EP2329147B1 - Pumpenvorrichtung - Google Patents

Pumpenvorrichtung Download PDF

Info

Publication number
EP2329147B1
EP2329147B1 EP09777900.3A EP09777900A EP2329147B1 EP 2329147 B1 EP2329147 B1 EP 2329147B1 EP 09777900 A EP09777900 A EP 09777900A EP 2329147 B1 EP2329147 B1 EP 2329147B1
Authority
EP
European Patent Office
Prior art keywords
pulsator
pressure
pump device
line
working space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09777900.3A
Other languages
English (en)
French (fr)
Other versions
EP2329147A2 (de
Inventor
Christian Huhnke
Henning Ladiges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPX Flow Technology Germany GmbH
Original Assignee
SPX Flow Technology Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPX Flow Technology Germany GmbH filed Critical SPX Flow Technology Germany GmbH
Priority to PL09777900T priority Critical patent/PL2329147T3/pl
Priority to EP09777900.3A priority patent/EP2329147B1/de
Publication of EP2329147A2 publication Critical patent/EP2329147A2/de
Application granted granted Critical
Publication of EP2329147B1 publication Critical patent/EP2329147B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing

Definitions

  • the invention relates to a pump device with a pulsator as a drive element for a main pump head, which is located in a delivery line and whose working space is provided with a suction-side check valve and a pressure-side check valve, according to the preamble of claim 1.
  • a membrane pulsator is to be understood such that it corresponds to a piston membrane pump, which does not necessarily have check valves on the suction and pressure side, but otherwise generally has all the features of a piston membrane pump.
  • a piston diaphragm pump to be a piston pump coupled to a diaphragm, the deflection of the piston being transmitted to the diaphragm via a hydraulic coupling.
  • Membrane pulsators can in particular, like piston diaphragm pumps, have a preferably diaphragm-controlled refill and / or venting device for the hydraulic fluid, such as that from the EP 0 085 725 A1 is known.
  • the invention relates to a pump device with a pulsator, in particular a membrane pulsator, as a drive element for a main pump head, which is located in a delivery line and whose working space is provided with a suction-side check valve and a pressure-side check valve.
  • the work area of the pulsator is directly connected to the work area of the main pump head via a pendulum line filled with the pumped medium in such a way that the pulsator oscillates the pumped medium from the delivery line into the work area of the main pump head or presses it out of the work area.
  • the pump device according to the invention is particularly well suited for conveying suspensions, such as mixtures of biomass and supercritical water, and in particular for high pressures and temperatures.
  • Pumps of this type are out EP 0919724 B1 .
  • a main pump head located in the delivery line is driven by another pump head, which is referred to as a pulsator.
  • Such a pump device is also referred to as a "remote head” pump.
  • Pump devices of this type are typically used for pumping liquids with a high solids content and high temperatures.
  • the known pumps cannot readily be used with particularly aggressive delivery media, such as supercritical aqueous solutions, in particular when processes with a very high throughput are present at high temperatures and high pressures.
  • FIG. 2004/062662 A1 Another type of pump device, namely a diaphragm metering pump for metering a shower gas, is in the US 2004/062662 A1 described.
  • This pump has a pump head with a product chamber with an inlet end with an inlet valve and an outlet end with an outlet valve.
  • a sliding membrane element defines a boundary of the product chamber. The membrane element can be moved back and forth to cause pump displacements.
  • An exhaust side is located downstream of the exhaust valve.
  • a passage is arranged in fluid communication between the delivery side and the product chamber.
  • a valve is located in the passage. The valve is opened intermittently to allow the liquid to flow back into the product chamber in an amount that can be used to remove the gas from the product chamber to avoid loss of ventilation.
  • the invention has for its object to provide a pump device of the type mentioned, which can be used for pumping aggressive fluids at high temperature, and yet works at low cost with high reliability, which is why in particular an entry of solid particles in the pulsator can be avoided should.
  • a pump device with a pulsator as a drive element for a main pump head which is located in a delivery line and whose work space is provided with a suction-side check valve and a pressure-side check valve, is specified, the work space of the pulsator being connected to the work space of the main pump head via a pendulum line filled with the conveyed medium is connected in such a way that the pulsator sucks conveying medium from the delivery line into the working chamber of the main pump head in an oscillating manner or presses it out of the working chamber, a vent valve being provided for venting the working chamber of the pulsator, the vent valve being a time-controlled valve and / or a pressure-controlled one Double seat valve and a device for introducing a liquid into the working space of the pulsator and / or the pendulum line is provided.
  • a time-controlled valve and / or a pressure-controlled double-seat valve has the advantage that the time in which the valve is open for venting can be kept very short, as a result of which undesirable secondary flows can be avoided, which increase the entry of solid particles into the pulsator could result.
  • the introduction of liquid into the working area of the pulsator or the refilling of pumped medium into the working area to compensate for losses, for example by venting the working area, has the advantage that liquid balance does not have to take place from the driven main pump head and thus no solid particles from the main pump head to be transported to the pulsator.
  • the liquid is preferably water and / or delivery medium and / or another suitable liquid.
  • the device for introducing a liquid into the work space of the pulsator and / or the pendulum line preferably comprises a time and / or pressure-controlled refill valve and / or a refill reservoir.
  • the time and / or pressure-controlled refill valve or vent valve is preferably time and / or pressure controlled such that after a start-up phase of the process the refill valve or vent valve is closed and / or the upper limit value for closing the time and / or pressure-controlled refill valve or vent valve is increased after a start-up phase of the process and / or after a start-up phase of the process the lower limit value for closing the time and / or pressure-controlled refill valve or vent valve is lowered.
  • the pressure which is applied to the refill reservoir preferably corresponds essentially to the pressure in the working space of the pulsator.
  • the refill valve between the work space and the refill reservoir is preferably a time and / or pressure-controlled valve.
  • the working space of the pulsator is preferably connected to the suction side of the delivery line via the and / or a further vent valve.
  • the suction side of the delivery line for automatic venting is advantageously arranged above the venting valve.
  • the working space of the pulsator is preferably connected to the pressure side of the delivery line via the and / or a further vent valve.
  • the vent valve is preferably positively controlled in connection with a return pump, in particular timed.
  • the working area of the pulsator is preferably connected via the and / or a further vent valve to a refill reservoir to compensate for leakage shrinkage in the working area of the pulsator and / or the pendulum line.
  • the working space of the pulsator is preferably connected via the and / or a further vent valve to a collecting container for collecting and for possibly returning the conveyed medium emerging during the venting.
  • the valve is preferably time and / or pressure controlled in such a way that it is closed at least above a certain pressure.
  • the pulsator generates a continuously alternating pressure in the work area with a pressure phase and a suction phase.
  • at least a certain pressure in the work area should not be vented in order to prevent a pressure drop in the work area, albeit a small one, and thus a reduction in the flow from the pendulum line .
  • the valve is preferably time and / or pressure controlled such that it is closed at least below a certain pressure.
  • venting below a certain pressure in the pulsator's working space is preferably avoided, because the, albeit small, pressure drop would result in greater suction power and thus a stronger flow into the pendulum line, which could suck more solid particles into the pendulum line. Therefore, the valve is preferably closed at least below a certain pressure in the work area.
  • the venting preferably takes place only in the time ranges between the suction and the pressure phase, where there is essentially little or no flow of the delivery fluid into the pendulum line. This can prevent the flow of solid particles into the pendulum line.
  • the pump device preferably has a refill reservoir for refilling the conveyed medium, to which a pressure is applied which essentially corresponds to the system pressure.
  • the pendulum line is preferably provided with cooling.
  • the pulsator is preferably arranged above the main pump head. Additionally or alternatively, the pendulum line is preferably aligned falling from the pulsator to the main pump head. Such embodiments of the invention have the advantage that gravity additionally counteracts the entry of solid particles through the pendulum line into the pulsator.
  • the pendulum line is preferably provided with a depression as a receiving space for solid particles in the conveying medium.
  • the working space of the pulsator is preferably at least temporarily acted upon by a compensating medium to compensate for leakage shrinkage.
  • the pendulum line is preferably divided into at least one section into at least two parallel sections.
  • the pendulum line is preferably also divided over its entire course, i.e. that, for example, two or more parallel pendulum lines are provided.
  • the volume of the parallel sections of the pendulum line or the volume of the parallel pendulum lines is preferably at least as large as or preferably larger than the stroke volume of the pulsator.
  • Control valves are preferably provided for at least partially opening and closing the sections of the pendulum line or the parallel pendulum lines.
  • a sensor system is preferably provided in order to synchronize the timing of the control valves with the respective phase position of the pulsator membrane.
  • a sensor and / or switch is provided which switches the control valve in at least one end position of the membrane of the pulsator.
  • a sensor and / or switch is provided for the other membrane system in order to switch the control valve.
  • the control valves are also put into a closed position or partially closed position only during part of the pressure phase. It would also be conceivable to at least partially close different control valves in succession during a printing phase.
  • the pendulum line is preferably divided in the area in front of the main pump head into a plurality of lines connected in parallel, preferably two lines connected in parallel, which are at least partially and preferably completely at least partially closable by a time and / or pressure-controlled valve.
  • the time and / or pressure control is preferably set in such a way that all lines are open for as long as possible during the suction phase, so that the flow adjusts to the different ones in parallel Lines distributed, while in the pressure phases alternately a partial line with the full pressure and thus a much higher flow rate. As a result, the entry of solid particles into the pendulum line should be avoided.
  • the main pump head preferably has at least two suction-side check valves connected in parallel.
  • This embodiment of the invention has the advantage that a higher flow velocity is generated in the line section between the outlets of the two suction-side check valves during the pressure phase, so that the risk of solid particles entering the pendulum line from the suction side downstream of the flow direction during the pressure phase Check valve is reduced.
  • the cross section of the line receiving the downstream suction-side check valve in relation to the flow direction during the pressure phase is preferably larger than the cross section of the line receiving the other suction-side check valve.
  • the cross sections of the two lines could also be the same size or more than two lines and a corresponding number of check valves on the suction side could be provided. It would also be conceivable to have a larger cross section of the line receiving upstream suction-side check valve in relation to the direction of flow during the pressure phase, which still offers an advantage, albeit a smaller one, than the designs with only one suction-side check valve.
  • a separating piston is preferably arranged in the pendulum line.
  • the above-mentioned embodiments of the pump device according to the invention are preferably designed with a double-acting pulsator and two pump circuits controlled in opposite directions.
  • the pulsator is preferably designed as a double-acting pulsator, one side of which is designed as a drive element for the main pump head, and the other side of which is acted upon by a pressure which essentially corresponds to the system pressure.
  • Such embodiments of the invention with a double-acting pulsator for driving two mutually controlled pump circuits are preferred, since this enables uniform delivery.
  • the pulsator can be driven at high suction pressures of, for example, 250 bar with a drive designed for significantly lower pressures, for example if a double-acting piston is used, which only the differential pressure between the pressure during the pressure phase in one half of the pulsator and the pressure during the Must overcome suction phase in the other half of the pulsator.
  • This advantage also applies to double-acting pulsators for driving only one pump circuit when pressure is applied to the other side of the pulsator, which does not drive the pump circuit.
  • the refill reservoir is pressurized with a pressure that approximately corresponds to the system pressure, so that the drive also takes place during the refill process, which is valve-controlled when the membrane is its rear mechanical system achieved, is not exposed to a higher pressure than the differential pressure between the suction and pressure phases and therefore does not have to be dimensioned larger, and the membrane is not destroyed at the flow channels of its rear mechanical system.
  • a membrane system-controlled refill and / or venting device for hydraulic fluid can be provided in the pulsator, such as that from the EP 0 085 725 A1 is known.
  • Compensating medium for compensating for leakage shrinkage is preferably present in the diaphragm control chamber in a refill reservoir which is connected to the diaphragm control chamber via a valve, the refill reservoir being pressurized to a pressure which is higher than atmospheric pressure.
  • This embodiment of the invention has the advantage that the pulsator can be driven by a drive (for example hydraulically, mechanically and / or pneumatically, for example a piston drive), the power of which only has to overcome the pressure difference between the suction and the pressure side.
  • a drive for example hydraulically, mechanically and / or pneumatically, for example a piston drive
  • an impact on the drive, for example the piston can be prevented by pressurizing the refill reservoir to compensate for leakage in the membrane control chamber.
  • This pressure in the refill reservoir can advantageously correspond approximately to the system pressure.
  • a pressure control which is adapted to the system pressure by means of a control loop is provided in the refill reservoir, as is the case, for example, in EP 1 898 093 A1 is described.
  • the pulsator is preferably constructed in the form of a membrane or tubular membrane.
  • the pulsator is preferably designed in a piston or plunger construction.
  • a basic idea of the invention is therefore that the pulsator acts on a main pump head, which is basically designed like a piston pump head, but without the need for a piston.
  • a standard component that is suitable for high temperatures and pressures can be used as the pump head, which, combined with a standard membrane pulsator, is an inexpensive alternative to the known solutions, while maintaining the principle of a "remote head” pump.
  • the wear is further reduced by the fact that any particles present in the pumped medium do not come into contact with the working area of the pulsator, since the liquid in the pendulum line is only moved back and forth in the circumference of the pump stroke and mixes only slightly with freshly drawn-in liquid.
  • the pulsator can be constructed in membrane or tubular membrane construction as well as in piston or plunger construction. If the pulsator is a membrane pulsator, particles do not get to the membrane. Since high temperatures in the pumped medium also decrease in the course of the pendulum line, membrane pulsators with inexpensive plastic membranes, for example made of PTFE, can also be used in the delivery line at high pressures and high temperatures. Pump devices according to the invention are therefore particularly well suited for conveying biomass in the production of biofuel.
  • Another advantage is that, due to the ventilation, gases from the pumped medium or air inclusions cannot accumulate in the pump room of the pulsator, but are returned to the process.
  • the entry into the suction-side delivery line is preferably above the ventilation valve, so that the gases exit the working area automatically.
  • there may be a forced ventilation for example with a time and / or pressure controlled valve.
  • the pendulum line is provided with cooling.
  • the pendulum line is aligned to fall from the membrane pulsator to the main pump head. The particles thus remain in the area of the main pump head and are returned to the delivery line.
  • the pendulum line can be provided with a depression as a receiving space for solid particles in the conveying medium.
  • An area is therefore provided in the pendulum line which lies below the working space of the membrane pulsator, so that the particles collect there due to gravity and do not get into the working space of the pulsator.
  • the working space of the pulsator is acted upon by a compensating medium to compensate for leakage shrinkage, so that flow through the pendulum line and migration of solid particles to the pulsator are prevented.
  • a further advantageous embodiment of the invention consists in arranging a separating piston in the pendulum line. This measure separates the part of the pendulum line assigned to the pulsator from the part assigned to the main pump head.
  • a low drive power is achieved in that there is a double-acting pulsator and two counter-driven pump circuits, which is particularly advantageous when used in recirculation processes with high suction pressures.
  • a pump device 1 has a membrane pulsator 10 serving as a pulsator, a main pump head 11 and a pendulum line 12.
  • the main pump head 11 has an inlet 13 and an outlet 14 for installation in a delivery line, the pressure side of which is designated 5 and the suction side of which is 15.
  • the direction of conveyance is marked with arrow 6.
  • the main pump head 11 corresponds to a pump head of a piston pump. However, it has no piston.
  • the membrane pulsator 10 is provided with a connection 7 for the pendulum line 12. Furthermore, a connection 8 for ventilation with a ventilation valve 9 ( Fig. 2 ) and a connection 4 for a refill reservoir 30 ( Fig. 2 ) available.
  • a ventilation valve 9 Fig. 2
  • a refill reservoir 30 Fig. 2
  • the pendulum line 12 is filled with liquid 21. It leads via a control input 22 of the main pump head 11 to the working space 20 of the diaphragm pulsator 10.
  • the pendulum line 12 is provided with a cooling system, which is formed by a cooling jacket 23 charged with coolant becomes. In this way, a temperature reduction of, for example, approximately 360 ° C. at the main pump head 11, as is typically the case with the bio mass to be conveyed in the production of bio-fuels, to approximately 100 ° C. on the membrane pulsator 10.
  • the pendulum line 12 contains the conveying liquid 21, which may also have solid particles 24, a section 25 is present in the pendulum line 12, which drops from the membrane pulsator 10 to the main pump head 11 and which opens directly into the working space 18 of the main pump head 11. At its lowest point, the pendulum line 12 is thus at the level of the working space 18 of the main pump head 11. The solid particles 24 remain due to gravity in the working space 18 of the main pump head 11 and do not get into the working space 20 of the membrane pulsator 10. Rather, they become the pressure-side delivery line 5 fed.
  • the membrane pulsator 10 has a membrane 26 which is controlled hydraulically via a membrane control chamber 27. PTFE is preferably suitable as the membrane material.
  • the membrane control chamber 27 is acted upon by a piston 28 which is mechanically actuated, for example by a motor 29 ( Fig. 2 ), and / or is driven hydraulically and / or pneumatically, for example by alternately pressurizing the chambers next to the disk 281.
  • a refill reservoir 30 filled with a compensating medium which is controlled by a controlled valve 31 ( Fig. 2 ) Emits compensation medium into the working space 20 of the membrane pulsator 10.
  • the feed is in Fig. 2 designated with 4.
  • FIG. 2 The configuration shown has a double-acting pulsator with two pump devices as shown in Fig. 1 are illustrated on.
  • the pump devices are connected in parallel in two oppositely controlled branches A, B.
  • a pumping process is described using a branch.
  • the piston 28 In an initial state, the piston 28 is moved into the membrane control chamber 27 and the membrane 26 is bulged into the working space 20 of the membrane pulsator 10.
  • the pendulum line 12 and the working space 18 of the main pump head 11 are completely filled with liquid.
  • the suction-side check valve 16 and the pressure-side check valve 17 are closed.
  • each main pump head 11 can be controlled in the same or opposite direction with a single-acting pulsator.
  • a section of a pendulum line 12 ' is illustrated as a detail of a second exemplary embodiment.
  • a separating piston 32 which is mounted to be longitudinally displaceable according to the double arrow 35 is arranged in the pendulum line 12'.
  • Possibly existing solid particles 24 thereby remain in an area 33 on the side of the main pump head 11 and cannot reach an area 34 on the side of the membrane pulsator.
  • Fig. 1A shows an embodiment with a double-acting pulsator.
  • Fig. 1A corresponds essentially to that in Fig. 1 shown embodiment, wherein the pump device of Fig. 1 basically exists twice and is driven by a common piston 28.
  • the double-acting pulsator is in Fig. 1A shown extremely simplified, ie without drive and without hydraulic reservoirs and their pressurized refill valves.
  • the double-acting piston 28 describes an end position (the membrane 26 is bulged on the right, ie the pressure stroke or the pressure phase is complete; the membrane 26 is flattened on the left, ie the suction stroke or the suction phase is complete).
  • Fig. 2 shows an embodiment with ventilation in the suction line 15.
  • the refill takes place from a pressure accumulator 30 (with gas cushion) in a time-controlled or pressure-controlled manner during the pressure stroke of the pulsator.
  • the circuit symbol used for the valve 31 describes a controlled check valve in which the closing is prevented when actuated.
  • the pressure in the refill reservoir 30 must be greater than the system pressure.
  • the refill volume flow must be greater than / equal to the leakage flow of the venting process. A subsequent regulation of the storage pressure depending on the changing system pressure is recommended. If necessary, manual control is also possible.
  • Fig. 4 shows an embodiment with ventilation in the pressure line 5.
  • the refill takes place from a pressure accumulator 30 (with gas cushion) time or pressure controlled during the suction stroke of the pulsator.
  • the circuit symbol used for the valve 31 describes a controlled check valve, in which the opening is prevented when actuated.
  • the pressure in the refill reservoir 30 must be greater than the suction pressure.
  • the refill volume flow must be greater than / equal to the leakage flow of the venting process. A subsequent regulation of the storage pressure depending on the changing suction pressure is recommended. If necessary, manual control is also possible.
  • Fig. 5 shows an embodiment with a vent into the refill reservoir 30.
  • the refill takes place from a pressure accumulator 30 (with gas cushion) in a time-controlled manner.
  • the symbol for the refill valve 31 shows no specific function.
  • Fig. 6 shows an embodiment with ventilation in any storage or collection container 36.
  • the refill is carried out from a pressure accumulator 30 (with gas cushion) in a time-controlled manner.
  • the symbol for the refill valve 31 shows no specific function.
  • Fig. 7 shows an embodiment of the invention of a pump device with a single-acting pulsator.
  • the venting or refilling can, for example, according to the above-mentioned embodiments of the invention Fig. 2 . Fig. 4 . Fig. 5 or Fig. 6 respectively.
  • the vent in the pressure line 5 is shown as an example of one of the possible variants.
  • a double-acting pulsator could also be used, the unused side of which is subjected to a pressure which corresponds approximately to the system pressure, for example by means of a pressure accumulator.
  • the advantages of a pressurized refill medium for refilling into the diaphragm control chamber could thus be exploited.
  • the pressurization of the unused side of the double-acting pulsator has the advantage that a smaller-sized drive can be used if high pressures of, for example, 250 bar have to be overcome by the pump head driven by the pulsator.
  • Fig. 8 shows a possible design of the main pump head 11 pump devices according to the invention.
  • two check valves 16, 161 on the suction side are provided, which can also have a different size.
  • This embodiment has the advantage that a higher flow velocity is generated in the line section between the two suction-side check valves during the pressure stroke of the pulsator.
  • the pendulum line 12 has a gradient towards the suction-side check valves 161, 16. During suction, the suction flow is distributed according to the Cross-sectional conditions on the suction-side check valves 161 and 16. As a result of this during suction, a lower flow takes place in the pendulum line section between these two suction-side check valves than it would be if the entire suction quantity were only sucked in through the suction-side check valve 16.
  • This flow could ensure that the deposits from the main flow tend to be pumped back again and again.
  • Fig. 9 shows a possible design of the pendulum line 12 pump devices according to the invention.
  • the pendulum line is divided into at least one section into at least two subsections 121, 122, which are used for suction at the same time in the suction phases with the help of controlled shut-off valves 123, 124 and can be opened and closed alternately in the pressure phases in order to increase the pressure generated by them Outflow velocity in the sections 121, 122 to prevent deposits of the solid particles.
  • each section 121, 122 should preferably be at least as large as and preferably larger than the stroke volume of the pulsator. This prevents solid particles from getting behind the control valves in the pressure phase due to the alternate closing.
  • each section In a first suction process, each section would initially be filled with particles up to a maximum of half of its volume. The subsequently closed section would possibly keep this state. During the renewed suction process, the partial section would then be completely filled with particles at most, before a complete rinsing out would take place in the printing phase.
  • shut-off valves 123, 124 are provided, which should be synchronized exactly with the respective phase position of the pulsator membrane with the aid of sensors.
  • Fig. 10 shows a further embodiment of the invention.
  • the same parts are provided with the same reference numerals. Reference is made to the description of the above statements.
  • the pulsator is shown in somewhat more detail, the drive for the double-acting piston 28 not being shown.
  • the course of the hydraulic channels of the double-acting pulsator is shown in more detail.
  • the pump device from Fig. 10 has two refill valves 37 of the diaphragm control chamber, which are preferably acted upon by a pressure which approximately corresponds to the system pressure.
  • the pressure is made available by a hydraulic pump 38.
  • two vent valves 39 are provided for venting the membrane control rooms.
  • FIGS. 11 and 12 show schematic PV diagrams that show the time course of the pump pressure over the stroke volume. Starting at the point on the lower left side, you can see very well the steep flank of the pressure rise during the compression phase, the pressure fluctuations due to the valve kinematics, the displacement of the stroke volume (highest pressure at maximum piston speed), as well as the likewise steep decompression phase and the suction phase. (Note: In the present case, the circular process has been shown clockwise in both figures for reasons of illustration.) The dashed line in Fig. 11 shows the required pressure level and a possible time window for a controlled leakage refilling process during the pressure stroke. The average working pressure of the pulsator in the pressure stroke (pD) is slightly higher than the system pressure.
  • the dashed line in Fig. 12 shows the required pressure level and a possible time window for a controlled leakage refill process during the suction stroke. When refilling during the suction stroke, it is sufficient if the pressure level is slightly above the suction pressure.

Description

  • Die Erfindung betrifft eine Pumpenvorrichtung mit einem Pulsator als Antriebselement für einen Hauptpumpenkopf, der in einer Förderleitung liegt und dessen Arbeitsraum mit einem saugseitigen Rückschlagventil und einem druckseitigen Rückschlagventil versehen ist, gemäß dem Oberbegriff von Anspruch 1.
  • Im Sinne der vorliegenden Offenbarung der Erfindung ist ein Membranpulsator so zu verstehen, dass er einer Kolbenmembranpumpe entspricht, die nicht notwendigerweise saug- und druckseitige Rückschlagventile aufweist, aber ansonsten in der Regel alle Merkmale einer Kolbenmembranpumpe aufweist. Unter einer Kolbenmembranpumpe versteht der Fachmann eine mit einer Membran gekoppelte Kolbenpumpe, wobei die Auslenkung des Kolbens über eine hydraulische Kopplung auf die Membran übertragen wird. Membranpulsatoren können insbesondere ebenso wie Kolbenmembranpumpen eine vorzugsweise membranlagengesteuerte Nachfüll- und/oder Entlüftungsvorrichtung für die Hydraulikflüssigkeit aufweisen, wie sie beispielsweise aus der EP 0 085 725 A1 bekannt ist.
  • Insbesondere betrifft die Erfindung eine Pumpenvorrichtung mit einem Pulsator, insbesondere einem Membranpulsator, als Antriebselement für einen Hauptpumpenkopf, der in einer Förderleitung liegt und dessen Arbeitsraum mit einem saugseitigen Rückschlagventil und einem druckseitigen Rückschlagventil versehen ist. Der Arbeitsraum des Pulsators steht über eine mit Fördermedium gefüllte Pendelleitung unmittelbar mit dem Arbeitsraum des Hauptpumpenkopfes in der Weise in Verbindung, dass der Pulsator oszillierend Fördermedium aus der Förderleitung in den Arbeitsraum des Hauptpumpenkopfes ansaugt oder aus dem Arbeitsraum drückt. Die erfindungsgemäße Pumpenvorrichtung ist besonders gut zum Fördern von Suspensionen, wie zum Beispiel Mischungen aus Biomasse und überkritischem Wasser, und insbesondere für hohe Drücke und Temperaturen geeignet.
  • Pumpen dieser Art sind aus EP 0919724 B1 , US 3,216,360 und EP 1898093 A1 bekannt. Hierbei wird ein in der Förderleitung liegender Hauptpumpenkopf von einem weiteren Pumpenkopf angetrieben, der als Pulsator bezeichnet wird. Eine derartige Pumpenvorrichtung wird auch als "Remote Head"-Pumpe bezeichnet. Eingesetzt werden derartige Pumpenvorrichtungen typischerweise zum Pumpen von Flüssigkeiten mit hohem Feststoffanteil und hohen Temperaturen. Die bekannten Pumpen können jedoch bei besonders aggressiven Fördermedien, wie beispielsweise überkritischen wässrigen Lösungen, nicht ohne Weiteres eingesetzt werden, insbesondere wenn Prozesse mit sehr großem Durchsatz unter hohen Temperaturen und hohen Drücken vorliegen.
  • Eine andere Art von Pumpenvorrichtung, und zwar eine Membrandosierpumpe zum Dosieren eines Brausegases, ist in der US 2004/062662 A1 beschrieben. Diese Pumpe hat einen Pumpenkopf mit einer Produktkammer mit einem Einlassende mit einem Einlassventil und einem Auslassende mit einem Auslassventil. Ein verschiebbares Membranelement definiert eine Grenze der Produktkammer. Das Membranelement kann hin- und herbewegt werden, um Pumpverschiebungen zu verursachen. Eine Auslassseite ist stromabwärts des Auslassventils angeordnet. Ein Durchgang ist in Fluidverbindung zwischen der Abgabeseite und der Produktkammer angeordnet. Ein Ventil ist in dem Durchgang angeordnet. Das Ventil wird intermittierend geöffnet, damit die Flüssigkeit in einer Menge in die Produktkammer zurückfließen kann, mit der das Gas aus der Produktkammer entfernt werden kann, um einen Entlüftungsverlust zu vermeiden.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Pumpenvorrichtung der eingangs genannten Art anzugeben, die zum Pumpen von aggressiven Fördermedien mit hoher Temperatur eingesetzt werden kann, und die dennoch bei geringen Kosten mit hoher Zuverlässigkeit arbeitet, weshalb insbesondere ein Eintrag von Feststoffteilchen in den Pulsator vermieden werden sollte.
  • Diese Aufgabe wird durch eine Pumpenvorrichtung gemäß den Merkmalen des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben. Erfindungsgemäß wird eine Pumpenvorrichtung mit einem Pulsator als Antriebselement für einen Hauptpumpenkopf, der in einer Förderleitung liegt und dessen Arbeitsraum mit einem saugseitigen Rückschlagventil und einem druckseitigen Rückschlagventil versehen ist, angegeben, wobei der Arbeitsraum des Pulsators über eine mit Fördermedium gefüllte Pendelleitung mit dem Arbeitsraum des Hauptpumpenkopfes in einer Weise in Verbindung steht, dass der Pulsator oszillierend Fördermedium aus der Förderleitung in den Arbeitsraum des Hauptpumpenkopfes ansaugt oder aus dem Arbeitsraum drückt, wobei ein Entlüftungsventil zur Entlüftung des Arbeitsraums des Pulsators vorgesehen ist, wobei das Entlüftungsventil ein zeitgesteuertes Ventil und/oder ein druckgesteuertes Doppelsitzventil ist und eine Vorrichtung zum Einleiten einer Flüssigkeit in den Arbeitsraum des Pulsators und/oder die Pendelleitung vorgesehen ist.
  • Die Verwendung eines zeitgesteuerten Ventils und/oder eines druckgesteuerten Doppelsitzventil hat den Vorteil, dass die Zeit, in der das Ventil zum Entlüften offen ist, sehr kurz gehalten werden kann, wodurch sich unerwünschte Nebenströme vermeiden lassen, die einen verstärkten Eintrag von Feststoffteilchen in den Pulsator zur Folge haben könnten.
  • Das Einleiten von Flüssigkeit in den Arbeitsraum des Pulsators bzw. das Nachfüllen von Fördermedium in den Arbeitsraum zum Ausgleich von Verlusten beispielsweise durch das Entlüften des Arbeitsraums, hat den Vorteil, dass ein Flüssigkeitsausgleich nicht von dem getriebenen Hauptpumpenkopf erfolgen muss und somit keine Feststoffteilchen von dem Hauptpumpenkopf zu dem Pulsator transportiert werden. Vorzugsweise ist die Flüssigkeit Wasser und/oder Fördermedium und/oder eine andere geeignete Flüssigkeit.
  • Vorzugsweise umfasst die Vorrichtung zum Einleiten einer Flüssigkeit in den Arbeitsraum des Pulsators und/oder die Pendelleitung ein zeit- und/oder druckgesteuertes Nachfüllventil und/oder ein Nachfüllreservoir.
  • Vorzugsweise wird das zeit- und/oder druckgesteuerte Nachfüllventil bzw. Entlüftungsventil derart zeit- und/oder druckgesteuert, dass nach einer Anfahrphase des Prozesses das Nachfüllventil bzw. Entlüftungsventil geschlossen wird und/oder der obere Grenzwert zum Schließen des zeit- und/oder druckgesteuerten Nachfüllventils bzw. Entlüftungsventils nach einer Anfahrphase des Prozesses erhöht wird und/oder nach einer Anfahrphase des Prozesses der untere Grenzwert zum Schließen des zeit- und/oder druckgesteuerten Nachfüllventils bzw. Entlüftungsventils gesenkt wird.
  • Vorzugsweise entspricht der Druck, mit dem das Nachfüllreservoirs beaufschlagt wird, im Wesentlichen dem Druck in dem Arbeitsraum des Pulsators.
  • Vorzugsweise ist das Nachfüllventil zwischen dem Arbeitsraum und dem Nachfüllreservoir ein zeit- und/oder druckgesteuertes Ventil. Vorzugsweise ist der Arbeitsraum des Pulsators über das und/oder ein weiteres Entlüftungsventil mit der Saugseite der Förderleitung verbunden.
  • Vorzugsweise ist dabei vorteilhafterweise die Saugseite der Förderleitung zur selbsttätigen Entlüftung oberhalb des Entlüftungsventils angeordnet.
  • Alternativ oder zusätzlich ist vorzugsweise der Arbeitsraum des Pulsators über das und/oder ein weiteres Entlüftungsventil mit der Druckseite der Förderleitung verbunden.
  • Vorzugsweise ist das Entlüftungsventil in Verbindung mit einer Rückführungspumpe zwangsgesteuert, insbesondere zeitlich gesteuert.
  • Alternativ oder zusätzlich ist vorzugsweise der Arbeitsraum des Pulsators über das und/oder ein weiteres Entlüftungsventil mit einem Nachfüllreservoir zum Ausgleich von Leckageschwund in dem Arbeitsraum des Pulsators und/oder der Pendelleitung verbunden.
  • Alternativ oder zusätzlich ist vorzugsweise der Arbeitsraum des Pulsators über das und/oder ein weiteres Entlüftungsventil mit einem Sammelbehälter zum Sammeln und zum eventuell späteren Rückführen von bei der Entlüftung austretendem Fördermedium verbunden.
  • Vorzugsweise ist das Ventil derart zeit- und/oder druckgesteuert, dass es zumindest oberhalb eines bestimmten Druckes geschlossen ist. Der Pulsator erzeugt im Arbeitsraum einen kontinuierlich abwechselnden Druck mit einer Druckphase und einer Saugphase. Um eine Abschwächung der Strömung aus der Pendelleitung zum Austreiben eventuell eingesaugter Feststoffpartikel zu verhindern, sollte zumindest ab einem bestimmten Druck im Arbeitsraum keine Entlüftung geschehen, um einen, wenn auch eventuell geringen, Druckabfall im Arbeitsraum und damit eine Verringerung der Strömung aus der Pendelleitung zu verhindern.
  • Vorzugsweise ist das Ventil derart zeit- und/oder druckgesteuert, dass es zumindest unterhalb eines bestimmten Druckes geschlossen ist.
  • Alternativ oder zusätzlich wird vorzugsweise eine Entlüftung unterhalb eines bestimmten Drucks im Arbeitsraum des Pulsators vermieden, denn durch den, wenn auch geringen Druckabfall würde eine größere Saugleistung und damit eine stärkere Strömung in die Pendelleitung auftreten, was mehr Feststoffpartikel in die Pendelleitung einsaugen könnte. Daher ist das Ventil vorzugsweise zumindest unterhalb eines bestimmten Druckes im Arbeitsraum geschlossen.
  • Vorzugsweise erfolgt die Entlüftung nur in den zeitlichen Bereichen zwischen der Saug- und der Druckphase, wo eine im Wesentlichen geringe oder keine Strömung des Förderfluids in die Pendelleitung erfolgt. Dadurch kann die Strömung von Feststoff-Partikeln in die Pendelleitung verhindert werden.
  • Vorzugsweise weist die Pumpenvorrichtung ein Nachfüllreservoir zum Nachfüllen von Fördermedium auf, das mit einem Druck beaufschlagt ist, der im wesentlichen dem Systemdruck entspricht.
  • Vorzugsweise ist bei allen Ausführungen der Erfindung die Pendelleitung mit einer Kühlung versehen.
  • Vorzugsweise ist bei allen Ausführungen der Erfindung der Pulsator oberhalb von dem Hauptpumpenkopf angeordnet. Zusätzlich oder alternativ ist vorzugsweise die Pendelleitung vom Pulsator zum Hauptpumpenkopf hin fallend ausgerichtet. Derartige Ausführungen der Erfindung haben den Vorteil, dass die Schwerkraft zusätzlich einem Eintrag von Feststoffpartikeln durch die Pendelleitung in den Pulsator entgegenwirkt.
  • Vorzugsweise ist die Pendelleitung mit einer Senke als Aufnahmeraum für Feststoffteilchen im Fördermedium versehen.
  • Vorzugsweise ist der Arbeitsraum des Pulsators zumindest zeitweise mit einem Ausgleichsmedium zum Ausgleich von Leckageschwund beaufschlagt.
  • Vorzugsweise ist die Pendelleitung zumindest in einem Abschnitt in zumindest zwei parallele Teilabschnitte aufgeteilt.
  • Vorzugsweise ist die Pendelleitung auch über ihren gesamten Verlauf geteilt, d.h. dass beispielsweise zwei oder mehr parallele Pendelleitungen vorgesehen sind.
  • Diese Ausführungen der Erfindung haben den Vorteil, dass durch Vorsehen einer entsprechenden Steuerung beispielsweise in der Saugphase die zumindest zwei Teilabschnitte geöffnet werden und in den Druckphasen zumindest ein Teilabschnitt (bei zwei Teilabschnitten vorzugsweise abwechselnd der eine und der andere Teilabschnitt) zumindest teilweise und vorzugsweise vollständig zumindest während eines Teil der Druckphase geschlossen wird, um durch die somit in dem bzw. den anderen Teilabschnitten resultierende höhere Ausströmgeschwindigkeit Ablagerungen von Feststoffteilchen in den Teilabschnitten zu verhindern.
  • Vorzugsweise ist das Volumen der parallel verlaufenden Teilabschnitte der Pendelleitung bzw. das Volumen der parallel verlaufenden Pendelleitungen jeweils zumindest so groß wie oder vorzugsweise größer als das Hubvolumen des Pulsators. Diese Weiterbildung der Erfindung hat den Vorteil, dass ein Austritt von Feststoffteilchen in die verbleibende Pendelleitung und/oder den Pulsator mit großer Wahrscheinlichkeit verhindert werden kann.
  • Vorzugsweise sind können Steuerventile zum zumindest teilweisen Öffnen und Schließen der Teilabschnitte der Pendelleitung bzw. der parallelen Pendelleitungen vorgesehen.
  • Vorzugsweise wird eine Sensorik vorgesehen, um die zeitliche Steuerung der Steuerventile mit der jeweiligen Phasenlage der Pulsatormembran zu synchronisieren. Beispielsweise wird ein Sensor und/oder Schalter vorgesehen, der bei zumindest einer Endlage der Membran des Pulsators das Steuerventil schaltet. Alternativ oder zusätzlich wird ein Sensor und/oder Schalter für die andere Membranlage vorgesehen, um das Steuerventil zu schalten. Alternativ werden die Steuerventile auch nur während eines Teils der Druckphase in eine Schließstellung bzw. Teilschließstellung versetzt. Denkbar wäre auch während einer Druckphase nacheinander verschiedene Steuerventile zumindest teilweise zu schließen.
  • Vorzugsweise ist die Pendelleitung vorzugsweise im Bereich vor dem Hauptpumpenkopf in mehrere parallel geschaltete Leitungen, vorzugsweise zwei parallel geschaltete Leitungen unterteilt, die zumindest teilweise und vorzugsweise vollständig durch ein zeit- und/oder druckgesteuertes Ventil zumindest teilweise verschließbar sind.
  • Die Zeit- und/oder Drucksteuerung ist vorzugsweise derart eingestellt, dass während der Saugphase alle Leitungen möglichst lange offen sind, damit sich die Strömung auf die verschiedenen parallelen Leitungen verteilt, während in den Druckphasen abwechselnd eine Teilleitung mit dem vollen Druck und damit einer wesentlich höheren Strömungsgeschwindigkeit beaufschlagt wird. Dadurch sollte ein Eintrag von Feststoffteilchen in die Pendelleitung sicher vermieden werden.
  • Vorzugsweise weist der Hauptpumpenkopf zumindest zwei parallel geschaltete saugseitige Rückschlagventile auf.
  • Diese Ausführung der Erfindung hat den Vorteil, dass während der Druckphase in dem Leitungsabschnitt zwischen den Austritten der beiden saugseitigen Rückschlagventile eine höhere Strömungsgeschwindigkeit erzeugt wird, so dass die Gefahr des Eintritts von Feststoffteilchen in die Pendelleitung aus dem bezogen auf die Strömungsrichtung während der Druckphase stromabwärtigen saugseitige Rückschlagventil verringert wird.
  • Vorzugsweise ist der Querschnitt der das bezogen auf die Strömungsrichtung während der Druckphase stromabwärtigen saugseitige Rückschlagventil aufnehmenden Leitung größer als der Querschnitt der das andere saugseitige Rückschlagventil aufnehmenden Leitung.
  • Das ist die bevorzugte Ausführung dieser bevorzugtenAusführungsform, denn dann werden mehr Feststoffteilchen durch die Leitung gefördert, die eine erhöhte Sicherheit gegenüber dem Eintrag von Feststoffteilchen in die Pendelleitung bietet. Alternativ könnten die Querschnitte der beiden Leitungen auch gleich groß sein oder mehr als zwei Leitungen und eine entsprechende Anzahl an saugseitigen Rückschlagventilen vorgesehen werden. Auch wäre ein größerer Querschnitt der das bezogen auf die Strömungsrichtung während der Druckphase stromaufwärtigen saugseitigen Rückschlagventil aufnehmenden Leitung denkbar, was immer noch einen wenn auch geringeren Vorteil gegenüber den Ausführungen mit nur einem saugseitigen Rückschlagventil bietet.
  • Vorzugsweise ist in der Pendelleitung ein Trennkolben angeordnet.
  • Diese Ausführungen der Erfindung haben den Vorteil, dass der Trennkolben Feststoffteilchen daran hindert, durch die Pendelleitung von dem Hauptpumpenkopf zu dem Pulsator zu gelangen.
  • Vorzugsweise sind die genannten Ausführungen der erfindungsgemäßen Pumpenvorrichtung mit einem doppelt wirkenden Pulsator und zwei gegensinnig angesteuerten Pumpenkreisen ausgebildet.
  • Vorzugsweise ist der Pulsator als doppelt wirkender Pulsator ausgebildet ist, dessen eine Seite als Antriebselement für den Hauptpumpenkopf ausgebildet, und dessen andere Seite mit einem Druck beaufschlagt ist, der im Wesentlichen dem Systemdruck entspricht.
  • Derartige Ausführungen der Erfindung mit einem doppelt wirkenden Pulsator zum Antrieb von zwei gegenseitig angesteuerten Pumpenkreisen werden bevorzugt, denn dadurch kann eine gleichmäßige Förderung erreicht werden. Weiterhin kann der Pulsator bei hohen Saugdrücken von beispielsweise 250 bar mit einem für wesentlich geringere Drücke ausgelegten Antrieb angetrieben werden, wenn beispielsweise ein doppelt wirkender Kolben verwendet wird, der nur den Differenzdruck zwischen dem Druck während der Druckphase in der einen Pulsatorhälfte und dem Druck während der Saugphase in der jeweils anderen Pulsatorhälfte überwinden muss. Dieser Vorteil gilt auch für doppelt wirkende Pulsatoren zum Antrieb von nur einem Pumpenkreis, wenn die andere Seite des Pulsators, die nicht den Pumpenkreis antreibt, mit Druck beaufschlagt wird. Vorteilhafterweise ist dann bei Ausführungen der Erfindung mit einem Nachfüllreservoir für den bzw. die Membransteuerräume des Pulsators, das Nachfüllreservoir mit einem Druck beaufschlagt, der ungefähr dem Systemdruck entspricht, damit der Antrieb auch beim Nachfüllvorgang, der ventilgesteuert stattfindet, wenn die Membran ihre hintere mechanische Anlage erreicht, nicht einem höheren Druck als dem Differenzdruck zwischen Saug- und Druckphase ausgesetzt wird und somit nicht größer dimensioniert werden muss, und die Membran auch nicht an den Anströmkanälen ihrer hinteren mechanischen Anlage zerstört wird.
  • Vorzugsweise kann in dem Pulsator eine membranlagengesteuerte Nachfüll- und/oder Entlüftungsvorrichtung für Hydraulikflüssigkeit vorgesehen werden, wie sie beispielsweise aus der EP 0 085 725 A1 bekannt ist.
  • Vorzugsweise ist Ausgleichsmedium zum Ausgleich von Leckageschwund in dem Membransteuerraum in einem Nachfüllreservoir vorhanden, das über ein Ventil mit dem Membransteuerraum verbunden ist, wobei das Nachfüllreservoir mit einem Druck beaufschlagt ist, der höher als der Atmosphärendruck ist.
  • Diese Ausführung der Erfindung hat den Vorteil, dass der Pulsator mit einem Antrieb (z.B. hydraulisch, mechanisch und/oder pneumatisch, z.B. ein Kolbentrieb) angetrieben werden kann, dessen Leistung nur den Druckunterschied zwischen der Saug- und der Druckseite überwinden muss. Außerdem kann durch eine Druckbeaufschlagung des Nachfüllreservoirs für den Leckageschwundausgleich im Membransteuerraum ein Stoß auf den Antrieb, beispielsweise den Kolben verhindert werden. Vorteilhafterweise kann dieser Druck im Nachfüllreservoir etwa dem Systemdruck entsprechen. Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird eine mittels Regelkreis dem Systemdruck angepasste Druckregelung im Nachfüllreservoir vorgesehen, wie es beispielsweise in der EP 1 898 093 A1 beschrieben ist.
  • Vorzugsweise ist der Pulsator in Membran- oder Schlauchmembranbauweise ausgeführt.
  • Vorzugsweise ist der Pulsator in Kolben- oder Plungerbauweise ausgeführt.
  • Ein Grundgedanke der Erfindung liegt somit auch darin, dass der Pulsator einen Hauptpumpenkopf beaufschlagt, der prinzipiell wie ein Kolbenpumpenkopf ausgebildet ist, ohne dass jedoch ein Kolben erforderlich ist. Auf diese Weise kann als Pumpenkopf ein für hohe Temperaturen und Drücke geeignetes Standardbauteil verwendet werden, welches durch die Kombination mit einem Standard-Membranpulsator insgesamt eine kostengünstige Alternative zu den bekannten Lösungen darstellt, wobei das Prinzip einer "Remote Head"-Pumpe beibehalten wird. Der Verschleiß wird ferner dadurch verringert, dass eventuell im Fördermedium vorhandene Partikel nicht mit dem Arbeitsraum des Pulsators in Berührung kommen, da die Flüssigkeit in der Pendelleitung nur im Umfang des Pumpenhubs hin und her bewegt wird, und sich nur geringfügig mit frisch angesaugter Flüssigkeit mischt. Der Pulsator kann in Membran- oder Schlauchmembranbauweise sowie in Kolben- oder Plungerbauweise ausgeführt sein. Wenn es sich bei dem Pulsator um einen Membranpulsator handelt, gelangen Partikel nicht zur Membran. Da auch hohe Temperaturen im Fördermedium im Verlauf der Pendelleitung abnehmen, können Membranpulsatoren mit kostengünstigen KunststoffMembranen, beispielsweise aus PTFE, auch bei hohen Drücken und hohen Temperaturen in der Förderleitung eingesetzt werden. Daher sind erfindungsgemäße Pumpenvorrichtungen besonders gut zum Fördern von Biomasse bei der Herstellung von Biokraftstoff geeignet.
  • Ein weiterer Vorteil liegt darin, dass sich aufgrund der Entlüftung Gase aus dem Fördermedium oder Lufteinschlüsse nicht in dem Pumpenraum des Pulsators ansammeln können, sondern in den Prozess zurück geführt werden. Bevorzugt liegt der Eintritt in die saugseitige Förderleitung zu diesem Zweck oberhalb des Entlüftungsventils, so dass die Gase selbsttätig aus dem Arbeitsraum austreten. Alternativ kann eine Zwangsentlüftung, beispielsweise mit einem zeit- und/oder druckgesteuerten Ventil vorhanden sein.
  • Um den Membranpulsator noch weiter temperaturmäßig zu entlasten, besteht eine bevorzugte Weiterbildung der Erfindung darin, dass die Pendelleitung mit einer Kühlung versehen ist.
  • Es erweist sich ferner als vorteilhaft, dass die Pendelleitung von dem Membranpulsator zum Hauptpumpenkopf hin fallend ausgerichtet ist. Die Partikel verbleiben somit im Bereich des Hauptpumpenkopfes und werden in die Förderleitung zurückgeführt.
  • Alternativ kann es vorteilhaft sein, dass die Pendelleitung mit einer Senke als Aufnahmeraum für Feststoffteilchen im Fördermedium versehen ist. Es wird also in der Pendelleitung ein Bereich vorgesehen, der unterhalb des Arbeitsraums des Membranpulsators liegt, so dass die Partikel sich aufgrund der Schwerkraft dort ansammeln und nicht in den Arbeitsraum des Pulsators gelangen.
  • Es ist zweckmäßig, dass der Arbeitsraum des Pulsators mit einem Ausgleichsmedium zum Ausgleich von Leckageschwund beaufschlagt ist, so dass ein Durchströmen der Pendelleitung und ein Wandern von Feststoffteilchen zum Pulsator verhindert werden.
  • Um den Pulsator noch weiter gegen Feststoffteilchen aus dem Fördermedium zu schützen, besteht eine weitere vorteilhafte Ausgestaltung der Erfindung darin, in der Pendelleitung einen Trennkolben anzuordnen. Durch diese Maßnahme wird der dem Pulsator zugeordnete Teil der Pendelleitung von dem Teil getrennt, welcher dem Hauptpumpenkopf zugeordnet ist.
  • Eine geringe Antriebsleistung wird dadurch erreicht, dass ein doppelt wirkender Pulsator und zwei gegensinnig angesteuerte Pumpenkreise vorhanden sind, was besonders beim Einsatz bei Rezirkulationsprozessen mit hohen Saugdrücken vorteilhaft ist.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen weiter erläutert. Es zeigen schematisch:
  • Fig. 1
    einen Vertikalschnitt durch eine erste Ausführung einer Pumpenvorrichtung;
    Fig. 1A
    einen der Fig. 1 entsprechenden Vertikalschnitt durch eine weitere erfindungsgemäße Pumpenvorrichtung mit einem doppelt wirkenden Pulsator und zwei gegensinnig angesteuerten Pumpenkreisen. Fig. 2 ein Schaltbild einer aus zwei Pumpenvorrichtungen nach Fig. 1 zusammengesetzten Pumpenkonfiguration gemäß der Erfindung;
    Fig. 3
    Merkmale weiterer Ausführungen einer erfindungsgemäßen Pumpenvorrichtung .
    Fig. 4
    ein Fig. 2 entsprechendes Schaltbild einer alternativen erfindungsgemäßen Pumpenkonfiguration;
    Fig. 5
    ein Fig. 2 entsprechendes Schaltbild einer weiteren alternativen erfindungsgemäßen Pumpenkonfiguration;
    Fig. 6
    ein Fig. 2 entsprechendes Schaltbild einer weiteren alternativen erfindungsgemäßen Pumpenkonfiguration;
    Fig. 7
    ein Fig. 2 entsprechendes Schaltbild einer weiteren alternativen erfindungsgemäßen Pumpenkonfiguration;
    Fig. 8
    Merkmale weiterer Ausführungen einer erfindungsgemäßen Pumpenvorrichtung .
    Fig. 9
    Merkmale weiterer Ausführungen einer erfindungsgemäßen Pumpenvorrichtung .
    Fig. 10
    ein Schaltbild einer aus zwei Pumpenvorrichtungen nach Fig. 1 zusammengesetzten Pumpenkonfiguration gemäß der Erfindung;
    Fig. 11
    ein p-V-Diagramm des zeitlichen Verlaufs des Drucks der Pumpe über dem Hubvolumen mit einer Angabe einer möglichen Nachfüllung während der Druckphase.
    Fig. 12
    ein p-V-Diagramm des zeitlichen Verlaufs des Drucks der Pumpe über dem Hubvolumen mit einer Angabe einer möglichen Nachfüllung während der Saugphase.
  • In der Beschreibung der Ausführungsbeispiele werden folgende Bezugszeichen verwendet:
  • 1
    Pumpenvorrichtung
    4
    Anschluss (für ein Nachfüllreservoir)
    5
    Druckseite (der Förderleitung)
    6
    Förderrichtung
    7
    Anschluss (für die Pendelleitung)
    8
    Anschluss (für eine Entlüftung)
    9
    Entlüftungsventil
    10
    Membranpulsator
    11
    Hauptpumpenkopf
    12
    Pendelleitung
    12'
    Pendelleitung
    121
    Teilabschnitt der Pendelleitung
    122
    Teilabschnitt der Pendelleitung (parallel geschaltet zu Teilabschnitt 121 der Pendelleitung)
    123
    Steuerventil (vorzugsweise ein druck- oder zeitgesteuertes Absperrventil)
    124
    Steuerventil (vorzugsweise ein druck- oder zeitgesteuertes Absperrventil)
    13
    Eingang
    14
    Ausgang
    15
    Saugseite (der Förderleitung)
    16
    saugseitiges Rückschlagventil
    161
    saugseitiges Rückschlagventil (parallel geschaltet zu saugseitigem Rückschlagventil 16)
    17
    druckseitiges Rückschlagventil
    18
    Arbeitsraum (des Hauptpumpenkopfes)
    20
    Arbeitsraum (der Membranpulsator)
    21
    Förderflüssigkeit
    22
    Steuereingang (des Hauptpumpenkopfes)
    23
    Kühlmantel
    24
    Feststoffteilchen
    25
    Abschnitt (in der Pendelleitung)
    26
    Membran
    27
    Membransteuerraum
    28
    Kolben
    281
    Scheibe
    29
    Motor
    30
    Nachfüllreservoir
    31
    Ventil
    32
    Trennkolben
    33
    Bereich (auf Seite des Hauptpumpenkopfes)
    34
    Bereich (auf Seite des Membranpulsators)
    35
    Verschieberichtung Trennkolben
    36
    Sammelbehälter
    37
    Nachfüllventil des Membransteuerraums
    38
    Hydraulikpumpe
    39
    Entlüftungsventil des Membransteuerraums
  • Gemäß Fig. 1 weist eine Pumpenvorrichtung 1 eine als Pulsator dienenden Membranpulsator 10, einen Hauptpumpenkopf 11 und eine Pendelleitung 12 auf. Der Hauptpumpenkopf 11 hat einen Eingang 13 und einen Ausgang 14 zum Einbau in eine Förderleitung, deren Druckseite mit 5 und deren Saugseite mit 15 bezeichnet sind. Eingangsseitig (saugseitig) ist ein saugseitiges Rückschlagventil 16 und ausgangsseitig (druckseitig) ein druckseitiges Rückschlagventil 17 vorhanden. Die Förderrichtung ist mit Pfeil 6 gekennzeichnet. Konstruktiv entspricht der Hauptpumpenkopf 11 zwar einem Pumpenkopf einer Kolbenpumpe. Er weist jedoch keinen Kolben auf. Sein Arbeitsraum 18 ist vielmehr unmittelbar über die Pendelleitung 12 mit einem Arbeitsraum 20 des Membranpulsators 10 verbunden. Der Membranpulsator 10 ist mit einem Anschluss 7 für die Pendelleitung 12 versehen. Weiterhin ist ein Anschluss 8 für eine Entlüftung mit einem Entlüftungsventil 9 (Fig. 2) und ein Anschluss 4 für ein Nachfüllreservoir 30 (Fig. 2) vorhanden. Somit bewirkt der oszillierende Hub des Membranpulsators 10 über die Flüssigkeitssäule in der Pendelleitung 12 die Förderung im Hauptpumpenkopf 11.
  • Die Pendelleitung 12 ist mit Förderflüssigkeit 21 gefüllt. Sie führt über einen Steuereingang 22 des Hauptpumpenkopfes 11 zum Arbeitsraum 20 des Membranpulsators 10. Die Pendelleitung 12 ist mit einer Kühlung versehen, die von einem mit Kühlflüssigkeit beaufschlagten Kühlmantel 23 gebildet wird. Auf diese Weise kann eine Temperaturabsenkung von beispielsweise ca. 360 <0>C am Hauptpumpenkopf 11, wie sie typischerweise die zu fördernde Bio-Masse bei der Bio-Kraftstoffherstellung aufweist, auf ca. 100 <0>C an dem Membranpulsator 10 vorgenommen werden.
  • Da die Pendelleitung 12 die Förderflüssigkeit 21 enthält, welche auch Feststoffteilchen 24 aufweisen kann, ist ein Abschnitt 25 in der Pendelleitung 12 vorhanden, der von dem Membranpulsator 10 zum Hauptpumpenkopf 11 hin abfällt, und der unmittelbar in den Arbeitsraum 18 des Hauptpumpenkopfes 11 mündet. An ihrer tiefsten Stelle liegt die Pendelleitung 12 somit auf dem Niveau des Arbeitsraums 18 des Hauptpumpenkopfes 11. Die Feststoffteilchen 24 verbleiben dadurch aufgrund der Schwerkraft im Arbeitsraum 18 des Hauptpumpenkopfes 11 und gelangen nicht in den Arbeitsraum 20 des Membranpulsators 10. Sie werden vielmehr der druckseitigen Förderleitung 5 zugeführt. Der Membranpulsator 10 weist eine Membran 26 auf, die hydraulisch über einen Membransteuerraum 27 angesteuert wird. Als Membranwerkstoff eignet sich vorzugsweise PTFE. Alternativ können auch Elastomere, metallische Werkstoffe oder Verbundwerkstoffe eingesetzt werden. Der Membransteuerraum 27 wird mit einem Kolben 28 beaufschlagt, der mechanisch, z.B. von einem Motor 29 (Fig. 2), und/oder hydraulisch und/oder pneumatisch angetrieben wird, beispielsweise durch wechselweise Druckbeaufschlagung der Kammern neben der Scheibe 281. Zum Ausgleich von Leckagen ist ein mit einem Ausgleichsmedium gefülltes Nachfüllreservoir 30 vorhanden, das über ein gesteuertes Ventil 31 (Fig. 2) Ausgleichsmedium in den Arbeitsraum 20 des Membranpulsators 10 abgibt. Die Zuführung ist in Fig. 2 mit 4 bezeichnet.
  • Unter Bezugnahme auf die Fig. 1 und Fig. 2 wird nachfolgend die Funktion der Pumpenvorrichtung beschrieben. Die in Fig. 2 dargestellte Konfiguration weist einen doppelt wirkenden Pulsator mit zwei Pumpenvorrichtungen, wie sie in Fig. 1 veranschaulicht sind, auf. Die Pumpenvorrichtungen sind in zwei gegensinnig angesteuerten Zweigen A, B parallel geschaltet. Zunächst wird ein Pumpvorgang anhand eines Zweiges beschrieben. In einem Ausgangszustand ist der Kolben 28 in die Membransteuerkammer 27 eingefahren und die Membran 26 ist in den Arbeitsraum 20 des Membranpulsators 10 ausgebaucht. Die Pendelleitung 12 und der Arbeitsraum 18 des Hauptpumpenkopfes 11 sind mit Förderflüssigkeit vollständig gefüllt. Das saugseitige Rückschlagventil 16 und das Druckseitige Rückschlagventil 17 sind geschlossen.
  • Wird der Kolben 28 ausgefahren, bewirkt dies ein Abflachen der Membran 26 und einen Unterdruck im Arbeitsraum 20 des Membranpulsators 10. Der Unterdruck wirkt über die Pendelleitung 12 im Arbeitsraum 18 des Hauptpumpenkopfes 11, so dass das saugseitige Rückschlagventil 16 öffnet und Förderflüssigkeit 21 von der Saugseite 15 der Förderleitung angesaugt wird. Beim folgenden entgegengesetzten Hub des Kolbens 28 wird beim Ausbauchen der Membran 26 Druck im Arbeitsraum 20 des Membranpulsators 10 erzeugt, der über die Pendelleitung 12 auf den Arbeitsraum 18 des Hauptpumpenkopfes 11 wirkt. Der Druck bewirkt ein Schließen des saugseitigen Rückschlagventils 16 und ein Öffnen des druckseitigen Rückschlagventils 17, so dass Förderflüssigkeit 21 in die Druckseite 5 der Förderleitung gepumpt wird. Durch oszillierende Bewegung des Kolbens 28 erfolgt auf diese Weise eine kontinuierliche Förderung.
  • Durch die gegensinnige Ansteuerung zweier Hauptpumpenköpfe 11 mittels doppelt wirkendem Pulsator 10, der vorzugsweise in Membranbauart ausgeführt ist, überlagern sich die Pump- und Saugvorgänge mit den zwei Kreisen A und B derart, dass insbesondere bei Rezirkulationsprozessen mit hohem Systemdruck und relativ niedrigem Differenzdruck zwischen Saug- und Druckleitung nur eine geringe Leistung für den Antrieb erforderlich ist. Alternativ kann jeder Hauptpumpenkopf 11 mit einem einfach wirkenden Pulsator gleich- oder gegensinnig angesteuert werden.
  • In Fig. 3 ist als Einzelheit eines zweiten Ausführungsbeispiels ein Abschnitt einer Pendelleitung 12' veranschaulicht. Zur Trennung der Flüssigkeitssäule in der Pendelleitung 12' ist ein gemäß Doppelpfeil 35 längsverschiebbar gelagerter Trennkolben 32 in der Pendelleitung 12' angeordnet. Eventuell vorhandene Feststoffteilchen 24 verbleiben dadurch in einem Bereich 33 auf Seiten des Hauptpumpenkopfes 11 und können nicht in einen Bereich 34 auf Seiten des Membranpulsators gelangen. Fig. 1A zeigt eine Ausführungsform mit einem doppelt wirkenden Pulsator. Fig. 1A entspricht im Wesentlichen der in Fig. 1 gezeigten Ausführungsform, wobei die Pumpenvorrichtung von Fig. 1 im Grunde zweimal vorhanden ist und von einem gemeinsamen Kolben 28 angetrieben wird. Der doppelt wirkende Pulsator ist in Fig. 1A extrem vereinfacht dargestellt, d.h. ohne Antrieb und ohne Hydraulikreservoirs und deren druckbeaufschlagten Nachfüllventile. Der doppelt wirkende Kolben 28 beschreibt eine Endlagenposition (rechts ist die Membran 26 ausgebaucht, d.h. der Druckhub bzw. die Druckphase ist abgeschlossen; links ist die Membran 26 abgeflacht, d.h. der Saughub bzw. die Saugphase ist abgeschlossen).
  • Die in den Figuren 2, 4, 5 und 6 gezeigten Ausführungen der Erfindung unterscheiden sich im Wesentlichen nur durch die unterschiedliche Entlüftung bzw. Nachfüllung. Gleiche Bauteile und Merkmale werden mit gleichen Bezugszeichen beschrieben. Betreffend der Ausführungsbeispiele der Figuren 4, 5 und 6 wird daher auf die obige Beschreibung des Ausführungsbeispiels von Fig. 2 verwiesen und im Folgenden werden nur die Unterschiede zu dieser Ausführungsform der Erfindung beschrieben.
  • Fig. 2 zeigt eine Ausführungsform mit Entlüftung in die Saugleitung 15. Die Nachfüllung erfolgt aus einem Druckspeicher 30 (mit Gaspolster) zeit- bzw. druckgesteuert während des Druckhubes des Pulsators. Das verwendete Schaltzeichen für das Ventil 31 beschreibt ein gesteuertes Rückschlagventil, bei dem das Schließen bei Ansteuerung verhindert wird. Der Druck im Nachfüllspeicher 30 muss größer sein als der Systemdruck. Der Nachfüllvolumenstrom muss größer/gleich dem Leckagestrom des Entlüftungsvorgangs sein. Eine Folgeregelung des Speicherdrucks in Abhängigkeit des sich verändernden Systemdrucks ist empfehlenswert. Notfalls ist auch eine manuelle Steuerung möglich.
  • Fig. 4 zeigt eine Ausführungsform mit Entlüftung in die Druckleitung 5. Die Nachfüllung erfolgt aus einem Druckspeicher 30 (mit Gaspolster) zeit- bzw. druckgesteuert während des Saughubes des Pulsators. Das verwendete Schaltzeichen für das Ventil 31 beschreibt ein gesteuertes Rückschlagventil, bei dem das Öffnen bei Ansteuerung verhindert wird. Der Druck im Nachfüllspeicher 30 muss größer sein als der Saugdruck. Der Nachfüllvolumenstrom muss größer/gleich dem Leckagestrom des Entlüftungsvorgangs sein. Eine Folgeregelung des Speicherdrucks in Abhängigkeit des sich verändernden Saugdrucks ist empfehlenswert. Notfalls ist auch eine manuelle Steuerung möglich.
  • Fig. 5 zeigt eine Ausführungsform mit einer Entlüftung in das Nachfüllreservoir 30. Die Nachfüllung erfolgt aus einem Druckspeicher 30 (mit Gaspolster) zeitlich gesteuert. Das Symbol für das Nachfüllventil 31 zeigt keine spezifische Funktion.
  • Fig. 6 zeigt eine Ausführungsform mit Entlüftung in einen beliebigen Speicher- oder Sammelbehälter 36. Die Nachfüllung erfolgt aus einem Druckspeicher 30 (mit Gaspolster) zeitlich gesteuert. Das Symbol für das Nachfüllventil 31 zeigt keine spezifische Funktion.
  • Fig. 7 zeigt eine Ausführungsform der Erfindung einer Pumpenvorrichtung mit einem einfach wirkenden Pulsator. Die Entlüftung bzw. Nachfüllung kann entsprechend den oben genannten Ausführungsformen der Erfindung beispielsweise gemäß Fig. 2, Fig. 4, Fig. 5 oder Fig. 6 erfolgen. Beispielhaft ist die Entlüftung in die Druckleitung 5 als eine der möglichen Varianten dargestellt.
  • Bei der Ausführungsform von Fig. 7 könnte anstelle des einfach wirkenden Pulsators auch ein doppelt wirkender Pulsator verwendet werden, dessen nicht verwendete Seite mit einem Druck beaufschlagt wird, der in etwa dem Systemdruck entspricht, beispielsweise mittels eines Druckspeichers. Damit könnten die Vorteile eines druckbeaufschlagten Nachfüllmediums zum Nachfüllen in den Membransteuerraum ausgenutzt werden. Außerdem ergibt sich durch die Druckbeaufschlagung der nicht genutzten Seite des doppelt wirkenden Pulsators der Vorteil, dass ein geringer dimensionierter Antrieb eingesetzt werden kann, wenn hohe Drücke von beispielsweise 250 bar von dem durch den Pulsator getriebenen Pumpenkopf überwunden werden müssen.
  • Fig. 8 zeigt eine mögliche Ausbildung des Hauptpumpenkopfs 11 erfindungsgemäßer Pumpenvorrichtungen. Auf der Ansaugseite des Hauptpumpenkopfs sind zwei saugseitige Rückschlagventile 16, 161 vorgesehen, die auch eine unterschiedliche Größe aufweisen können. Diese Ausführung hat den Vorteil, dass während des Druckhubes des Pulsators in dem Leitungsabschnitt zwischen den beiden saugseitigen Rückschlagventilen eine höhere Strömungsgeschwindigkeit erzeugt wird.
  • Die Pendelleitung 12 weist ein Gefälle hin zu den saugseitigen Rückschlagventilen 161, 16 auf. Beim Ansaugen verteilt sich der Saugstrom entsprechend der
    Querschnittsverhältnisse auf die saugseitigen Rückschlagventile 161 und 16. Dadurch wird beim Saugen erreicht, dass im Pendelleitungsabschnitt zwischen diesen beiden saugseitigen Rückschlagventilen eine geringere Strömung stattfindet, als sie wäre, wenn die gesamte Ansaugmenge nur durch das saugseitige Rückschlagventil 16 angesaugt würde.
  • Im Druckhub fließt durch die Pendelleitung die gesamte
  • Fördermenge der Pumpe. Dies führt dazu, dass man eine Strömung durch die Pendelleitung erhält, die in der Summe stärker zum saugseitigen Rückschlagventil 16 gerichtet ist.
  • Diese Strömung könnte dafür sorgen, dass die Ablagerungen vom Hauptstrom eher immer wieder zurückgefördert werden.
  • Fig. 9 zeigt eine mögliche Ausbildung der Pendelleitung 12 erfindungsgemäßer Pumpenvorrichtungen. Die Pendelleitung ist zumindest in einem Abschnitt in mindestens 2 Teilabschnitte 121, 122 aufgeteilt, die mit Hilfe gesteuerter Absperrventile 123, 124 in den Saugphasen gleichzeitig zum Ansaugen genutzt werden und in den Druckphasen wechselweise jeweils geöffnet und geschlossen werden können, um durch die somit erzeugte höhere Ausströmgeschwindigkeit in den Teilabschnitten 121, 122 Ablagerungen der Feststoffpartikel zu verhindern.
  • Das Füllvolumen eines jeden Teilabschnitts 121, 122 sollte vorzugsweise mindestens genauso groß wie und vorzugsweise größer als das Hubvolumen des Pulsators sein. Dadurch wird verhindert, dass Feststoffpartikel durch das wechselweise Verschließen in der Druckphase hinter die steuernden Ventile gelangen.
  • Bei einem ersten Saugvorgang würde so jeder Teilabschnitt zunächst maximal bis zur Hälfte seines Volumens mit Partikeln gefüllt. Der anschließend verschlossene Teilabschnitt würde diesen Zustand möglicherweise behalten. Beim erneuten Saugvorgang würde der Teilabschnitt dann maximal komplett mit Partikeln gefüllt sein, bevor in der Druckphase eine vollständige Ausspülung erfolgen würde.
  • Bei der in Fig. 9 gezeigten Ausführung sind zeitlich gesteuerte Absperrventile 123, 124 vorgesehen, die mit Hilfe von Sensorik exakt mit der jeweiligen Phasenlage der Pulsatormembran synchronisiert werden sollten.
  • Fig. 10 zeigt eine weitere Ausführung der Erfindung. Gleiche Teile sind mit gleichen Bezugszeichen versehen. Es wird auf die Beschreibung der oben genannten Ausführungen verwiesen. In Fig. 10 ist der Pulsator etwas detaillierter dargestellt, wobei der Antrieb für den doppelt wirkenden Kolben 28 nicht dargestellt ist. Detaillierter ist insbesondere der Verlauf der Hydraulikkanäle des doppelt wirkenden Pulsators dargestellt.
  • Die Pumpenvorrichtung von Fig. 10 weist zwei Nachfüllventile 37 des Membransteuerraums auf, die vorzugsweise mit einem Druck beaufschlagt sind, der in etwa dem Systemdruck entspricht. Der Druck wird von einer Hydraulikpumpe 38 zur Verfügung gestellt. Des Weiteren sind zwei Entlüftungsventile 39 zur Entlüftung der Membransteuerräume vorgesehen.
  • Die Figuren 11 und 12 zeigen schematische PV-Diagramme, die den zeitlichen Verlauf des Pumpendrucks über dem Hubvolumen darstellen. Beginnend am Punkt auf der linken Seite unten sieht man hier sehr gut die steile Flanke des Druckanstiegs während der Kompressionsphase, die Druckschwingungen aufgrund der Ventilkinematik, das Ausschieben des Hubvolumens (höchster Druck bei max. Kolbengeschwindigkeit), sowie die ebenfalls steile Dekompressionsphase sowie die Ansaugphase. (Anmerkung: Vorliegend wurde in beiden Figuren aus Anschauungsgründen der Kreisprozess im Uhrzeigersinn dargestellt.) Die gestrichelte Linie in Fig. 11 zeigt das erforderliche Druckniveau und ein mögliches Zeitfenster für einen gesteuerten Leckagenachfüllvorgang während des Druckhubes. Der sich einstellende, mittlere Arbeitsdruck des Pulsators im Druckhub (pD) ist etwas größer als der Systemdruck.
  • Die gestrichelte Linie in Fig. 12 zeigt das erforderliche Druckniveau und ein mögliches Zeitfenster für einen gesteuerten Leckagenachfüllvorgang während des Saughubes. Bei einer Nachfüllung während des Saughubes ist es ausreichend, wenn das Druckniveau etwas über dem Saugdruck liegt.

Claims (18)

  1. Pumpenvorrichtung (1) mit einem Pulsator als Antriebselement für einen Hauptpumpenkopf (11), der in einer Förderleitung (15) liegt und dessen Arbeitsraum (18) mit einem saugseitigen Rückschlagventil (16) und einem druckseitigen Rückschlagventil (17) versehen ist, wobei der Arbeitsraum (20) des Pulsators über eine mit Fördermedium (21) gefüllte Pendelleitung (12) mit dem Arbeitsraum (18) des Hauptpumpenkopfes (11) in der Weise in Verbindung steht, dass der Pulsator oszillierend Fördermedium (21) aus der Förderleitung (15) in den Arbeitsraum (18) des Hauptpumpenkopfes (11) ansaugt oder aus dem Arbeitsraum (18) drückt, wobei ein Entlüftungsventil (9) zur Entlüftung des Arbeitsraums (20) des Pulsators vorgesehen ist, dadurch gekennzeichnet, dass das Entlüftungsventil (9) ein zeitgesteuertes Ventil und/oder ein druckgesteuertes Doppelsitzventil ist und dass eine Vorrichtung zum Einleiten einer Flüssigkeit in den Arbeitsraum des Pulsators und/oder die Pendelleitung (12) vorgesehen ist.
  2. Pumpenvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Arbeitsraum (20) des Pulsators über das und/oder ein weiteres Entlüftungsventil (9) mit der Saugseite (15) der Förderleitung verbunden ist.
  3. Pumpenvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitsraum (20) des Pulsators über das und/oder ein weiteres Entlüftungsventil (9) mit der Druckseite (5) der Förderleitung verbunden ist.
  4. Pumpenvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitsraum (20) des Pulsators über das und/oder ein weiteres Entlüftungsventil (9) mit einem Nachfüllreservoir (30) zum Ausgleich von Leckageschwund in dem Arbeitraum (20) des Pulsators und/oder der Pendelleitung (12) verbunden ist.
  5. Pumpenvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitsraum (20) des Pulsators über das und/oder ein weiteres Entlüftungsventil (9) mit einem Sammelbehälter (36) zum Sammeln und zum eventuell späteren Rückführen von bei der Entlüftung austretenden Fördermediums (21) verbunden ist.
  6. Pumpenvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpenvorrichtung ein Nachfüllreservoir zum Nachfüllen von Fördermedium aufweist, das mit einem Druck beaufschlagt ist, der im Wesentlichen dem Systemdruck entspricht.
  7. Pumpenvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pendelleitung mit einer Kühlung versehen ist.
  8. Pumpenvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Pulsator oberhalb von dem Hauptpumpenkopf angeordnet ist.
  9. Pumpenvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pendelleitung (12) zumindest in einem Abschnitt in zumindest zwei parallele Teilabschnitte (121, 122) aufgeteilt ist.
  10. Pumpenvorrichtung (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Volumen der parallel verlaufenden Teilabschnitte (121, 122) der Pendelleitung (12) bzw. das Volumen der parallel verlaufenden Pendelleitungen (121), 122) jeweils zumindest so groß wie oder vorzugsweise größer als das Hubvolumen des Pulsators ist.
  11. Pumpenvorrichtung (1) nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass Steuerventile (123, 124) zum zumindest teilweisen Öffnen und Schließen der Teilabschnitte (121, 122) der Pendelleitung (12) bzw. der parallelen Pendelleitungen vorgesehen sind.
  12. Pumpenvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hauptpumpenkopf zumindest zwei parallel geschaltete saugseitige Rückschlagventile (16, 161) aufweist.
  13. Pumpenvorrichtung (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Querschnitt der das bezogen auf die Strömungsrichtung während der Druckphase stromabwärtigen saugseitigen Rückschlagventil aufnehmenden Leitung größer als der Querschnitt der das andere saugseitige Rückschlagventil aufnehmenden Leitung ist.
  14. Pumpenvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Pendelleitung (12') ein Trennkolben (32) angeordnet ist.
  15. Pumpenvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie mit einem doppelt wirkenden Pulsator und zwei gegensinnig angesteuerten Pumpenkreisen (A, B) ausgebildet ist.
  16. Pumpenvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Pulsator als doppelt wirkender Pulsator ausgebildet ist, dessen eine Seite als Antriebselement für den Hauptpumpenkopf (11) ausgebildet ist, und dessen andere Seite mit einem Druck beaufschlagt ist, der im Wesentlichen dem Systemdruck entspricht.
  17. Pumpenvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Pulsator in Membran- oder Schlauchmembranbauweise ausgeführt ist.
  18. Pumpenvorrichtung nach einem der vorhergehenden Ansprüche 1 bis 16, dadurch gekennzeichnet, dass der Pulsator in Kolben- oder Plungerbauweise ausgeführt ist.
EP09777900.3A 2008-08-14 2009-08-14 Pumpenvorrichtung Active EP2329147B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09777900T PL2329147T3 (pl) 2008-08-14 2009-08-14 Układ pompy
EP09777900.3A EP2329147B1 (de) 2008-08-14 2009-08-14 Pumpenvorrichtung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08014528.7A EP2154371B1 (de) 2008-08-14 2008-08-14 Pumpenvorrichtung
PCT/EP2009/005928 WO2010017997A2 (de) 2008-08-14 2009-08-14 Pumpenvorrichtung
EP09777900.3A EP2329147B1 (de) 2008-08-14 2009-08-14 Pumpenvorrichtung

Publications (2)

Publication Number Publication Date
EP2329147A2 EP2329147A2 (de) 2011-06-08
EP2329147B1 true EP2329147B1 (de) 2019-12-18

Family

ID=39883770

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08014528.7A Active EP2154371B1 (de) 2008-08-14 2008-08-14 Pumpenvorrichtung
EP09777900.3A Active EP2329147B1 (de) 2008-08-14 2009-08-14 Pumpenvorrichtung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08014528.7A Active EP2154371B1 (de) 2008-08-14 2008-08-14 Pumpenvorrichtung

Country Status (8)

Country Link
US (1) US20110135514A1 (de)
EP (2) EP2154371B1 (de)
CN (1) CN102124226B (de)
BR (1) BRPI0917663A2 (de)
DK (1) DK200800165U3 (de)
ES (1) ES2773043T3 (de)
PL (1) PL2329147T3 (de)
WO (1) WO2010017997A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012314408B2 (en) 2011-09-30 2016-05-26 Mhwirth Gmbh Positive displacement pump and operating method thereof
DE102012102088A1 (de) * 2012-03-13 2013-09-19 Prominent Dosiertechnik Gmbh Verdrängerpumpe mit Zwangsentlüftung
KR101374048B1 (ko) * 2012-06-14 2014-03-13 한국과학기술연구원 유체 펌핑 장치, 이를 이용하는 연료전지 장치 및 연료 가스 재순환 방법
DE102013114320A1 (de) * 2013-12-18 2015-06-18 Mhwirth Gmbh Heißschlammpumpe
EP3167029A1 (de) * 2014-07-11 2017-05-17 JOHANNSEN, Ib Verfahren und vorrichtung zur herstellung von biokraftstoff in einer oszillierenden fliessproduktionslinie unter überkritischen fluidzuständen
DE102016015110A1 (de) * 2016-12-20 2018-06-21 Fresenius Medical Care Deutschland Gmbh Verdrängerpumpe für medizinische Flüssigkeiten und Blutbehandlungsvorrichtung mit einer Verdrängerpumpe für medizinische Flüssigkeiten sowie Verfahren zur Steuerung einer Verdrängerpumpe für mediizinische Flüssigkeiten

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444586A (en) * 1944-03-20 1948-07-06 Wuensch Charles Erb Pump
US2445127A (en) * 1946-05-15 1948-07-13 Earl B Schwenk Hot liquid pump
US3216360A (en) * 1963-06-10 1965-11-09 Lapp Insulator Company Inc Fluid transport device
GB1108424A (en) * 1964-01-08 1968-04-03 Panther Pumps & Equipment Comp Diaphragm fluid pumping systems
US3661167A (en) * 1970-05-25 1972-05-09 A & D Fabricating Co Chemical feed pump with improved valve means
JPS5018604B1 (de) * 1971-06-24 1975-07-01
US3802807A (en) * 1972-06-02 1974-04-09 Precision Control Prod Corp Pump
DE2553794A1 (de) * 1975-11-29 1977-06-02 Bayer Ag Verfahren und vorrichtung zum kontinuierlichen foerdern heisser aggressiver fluessigkeiten
US4247266A (en) * 1979-02-16 1981-01-27 Vapor Corporation Fluid pump drive system
DE3012028A1 (de) * 1980-03-28 1981-10-08 Josef Emmerich Pumpenfabrik GmbH, 5481 Hönningen Vorrichtung zum foerdern von fliessfaehigen medien
DE3021851C2 (de) * 1980-06-11 1984-04-12 Pumpenfabrik Urach, 7432 Urach Hochdruckkolbenpumpe
US4378183A (en) * 1980-09-18 1983-03-29 The Pittsburgh & Midway Coal Mining Co. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid
US4386888A (en) * 1980-09-29 1983-06-07 Mccann's Engineering And Manufacturing Company Double diaphragm operated reversing valve pump
DE3040478C2 (de) * 1980-10-28 1986-07-10 Uraca Pumpenfabrik GmbH & Co KG, 7432 Bad Urach Pumpe od.dgl. hydraulische Arbeitsmaschine
EP0055467B1 (de) * 1980-12-29 1984-12-05 LEWA Herbert Ott GmbH + Co. Membranpumpe mit druckentlastet eingespannter Membran
DE3261319D1 (en) * 1982-02-05 1985-01-10 Bran & Luebbe Piston-driven diaphragm pump
US5310321A (en) * 1990-07-24 1994-05-10 Baker Hughes Incorporated Pump system
US5249932A (en) * 1991-10-07 1993-10-05 Erik Van Bork Apparatus for controlling diaphragm extension in a diaphragm metering pump
NL1004890C2 (nl) * 1996-12-24 1998-06-25 Envirotech Pumpsystems Netherl Pompsysteem in het bijzonder geschikt voor het verpompen van hete media.
IT1297087B1 (it) 1997-11-28 1999-08-03 Enea Ente Nuove Tec Dispositivo per il pompaggio di liquidi o aeriformi, con moto alternativo a doppio effetto ottenuto per via idraulica.
DE19903061C2 (de) * 1999-01-26 2002-11-21 Emmerich Josef Pumpenfab Verdrängerpumpe
US7175397B2 (en) * 2002-09-27 2007-02-13 Pulsafeeder, Inc. Effervescent gas bleeder apparatus
DE102006041420A1 (de) * 2006-09-04 2008-03-20 Bran + Luebbe Gmbh Pumpenvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102124226B (zh) 2014-09-17
WO2010017997A3 (de) 2010-04-08
BRPI0917663A2 (pt) 2015-12-01
EP2329147A2 (de) 2011-06-08
US20110135514A1 (en) 2011-06-09
EP2154371A1 (de) 2010-02-17
DK200800165U3 (da) 2009-12-11
ES2773043T3 (es) 2020-07-09
PL2329147T3 (pl) 2020-06-29
CN102124226A (zh) 2011-07-13
WO2010017997A2 (de) 2010-02-18
EP2154371B1 (de) 2018-09-19

Similar Documents

Publication Publication Date Title
EP2329147B1 (de) Pumpenvorrichtung
EP0547404B1 (de) Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung
EP2748439B1 (de) Dosiersystem für ein flüssiges reduktionsmittel
EP1898093B1 (de) Pumpenvorrichtung
EP3810747B1 (de) Modulares prozessiersystem und verfahren zum modularen aufbau eines prozessiersystems
DE3923457A1 (de) Vorrichtung zum injizieren von fluessigkeiten
DE3026117A1 (de) Peristaltische pumpe
DE102014010108B4 (de) Hydraulisch angetriebene Membranpumpe
EP1339480B1 (de) Verfahren und vorrichtung zum entsalzen von wasser
EP2396632A1 (de) Verfahren, steuerung, ventilanordnung und portioniereinrichtung zum portionieren einer fliessfähigen, optional druckbeaufschlagten masse
WO2018091306A1 (de) Betriebsverfahren einer kolbenpumpe sowie kolbenpumpe
DE3040478C2 (de) Pumpe od.dgl. hydraulische Arbeitsmaschine
EP2501969B1 (de) Kondensatventil
DE2741232A1 (de) Membran-filterpresse
EP2025978A2 (de) Wegeventil für eine Scheibenreinigungsvorrichtung in einem Kraftfahrzeug
WO2013135681A1 (de) Verdrängerpumpe mit zwangsentlüftung
EP0902751A1 (de) Verfahren zur entlüftung eines hydraulischen servolenksystems
DE2320205A1 (de) Vorrichtung zum zufuehren von sperroel zu den wellendichtungen von hochdruckschleudergeblaesen beim versagen der sperroelversorgungsanlage
DE102009045403A1 (de) Vorrichtung zur Phasentrennung
DE102021002178A1 (de) Fördereinrichtung
DE102006038389B4 (de) Schmiermittel-Dosierpumpe und Dosierverfahren mit zwei gegeneinander beweglichen Kolben
DE10057613C2 (de) Verfahren und Vorrichtung zum Entsalzen von Wasser
EP2877745B1 (de) Dosieranlage sowie dosierpumpe hierfür
DE102011057005A1 (de) Filtriervorrichtung für hochviskose Fluide
EP2525094B1 (de) Pumpe zum Fördern von fluiden Material aus Materialbehältern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110314

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150730

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180713

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SPX FLOW TECHNOLOGY GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009016062

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1214897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200319

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2773043

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009016062

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

26N No opposition filed

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1214897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230826

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 15

Ref country code: GB

Payment date: 20230828

Year of fee payment: 15

Ref country code: ES

Payment date: 20230901

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230718

Year of fee payment: 15

Ref country code: FR

Payment date: 20230825

Year of fee payment: 15

Ref country code: DE

Payment date: 20230829

Year of fee payment: 15