre physikalischen, optischen oder katalytischen Eigenschaften ändern, dass diese ein detektierbares Signal hervorrufen. Solche Indikatorfarbstoffe, wie z.B. Phenolrot,
Bromthymolblau, Bromphenolblau u.v.a. sind dem Fachmann bekannt .
"Calcium-sensitive Indikatoren" im Sinne der Erfindung sind Stoffe, die in Anwesenheit von Calcium derart ihre physikalischen, optischen oder katalytischen Eigenschaften ändern, dass diese ein detektierbares Signal hervorrufen. Dem Fachmann bekannte Calcium- sensitive Indikatoren sind z. B. das Aequorin und andere Calcium- sensitive Farbstoffe wie z. B FURA-2.
"Radioaktive Elemente" im Sinne der Erfindung erzeugen z.B. Gammastrahlung, wie z.B. folgende Isotope 124J, 125J, 128J, 131J, 132J oder 51Cr, wobei besonders das 125J bevorzugt sein soll. Andere, wie z.B. 11C, 18F, 15O oder 13N können mittels ihrer
Positronenstrahlung und entsprechender Detektoren (Positronen- Emissions-Tomographie) und andere, wie z.B. 111In, lassen sich mittels Elektroneneinfang („electron capture") nachweisen.
„NMR-Label" im Sinne der Erfindung sind Substanzen, in denen Atome mit ungerader Nukleonenanzahl (Summe der Protonen und Neutronen) enthalten sind. Solche Atomkerne z.B.: 13C, 15N oder 19F besitzen einen Kernspin und damit ein kernmagnetisches Moment .
„Elektronenspinlabel" dienen im Sinne der Erfindung der Messung der „Electron Paramagnetic Resonance" mittels Elektronenspinresonanz . Dabei wird die resonante Mikrowellenabsorption einer Probe in einem äußeren Magnetfeld gemessen. Damit lassen sich Moleküle nachweisen, die über ein permanentes magnetisches Moment (ungepaarte Elektronen) verfügen (Physics in Medicine & Biology. 43 (1998) U 3-U 4, Clinical Chemistry & Laboratory Medicine. 46(2008)1203-1210) .
Das erfindungsgemäße Wirkstoff-Peptid-Konstrukt kann dabei einen oder auch mehrere Indikatoren enthalten, die gleicher oder aber auch unterschiedlicher Natur sein können.
Die Verwendung von Indikatoren ist besonders vorteilhaft, soll das erfindungsgemäße Wirkstoff -Peptid-Konstrukt zur Herstellung eines Arzneimittels zur Anwendung in einem therapeutischen Verfahren wie beispielsweise einem Diagnoseverfahren eingesetzt werden (z. B. Anamneseerhebung, körperliche Untersuchung, Anwendung bildgebender Verfahren wie Röntgen/MRT oder Analytik mit Laborwerten des Bluts und anderen Körperflüssigkeiten) . Enthalten die erfindungsgemäßen Wirkstoff -Peptid-Konstrukte noch einen oder mehrere Indikatoren, kann der Verteilungsraum des Wirkstoffs A anhand dieser Indikatoren erkannt werden. Indikatoren können überdies genutzt werden um den Wirkstoff A zu quantifizieren.
In einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Wirkstoff-Peptid-Konstrukt zudem frei von einer Protease-Schnittstelle, insbesondere frei von einer
Protease-Schnittstelle, welche nach dem Schnitt das Peptid B vom Konstrukt abspaltet, wie beispielsweise einem Linker aus dafür geeigneten Aminosäuren (wie sie dem Fachmann bekannt sind) , der beispielsweise der Verbindung der einzelnen Gruppen des Konstrukts dienen könnte.
Werden einzelne Gruppen nicht direkt, sondern über einen spaltbaren Linker verbunden, so könnte es unter Umständen - denkbar wäre beispielsweise eine unbeabsichtigte Nebenwirkung bei der Verabreichung mehrerer Arzneimittel - zu einer unbeabsichtigten Spaltung und somit zum Verlust der jeweils über den Linker verknüpften Gruppe kommen.
Das erfindungsgemäße Wirkstoff-Peptid-Konstrukt betrifft in besonders bevorzugten Ausführungsformen Konstrukte bzw. ein Molekül mit folgenden Formeln, in welchen R, sofern enthalten, ein Carboxy-Tamra- oder Acetyl-Rest ist.
C-N-CH C-OH
In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Anreicherung von Wirkstoffen in einem extrazellulären Raum eines multizellulären Objekts, umfassend die Schritte:
- Bereitstellen eines Wirkstoff- Peptid-Konstrukts wie vorstehend definiert;
- Inkontaktbringen des Konstrukts mit einem multizellulären Obj ekt .
Unter einem „extrazellulären Raum" sollen all die Bereiche verstanden werden, welche sich außerhalb des Zytosols und der das Zytosol umschließenden Membran befinden. Dazu gehört auch die beispielsweise in Zellsuspensionen vorhandene Kulturlösung .
Bei dem multizellulären Objekt kann es sich um jedes Objekt handeln, dass aus mindestens zwei gleichen oder unterschiedlichen biologischen Zellen besteht. Der Begriff „biologische Zelle" umfasst dabei sowohl menschliche, tierische als auch pflanzliche und bakterielle Zellen sowie einzellige Lebewesen. Handelt es sich bei den biologischen Zellen um bakterielle Zellen oder einzellige Lebewesen, so wird unter dem Begriff „multizelluläres Objekt" eine Ansammlung mehrerer Zellen, wie beispielsweise eine Zellkolonie einer Bakterienkultur verstanden. Handelt es sich bei den biologischen Zellen um menschliche oder tierische Zellen, so wird unter dem Begriff „multizelluläres Objekt" ein separiertes Körperteil, wie beispielsweise ein Transplantat, insbesondere ein Organ, ein Körperteil wie eine Gliedmaße oder ein Gewebetransplantat, Blut oder eine Blutfraktion, wie beispielsweise Blutplasma oder eine in-vitro Kultur menschlicher und/oder tierischer Zellen, wie beispielsweise eine zweidimensionale Gewebekultur oder eine Spheroidkultur der Zellen verstanden. Handelt es sich bei den biologischen Zellen um Pflanzenzellen, so wird unter dem Begriff „multizelluläres Objekt" ein Teil einer Pflanze, wie beispielsweise Blätter, Wurzel oder Stengel oder auch eine ganze Pflanze verstanden.
In einer bevorzugten Ausführungsform handelt es sich bei dem multizellulären Objekt um ein separiertes Organ oder Körperteil, Blut oder eine Blutfraktion, eine Zellkultur oder eine Pflanze.
Die Erfindung bezieht sich weiter auf die Verwendung des erfindungsgemäßen Wirkstoff-Peptid-Konstrukts als Arzneimittel . Das erfindungsgemäße Konstrukt kann dabei zur Herstellung von Arzneimitteln verwendet werden. Bevorzugt wird das erfindungsgemäße Konstrukt zur Behandlung nicht immunosuppressiv wirkender Krankheiten verwendet.
Anwendungsbereich der erfindungsgemäßen Arzneimittel können Therapie und Diagnose von Krankheiten aber auch kosmetischer Art sein, wobei unter Therapie im weitesten Sinn auch die
Bekämpfung von Schädlingen im Tier- und Pflanzenreich bzw. die Unterstützung von Heilungsprozessen im Tier- und Pflanzenreich aber auch die Beeinflussung biologischer Prozesse in gewünschter Weise verstanden werden soll. Besondere Vorteile liegen dabei in der Tier- und Humanmedizin, bei der Applikation von Stoffen auf oder in Zellsuspensionen, Gewebekulturen, Transplantaten oder dem gesamten Säugetiere.
Die vorliegende Erfindung betrifft des Weiteren die Verwendung des erfindungsgemäßen Wirkstoff-Peptid-Konstrukts als Mittel zur Diagnosefindung. Die Erfindung betrifft ferner die Verwendung des erfindungsgemäßen Konstrukts für die Herstellung eines Arzneimittels zur Behandlung nicht-immunosuppressiver Erkrankungen .
Das Arzneimittel kann dabei in jeder Form verabreicht werden, die dem Fachmann als für den beabsichtigten Zweck geeignet bekannt ist. Beispielsweise kann das Arzneimittel in einer Form, ausgewählt aus der Gruppe bestehend aus Injektionen, Infusionen, Tabletten, Cremes, Sprays, Kapseln, Sirupen, Emulsionen, Pudern, Pulvern, Zäpfchen oder Ähnlichen eingesetzt werden. Besonders bevorzugt ist dabei, dass das Arzneimittel in Form von Sprays oder Tabletten eingesetzt wird.
Die vorliegende Erfindung betrifft ferner in einem weiteren Aspekt eine pharmazeutische Zusammensetzung umfassend ein erfindungsgemäßes Wirkstoff -Peptid-Konstrukt . Bei der Zusammensetzung kann es sich dabei um jede pharmazeutische Zusammensetzung handeln, die dem Fachmann als geeignet bekannt ist. In einer bevorzugten Ausführungsform handelt es sich bei der pharmazeutischen Zusammensetzung um Sprays oder Tabletten.
Beispiele und Figuren
Die vorliegende Erfindung soll nun anhand der folgenden Figuren und Beispiele näher beschrieben werden. Die Figuren und Beispiele haben dabei rein veranschaulichenden Charakter und sollen den Rahmen der vorliegenden Erfindung keinesfalls einschränken .
Es zeigen
Fig. 1: Das Cyclosporinderivat [O-carboxymethyl D-Ser] 8 CsA (Cs6)
Fig. 2: Das Cyclosporinderivat Cs9-TAMRA
Fig. 3: Das Cyclosporinderivat CsMl
Fig. 4: Das Cyclosporinderivat CsM2
Fig. 5: Das Cyclosporinderivat CsM3
Fig. 6: Der trifunktionale Linker (MM-50)
Fig. 7: Der trifunktionale Linker (MM-50) mit TAMRA verknüpft
Fig. 8: Das Cyclosporinderivat MM-218
Fig. 9: Das Cyclosporinderivat IK-7-39B
Fig. 10: Das Cyclosporinderivat CsM4
Fig. 11: Das Cyclosporinderivat CsM5 Fig. 12: Das Cyclosporinderivat CsM6, wobei R für einen Carboxy-TAMRA- oder einen Acetyl-Rest steht.
Fig. 13: Das Cyclosporinderivat CsM7
Fig. 14: Das FK506 -Derivat FKMl
Fig. 15: Das FK506 -Derivat FKM2
Fig. 16: Das FK506-Derivat FKM3 , wobei R für einen Carboxy- TAMRA- oder Acetyl-Rest steht.
Fig. 17: Das FK506 -Derivat FKM4
Fig. 18: Das Rapamycin-Derivat RPMl
Fig. 19: Das Rapamycin-Derivat RPM2
Fig. 20: Das Rapamycin-Derivat RPM3 , wobei R für einen
Carboxy-TAMRA- oder Azetyl-Rest steht.
Fig. 21A, B: Kontrollbilder : Heia Zellen ohne zugesetztem
Cyclosporinderivat aufgenommen mittels Phasenkontrast (A) und Fluoreszenz (B) .
Fig. 21C,D:MM218-Inkubation: Heia Zellen inkubiert mit 250 nM MM218 für 2 h aufgenommen mittels Phasenkontrast (C) und Fluoreszenz (D) .
Fig. 2IE, F : Cs9 -Rhd- Inkubation: Heia Zellen inkubiert mit 250 nM Cs9-Rhd für 2 h aufgenommen mittels Phasenkontrast
(E) und Fluoreszenz (F) . Fig. 22: Einfluss von MM218 auf die Anzahl der CD4 positiven T-Zellen, welche durch die Ovalbuminsensibiliserung in die Bronchialschleimhäute einwanderten.
Fig. 23: Einfluss von MM218 auf die Anzahl der Eosinophilen Granulozyten (Eosinophile) , welche durch die
Ovalbuminsensibiliserung in die Bronchialschleimhäute einwanderten.
Fig. 24: Chemotaxisassay . Es wird gezeigt, dass ohne jedweden Zusatz eines Stimulus (-) ein Chemotaxis Index von etwa 2,7+/- 0,3 erhalten wird.
Beispiel 1; Synthesen Cyclosporinderivate
a) [O-carboxymethyl D-Ser] 8 CsA (Cs6) (Fig.l)
Eine Mischung von 60 mg [D-Ser] 8 CsA, 20 mg tert- Butylbromoazetat und 5 mg Benzyltriethylammoniumchlorid, 1 ml CH2Cl2 und 2 ml 30% NaOH wurde zwei Stunden bei Raumtemperatur gerührt. Die Mischung wurde anschließend mit 10 ml Wasser versetzt und zweifach mit Äther extrahiert. Anschließend wurde die organische Lösungsmittelschicht mit Na2SO4 getrocknet und nachfolgend ohne weitere Trennung mit 60 mM KOH in Methanol versetzt und bei Raumtemperatur weitere drei Stunden gerührt. Nach versetzen mit Essigsäure wurde der Überstand im Vakuum entfernt. Anschließend wurde Ethylacetat zugesetzt und mit Wasser gewaschen. Nach Abtrennen der organischen Schicht und Trocknen mit Na2SO4 und nachfolgender Vakuumtrocknung wurde das Produkt mittels RP HPLC abgetrennt. Mittels MALDI- Massenspektrometrie wurde die Masse [M+H] + der Verbindung zu 1276,8 bestimmt.
b) Rhodamin markiertes Cs9-TAMRA (Fig. 2)
100 mg Cs6, 3 Teile NH2(CH2)SNHBoC, 4 Teile PyBop (Benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate) und 8 Teile DIPEA (N, N- Diisopropylethylamin) werden in 5 ml CH2Cl2 bei Raumtemperatur über Nacht gerührt. Anschließend werden 40 ml Ethylacetat zugesetzt und die organische Schicht mit 5% NaHSO4, 5% NaHCO3 und gesättigter NaCl Lösung gewaschen. Nach Trocknen mit Na2SO4 und anschließender Vakuumtrocknung kann das Produkt Cs9 mittels HPLC abgetrennt werden. Die MALDI Massenspektrometrie ergab eine Masse [MH-H]+ von 1461,3 (berechnet: 1460) . Anschließend wurde die Substanz mit 5 ml ZnCl2/Ether unter Stickstoffschütz drei Stunden bei Raumtemperatur inkubiert. Nach Zugabe von 0,1 ml Wasser und 15 ml Acetonitril konnte das präzipitierte Salz abfiltriert werden. Nach Vakuumtrocknung und Abtrennung mittels C8 HPLC konnte ein Produkt mit der Masse [M+H]+ von 1361,3 (theoretisch: 1360,1) mittels MALDI- Massenspektrometrie erhalten werden. Anschließend wurden zu 40 mg dieser Substanz (Cs9) eine 15 Minuten lang gemischte
Lösung bestehend aus 13,9 mg 5 (6) -Carboxytetramethylrhodamin (TAMRA) in 2 ml DMF, 12,3 mg HATU ( (2- (7-Aza-lH-benzotriazol- 1-yl) -1, 1, 3, 3-tetramethyluroniumhexafluorophosphat) und 15 μl DIPEA zugegeben. Danach wurde die Gesamtlösung drei Stunden bei Raumtemperatur gerührt und anschließend filtriert. Nach Abtrennung störender Begleitprodukte mittels HPLC konnte das TAMRA markierte Cs9 mittels MALDI-Massenspektrometie mit einer Masse von 1773,7 (theoretisch m/z 1772,1) bestimmt werden.
c) TAMRA markierter trifunktionaler Linker MM-50 (Fig. 7)
Zu einer Lösung von 5 (6) -Carboxytamra (130 mg) in 5 ml DMF wurden 114 mg HATU, 154 μl DIPEA und 82 mg HOAt zugegeben. Anschließend wurde die Lösung für 20 Minuten bei Raumtemperatur gemischt und zu einer Lösung von 200 mg des trifunktionalen Linkers MM- 50 (Fig. 6; Malesevic M, Lücke C, Jahreis G (2005) , Simple and efficient synthesis of new trifunctional templates, Peptides 2004, Proceedings of the Third International and Twenty-Eighth European Peptide Symposium, Kenes International, Israel, 391-392) in 5 ml DMF zugegeben. Nach Mischen der Lösung für zwei Stunden bei Raumtemperatur und Filterung wurde DMF im Vakuum entfernt. Nach Abtrennung des Produktes mittels RP HPLC konnte eine Masse von 1105,2 [M+H] + (theoretisch m/z berechnet 1104,5) mittels MALDI-Massenspektrometrie bestimmt werden.
d) Cyclosporinderivat CsMl (Fig. 3) CsMl wurde an einer 2-ClTrt-Matrix mittels Standard Fmoc- Prozeduren hergestellt. In jedem Zyklus werden die Fmoc- geschützten Aminosäuren mit PyBOP und DIPEA in DMF aktiviert und anschließend für zwei Stunden gekoppelt . Die Fmoc Schutzgruppe wird jeweils mit 20% Piperidin in DMF abgespalten. Der Tamra-markierte trifunktionale Linker wurde über Nacht, wie oben beschrieben, angekuppelt. Das Cyclosporinderivat (Cs6) wurde voraktiviert und mit HATU, HOAt und DIPEA und über Nacht gekuppelt. Die Seitenkette der D- Glutaminsäure wurde als t-Butylester geschützt. Nach der Sythese wurde das Produkt von der Matrix mittels 50 %
TFA/CH2Cl2 bei 5 0C entfernt und mittels RP HPLC isoliert.
e) Cyclosporinderivat CsM2 (Fig. 4) :
100 mg Cs6, 20 Teile NH2(CH2-CH2-O)2CH2CH2NH2 und 1,1 Teile PyBop wurden in 5 ml DMF bei Raumtemperatur über Nacht gerührt. Anschließend wurden 40 ml Ethylacetat zugesetzt und die organische Schicht mit 5% NaHSO4, 5% NaHCO3 und gesättigter NaCl Lösung gewaschen. Nach Trocknen mit Na2SO4 und anschließender Vakuumtrocknung wurde das Produkt (CsM2a) mittels HPLC abgetrennt. Anschließend wurde CsM2a mit 5 Teilen Succineanhydrid und 10 Teilen DIPEA in 5 ml DMF bei Raumtemperatur über Nacht gerührt. Anschließend wurden 40 ml Ethylacetat zugesetzt und die organische Schicht mit 5% NaHSO4, 5% NaHCO3 und gesättigter NaCl Lösung gewaschen. Nach Trocknen mit Na2SO4 und anschließender Vakuumtrocknung wurde das Produkt (CsM2b) mittels HPLC abgetrennt. Anschließend wurde CsM2b mit 1 Teil HATU, 3 Teilen DIPEA in 3 ml DMF für 10 min, bei Raumtemperatur gerührt. Danach wurde die Lösung zu einer Mischung aus einem äquivalenten Teil von H(D-GIu)6-GIy-OH gelöst in 2 ml DMF gegeben und über Nacht gerührt. Nach Filterung und präparativer HPLC konnte das Produkt CsM2 erhalten werden. f) Cyclosporinderivat CsM3 (Fig. 5)
Cs9 wurde mit 1 Teil HATU und 3 Teilen DIPEA in 3 ml DMF für 20 min, bei Raumtemperatur gerührt. Danach wurde die Lösung zu einer Mischung aus einem äquivalenten Teil von H-(D-GIu)6-GIy- OH gelöst in 2 ml DMF gegeben und über Nacht gerührt. Nach Filterung und präparativer HPLC konnte das Produkt CsM3 erhalten werden.
g) Cyclosporinderivat MM-218 (Fig. 8)
MM-218 wurde an einer 2-ClTrt-Matrix mittels Standard Fmoc- Prozeduren hergestellt. In jedem Zyklus werden die Fmoc- geschützten Aminosäuren mit PyBOP und DIPEA in DMF aktiviert und anschließend für zwei Stunden gekoppelt. Die Fmoc Schutzgruppe wird jeweils mit 20% Piperidin in DMF abgespalten. Der Tamra-markierte trifunktionale Linker wurde über Nacht, wie oben beschrieben, angekuppelt. Das Cyclosporinderivat (Cs6) wurde voraktiviert und mit HATU, HOAt und DIPEA und über Nacht gekuppelt. Die Seitenkette der D- Glutaminsäure wurde als t-Butylester geschützt. Nach der Sythese wurde das Produkt von der Matrix mittels 50 % TFA/CH2Cl2 bei 5 0C entfernt und mittels RP HPLC isoliert. Mittels MALDI -Massenspektrometrie konnte eine Masse [M+H] + von 2972,4 (berechnet 2971,5) ermittelt werden.
h) Cyclosporinderivat IK-7-39B (Fig. 9)
H-Dap(fluorescein) - (D-GIu) 6-Gly-OH wurde an einer 2-ClTrt- Matrix mittels konventioneller Fmoc-Chemie synthetisiert. Bei jedem Synthesezyklus wurden Fmoc geschützte Aminosäuren erst mit PyBOP und DIPEA in DMF voraktiviert und nachfolgend für zwei Stunde gekoppelt. Die Seitenkette der D-Glutaminsäure wurde als t-Butylester geschützt. Die Fmoc-Schutzgruppe wurde mittels 20%-igem Piperidine in DMF abgespalten. Nach der Synthese wurde das Prdodukt von der Matrix mit 50%-igem TFA/CH2C12 bei Raumtemperatur abgespalten und mittels RP HPLC isoliert. Mittels MALDI-Massenspektrometrie konnte eine Masse [M+H] +von 1294,3 (berechnet 1293,4) ermittelt werden.
Anschließend wurde das H-Dap (fluorescein) - (D-GIu) 6-Gly-OH zu einer Lösung des Cyclosporinderivates-6 (Cs6) in DMF, dem 0,9 Teile HATU und 3 Teile DIPEA zugesetzt und für 30 Minuten gemischt wurden, zugegeben und über Nacht gerührt. Das Produkt IK- 7-39B konnte mittels RP HPLC abgetrennt werden. Die Masse
([M+H]+, ermittelt mit MALDI-Massenspektrometrie, betrug 2554,0 (berechnet 2552,8) .
i) Cyclosporinderivat CsM4 (Fig. 10)
Die Derivatisierung des Cyclosporins an Position 1 gelingt durch Kochen von Cyclosporin A und 0,1 Teilen vom "Hoveyda- Grubbs catalyst second generation" (1, 3-Bis- (2, 4, 6- trimethylphenyl) -2-imidazolidinylidene) di- chloro(o- isopropoxyphenylmethylene) ruthenium) und 20 Teilen von Dimethylmaleat in Toluol unter Rückflußkühlung für 45 h. Anschließend wird das Toluol im Vakuum entfernt und der Rückstand in DCM/MeOH (10:0,5) gelöst und durch Silikagel filtriert. Nach Entfernen des Lösungsmittels (im Vakuum) werden 5 ml einer Mischung aus 2,5 ml 0,2 M LiOH in Wasser und 2 , 5 ml THF zugegeben und über Nacht gerührt . Nach Neutralisieren mit HCl kann das Produkt mittels präperativer HPLC isoliert werden.
j) Cyclosporinderivat CsM5 (Fig.11)
CsM4, 1 Teil HATU und 3 Teile DIPEA in 3 ml DMF werden für 20 min bei Raumtemperatur gerührt. Anschließend wird die Lösung zu einem Teil H-(D-GIu)6-GIy-OH gelöst in 2 ml DMF zugegeben und über Nacht gerührt. Nach Abfiltern kann das Produkt mittels präperativer HPLC isoliert werden.
k) Cyclosporinderivat CsM6 (Fig. 12)
Das Peptid wird an einer 2-ClTrt-Matrix mittels konventioneller Fmoc-Chemie synthetisiert. Bei jedem Synthesezyklus werden Fmoc geschützte Aminosäuren mit PyBOP und DIPEA in DMF für zwei Stunde gekoppelt. Die Fmoc Schutzgruppe wird jeweils mit 20 % Piperidin in DMF abgespalten. Der trifunktionelle Linker (Beispiel Ic) wird über Nacht angekuppelt. Die Seitenkette der D-Glutaminsäure wird als t-Butylester geschützt. Cs6 (Fig. 1) wird mit HATU, HOAt and DIPEA versetzt und über Nacht gerührt. Das Produkt CsM6 kann nach Abspaltung von der Matrix mit 50 % TFA/CH2C12 bei 5 0C und Reinigung mittels RP HPLC erhalten werden.
1) Cyclosporinderivat CsM7 (Fig 13)
CsM4 (Fig. 10), 20 Teile NH2(CH2-CH2-O)2CH2CH2NH2 und 1,1 Teile PyBop in DMF werden bei Raumtemperatur über Nacht gerührt. Anschließend werden 40 ml Ethylacetat zugesetzt und die organische Schicht mit 5 % NaHSO4, 5% NaHCO3 und gesättigter NaCl Lösung gewaschen. Nach Trocknen mit Na2SO4 und anschließender Vakuumtrocknung wird das Produkt (CsM7a) mittels HPLC abgetrennt. Anschließend wird CsM7a mit 1 Teil HATU, 3 Teilen DIPEA in 3 ml DMF für 10 min, bei Raumtemperatur gerührt. Danach wird die Lösung zu einer Mischung aus einem äquivalenten Teil von H(D-GIu)6-GIy-OH gelöst in 2 ml DMF gegeben und über Nacht gerührt. Nach
Filterung und präperativer HPLC kann das Produkt CsM7 erhalten werden. Beispiel 2; FK506 -Derivate
a) FK506 -Derivat FKMl (Fig. 14)
3 mg FK506, 100 μl t-Butylacrylat und 0,5 rag "Grubbs catalyst second generation" (Benzylidene [1, 3 -bis (2, 4 , 6- trimethylphenyl) -2-imidazolidinylidene] dichloro (tricyclohexyl- phosphine) ruthenium) werden in CH2Cl2 unter Schutzgas (Argon) für 5 h unter Rückflusskühlung gekocht. Anschließend wird die Lösung filtriert und im Vakuum getrocknet. Der Rückstand wird dann in 2 ml einer Lösung aus 48 % TFA, 50 % CH2Cl2 und 2 % TIS (Triisopropylsilan) aufgenommen und für 30 min gerührt. Nach Trocknen im Vakuum kann das Produkt mittels RP HPLC isoliert werden.
b) FK506-Derivat FKM2 (Fig. 15)
FKMl (Fig. 14) , 1 Teil HATU und 3 Teile DIPEA werden mit 3 ml DMF versetzt und für 20 min bei Raumtemperatur gerührt. Anschließend wird eine Lösung, welche ein Teil H-(D-GIu)6-GIy- OH in 2 ml DMF enthält, zugegeben und über Nacht gerührt. Nach Abfiltern unlöslicher Bestandteile kann das Produkt (FKM2) mittels preparativer HPLC erhalten werden.
c) FK506-Derivat FKM3 (Fig. 16)
Das Peptid wird an einer 2 -CITrt-Matrix mittels konventioneller Fmoc-Chemie synthetisiert. Bei jedem Synthesezyklus werden Fmoc geschützte Aminosäuren erst mit PyBOP und DIPEA in DMF voraktiviert und nachfolgend für 2 h gekoppelt. Der trifunktionelle Linker (Beispiel Ic) wird über Nacht angekuppelt. Die Fmoc Schutzgruppe wird jeweils mit 20% Piperidin in DMF abgespalten. Die Seitenkette der D- Glutaminsäure wird als t-Butylester geschützt. FKMl (Fig. 14) wird mit HATU, HOAt and DIPEA versetzt und über Nacht gerührt. Das Produkt FKM3 kann nach Abspaltung von der Matrix mit 50 % TFA/CH2C12 bei 5 0C und Reinigung mittels RP HPLC erhalten werden.
d) FK506-Derivat FKM4 (Fig. 17)
FKMl (Fig. 14), 20 Teile NH2(CH2-CH2-O)2CH2CH2NH2 und 1,1 Teile PyBop in DMF werden bei Raumtemperatur über Nacht gerührt . Anschließend werden 40 ml Ethylacetat zugesetzt und die organische Schicht mit 5 % NaHSO4, 5 % NaHCO3 und gesättigter NaCl Solution gewaschen. Nach Trocknen mit Na2SO4 und anschließender Vakuumtrocknung wird das Produkt (FKM4a) mittels HPLC abgetrennt. Anschließend werden FKM4a mit 5 Teilen Bernsteinsäureanhydrid und 10 Teilen DIPEA in 5 ml DMF über Nacht bei Raumtemperatur gerührt.
Anschließend werden 40 ml Ethylacetat zugesetzt und die organische Schicht mit 5 % NaHSO4, 5 % NaHCO3 und gesättigter NaCl Lösung gewaschen. Nach Trocknen mit Na2SO4 und anschließender Vakuumtrocknung wird das Produkt (FKM4b) mittels HPLC abgetrennt. Anschließend werden FKM4b mit 1 Teil HATU, 3 Teilen DIPEA in 3 ml DMF für 20 min, bei Raumtemperatur gerührt. Danach wird die Lösung zu einer Mischung aus einem äquivalenten Teil von H(D-GIu)6-GIy-OH gelöst in 2 ml DMF gegeben und über Nacht gerührt. Nach
Filterung und präperativer HPLC kann das Produkt FKM4 erhalten werden.
Beispiel 3; Rapamycin-Derivate
a) Rapamycin-Derivat RPMl (Fig. 18) Eine Lösung von einem Teil Rapamycin, 5 Teilen 2,6 Lutidin und 5 Teile Bromoäthyltriflat werden in Toluol bei 65 0C für 18 h inkubiert. Nach Abkühlen wird gesättigte Natriumbikarbonatlösung zugegeben und das Produkt mit Ethylacetat extrahiert. Die Extraktion wird drei Mal wiederholt. Die kombinierten Extrakte werden filtriert und im Vakuum getrocknet. Anschließend wird das Produkt (RPMIa) mittels präperativer HPLC isoliert und in DMF aufgenommen. Nach Zugabe von 1,2 Teilen Natriumazid wird die Mischung für zwei Stunden gerührt. Nach Zusatz gesättigter Natriumbikarbonatlösung wird die Lösung dreimal mit
Azetylazetat extrahiert . Die vereinigten Extrakte werden anschließend über Na2SO4 getrocknet, gefiltert und mittels Vakuum getrocknet. Das Produkt (RPMIb) kann anschließend mittels präperativer HPLC erhalten werden. Danach wird RPMIb in 70 % THF aufgenommen und nach Zusatz von fünf Teilen Triphenylphospin über Nacht gerührt. Nach Zusatz von Ethylacetat wird die Lösung drei Mal mit gesättigter Kochsalzlösung gewaschen und anschließend über Na2SO4 getrocknet und filtriert. Das Produkt (RPMIc) wird dann mittels präpertiver HPLC isoliert. Nach Auflösen des RPMIc in DMF werden 1,1 Teile Bernsteinsäureanhydrid zugegeben und der pH-Wert der Lösung mit Diisopropyläthylamin auf etwa pH 7,5 eingestellt. Nach Rühren der Mischung über Nacht kann das Produkt RPMl mittels präperativer HPLC erhalten werden.
b) Rapamycin-Derivat RPM2 (Fig. 19)
RPMl, ein Teil HATU und 3 Teile DIPEA werden mit 3 ml DMF versetzt und für 20 min bei Raumtemperatur gerührt. Anschließend wird ein Teil H-(D-GIu)6-GIy-OH in 2 ml DMF zugegeben und über Nacht gerührt. Nach Abfiltern ungelöster Rückstände kann das Produkt RPM2 mittels präperativer HPLC isoliert werden. c) Rapamycin-Derivat RPM2 (Fig. 20)
Die Verbindung wird an einer 2 -CITrt-Matrix mittels konventioneller Fmoc-Chemie synthetisiert. In jedem Zyklus werden die Fmoc-geschützten Aminosäuren mit PyBOP und DIPEA in DMF aktiviert bei einer Kupplungszeit von zwei Stunden. Die Fmoc-Schutzgruppe wird jeweils mit 20% Piperidin in DMF abgespalten. Der trifunktioneile Linker wird über Nacht angekuppelt. Das Rapamycinderivat RPMl wird mittels HATU, HOAt und DIPEA über Nacht gekuppelt. Die D-
Glutaminsäureseitenkette wird als t-Butylester geschützt. Anschließend wird das Peptid von der Matrix mittels 50 % TFA/CH2Cl2 bei 5 0C abgespalten und mittels RP HPLC isoliert.
Beispiel 4: Aufnahme von chemisch modifizierten CsA- • Verbindungen durch Heia Zellen
Der Vorteil der vorliegenden Erfindung wird bei der Untersuchung des Transportverhaltens von zwei Cyclosporin- Derivaten deutlich. Das Derivat Cs9 -Derivat MM218 unterscheidet sich vom Cs9-Derivat Cs9-Rhd durch das ansynthetisierte saure Peptid. Die Aufnahme von chemisch modifizierten, fluoreszierenden CsA-Derivaten in lebende eukaryontische Zellen wird an einer Zelllinie mittels Konfokaler-Laserscan-Mikroskopie gezeigt. Für den Versuch wurden 105 Heia-Zellen in Petrischalen der Firma Ibidi® (μ-Dish, 35 mm, high) eingesetzt und 1-2 Tage in DME-Medium (high Glucose) bei 37 0C und 5 % CO2 inkubiert. Die Untersuchung erfolgte an einem inversen Mikroskop (Nikon ECLIPSE C1TE2000-E) , das mit einer Fokussierhilfe, dem T-PFS, ausgestattet ist, um einen sogenannten Focus -Drift zu verhindern. Für die Aufnahmen wurde ein Objektiv mit Phasenkontrast (40,0x Plan Fluor Oilimmersion NA 1,30) verwendet sowie die Mikroskop eigene Software EZ-Cl 3.7. Die Anregung des Fluorophor 5- (6) -Carboxytetramethylrhodamin erfolgte durch einen 561 nm Laser von Melles & Griot . Die Zellen wurden zunächst zweimal mit 2 ml PBS pH 7,4 (Dulbecco) gewaschen und anschließend in 2 ml MIK-Medium aufgenommen (Phenolrot-freies DME-Medium, FCS-frei, mit 20 mM HEPES pH 7,2 und 0,01 % Carbencilin) und für 20 min bei 37 0C und 5 % CO2 inkubiert. Während der Aufnahmen waren die Zellen in einem Inkubator für Mikroskope (Stage Top Incubator INU series von Tokai Hit®) bei 37 0C und 5 % CO2. Die Untersuchung wurde durch die Zugabe von in DMSO gelöstem und in MIK-Medium verdünntem 250 nM Cs9-Rhd (Endkonzentration) bzw. 250 nM MM218 (Endkonzentration) gestartet. Die Fig. 20 zeigt mit CsA- Derivaten inkubierte Heia Zellen nach 2 h. Fig. 2OA, B: Kontrollbilder: Heia-Zellen ohne zugesetztem Cyclosporinderivat mittels Phasenkontrast (A) und Fluoreszenz (B) . Im Fluoreszenzlicht sind keinerlei Strukturen sichtbar. Fig. 2OC, D: MM218- Inkubation: Heia Zellen inkubiert mit 250 nM MM218 für 2 h, mittels Phasenkontrast (C) und Fluoreszenz (D) . Im Fluoreszenzlicht sind die Heia Zellen nur als Schatten in der Umgebung des fluoreszierenden Cyclosporinderivates sichtbar. Das mit einem sauren Peptid versehene Cyclosporinderivat wird nicht in die Heia Zellen transportiert. Fig. 2OE, F: Cs9-Rhd-Inkubation: Heia Zellen inkubiert mit 250 nM Cs9-Rhd für 2 h mittels Phasenkontrast (E) und Fluoreszenz (F) . Im Fluoreszenzlicht sind die Heia Zellen als fluoreszierende Zellen sichtbar. Das nicht mit einem sauren Peptid versehene Cyclosporinderivat reichert sich innerhalb der Heia Zellen an.
Beispiel 5;
a) Präparation und Herstellung mononuklearer Zellen von Mäusen Herausoperierte Milz von Mäusen (BALB/c-Linie) wurde zwischen Objektgläsern gequetscht, um geeignete Zellsuspensionen herzustellen. Anschließend wurde die so erhaltene Suspension durch ein Nylonsieb gefiltert, um grobe Bestandteile abzutrennen. Die so erhaltenen Zellen wurden zusammen mit einem Lymphozytentrennmedium (Mediatech) zentrifugiert, um Mononucleare Zellen zu erhalten. Anschließend wurden Zellkulturen dieser Zellen in Mikrotiterplatten (8x12 Kavitäten) bei einer Zelldichte von 6 x 105 Zellen per Kavität in EHAA Medium/5 % FCS (Clicks Medium) in der Gegenwart von 10 μg/ml Concanavalin A (ConA) mit 2 μM von MM218 oder unmodifiziertem Cyclosporin A (Sigma) oder 1 % Ethanol (Verdünnung/Diluent) inkubiert. Nach einer Kulturzeit von 48 h wurde 1 μCi 3H-Thymidin je Kavität zugegeben und für weitere 6 h inkubiert. Anschließend wurden die Zellen jeder Kavität geerntet (TomTec 96-well Harvester) und die in die Zellen eingebaute Radioaktivität (Tri-Lux beta-plate Counter) gemessen.
b) Asthma-Untersuchungen
Durch Gabe von Ovalbumin zusammen mit Aluminiumhydroxid wird eine Immunantwort gegen Ovalbumin provoziert. Die Immunantwort kann anhand der in die Bronchialschleimhaut eingewanderten T- Helferzellen-Population (CD4+) und der eingewanderten Eosinophilen Granulozyten verfolgt werden. Weibliche Mäuse (BALB/c-Linie) wurden durch intraperitonale (i.p.) Gabe von 50 μg Ovalbumin in Phosphatpuffer (PBS) gelöst (OVA) plus 100 μL Aluminumhydroxid (alum) bei einem Gesamtvolumen von 200 μL per Maus an Tag 0 sensibilisiert. Den OVA/alum- sensibilisierten Mäusen wurde dann unter milder Anästhesie
(Isofluran) an den Tagen 7-10 intranasal jeweils 100 μg OVA in PBS (50 μL Gesamtvolumen) verabreicht. Aus diesen Tieren wurden Gruppen gebildet, welche zusätzlich an den Tagen 7, 9, und 11 entweder 200 μg MM218 in PBS (i.p.), nur PBS (Diluent) oder keinen weiteren Zusatz (-) erhielten. Am Tag 12 wurden alle Tiere durch C02-Exposition getötet und Zellen des Bronchialtraktes durch Bronchiallavage (BAL) mittels einer in die Trachea eingeführten Kanüle bei dreimaligem Waschen mit je 1 ml von kaltem PBS erhalten. Die erhaltenen Zellen der BAL wurden dann doppelt angefärbt (a) mit Cy-Chrome-konjugierten anti-Maus-CD4-Antikörpern und (b) mit FITC-konjugierten anti- Maus-CD62L-Antikörpern. Anschließend wurden die Zellen mittels FACS analysiert. Effector/Memory CD4+ T cells wurden als CD4+/CD62L' Lymphocyten und Eosinophile Zellen anhand ihrer Streulichteigenschaften (FSC/SSC) unterschieden. Die Ergebnisse sind in den Abbildungen Fig. 22 und 23 zusammengefaßt: Fig. 22: Einfluss von MM218 auf die Anzahl der CD4 positiven T-Zellen, welche durch die Ovalbuminsensibiliserung in die Bronchialschleimhäute einwanderten. Die unbehandelte Mäuse (naive) dienten ebenso als Kontrolle, wie die mit OVA sensibiliserten (-) und die nur mit dem MM218 -Lösungsmittel behandelten Tiere. Die Gabe von MM218 reduzierte hoch signifikant die Anzahl der CD4 positiven T-Zellen. Fig. 23: Einfluss von MM218 auf die Anzahl der Eosinophilen Granulozyten (Eosinophile) , welche durch die Ovalbuminsensibiliserung in die Bronchialschleimhäute einwanderten. Die unbehandelten Mäuse (naive) dienten ebenso als Kontrolle, wie die mit OVA sensibiliserten (-) und die nur mit dem MM218-Lösungsmittel behandelten Tiere. Die Gabe von
MM218 reduzierte hoch signifikant die Anzahl der Eosinophilen.
c) Chemotaxis-Assay
Aktivierte CD4+ T Zellen wurden durch Stimulation der im Proliferationsassay generierten Mononuclear cells (3 x 106 cells/Titerplattenkavität) mit ConA (10 μg/ml) über Nacht erhalten. Nachfolgend wurden die CD4+ T Zellen mittels MACS negative selection kit (Miltenyi Biotec, Auburn Ca) gereinigt. Der Chemotaxis Assay wurde in Boyden-Kammern (Neuroprobe) mit 48 Kavitäten, wobei jede Kavität aus zwei Kompartimenten, getrennt durch eine 5-μm Polycarbonate Membrane (Neuroprobe) , besteht. Die Assays wurden durch Zugabe von 104 Zellen in das Medium (RPMI 1640 + 1% BSA) des oberen Kompartiments gestartet. Das Medium des unteren Kompartiments enthielt entweder 100 ng/ml human Cyclophilin A (Calbiochem) oder keinerlei Zusätze. Der Einfluss von Wirkstoffen auf die Zellmigration wurde nach Zusatz dieser Verbindungen zu beiden Kompartimenten verglichen. Die eingesetzte
Wirkstoffkonzentration war entweder 2 μM MM218 gelöst in Äthanol oder 1 % Äthanol (Diluent) . Anschließend wurden die so beschickten Chemotaxis-Kammern bei 37 0C in 5 % CO2 für 50 min inkubiert. Danach wurde die Trennmembran entfernt und Zellen die nicht gewandert waren wurden abgekratzt. Anschließend wurde die Membran mit Wright-Giemsa-Lösung (CAMCO, Fort Lauderdale, FL) gefärbt. Der Chemotaktik- Index wurde dann für jede Membran durch Dividieren der Anzahl migrierter Zellen durch die Anzahl der Zellen, die ohne jedwede Stimulierung wandern, erhalten. Fig. 24 zeigt, dass ohne jedweden Zusatz eines Stimulus (-) ein Chemotaxis Index von etwa 2,7 +/- 0,3 erhalten wird. Der Zusatz des MM218 Lösungsmittels (+Diluent) zeigt einen nicht signifikanten, der Zusatz des Wirkstoffs einen hoch signifikanten Einfluss auf den Chemotaxis Index.

Claims

Patentansprüche
1. Wirkstoff -Peptid-Konstrukt umfassend einen Wirkstoff A und ein Peptid B, wobei das Konstrukt bei pH 6 eine negative Nettoladung aufweist und wobei das Wirkstoff-Peptid- Konstrukt frei von einem Bestandteil C ist, der die Membran einer biologischen Zelle durchwandern kann.
2. Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Peptid B aus 2 bis 25 Aminosäuren aufgebaut ist.
3. Wirkstoff-Peptid-Konstrukt nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Peptid B extrazellulär nicht proteolytisch abbaubar ist.
4. Wirkstoff-Peptid-Konstrukt nach einem der Ansprüche 1 bis
3, dadurch gekennzeichnet, dass die Aminosäuren des Peptids B ausgewählt sind aus der Gruppe bestehend aus Asparaginsäure und Glutaminsäure .
5. Wirkstoff-Peptid-Konstrukt nach einem der Ansprüche 1 bis
4, dadurch gekennzeichnet, dass der Wirkstoff A ein pharmazeutischer Wirkstoff ist.
6. Wirkstoff-Peptid-Konstrukt nach Anspruch 5, dadurch gekennzeichnet, dass der Wirkstoff A ausgewählt ist aus der Gruppe bestehend aus Cyclosporin A, FK506 und Rapamycin.
7. Wirkstoff-Peptid-Konstrukt nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Wirkstoff A Cyclosporin A ist.
8. Wirkstoff-Peptid-Konstrukt nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Wirkstoff A FK506 ist.
9. Wirkstoff-Peptid-Konstrukt nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Wirkstoff A Rapamycin ist.
10. Wirkstoff -Peptid-Konstrukt nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Peptid B an den Wirkstoff A kovalent gebunden ist.
11. Wirkstoff-Peptid-Konstrukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Konstrukt ferner einen Indikator umfasst.
12. Wirkstoff-Peptid-Konstrukt nach Anspruch 11, dadurch gekennzeichnet, dass der Indikator kovalent an den
Wirkstoff A gebunden ist.
13. Wirkstoff -Peptid-Konstrukt nach Anspruch 11, dadurch gekennzeichnet, dass der Indikator kovalent an das Peptid B gebunden ist.
14. Wirkstoff-Peptid-Konstrukt nach Anspruch 11, dadurch gekennzeichnet, dass der Indikator kovalent an einen Linker, der das Peptid B mit dem Wirkstoff A verbindet, gebunden ist.
15. Wirkstoff-Peptid-Konstrukt nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass der Indikator ausgewählt ist aus der Gruppe bestehend aus Farbstoffen, Spannungssensitiven Indikatoren, pH-Wert Indikatoren, Calcium- sensitiven Indikatoren, radioaktiven Elementen, NMR-Label, Elektrospinlabel oder deren Kombinationen.
16. Wirkstoff-Peptid-Konstrukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Wirkstoff- Peptid-Konstrukt frei von einer Protease-Schnittstelle ist.
17. Wirkstoff-Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel
entspricht .
18. Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel entspricht .
19. Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel entspricht.
20. Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel entspricht .
21. Wirkstoff-Peptid-Konstrukt nach Anspruch 1 bis 16, dadurch gekennzeichnet, dass das Konstrukt der Formel
entspricht.
22. Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel
C-OH
entspricht.
23. Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel
entspricht, wobei R ein Carboxy-Tamra- oder ein Acetylrest ist.
24. Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel
entspricht . 5 . Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel C-N-CH C-OH entspricht .
26. Wirkstoff-Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel
entspricht, wobei R ein Carboxy-Tamra- oder ein Acetylrest ist.
27. Wirkstoff-Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel entspricht.
28. Wirkstoff-Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel entspricht.
29. Wirkstoff -Peptid-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, dass das Konstrukt der Formel
entspricht, wobei R ein Carboxy-Tamra- oder ein Acetylrest ist.
30. Verfahren zur Anreicherung von Wirkstoffen in einem extrazellulären Raum eines multizellulären Objekts, umfassend die Schritte:
Bereitstellen eines Wirkstoff -Peptid-Konstrukts nach einem der Ansprüche 1 bis 29; - Inkontaktbringen des Konstrukts mit einem multizellulären Objekt, wobei es sich bei dem multizellulären Objekt um ein separiertes Organ oder Körperteil, Blut oder eine Blutfraktion, eine Zellkultur oder eine Pflanze handelt.
31. Verwendung eines Wirkstoff-Peptid-Konstrukts nach einem der Ansprüche 1 bis 29 als Arzneimittel.
32. Verwendung eines Wirkstoff-Peptid-Konstrukts nach einem der Ansprüche 1 bis 29 als Mittel zur Diagnosefindung.
33. Verwendung eines Wirkstoff-Peptid-Konstrukts gemäß einem der Ansprüche 1 bis 29 zur Herstellung eines Arzneimittels zur Behandlung nicht immuno-suppressiver Erkrankungen.
34. Pharmazeutische Zusammensetzung, umfassend ein Wirkstoff- Peptid-Konstrukt nach einem der Ansprüche 1 bis 29.
EP09774835A 2008-12-04 2009-12-04 Wirkstoff-peptid-konstrukt zur extrazellulären anreicherung Withdrawn EP2370106A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008060549A DE102008060549A1 (de) 2008-12-04 2008-12-04 Wirkstoff-Peptid-Konstrukt zur extrazellulären Anreicherung
PCT/EP2009/008683 WO2010063483A2 (de) 2008-12-04 2009-12-04 Wirkstoff-peptid-konstrukt zur extrazellulären anreicherung

Publications (1)

Publication Number Publication Date
EP2370106A2 true EP2370106A2 (de) 2011-10-05

Family

ID=42144963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09774835A Withdrawn EP2370106A2 (de) 2008-12-04 2009-12-04 Wirkstoff-peptid-konstrukt zur extrazellulären anreicherung

Country Status (4)

Country Link
US (1) US20120058932A1 (de)
EP (1) EP2370106A2 (de)
DE (1) DE102008060549A1 (de)
WO (1) WO2010063483A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0912584D0 (en) * 2009-07-20 2009-08-26 Ucl Business Plc Cyclosporin conjugates
DE102011111991A1 (de) 2011-08-30 2013-02-28 Lead Discovery Center Gmbh Neue Cyclosporin-Derivate
EP2705856A1 (de) * 2012-09-07 2014-03-12 Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. Verbindungen zur Behandlung von neurodegenerativen Erkrankungen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030164A1 (en) * 1997-12-09 1999-06-17 President And Fellows Of Harvard College Method to identify transcriptional modulators
US6030941A (en) * 1996-05-01 2000-02-29 Avi Biopharma, Inc. Polymer composition for delivering substances in living organisms

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US598325A (en) 1898-02-01 Gomeey mcintyre
US494188A (en) 1893-03-28 Allen g
US723286A (en) 1901-12-02 1903-03-24 James J Lawler Check-valve for hot-water systems.
US985890A (en) 1910-07-25 1911-03-07 Jonathan O Fowler Weighing and vending machine.
SE448386B (sv) 1978-10-18 1987-02-16 Sandoz Ag Nya cyklosporinderivat, forfarande for framstellning av dem samt farmaceutisk komposition innehallande dem
US4261989A (en) 1979-02-19 1981-04-14 Kaken Chemical Co. Ltd. Geldanamycin derivatives and antitumor drug
US4673678A (en) 1986-07-25 1987-06-16 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Water soluble derivatives of fredericamycin A
US4798823A (en) 1987-06-03 1989-01-17 Merck & Co., Inc. New cyclosporin analogs with modified "C-9 amino acids"
US4885276A (en) 1987-06-03 1989-12-05 Merck & Co., Inc. Cyclosporin analogs with modified "C-9 amino acids"
ATE110784T1 (de) 1987-06-19 1994-09-15 Sandoz Ag Zyklische peptolide.
DE3888357T2 (de) 1987-06-22 1994-09-15 Merck & Co Inc Cyclosporin-Derivate, die eine modifizierte Aminosäure auf Stellung 8 tragen.
US4914188A (en) 1987-11-16 1990-04-03 Merck & Co., Inc. Novel 6-position cyclosporin analogs as non-immunosuppressive antagonists of cyclosporin binding to cyclophilin
DK169306B1 (da) 1989-06-14 1994-10-10 Af 18 Juni 1990 As Middel til fjernelse eller inaktivering af uønskede komponenter i blod eller andre ekstracellulære legemsvæsker samt fremgangsmåde til fremstilling af dextran-O-carbonyl-benzo-18-crown-6 og af dextran-hydroxyethylbenzo-18-crown-6
US7238668B1 (en) 1989-09-01 2007-07-03 Fred Hutchinson Cancer Research Center Inhibition of lymphocyte adherence with CS-1-peptides and fragments thereof
US5120649A (en) 1990-05-15 1992-06-09 New York Blood Center, Inc. Photodynamic inactivation of viruses in blood cell-containing compositions
US5733892A (en) 1990-07-24 1998-03-31 Seikagaku Corporation Metastasis inhibitor composition comprising a phospholipid-linked glycosaminoglycan and method for inhibiting metastasis employing the same
US5166208A (en) 1991-10-09 1992-11-24 Boston College Fredericamycin A derivatives
US5744442A (en) 1992-08-26 1998-04-28 Bristol Meyers Squibb Company Regulation of cellular invasiveness
US6770279B1 (en) 1992-10-08 2004-08-03 The Kennedy Institute Of Rheumatology TNFα antagonists and cyclosporin in therapy of rheumatoid arthritis
US5846981A (en) 1993-05-28 1998-12-08 Gpi Nil Holdings Inc. Inhibitors of rotamase enzyme activity
IL112873A (en) 1994-03-08 2005-03-20 Wyeth Corp Rapamycin-fkbp12 binding proteins, their isolation and their use
DE4430127A1 (de) 1994-08-25 1996-03-14 Hoechst Ag Kombinationspräparat, enthaltend Cyclosporin A oder FK506 und ein Xanthinderivat
US5696135A (en) 1995-06-07 1997-12-09 Gpi Nil Holdings, Inc. Inhibitors of rotamase enzyme activity effective at stimulating neuronal growth
US6291510B1 (en) 1995-06-07 2001-09-18 Gpi Nil Holdings, Inc. Small molecule inhibitors of rotamase enzyme activity
US6509477B1 (en) 1998-11-12 2003-01-21 Guilford Pharmaceuticals Inc. Small molecule inhibitors of rotamase enzyme activity
US5859031A (en) 1995-06-07 1999-01-12 Gpi Nil Holdings, Inc. Small molecule inhibitors of rotamase enzyme activity
CA2219659C (en) 1995-06-09 2008-03-18 Novartis Ag Rapamycin derivatives
CN1141317C (zh) 1995-07-17 2004-03-10 碳化学公司 有抗人体免疫缺损病毒作用的环孢菌素衍生物
US5801197A (en) 1995-10-31 1998-09-01 Gpi Nil Holdings, Inc. Rotamase enzyme activity inhibitors
CA2261666C (en) 1996-07-30 2010-09-14 Novartis Ag Pharmaceutical compositions for the treatment of transplant rejection, autoimmune or inflammatory conditions comprising cyclosporin a and 40-0-(2-hydroxiethyl)-rapamycin
US6001965A (en) 1996-11-21 1999-12-14 The Regents Of The University Of Michigan Anticancer compounds and methods
FR2757522B1 (fr) 1996-12-24 1999-01-29 Rhone Poulenc Rorer Sa Derives de cyclosporine, leur preparation et les compositions pharmaceutiques qui les contiennent
FR2757521B1 (fr) 1996-12-24 1999-01-29 Rhone Poulenc Rorer Sa Nouveaux derives de cyclosporine, leur preparation et les compositions pharmaceutiques qui les contiennent
US5989591A (en) 1997-03-14 1999-11-23 American Home Products Corporation Rapamycin formulations for oral administration
US6709873B1 (en) 1997-04-09 2004-03-23 Isodiagnostika Inc. Method for production of antibodies to specific sites of rapamycin
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
FR2762843B1 (fr) 1997-04-30 1999-12-10 Rhone Poulenc Rorer Sa Nouveaux derives de cyclosporine, leur preparation et les compositions pharmaceutiques qui les contiennent
US6916790B2 (en) 1997-05-05 2005-07-12 Mayo Foundation For Medical Education And Research Treatment of osteoporosis
FR2763847B1 (fr) 1997-05-28 2003-06-06 Sanofi Sa Utilisation de tetrahydropyridines 4-substituees pour fabriquer des medicaments agissant sur le tgf-beta-1
WO1999010373A1 (en) 1997-08-26 1999-03-04 Wisconsin Alumni Research Foundation Non-immunosuppressive cyclosporins and their use in the prevention and treatment of hiv infection
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US20030220234A1 (en) 1998-11-02 2003-11-27 Selvaraj Naicker Deuterated cyclosporine analogs and their use as immunodulating agents
CA2331761A1 (en) 1998-06-25 1999-12-29 Sumitomo Pharmaceuticals Co., Ltd. Tumor antigen peptides originating in cyclophilin b
BR9911724A (pt) 1998-07-01 2001-03-20 Debiopharm Sa Ciclosporina que tem um perfil de atividade melhorado
GB9815696D0 (en) 1998-07-20 1998-09-16 Pfizer Ltd Heterocyclics
GB9815880D0 (en) 1998-07-21 1998-09-16 Pfizer Ltd Heterocycles
US7338976B1 (en) 1998-08-14 2008-03-04 Gpi Nil Holdings, Inc. Heterocyclic esters or amides for vision and memory disorders
US7265150B1 (en) 1998-08-14 2007-09-04 Gpi Nil Holdings Inc. Carboxylic acids and carboxylic acid isosteres of N-heterocyclic compounds for vision and memory disorders
US7410995B1 (en) 1998-08-14 2008-08-12 Gpi Nil Holdings Inc. N-linked sulfonamide of heterocyclic thioesters for vision and memory disorders
US6015809A (en) 1998-08-17 2000-01-18 American Home Products Corporation Photocyclized rapamycin
DE19859910C2 (de) 1998-12-23 2001-03-22 Ratiopharm Gmbh Orales Arzneimittel
US6444657B1 (en) 1998-12-31 2002-09-03 Guilford Pharmaceuticals Inc. Methods for treating certain diseases using naaladase inhibitors
US20010041189A1 (en) * 1999-04-13 2001-11-15 Jingya Xu Poly(dipeptide) as a drug carrier
US6509464B1 (en) 1999-07-15 2003-01-21 Pfizer Inc FKBP inhibitors
US6730293B1 (en) * 1999-08-24 2004-05-04 Cellgate, Inc. Compositions and methods for treating inflammatory diseases of the skin
EP1214293A1 (de) 1999-09-08 2002-06-19 Guilford Pharmaceuticals Inc. Nicht-peptidische cyclophilin bindende verbindungen und ihre verwendung
US6277983B1 (en) 2000-09-27 2001-08-21 American Home Products Corporation Regioselective synthesis of rapamycin derivatives
PL354623A1 (en) * 1999-10-12 2004-02-09 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
US20020014242A1 (en) 2000-07-31 2002-02-07 Abraham Scaria Use of rapamycin to inhibit immune response and induce tolerance to gene therapy vector and encoded transgene products
US6881407B2 (en) 2000-08-11 2005-04-19 Ashok Amin Method for treating hepatitis
US7163918B2 (en) * 2000-08-22 2007-01-16 New River Pharmaceuticals Inc. Iodothyronine compositions
JP2004532187A (ja) 2001-01-25 2004-10-21 ギルフォード ファーマシュウティカルズ インコーポレイテッド 三置換カルボサイクリックサイクロフィリン結合化合物とその用途
US20020169125A1 (en) * 2001-03-21 2002-11-14 Cell Therapeutics, Inc. Recombinant production of polyanionic polymers and uses thereof
PT1373215E (pt) 2001-03-30 2006-12-29 Uni S Of A R By The S D Of H H Derivado de geldanamicina e metodo de tratamento de cancro utilizando o mesmo
KR100465012B1 (ko) 2001-05-11 2005-01-13 주식회사 엘지생활건강 모발 성장 효과를 갖는 사이클로스포린 3 위치 유도체를유효성분으로 하는 모발 성장 촉진제
US6593362B2 (en) 2001-05-21 2003-07-15 Guilford Pharmaceuticals Inc. Non-peptidic cyclophilin binding compounds and their use
ITMI20011057A1 (it) 2001-05-22 2002-11-22 Bracco Imaging Spa Preparazione ed uso di peptidi ciclici e ramificati e loro deriati marcati come agenti terapeutici agonisti o antagonisti della colecistochi
US7034037B2 (en) 2001-06-29 2006-04-25 Ethicon, Inc. Compositions and medical devices utilizing bioabsorbable polymeric waxes and rapamycin
US6821971B2 (en) 2001-09-20 2004-11-23 The Procter & Gamble Company Fused pyrazolone compounds which inhibit the release of inflammatory cytokines
US6730668B2 (en) 2001-09-20 2004-05-04 The Procter & Gamble Company 6,7-dihydro-5H-pyrazolo[1,2-a]pyrazol-1-ones which control inflammatory cytokines
EP1450814B1 (de) 2001-10-01 2016-11-30 Geistlich Pharma AG Verfahren zur hemmung von metastasen
US6809077B2 (en) 2001-10-12 2004-10-26 Enanta Pharmaceuticals, Inc. Cyclosporin analogs for the treatment of autoimmune diseases
AU2002331509B2 (en) 2001-10-19 2007-12-06 Aurinia Pharmaceuticals Inc. Synthesis of cyclosporin analogs
US7261875B2 (en) * 2001-12-21 2007-08-28 Board Of Regents, The University Of Texas System Dendritic poly (amino acid) carriers and methods of use
FR2836474B1 (fr) * 2002-02-22 2004-12-24 Synt Em Composes, compositions et methode pour le transport des molecules de cyclosporine a travers la barriere hemato-encephalique
US6987090B2 (en) 2002-05-09 2006-01-17 Lg Household & Health Care Ltd. Use of 3-position cyclosporin derivatives for hair growth
DE10223078B4 (de) 2002-05-21 2005-12-22 Novosom Ag Polyampholyte und Verwendung als Polyelektrolytmultischichten
DE10230917A1 (de) 2002-07-09 2004-02-05 Bioleads Gmbh Fredericamycin-Derivate
US7135298B2 (en) 2003-03-26 2006-11-14 The Burnham Institute For Medical Research Screening assay for agents that alter target of Rapamycin activity
MXPA06004789A (es) 2003-10-31 2006-07-03 Cv Therapeutics Inc Antagonistas del receptor de adenosina a2b.
US7431915B2 (en) * 2003-10-31 2008-10-07 The Regents Of The University Of California Peptides whose uptake by cells is controllable
MXPA06012188A (es) 2004-04-22 2007-01-17 Procter & Gamble Ureas trisustituidas como inhibidores de citocina.
US7259156B2 (en) 2004-05-20 2007-08-21 Kosan Biosciences Incorporated Geldanamycin compounds and method of use
US7226906B2 (en) 2004-08-16 2007-06-05 Array Biopharma, Inc. Cyclosporin analogs for the treatment of immunoregulatory disorders and respiratory diseases
AR050374A1 (es) 2004-08-20 2006-10-18 Wyeth Corp Forma polimorfica de rafampicina
JP2008514701A (ja) 2004-09-29 2008-05-08 エーエムアール テクノロジー インコーポレイテッド シクロスポリンアルキン類似体およびそれらの薬学的使用
US7196161B2 (en) 2004-10-01 2007-03-27 Scynexis Inc. 3-ether and 3-thioether substituted cyclosporin derivatives for the treatment and prevention of hepatitis C infection
EP1812037A4 (de) 2004-10-06 2009-11-11 Amr Technology Inc Neue cyclosporin-alkyne und ihre nutzung als pharmazeutishe mittel
US7276498B2 (en) 2004-12-20 2007-10-02 Wyeth Rapamycin analogues and uses thereof in the treatment of neurological disorders
JP2008524232A (ja) 2004-12-20 2008-07-10 ワイス ラパマイシン誘導体及び神経障害の治療におけるその使用
CA2605508A1 (en) 2005-05-12 2006-11-23 Wisconsin Alumni Research Foundation Blockade of pin1 prevents cytokine production by activated immune cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030941A (en) * 1996-05-01 2000-02-29 Avi Biopharma, Inc. Polymer composition for delivering substances in living organisms
WO1999030164A1 (en) * 1997-12-09 1999-06-17 President And Fellows Of Harvard College Method to identify transcriptional modulators

Also Published As

Publication number Publication date
US20120058932A1 (en) 2012-03-08
DE102008060549A1 (de) 2010-06-10
WO2010063483A3 (de) 2010-10-14
WO2010063483A9 (de) 2010-07-29
WO2010063483A2 (de) 2010-06-10

Similar Documents

Publication Publication Date Title
DE69924870T2 (de) Peptidvektoren von Stoffen, die durch die Blut-Hirn-Schranke dringen
DE69738326T2 (de) Verbindungen und verfahren zur regulierung der zellanlagerung
DE69928938T2 (de) Neues cyclosporin mit verbesserter wirkung
EP0646595B1 (de) Nukleinsäuren-bindende Oligomere mit N-Verzweigung für Therapie und Diagnostik
EP2751127B1 (de) Cyclosporin-derivate
JP5140686B2 (ja) テンプレート固定ペプチド模倣薬
DE69930619T2 (de) Verwendung von rosmarinsäure und deren derivate als immunsuppressor oder als inhibitor von sh-2 vermittelten prozessen
DE2755036A1 (de) Pseudopeptide, verfahren zu deren herstellung und dieselben enthaltendes pharmazeutisches mittel
EP2167139A2 (de) Aktivierbare diagnostische und therapeutische verbindung
EP1805215A2 (de) Chemisch modifizierte iapp-peptidanaloga
CH644352A5 (en) Process for the preparation of peptides
DE69832204T2 (de) Auf peptiden basierende trägervorrichtungen für stellatzellen
EP2471806A2 (de) Cyclosporinderivate
DE2822951A1 (de) Neue polypeptide mit thymusaktivitaet oder antagonistischer aktivitaet und verfahren zu ihrer herstellung
EP2370106A2 (de) Wirkstoff-peptid-konstrukt zur extrazellulären anreicherung
WO2005087798A1 (de) An der hydroxylgruppe midifizierte ‘d-ser!8-cyclosporine mit schaltbarer hemmung der proteinphosphatase calzineurin und dadurch gezielter manipulierbarkeit der immunosuppressiven wirkung unter beibehaltung der peptidyl-prolyl-cis-trans-isomerase (ppi) inhibition z.b. zur behandlung von autoimmunerkrankungen
Mehta et al. Sustained intra-cartilage delivery of interleukin-1 receptor antagonist using cationic peptide and protein-based carriers
DE60014579T2 (de) Zyklische verbindungen welche nukleotidebasen-spezifische wechselwirkung mit doppelsträngiger nukleinsäure eingehen
EP2741783B1 (de) Polyanion-nanokomplexe für therapeutische anwendungen
DE60318585T2 (de) Verbindungen die p-selectin binden
WO2023066980A1 (de) 4-aminophenylphosphorylcholin-verbindungen zur blockade von c-reaktivem protein
WO2001068676A2 (de) Lh-rh-antagonisten, deren herstellung und verwendung als arzeimittel
DE60202356T2 (de) Tripeptide und deren derivate zur behandlung von postläsionalen krankheiten des nervensystems
WO2020119773A1 (zh) 两性霉素b肽衍生物
EP3230300B1 (de) Inhibitoren zur hemmung der tumormetastasierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110630

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140616

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160531