EP2525094B1 - Pumpe zum Fördern von fluiden Material aus Materialbehältern - Google Patents

Pumpe zum Fördern von fluiden Material aus Materialbehältern Download PDF

Info

Publication number
EP2525094B1
EP2525094B1 EP12165695.3A EP12165695A EP2525094B1 EP 2525094 B1 EP2525094 B1 EP 2525094B1 EP 12165695 A EP12165695 A EP 12165695A EP 2525094 B1 EP2525094 B1 EP 2525094B1
Authority
EP
European Patent Office
Prior art keywords
pump
space
volume
piston
supplementary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12165695.3A
Other languages
English (en)
French (fr)
Other versions
EP2525094A1 (de
Inventor
Uwe Röger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
2 Komponenten Maschinenbau GmbH
Original Assignee
2 Komponenten Maschinenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 2 Komponenten Maschinenbau GmbH filed Critical 2 Komponenten Maschinenbau GmbH
Publication of EP2525094A1 publication Critical patent/EP2525094A1/de
Application granted granted Critical
Publication of EP2525094B1 publication Critical patent/EP2525094B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B3/00Machines or pumps with pistons coacting within one cylinder, e.g. multi-stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/16Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by adjusting the capacity of dead spaces of working chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • F04B5/02Machines or pumps with differential-surface pistons with double-acting pistons

Definitions

  • the invention relates to a pump for conveying fluid material from a material container according to the preamble of claim 1.
  • Corresponding pumps are used for removing fluid material from material containers and for feeding the material to, for example, a mixing device or processing device.
  • a working cycle comprises a first step in which for the removal of material from the material container, a pumping chamber of the pump is filled with material, and a second step, in which for supplying the material to a device Material from the pump delivery chamber is emptied.
  • Conventional pumps are commonly driven by a drive means so that a duty cycle is performed in an operable by the drive means operable frequency.
  • One period of this working frequency refers to the time interval between the beginning of the first working step in one Work cycle and the beginning of the first work step in the subsequent work cycle. Since in conventional pumps, the delivery chamber is set up constant in its geometric dimensions, the conveying speed of conventional pumps with known delivery chamber volume, taking into account the frequency of the drive device can be easily calculated and thus specified by the drive device.
  • the conveying speed of the pump can be varied within a certain range, without having to change the operating frequency of the working cycles and thus the frequency of the drive device. This is particularly the case when the conveying speed, and thus the amount of material conveyed per time interval, must be precisely determined or controlled, which can not always be guaranteed via the frequency control via the drive device.
  • process-dependent parameters of the processing device must be reacted to the effect that more or less material is fed to the processing device.
  • the control of the drive device may be too slow, too inaccurate or too expensive for this purpose.
  • pumps are often mechanical or driven coupled driven, wherein each pump promotes a different material from a different material container.
  • the delivery speeds of the pumps can thus be changed only together. Again, there is a need to be able to change the conveying speed of the respective coupled driven pump independently of the drive device.
  • the document discloses DE 1703650 A1 a pump for conveying liquids, wherein the conveying speed can be varied by changing the gas pressure in a Zuschaltraum, which is arranged on the pumping chamber.
  • a piston is arranged in the Zuschaltraum, which is acted upon on one side by the gas pressure in the Zuschaltraum with pressure, wherein the Zuschaltraum is arranged on the delivery chamber, that liquid can pass from the delivery chamber into the Zuschaltraum to the other side of the piston ,
  • the document CH 227216 A one Multi-stage compressor known whose delivery rate can be varied by the delivery chamber of the multi-stage compressor can be connected to non-promotional work spaces.
  • a compressor in which the conveyed air flow can be prevented by the delivery chamber of the compressor can be connected to a non-promotional Zuschaltraum.
  • a pump is known whose delivery speed can be varied by varying the delivery chamber volume by means of a deformable membrane
  • the invention has for its object to provide a pump for conveying a quantity of fluid material from a material container, through which the needs described above at least partially satisfied and / or the problems mentioned in known pumps are at least partially resolved.
  • the invention proposes a pump for conveying a quantity of fluid material from a material container having the features of claim 1.
  • a pump according to the invention is designed such that the size of the delivery chamber of the pump during pump operation is variable so that different volumes of the material can be conveyed in different operating cycles of the delivery process.
  • the delivery chamber comprises a supplementary chamber with additional space, wherein the volume of the supplementary space during operation of the pump is variable.
  • the pump according to the invention is designed as a reciprocating pump whose delivery chamber comprises a first piston chamber, and which has a second piston chamber and a reciprocating piston. At the first piston chamber, the supplementary chamber is provided.
  • the reciprocating piston is movable in the first step for conveying the material from the material container in the first piston chamber from a first dead center to a second dead center and in the second step for discharging the material from the first piston chamber into the second piston chamber from the second dead center to the first dead center movable.
  • the size of the pumping room refers to the size of the room defined by the geometric dimensions of the pumping room. A change in the size of the delivery chamber can thus be brought about by each change of each extension size of the delivery chamber.
  • the volume of the delivery chamber does not necessarily have to be changed, but also a change in the shape of the delivery chamber must be regarded as a change in the size of the delivery chamber.
  • a change in the size of the delivery chamber can consist in that the extent of the delivery chamber changes such that a chamber or Aussackung is formed or regressed, which is not accessible when emptying the material from the delivery chamber in the second step, so that in a work cycle funded volume of the material can be changed by changing the size of the delivery chamber.
  • a change in the size of the delivery chamber can also consist in particular in that a dividing wall or the like is changed in the delivery chamber or introduced into it, so that certain sections of the delivery chamber in the filling of
  • the size of the pumping chamber can of course also be changed by changing at least one extension of the pumping chamber so that the volume bounded by the pumping chamber changes. For example. it is possible to change the delivery chamber in a scoop pump so that in a work cycle, d. H. in a scooping cycle of the pump, depending on the size of the pumping chamber, a certain amount is conveyed.
  • the pump according to the invention is characterized in particular by the fact that the size of the delivery chamber of the pump can be changed during pump operation.
  • the pump according to the invention therefore makes it possible to change the volume delivered per working cycle without interrupting the delivery process.
  • the delivery speed of the pump can be adapted to the respective conditions which may be predetermined, for example, by the processing device to which the pump feeds the material. Because by changing the size of the pumping chamber during pump operation, it is possible to change the volume delivered per working cycle, so that at constant operating frequency of the pump by changing the size of the pumping chamber during pump operation, the conveying speed of the pump is variable. The change in the conveying speed can be carried out continuously or stepwise.
  • the size of the delivery chamber can be controlled or regulated by a control unit.
  • the control unit of a pump for example, the operating parameters of the pump, the operating parameters of the processing device and / or operating parameters of pumps that promote material from further material containers to the processing device, take into account.
  • the Control unit for controlling or regulating the size of the pumping chamber can cooperate in particular with a spreader for controlling or regulating the operating frequency of the pump. This makes it possible to change the delivery speed of the pump quickly and precisely within a wide range of values.
  • the pump according to the invention can be realized particularly cheap and robust.
  • the pump can be connected to the material container via a follower plate.
  • the reciprocating piston in this case represents the conveying means for filling and emptying the first piston chamber.
  • the second piston chamber can be designed, for example, as an outlet chamber of any desired design.
  • first piston chamber and second piston chamber can be separated from each other by the reciprocating piston.
  • the second piston chamber can also be designed so that it is filled in the second step by the stroke of the piston from the second dead center to the first dead center with material and is emptied during the stroke of the piston in the first step of the subsequent cycle. It may be particularly advantageous that the ratio of the volumes of the first and second piston chamber to each other is two to one, whereby it is possible that the pump during the entire cycle substantially continuously expels material from the second piston chamber.
  • the delivery chamber of the pump comprises means or cooperates with these, by which the size of the delivery chamber is variable, and which are adjustable during a duty cycle for changing the size of the delivery chamber, so that the volume ratio between the material volume, the in the first step is conveyed into the delivery chamber, and the volume of material that is emptied from the delivery chamber in the second step is changeable.
  • material which has been retained in the conveying space and is located in the conveying space before the start of the first working step of a working cycle can be emptied out of the conveying space together with the material conveyed into the conveying space in the first working step during the subsequent second working step.
  • volume ratio can be changed so that the volume of material that is conveyed in the first step in the pumping chamber is greater or smaller than the volume of material that is emptied in the second step from the pumping chamber. Due to the means and their different settings can thus the conveying speed of the pump in a wide range be varied.
  • the delivery chamber of the pump a. Complementary chamber with a supplementary space, wherein the volume of the supplementary space is variable during operation of the pump.
  • the volume of material that is conveyed into the delivery chamber in the first operating step and the volume of material that is discharged from the delivery chamber in the second operating step can be changed by changing the volume of the supplementary space.
  • the change in the volume of the supplementary room can influence the emptying and / or filling of the pump room.
  • the invention also includes, irrespective of the change in the conveying speed, providing the delivery space so that it comprises a supplementary chamber with supplementary space, and that the volume of the supplementary space during the operation of the pump is variable.
  • the filling and / or emptying can be influenced as described.
  • the embodiments, features and combinations of features of a pump according to the invention described in the present descriptions are valid accordingly for this independent part of the invention. In particular, the features can also be combined with each other.
  • the delivery chamber a pump chamber, wherein the volume of the supplementary space is variable independently of the volume of the pump chamber.
  • the pump room can be continuously filled and emptied with material during the working cycles, wherein the change in the size of the pumping chamber via the change of the supplementary room can be done.
  • a conveyor which serves to fill and empty the pump chamber with material, without simultaneously causing a filling and emptying of the supplementary chamber of the supplementary chamber.
  • the influence of the change in the size of the delivery chamber on the entire pump construction can be kept low, which allows a simple construction of the pump according to the invention.
  • the delivery chamber may include a working means by means of which the volume of the supplementary space is variable during a working cycle of the pump between a first volume and a second volume to the funded in a work cycle volume of material by the volume corresponding to the difference between the second and first volume to change, wherein the working means is controlled by a control unit.
  • First and second volumes can be adjusted by the working fluid in a range between 0 to the volume of the supplementary chamber.
  • the first volume may, for example, be the minimum volume of the supplementary room, the second volume the maximum volume of the supplementary room during a working cycle of the pump. Accordingly, the second volume, the minimum volume and the first volume of the Maximum volume to be within a work cycle.
  • the change in the volume of material delivered in one cycle refers to the volume of standard material delivered by the pump when the fluid rests during a closed cycle.
  • the volume of standard material delivered by the pump in one cycle may then be reduced by the difference between the second and first volumes by changing the volume of the supplemental space after filling the delivery space from a smaller first volume to a larger second volume. so that when emptying the delivery chamber, the volume of material that corresponds to the difference between the second and first volume is retained in the supplementary space.
  • the retained volume may then be used in the subsequent cycle, for example, for filling the delivery space, and a corresponding change in the supplemental space by the working fluid from a small first volume to a large second volume may again cause a reduction in the standard volume of material.
  • the standard material volume can be increased by the difference between the second and first volume, when the working means is controlled so that the supplementary space is changed during the filling of the delivery chamber from a small first volume to a larger second volume and during the emptying of the delivery chamber of the larger second volume is changed back to the small first volume.
  • the first and / or the second volume of the supplementary space during operation of the Pump is changeable.
  • the volume of standard material delivered in one working cycle can be changed by a respectively different volume. This allows the control or regulation of the delivery speed of the pump during operation of the pump in an area defined by the variation of the first and second volumes of the supplementary room.
  • the pump may comprise a first valve and a second valve, wherein the pumping chamber with the first valve for filling with material material communicates with the material container and with the second valve open for discharging material with an outlet chamber in communication, wherein the first valve and the second Valve during operation of the pump are alternately opened and closed.
  • the outlet chamber can be designed in any manner and also be realized for example by a conduit, such as a hose or a pipe.
  • the volume of the delivery chamber with the first valve open can differ from the volume of the delivery chamber when the second valve is open.
  • the provision of corresponding valves ensures that the volume of the delivery chamber during the first step, and thus during the filling of the delivery chamber, separate from the volume during the second step, and thus during the emptying of the delivery chamber, is adjustable, wherein the do not overlap both work steps. As a result, a precise variation of the conveying speed is possible.
  • the supplemental chamber may in one embodiment comprise a displacement means, wherein the volume of the supplementary space is determined by the position of the displacement means in the supplementary chamber.
  • the volume of the supplementary room can be particularly simple and be determined inexpensively.
  • Supplementary chamber and displacement means may be formed as a cylinder-piston arrangement, wherein the displacement means is designed as a displacement piston, through which the supplementary space is limited. Due to the cylinder-piston arrangement, the volume of the supplementary space is very simple and precisely changeable, and the cylinder-piston arrangement can be produced at low cost.
  • the invention designed as a reciprocating pump pump may include a bypass through which the first piston chamber and the second piston chamber are interconnected, wherein in the bypass, the second valve is arranged, which is designed as a check valve, so that a return flow of material from the second Piston space is prevented in the first piston chamber.
  • the bypass can be formed both as a material line outside the piston chambers, which connects the piston chambers with each other, as well as, for example, by the reciprocating piston and / or a Hubkolbenstange for driving the reciprocating piston.
  • the check valve and / or the first valve can, for. B. may be formed as a ball valve or as Kugelkalottenventil, which may self-controlling opens and closes.
  • the volume of the supplemental space in the supplementary chamber during operation is variable so that the volume ratio between the volume of the supplementary space in the passage of the first dead center by the reciprocating piston and the volume of the supplementary space in passing the second dead center by the Reciprocating piston is changeable during operation.
  • the conveying speed of the pump can be changed by changing the volume ratio.
  • the volume of the supplementary room on the position of a Displacer be changed in the supplementary chamber.
  • Displacer can be changed continuously or only in a time interval during the movement of the reciprocating piston between the two dead centers, and / or passing the respective dead points themselves. Due to the fact that the volume ratio in the operation of the pump is variable, the conveying speed of the pump in operation the pump can be changed.
  • the volume ratio is adjustable as a function of a predetermined conveying speed during a working cycle.
  • the volume ratio during a work cycle can be changed so that the pump speed influenced by the volume ratio of the pump is changed in the direction of a predetermined conveying speed, or that thereby the predetermined conveying speed is set itself.
  • the invention relates to a system comprising at least two pumps, of which at least one as described above formed according to the invention and each associated with a material container, both pumps are driven coupled so that they perform the steps synchronously with the same frequency, the size the delivery chamber of at least one of the two pumps is variable independently of the other.
  • the coupling can be done both mechanically and via an electronic control. This ensures that in the system, the conveying speed of at least one pump is variable independently of the conveying speed of the other pump, while both pumps are driven coupled to the same frequency.
  • the conveying speed with which a certain material is conveyed by a certain pump can be changed depending on, for example, the material or operating parameters of the processing unit become. For example, thus different mixing ratios of the materials from the respective material containers associated with the pump can be realized.
  • the change of the delivery chamber of one or both of the pumps can also be controlled by means of a control unit in order to change the actual value of the delivery speed of the controlled pump in the direction of a desired value of the delivery speed of the pump.
  • the control unit may possibly calculate the pump speed setpoint as a function of operating parameters of the processing unit or also on characteristics of the material, such as the viscosity of the material.
  • the target value of the conveying speed of the pump can be manually entered.
  • the change in the delivery chamber can then be controllable via the control unit in such a way that the actual value of the delivery speed of the controlled pump can be changed in the direction of the corresponding desired value.
  • the change of the delivery chamber of one or both of the pumps in dependence on the level of at least one of the two pumps associated material container is controllable. This may possibly also the difference or the ratio of the levels in the material containers are taken into account.
  • the invention comprises a method for controlling the conveying speed of a pump, which is designed as a reciprocating pump, wherein the pump conveys fluid material from a material container by a delivery chamber is at least partially filled with material in a first step and at least in a second step, the material is partially emptied from the pumping chamber, wherein the first and the second step are each part of a working cycle.
  • the delivery chamber of the pump in order to change the volume of material delivered per working cycle, is changed during operation of the pump, the volume of a supplementary chamber in a supplementary chamber, which is provided by the delivery chamber and provided on a first piston chamber of the pump, during the Operation of the pump is changed, wherein a reciprocating piston of the pump is moved in the first step for conveying the material from the material container in the first piston chamber from a first dead center to a second dead center and in the second step for emptying the material from the first piston chamber into a second piston chamber of the pump is moved from the second dead center to the first dead center.
  • FIG. 1 To explain the operation of conventional pumps 100 are in FIG. 1 four states of a conventional pump 100 during a duty cycle of the pump 100 shown.
  • FIG. 1 is a 100 designed as a reciprocating pump 100 pump shown.
  • FIG. 1 states of the pump 100 are shown in a first cycle and at the beginning of the subsequent second cycle.
  • the state diagrams A to C show the pump 100 in the first cycle, the state diagram D at the beginning of the second cycle.
  • FIG. 1 the material 2, which is related to the removal in the first cycle, shown rasterized, while the material 2a, which is related to the removal in the second cycle, hatched. This is intended to illustrate schematically how the material 2, 2 a removed from the material container in a specific working cycle is conveyed or ejected by the pump 100 during the working cycles.
  • the conventional reciprocating pump 100 is immersed in the material 2 in the material container.
  • the material container and the material contained in the material container are in FIG. 1 not shown, but only schematic diagrams of pumps 100 and material 2, 2a are shown in the pump 100. This applies correspondingly for the representation of the pump 1 according to the invention in the FIGS. 3 and 4 ,
  • a state of the reciprocating pump 100 is shown at the beginning of the first cycle, in which the reciprocating pump 100 has not yet conveyed material 2 from the material container. Accordingly, the material 2 has entered the reciprocating pump 100 only up to the first valve 6, via which the reciprocating pump 100 can be brought into contact with the material 2 in the material container.
  • the first piston chamber 3 and the second piston chamber 4 are each not filled with material.
  • the reciprocating piston 8 of the pump 100 is in its first dead center.
  • the first valve 6 is opened in the illustrated state A. However, it is also possible that the first valve 6 opens only with the onset of the lifting movement of the reciprocating piston 8.
  • a state of the pump 100 is shown at the end of the first working step.
  • the reciprocating piston 8 moves from the first dead center toward the second dead center, whereby the first piston chamber 3 is filled with material 2.
  • the direction of movement of the reciprocating piston 8 is indicated in the figures in each case by an arrow in the reciprocating piston 8.
  • material 2 is thus scooped up from the material container into the first piston chamber 3, the first valve 6 being opened in a controlled manner during the scooping process in accordance with the scooping direction.
  • a state of the pump 100 during the second operation is shown.
  • the reciprocating piston 8 moves from the second dead center in the direction of the first dead center, whereby the reciprocating piston 8 exerts pressure on the material 2 in the first piston chamber 3, so that the first valve 6 is closed automatically and the second valve 7 is self-controlling open. Accordingly, material passes through the bypass 9, in which the second valve 7 is arranged, into the second piston chamber 4, wherein both the first piston chamber 3 and the second piston chamber 4 extend in sections into the bypass 9. Since the volume of the first piston chamber 3 is greater than that of the second piston chamber 4, the pump 100 still ejects material 2 through the outlet 5 after the filling of the second piston chamber 4 during the second working step. The material ejection is indicated by an arrow in the outlet 5.
  • the second piston chamber 4 Since the volume of the first piston chamber 3 is greater than that of the second piston chamber 4, the second piston chamber 4 is filled with material 2 even in the state D after completion of the first working cycle of the pump 100. With the onset of the first operation of the second cycle of the pump 100, the reciprocating piston 8 again moves from its first dead center toward the second dead center, whereby material 2a is filled from the material container into the first piston chamber 3. To explain the principle of operation of the pump 100, only the material 2a is shown in the state diagram D in the first piston chamber 3 for the sake of simplicity. This makes it clear that in the first step of the second cycle of the material container, the material 2a is scooped into the first piston chamber 3.
  • the material 2 from the first piston chamber 3 is continuously displaced by material 2a in the second piston chamber.
  • material 2 is discharged from the outlet 5, since, as explained, even at the end of the first cycle of the second piston chamber 4 is filled with material 2 and during the first step of the second cycle in Substantially the remaining material 2 from the first piston chamber 3 is displaced into the second piston chamber 4, so that the reciprocating piston 8 displaces material 2 in the second piston chamber 4 during its movement from the first dead center to the second dead center and thus the expulsion of material 2 from the outlet 5 causes.
  • the pressure curve 32 of the material pressure in the material 2, 2a in the second piston chamber 4 of the pump 100 is in FIG. 2 shown.
  • the reciprocating curve 31 represents the lifting movement of the reciprocating piston 8 of the pump 100.
  • the arrows indicate the direction of movement of the reciprocating piston 8.
  • An upward arrow indicates the movement of the reciprocating piston 8 from the first dead center toward the second dead center, a downward arrow from the second dead center toward the first dead center.
  • the first dead center is thus shown as a minimum, the second dead center as the maximum of the reciprocating curve 31.
  • FIG. 3 states of a pump 1 according to the invention during a working cycle of the pump 1 are shown.
  • a supplementary chamber 10 with a supplementary chamber 12 is arranged, which comprises a displacement piston 11.
  • the pump 1 is in the in FIG. 3 illustrated duty cycle controlled so that per working cycle of the pump 1 more volume of the material 2 is promoted as the standard volume after FIG. 1 illustrated conventional pump 100 of identical construction, in which not according to the invention, a supplementary chamber 10 is provided with displacement piston 11 and supplementary chamber 12.
  • a state of the pump 1 is shown at the end of the first working step, in which material 2 is scooped into the first piston chamber 3 via the open first valve 6.
  • the reciprocating piston 8 is near its second dead center, and the first piston chamber 3 is substantially filled with material 2.
  • the second valve 7 is closed automatically.
  • the supplementary space whose volume is defined by the position of the displacement piston 11 in the supplementary chamber 10 is filled with material 2.
  • the position of the displacement piston 11 is between a first position, which in FIG. 3 in the state diagram B ', and a second position shown in FIG FIG. 3 in the state representation A ', changeable.
  • the supplementary chamber 12 has a first volume
  • the second position of the displacement piston 11 has a second volume.
  • the filling of the supplementary space 12 with material 2 is ensured by the fact that the displacement piston 11 is moved during the first step from the first position to the second position and thereby changes the volume of the supplementary chamber 12 from the first to the second volume.
  • the volume of the material 2 which is in the state A 'in the supplementary space by the difference between the second and first volume of the supplementary space 12 or be determined solely by the second position of the displacement piston 11.
  • the volume of the material 2 in the supplemental space 12 in the state A 'by the second position of the displacement piston 11 is fixed.
  • the change in the position of the displacement piston 11 can be carried out both simultaneously and before or after the movement of the reciprocating piston 8 from the first dead center to the second dead center.
  • the position of the displacement piston 11 can in particular take place when the reciprocating piston remains at a dead center.
  • the first valve 6 is open when changing the position.
  • the material volume filled by the change in the position of the displacement piston 11 into the supplementary space 12, which corresponds to the difference between the second and first volumes of the supplementary space 12, is thus removed from the material container during the first working step.
  • By controlling the position of the displacement piston 11 can thus be changed in the first step in the first piston chamber 3 funded material volume.
  • the pump 1 In the state B 'in FIG. 3 the pump 1 is in a state during the second operation.
  • the reciprocating piston 8 moves from the second dead center to the first dead center and thereby causes as to FIG. 1 explains the at least partially emptying of material 2 from the first piston chamber 3 in the second piston chamber 4 and an ejection of material 2.
  • the first valve 6 is closed and the second valve 7 is opened.
  • the displacement piston 11 is actuated such that it moves from the second position to the first position, whereby the supplementary space 12 in the supplementary chamber 10 is reduced.
  • the volume of the material 2, which corresponds to the difference between the additional volume spaces formed in the first position and the second position of the displacement piston 11, is thus conveyed from the supplementary chamber 10 into the first piston space 3 during the second working step. Since the material 2 in the first piston chamber 3 during the second step by the movement of the reciprocating piston 8 from the second dead center to the first dead center is under pressure and thereby as above described in the second piston chamber 4 is conveyed, the volume of the material 2, which is emptied during the second step of the supplementary chamber 10 in the first piston chamber 3, also in the second piston chamber. 4 promoted.
  • the displacement piston 11 may be controlled so that it moves to reduce the supplementary space 12 from the second position to the first position when the reciprocating piston 8 at the beginning of the second step in the second dead center, at the end of the second step in the first Dead center is or while the reciprocating piston 8 moves from the second dead center to the first dead center.
  • the first valve 6 is always closed and the second valve 7 is opened.
  • the displacement piston 11 can be controlled so that first position and second position of the displacement piston 11 between a first and a second end position of the displacement piston 11 are continuously selectable. If the position of the displacement piston 11 is not changed during a work cycle, the material 2, which enters the supplementary space 12 in the first step, is essentially not conveyed into the second piston chamber 4 in the second step, since the piston 8 is the material 2 in the supplemental space 12 during the second step in the direction of the displacement piston 11 under pressure. Accordingly, the pump 1 according to the invention, if the position of the displacement piston 11 is not changed during the working cycle, promotes substantially the same standard volume of material per working cycle, which is replaced by a corresponding conventional one FIG. 1 described pump 100 is conveyed in a working cycle.
  • the volume of the difference between the second volume of the supplementary space 12 in the second position of the displacement piston 11 and the first volume of the supplementary space 12 in the first position of the displacement piston 11 corresponds. Accordingly, by changing the first position and the second position of the displacement piston 11 in the supplementary chamber 10, the volume of material delivered per working cycle of the pump 1 can be changed by controlling the displacement piston 11. Accordingly, the conveying speed of the pump 1 according to the invention is variable.
  • FIG. 2 is exemplary of the displacement piston curve 21 after the in FIG. 3 described functioning working pump 1 shown.
  • the position of the displacement piston 11 is thereby changed during the first working step from the first position to the second position to the effect that the volume of the supplementary space 12 is increased from the first volume to the second volume.
  • the position of the displacement piston 11 is then changed from the second position in the direction of the first position.
  • the volume of the supplemental space 12 is thus reduced from the second volume to the first volume at the beginning of the second working step.
  • pressure is applied to the material 2 in the first piston chamber 3 at the beginning of the second working step, and therefore also to the material 2 in the second piston chamber 4 via the second valve 7.
  • the states A "and B" are one pump according to the invention shown, wherein the pump according to the invention is controlled so that the funded per working cycle material volume is smaller than the per working cycle funded standard material volume of a corresponding conventional pump 100.
  • the pump 1 In the state A ", the pump 1 is in a state at the end of the first operation, the first valve 6 is opened and the second valve 7 is closed, and material 2 is fed from the material container into the first piston space 3.
  • the state B " is the pump 1 shown during the second step, in which is promoted by the force exerted on the displacement piston 11 pressure on the material 2 material 2 from the first piston chamber 3 in the second piston chamber 4.
  • the first valve 6 In the state B ", the first valve 6 is closed and the second valve 7 is opened.
  • the displacement piston 11 is controlled in the supplementary chamber 10 so that the first volume of the supplementary chamber 12 in the first position of the displacement piston 11 during the first step of the pump 1 is smaller than the second volume of the supplementary space 12 in the second Position of the displacement piston 11 during the second step of the pump 1.
  • the position of the displacement piston 11 can take place both during the movement of the reciprocating piston 8 and then when the reciprocating piston 8 is in its first or second dead center or remains.
  • the pump 1 thus reaches a volume of the material 2, which corresponds to the difference between the first and second volumes of the supplementary space 12, after the completion of the first step, and thus after filling the first piston chamber 3 with material 2, from the first Piston chamber 3 in the supplementary room 12 in the supplementary chamber 10.
  • the Pump 1 is designed in such a way that, when the material 2 is emptied from the first piston chamber 3 into the second piston chamber 4, the piston 8 does not simultaneously discharge material 2 from the supplementary chamber 12 into the second piston chamber 4. Accordingly, the in FIG. 4 described inventive pump 1 per duty cycle a volume of material that corresponds to the standard material volume minus the difference between the first volume and the second volume of the supplementary space 12.
  • the conveying speed of the pump 1 according to the invention is after FIG. 4 reduced compared to a corresponding conventional pump 100.
  • the position of the displacement piston 11 can be moved back from the second position to the first position.
  • the volume of the material 2 which corresponds to the difference between the first and second volumes of the supplementary space 12, during the first step, and thus in the filling of the first piston chamber 3 with material 2, emptied from the supplementary space 12 into the first piston chamber 3.
  • This emptying takes place before the reciprocating piston 8 reaches the second dead center.
  • a volume is taken from the material container, which corresponds to the difference between the volume of the serious piston chamber 3 and the volume of material emptied from the supplementary space 12. The. Conveying speed of the pump 1 is thus effectively reduced.
  • the filling and emptying of the first piston chamber 3 with material 2 takes place by the movement of the reciprocating piston 8.
  • the reciprocating piston 8 at least does not cause the emptying of the supplementary chamber 12 simultaneously with the emptying of the first piston chamber 3.
  • pressure on the material 2 from the first piston chamber 3 away in the direction of the supplementary chamber 10 exerts.
  • the supplementary chamber 10 does not necessarily have to be designed as a cylinder-piston device, but can also be realized, for example, by corresponding diaphragms whose position can be controlled. Also, the supplementary chamber 10 may be arranged in a reciprocating piston pump 1 according to the invention within the first piston chamber 3.
  • the displacement piston 11 in the supplementary chamber 10 can be controlled by a control unit.
  • the control unit may possibly also be coupled to a control or drive device of the reciprocating piston 8.
  • the position of a displacement means in a supplementary chamber 10 can be kept constant during a working cycle, wherein by means of the position of the displacement means in the supplementary chamber 10, the volume of material delivered per working cycle is variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

  • Die Erfindung betrifft eine Pumpe zum Fördern von fluidem Material aus einem Materialbehälter nach dem Oberbegriff von Anspruch 1.
  • Entsprechende Pumpen werden zum Entnehmen von fluidem Material aus Materialbehältern und zum Zuführen des Materials zu beispielsweise einer Mischeinrichtung oder Verarbeitungseinrichtung eingesetzt. In der weiteren Beschreibung wird ausschließlich auf Verarbeitungseinrichtungen Bezug genommen, wobei dabei auch immer Mischeinrichtungen oder ähnliche Einrichtungen umfasst sind. Üblicherweise fördern solche Pumpen das Material in Arbeitszyklen, wobei ein Arbeitszyklus einen ersten Arbeitsschritt umfasst, in dem zum Entnehmen von Material aus dem Materialbehälter ein Förderraum der Pumpe mit Material gefüllt wird, sowie einen zweiten Arbeitsschritt, in dem zum Zuführen des Materials an eine Einrichtung das Material aus dem Förderraum der Pumpe entleert wird.
  • Herkömmliche Pumpen werden gemeinhin von einer Antriebseinrichtung so angetrieben, dass ein Arbeitszyklus in einer durch die Antriebseinrichtung festlegbaren Arbeitsfrequenz durchgeführt wird. Eine Periode dieser Arbeitsfrequenz bezieht sich dabei auf das Zeitintervall zwischen dem Beginn des ersten Arbeitsschritts in einem Arbeitszyklus und dem Beginn des ersten Arbeitsschritts in dem darauffolgenden Arbeitszyklus. Da bei herkömmlichen Pumpen der Förderraum in seinen geometrischen Abmessungen konstant eingerichtet ist, kann die Fördergeschwindigkeit von herkömmlichen Pumpen bei bekanntem Förderraumvolumen unter Berücksichtigung der Frequenz der Antriebseinrichtung leicht berechnet und damit durch die Antriebseinrichtung vorgegeben werden.
  • Es hat sich jedoch herausgestellt, dass es für viele Anwendungen vorteilhaft ist, wenn die Fördergeschwindigkeit der Pumpe in einem bestimmten Bereich veränderbar ist, ohne dass hierzu die Arbeitsfrequenz der Arbeitszyklen und damit die Frequenz der Antriebseinrichtung verändert werden muss. Dies ist insbesondere dann der Fall, wenn die Fördergeschwindigkeit, und damit die pro Zeitintervall geförderte Materialmenge, genau bestimmt oder gesteuert sein muss, was nicht immer über die Frequenzsteuerung über die Antriebseinrichtung gewährleistet werden kann.
  • Beispielsweise besteht häufig der Bedarf, einen Richtwert für eine Fördergeschwindigkeit für ein Material einstellen und die Fördergeschwindigkeit während des Fördervorgangs in einem bestimmten Bereich variieren zu können. Unhabhängig davon besteht der Bedarf, die Fördergeschwindigkeit möglichst präzise und/oder kontinuierlich einstellen zu können.
  • Häufig muss während eines Fördervorgangs auf prozes.sabhängige Parameter der Verarbeitungseinrichtung dahingehend reagiert werden, dass der Verarbeitungseinrichtung mehr oder weniger Material zugeführt wird. Die Steuerung über die Antriebseinrichtung kann hierfür zu träge, zu ungenau oder auch zu aufwendig sein.
  • Darüber hinaus werden Pumpen oftmals mechanisch oder gesteuert gekoppelt angetrieben, wobei eine jede Pumpe ein unterschiedliches Material aus einem unterschiedlichen Materialbehälter fördert. Die Fördergeschwindigkeiten der Pumpen können somit nur gemeinsam verändert werden. Auch hierbei besteht der Bedarf, die Fördergeschwindigkeit der jeweiligen gekoppelt angetriebenen Pumpen unabhängig von der Antriebseinrichtung verändern zu können.
  • Zur Lösung der genannten technischen Probleme wird in dem Dokument CH 701376 B1 vorgeschlagen, eine Pumpe so auszugestalten, dass ein Teil des im ersten Arbeitsschritt des Arbeitszyklus der Pumpe in den Förderraum gefüllten Materials in den Materialbehälter zurückgepumpt wird und nicht in dem zweiten Arbeitsschritt zum Zuführen des Materials an eine Verarbeitungseinrichtung aus dem Förderraum entleert wird. Dadurch kann die Fördergeschwindigkeit über das Volumen des Materials, das vor dem Entleeren des Förderraums von dem Förderraum in den Materialbehälter zurückgepumpt wird, variiert werden.
  • Allerdings ist für das Zurückpumpen des Materials aus dem Förderraum in den Materialbehälter an der Pumpe ein eigenes Rückführsystem notwendig, das mit dem Materialbehälter in Verbindung steht und hohe Kosten mit sich bringt. Darüber hinaus muss bei dem Zurückpumpen ein hoher Pumpendruck aufgewendet werden.
  • Ferner offenbart das Dokument DE 1703650 A1 eine Pumpe zum Fördern von Flüssigkeiten, bei der die Fördergeschwindigkeit über die Veränderung des Gasdrucks in einem Zuschaltraum, der an dem Förderraum angeordnet ist, variiert werden kann. Dabei ist in dem Zuschaltraum ein Kolben angeordnet, der an einer Seite durch den Gasdruck in dem Zuschaltraum mit Druck beaufschlagbar ist, wobei der Zuschaltraum so an dem Förderraum angeordnet ist, dass Flüssigkeit von dem Förderraum in den Zuschaltraum an die andere Seite des Kolbens gelangen kann. Weiterhin ist aus dem Dokument CH 227216 A ein Mehrstufenverdichter bekannt, dessen Förderleistung variiert werden kann, indem der Förderraum des Mehrstufenverdichters mit nicht fördernden Arbeitsräumen verbunden werden kann. Aus dem Dokument DE 10 2008 005 429 A1 ist außerdem ein Kompressor bekannt, bei dem der geförderte Luftstrom verhindert werden kann, indem der Förderraum des Kompressors mit einem nicht fördernden Zuschaltraum verbunden werden kann. Aus Dokument GB 650060 A ist eine Pumpe bekannt, deren Fördergeschwindigkeit über eine Variation des Förderraumvolumens mittels einer deformierbaren Membran verändert werden kann
  • Ausgehend von dem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Pumpe zum Fördern einer Menge von fluidem Material aus einem Materialbehälter bereitzustellen, durch die die oben beschriebenen Bedürfnisse zumindest teilweise befriedigt und/oder die genannten Probleme bei bekannten Pumpen zumindest teilweise behoben werden.
  • Als eine Lösung der genannten technischen Aufgabe schlägt die Erfindung eine Pumpe zum Fördern einer Menge von fluidem Material aus einem Materialbehälter mit den Merkmalen von Anspruch 1 vor.
  • Eine erfindungsgemäße Pumpe ist so ausgebildet, dass die Größe des Förderraums der Pumpe während des Pumpenbetriebs so veränderbar ist, dass in verschiedenen Arbeitszyklen des Fördervorgangs unterschiedliche Volumina des Materials förderbar sind. Der Förderraum umfasst eine Ergänzungskammer mit Ergänzungsraum, wobei das Volumen des Ergänzungsraums während des Betriebs der Pumpe veränderbar ist. Ferner ist die erfindungsgemäße Pumpe als Hubkolbenpumpe ausgebildet, deren Förderraum einen ersten Kolbenraum umfasst, und die einen zweiten Kolbenraum aufweist sowie einen Hubkolben. An dem ersten Kolbenraum ist die Ergänzungskammer vorgesehen. Der Hubkolben ist in dem ersten Arbeitsschritt zum Fördern des Materials von dem Materialbehälter in den ersten Kolbenraum von einem ersten Totpunkt zu einem zweiten Totpunkt bewegbar und in dem zweiten Arbeitsschritt zum Entleeren des Materials von dem ersten Kolbenraum in den zweiten Kolbenraum von dem zweiten Totpunkt zu dem ersten Totpunkt bewegbar.
  • Die Größe des Förderraums bezieht sich dabei auf die durch die geometrischen Erstreckungen des Förderraums festgelegte Größe des Raums. Eine Änderung der Größe des Förderraums kann somit durch jede Änderung einer jeden Erstreckungsgröße des Förderraums herbeigeführt werden. Zur Veränderung der Größe des Förderraums muss dabei nicht zwingend das Volumen des Förderraums verändert werden, sondern auch eine Veränderung der Form des Förderraums ist als eine Veränderung der Größe des Förderraums anzusehen.
  • Beispielsweise kann eine Veränderung der Größe des Förderraums darin bestehen, dass sich die Erstreckung des Förderraums so ändert, dass eine Kammer oder Aussackung gebildet oder zurückgebildet ist, die bei dem Entleeren des Materials aus dem Förderraum in dem zweiten Arbeitsschritt nicht zugänglich ist, so dass das in einem Arbeitszyklus geförderte Volumen des Materials durch die Veränderung der Größe der Förderraums verändert werden kann. Eine Veränderung der Größe des Förderraums kann insbesondere auch darin bestehen, dass eine Trennwand oder dergleichen in dem Förderraum verändert oder in ihn eingebracht wird, so dass bestimmte Abschnitte des Förderraums bei dem Befüllen des
  • Förderraums mit Material und/oder bei dem Entleeren von Material aus dem Förderraum nicht zugänglich sind. Darüber hinaus kann die Größe des Förderraums natürlich auch dadurch verändert werden, dass zumindest eine Erstreckung des Förderraums so verändert wird, dass sich das von dem Förderraum begrenzte Volumen verändert. Beispielsweise ist. es möglich, den Förderraum bei einer Schöpfpumpe so zu verändern, dass in einem Arbeitszyklus, d. h. in einem Schöpfzyklus der Pumpe, je nach Größe des Förderraums eine bestimmte Menge gefördert wird.
  • Die erfindungsgemäße Pumpe zeichnet sich insbesondere dadurch aus, dass die Größe des Förderraums der Pumpe während des Pumpenbetriebs veränderbar ist. Durch die erfindungsgemäße Pumpe ist es daher möglich, das pro Arbeitszyklus geförderte Volumen zu verändern, ohne dabei den Fördervorgang zu unterbrechen. Dadurch kann die Fördergeschwindigkeit der Pumpe im Betrieb der Pumpe an die jeweiligen Bedingungen, die beispielsweise durch die Verarbeitungseinrichtung, der die Pumpe das Material zuführt, vorgegeben sein können, angepasst werden. Denn durch die Veränderung der Größe des Förderraums während des Pumpenbetriebs ist es möglich, das pro Arbeitszyklus geförderte Volumen zu verändern, so dass bei gleichbleibender Arbeitsfrequenz der Pumpe durch die Veränderung der Größe des Förderraums während des Pumpenbetriebs die Fördergeschwindigkeit der Pumpe veränderbar ist. Die Veränderung der Fördergeschwindigkeit kann dabei kontinuierlich oder stufenweise erfolgen.
  • Insbesondere kann es vorteilhaft sein, dass die Größe des Förderraums durch eine Steuereinheit steuerbar oder regelbar ist. Dabei kann die Steuereinheit einer Pumpe beispielsweise die Betriebsparameter der Pumpe, die Betriebsparameter der Verarbeitungseinrichtung und/oder Betriebsparameter von Pumpen, die Material aus weiteren Materialbehältern zu der Verarbeitungseinrichtung fördern, berücksichtigen. Die Steuereinheit zur Steuerung oder Regelung der Größe des Förderraums kann dabei insbesondere auch mit einer Streuereinrichtung zum Steuern oder Regeln der Arbeitsfrequenz der Pumpe zusammenwirken. Dadurch kann es möglich sein, die Fördergeschwindigkeit der Pumpe innerhalb eines großen Wertebereichs schnell und präzise zu verändern.
  • Durch die Ausbildung als Hubkolbenpumpe kann die erfindungsgemäße Pumpe besonders günstig und robust realisiert werden. Die Pumpe kann beispielsweise über eine Folgeplatte mit dem Materialbehälter in Verbindung stehen. Der Hubkolben stellt dabei das Fördermittel zum Befüllen und Entleeren des ersten Kolbenraums dar. Der zweite Kolbenraum kann beispielsweise als eine beliebig gestaltete Auslasskammer ausgebildet sein. Auch können erster Kolbenraum und zweiter Kolbenraum durch den Hubkolben selbst voneinander getrennt sein. Der zweite Kolbenraum kann auch so ausgebildet sein, dass er in dem zweiten Arbeitsschritt durch die Hubbewegung des Kolbens von dem zweiten Totpunkt zu dem ersten Totpunkt mit Material gefüllt wird und bei der Hubbewegung des Kolbens in dem ersten Arbeitsschritt des darauffolgenden Arbeitszyklus entleert wird. Dabei kann es insbesondere vorteilhaft sein, dass das Verhältnis der Volumina von erstem und zweitem Kolbenraum zueinander zwei zu eins beträgt, wodurch es möglich ist, dass die Pumpe während des gesamten Arbeitszyklus im wesentlichen durchgehend Material aus dem zweiten Kolbenraum ausstößt.
  • In einer vorteilhaften Ausführungsform weist der Förderraum der Pumpe Mittel auf oder wirkt mit diesen zusammen, durch die die Größe des Förderraums veränderbar ist, und die während eines Arbeitszyklus zur Änderung der Größe des Förderraums einstellbar sind, so dass das Volumenverhältnis zwischen dem Materialvolumen, das in dem ersten Arbeitsschritt in den Förderraum gefördert wird, und dem Materialvolumen, das in dem zweiten Arbeitsschritt aus dem Förderraum entleert wird, veränderbar ist.
  • Hierbei ist es beispielsweise möglich, die Mittel so einzustellen, dass ein Teil des in den Förderraum während des ersten Arbeitszyklus geförderten Materials bei dem Entleeren des Förderraums in dem zweiten Arbeitsschritt in den Förderraum zurückbehalten wird.
  • Weiterhin kann beispielsweise Material, das in dem Förderraum zurückbehalten wurde und sich vor Beginn des ersten Arbeitsschritts eines Arbeitszyklus in dem Förderraum befindet, zusammen mit dem in dem ersten Arbeitsschritt in den Förderraum geförderten Material während des darauffolgenden zweiten Arbeitsschritts aus dem Förderraum entleert werden. Entsprechend ist je nach Einstellung der Mittel das genannte Volumenverhältnis so veränderbar, dass das Materialvolumen, das in dem ersten Arbeitsschritt in den Förderraum gefördert wird, größer oder kleiner als das Materialvolumen ist, das in dem zweiten Arbeitsschritt aus dem Förderraum entleert wird. Durch die Mittel und ihre verschiedenen Einstellungen kann damit die Fördergeschwindigkeit der Pumpe in einem weiten Bereich variiert werden.
  • Vorteilhafterweise kann der Förderraum der Pumpe eine. Ergänzungskammer mit einem Ergänzungsraum umfassen, wobei das Volumen des Ergänzungsraums während des Betriebs der Pumpe veränderbar ist. Dadurch kann das Materialvolumen, das in dem ersten Arbeitsschritt in den Förderraum gefördert wird, und das Materialvolumen, das in dem zweiten Arbeitsschritt aus dem Förderraum entleert wird, durch eine Veränderung des Volumens des Ergänzungsraums verändert werden. Durch das Vorsehen einer Ergänzungskammer mit Ergänzungsraum in dem Förderraum ist eine sehr einfache Veränderung der Größe des Förderraums möglich.
  • Über die Veränderung des Volumens des Ergänzungsraums kann Einfluss auf das Entleeren und/oder Füllen des Pumpenraums genommen werden. Beispielsweise kann durch eine entsprechende Veränderung des Volumens des Ergänzungsraums der Druck in dem Pumpenraum verändert werden, wodurch beispielsweise Druckschwankungen bei dem Entleeren/Befüllen des Pumpenraums ausgeglichen oder zumindest verringert werden können, so dass beispielsweise die Förderung von Material gleichmäßiger erfolgen kann und/oder die Fördergeschwindigkeit präziser eingestellt werden kann. Die Erfindung umfasst auch, unabhängig von der Veränderung der Fördergeschwindigkeit, den Förderraum so vorzusehen, dass er eine Ergänzungskammer mit Ergänzungsraum umfasst, und dass das Volumen des Ergänzungsraums während des Betriebs der Pumpe veränderbar ist. Dadurch kann wie beschrieben auf das Befüllen und/oder Entleeren Einfluss genommen werden. Die in der vorliegenden Beschreibungen beschriebenen Ausgestaltungen, Merkmale und Merkmalskombinationen einer erfindungsgemäßen Pumpe sind für diesen unabhängigen Teil der Erfindung entsprechend gültig. Insbesondere sind die Merkmale auch jeweils miteinander kombinierbar.
  • Insbesondere kann es vorteilhaft sein, dass der Förderraum einen Pumpenraum umfasst, wobei das Volumen des Ergänzungsraums unabhängig von dem Volumen des Pumpenraums veränderbar ist. Somit kann beispielsweise der Pumpenraum während der Arbeitszyklen kontinuierlich mit Material gefüllt und entleert werden, wobei die Änderung der Größe des Förderraums über die Änderung des Ergänzungsraums erfolgen kann. Dabei hat es sich insbesondere als vorteilhaft herausgestellt, in dem Pumpenraum ein Fördermittel vorzusehen, das dem Füllen und Entleeren des Pumpenraums mit Material dient, ohne gleichzeitig ein Füllen und Entleeren des Ergänzungsraums der Ergänzungskammer zu bewirken. Der Einfluss der Veränderung der Größe des Förderraums auf die gesamte Pumpenkonstruktion kann dadurch niedrig gehalten werden, was eine einfache Konstruktion der erfindungsgemäßen Pumpe ermöglicht. Es ist jedoch auch möglich, an dem Pumpenraum mehrere Ergänzungskammern mit Ergänzungsräumen vorzusehen oder auch den Pumpenraum unabhängig von dem zumindest einen Ergänzungsraum in der zumindest eine Ergänzungskammer in seiner Größe veränderbar auszubilden.
  • Außerdem kann der Förderraum ein Arbeitsmittel umfassen, mittels dessen das Volumen des Ergänzungsraums während eines Arbeitszyklus der Pumpe zwischen einem ersten Volumen und einem zweiten Volumen veränderbar ist, um das in einem Arbeitszyklus geförderte Materialvolumen um das Volumen, das der Differenz zwischen zweitem und erstem Volumen entspricht, zu verändern, wobei das Arbeitsmittel durch eine Steuereinheit gesteuert ist. Erstes und zweites Volumen können dabei durch das Arbeitsmittel in einem Bereich zwischen 0 bis zu dem Volumen der Ergänzungskammer einstellbar sein. Das erste Volumen kann beispielsweise das Minimalvolumen des Ergänzungsraums, das zweite Volumen das Maximalvolumen des Ergänzungsraums während eines Arbeitszyklus der Pumpe sein. Entsprechend kann auch das zweite Volumen das Minimalvolumen und das erste Volumen das Maximalvolumen innerhalb eines Arbeitszyklus sein. Die Veränderung des in einem Arbeitszyklus geförderten Materialvolumens bezieht sich dabei auf das Standardmaterialvolumen, das durch die Pumpe gefördert wird, wenn das Arbeitsmittel während eines geschlossenen Arbeitszyklus ruht.
  • Dabei kann es insbesondere vorteilhaft sein, in dem Förderraum ein Fördermittel vorzusehen, das dem Füllen und Entleeren des Förderraums dient, ohne ein Füllen und Entleeren des Ergänzungsraums zu bewirken. Das Standardmaterialvolumen, das durch die Pumpe in einem Arbeitszyklus gefördert wird, kann dann beispielsweise um die Differenz zwischen zweitem und erstem Volumen verringert werden, indem das Volumen des Ergänzungsraums nach dem Befüllen des Förderraums von einem kleineren ersten Volumen zu einem größeren zweiten Volumen verändert wird, so dass bei dem Entleeren des Förderraums das Materialvolumen, das der Differenz zwischen zweitem und erstem Volumen entspricht, in dem Ergänzungsraum zurückbehalten wird. Das zurückbehaltene Volumen kann dann in dem darauffolgenden Arbeitszyklus beispielsweise für das Befüllen des Förderraums verwendet werden, und eine entsprechende Veränderung des Ergänzungsraums durch das Arbeitsmittel von einem kleinen ersten Volumen zu einem großen zweiten Volumen kann erneut eine Verringerung des Standardmaterialvolumens bewirken. Entsprechend kann das Standardmaterialvolumen durch die Differenz zwischen zweitem und erstem Volumen vergrößert werden, wenn das Arbeitsmittel so gesteuert wird, dass der Ergänzungsraum während des Befüllens des Förderraums von einem kleinen ersten Volumen zu einem größeren zweiten Volumen verändert wird und während des Entleerens des Förderraums von dem größeren zweiten Volumen zu dem kleinen ersten Volumen zurückverändert wird.
  • Dabei kann es vorteilhaft sein, dass das erste und/oder das zweite Volumen des Ergänzungsraums während des Betriebs der Pumpe veränderbar ist. Dadurch kann in verschiedenen Arbeitszyklen der Pumpe das in einem Arbeitszyklus geförderte Standardmaterialvolumen um ein jeweils unterschiedliches Volumen verändert werden. Dies ermöglicht die Steuerung oder Regelung der Fördergeschwindigkeit der Pumpe während des Betriebs der Pumpe in einem durch die Variation des ersten und zweiten Volumens des Ergänzungsraums festgelegten Bereich.
  • Außerdem kann die Pumpe ein erstes Ventil und ein zweites Ventil umfassen, wobei der Förderraum bei geöffnetem ersten Ventil zum Füllen mit Material mit dem Materialbehälter und bei geöffnetem zweiten Ventil zum Entleeren von Material mit einer Auslasskammer in Verbindung steht, wobei das erste Ventil und das zweite Ventil im Betrieb der Pumpe einander abwechselnd geöffnet und geschlossen sind.
  • Die Auslasskammer kann dabei in beliebiger Art und Weise gestaltet sein und auch beispielsweise durch eine Leitung, wie etwa einen Schlauch oder ein Rohr, realisiert sein. Zudem kann sich das Volumen des Förderraums bei geöffnetem ersten Ventil von dem Volumen des Förderraums bei geöffnetem zweiten Ventil unterscheiden. Durch das Vorsehen von entsprechenden Ventilen ist gewährleistet, dass das Volumen des Förderraums während des ersten Arbeitsschritts, und somit während des Befüllens des Förderraums, getrennt von dem Volumen während des zweiten Arbeitsschritts, und damit während des Entleerens des Förderraums, einstellbar ist, wobei sich die beiden Arbeitsschritte nicht überschneiden. Dadurch ist eine präzise Variation der Fördergeschwindigkeit möglich.
  • Die Ergänzungskammer kann in einer Ausführungsform ein Verdrängungsmittel umfassen, wobei das Volumen des Ergänzungsraums durch die Stellung des Verdrängungsmittels in der Ergänzungskammer festgelegt ist. Dadurch kann das Volumen des Ergänzungsraums besonders einfach und kostengünstig festgelegt werden.
  • Ergänzungskammer und Verdrängungsmittel können dabei als Zylinder-Kolben Anordnung ausgebildet sein, wobei das Verdrängungsmittel als Verdrängungskolben ausgebildet ist, durch den der Ergänzungsraum begrenzt ist. Durch die Zylinder-Kolben Anordnung ist das Volumen des Ergänzungsraums sehr einfach und genau veränderbar, und die Zylinder-Kolben Anordnung lässt sich mit geringen Kosten herstellen.
  • Weiterhin kann die erfindungsgemäß als Hubkolbenpumpe ausgebildete Pumpe einen Bypass umfassen, durch den der erste Kolbenraum und der zweite Kolbenraum miteinander verbunden sind, wobei in dem Bypass das zweite Ventil angeordnet ist, das als Rückschlagventil ausgebildet ist, so dass ein Rückfluss von Material von dem zweiten Kolbenraum in den ersten Kolbenraum verhindert ist. Der Bypass kann dabei sowohl als Materialleitung außerhalb der Kolbenräume ausgebildet sein, die die Kolbenräume miteinander verbindet, als auch beispielsweise durch den Hubkolben und/oder eine Hubkolbenstange zum Ansteuern des Hubkolbens verlaufen. Durch das Vorsehen eines Rückschlagventils in dem Bypass ist eine präzise Einstellung des pro Arbeitszyklus geförderten Materialvolumens möglich. Das Rückschlagventil und/oder auch das erste Ventil können z. B. als Kugelventil oder als Kugelkalottenventil ausgebildet sein, das möglicherweise selbststeuernd öffnet und schließt.
  • Weiterhin kann es vorteilhaft sein, dass das Volumen des Ergänzungsraums in der Ergänzungskammer im Betrieb so veränderbar ist, dass das Volumenverhältnis zwischen dem Volumen des Ergänzungsraums bei dem Passieren des ersten Totpunkts durch den Hubkolben und dem Volumen des Ergänzungsraums bei dem Passieren des zweiten Totpunkts durch den Hubkolben im Betrieb veränderbar ist. Dabei kann durch die Veränderung des Volumenverhältnisses die Fördergeschwindigkeit der Pumpe verändert werden. Beispielsweise kann hierzu das Volumen des Ergänzungsraums über die Stellung eines Verdrängungsmittels in der Ergänzungskammer verändert werden. Die Stellung des
  • Verdrängungsmittels kann kontinuierlich oder nur in einem Zeitintervall während der Bewegung des Hubkolbens zwischen den beiden Totpunkten verändert werden, und/oder bei dem Passieren der jeweiligen Totpunkte selbst. Dadurch, dass das Volumenverhältnis im Betrieb der Pumpe veränderbar ist, kann die Fördergeschwindigkeit der Pumpe im Betrieb der Pumpe verändert werden.
  • Vorteilhafterweise ist das Volumenverhältnis in Abhängigkeit von einer vorgegebenen Fördergeschwindigkeit während eines Arbeitszyklus einstellbar. Beispielsweise kann das Volumenverhältnis während eines Arbeitszyklus so verändert werden, dass die durch das Volumenverhältnis beeinflusste Fördergeschwindigkeit der Pumpe in Richtung auf eine vorgegebene Fördergeschwindigkeit verändert wird, oder dass hierdurch die vorgegebene Fördergeschwindigkeit selbst eingestellt wird.
  • Weiterhin betrifft die Erfindung ein System umfassend zumindest zwei Pumpen, von denen zumindest eine wie obenstehend erläutert erfindungsgemäß ausgebildet ist und die jeweils einem Materialbehälter zugeordnet sind, wobei beide Pumpen so gekoppelt angetrieben sind, dass sie die Arbeitsschritte synchron mit derselben Frequenz durchführen, wobei die Größe des Förderraums mindestens einer der beiden Pumpen unabhängig von dem der anderen veränderbar ist. Die Koppelung kann dabei sowohl mechanisch als auch über eine elektronische Steuerung erfolgen. Dadurch ist gewährleistet, dass in dem System die Fördergeschwindigkeit von zumindest einer Pumpe unabhängig von der Fördergeschwindigkeit der anderen Pumpe veränderbar ist, während beide Pumpen gekoppelt mit derselben Frequenz angetrieben sind. Dadurch kann auch bei einem System mit zwei gekoppelt angetriebenen Pumpen die Fördergeschwindigkeit, mit der ein bestimmtes Material durch eine bestimmte Pumpe gefördert wird, in Abhängigkeit von beispielsweise dem Material oder Betriebsparametern der Verarbeitungseinheit verändert werden. Beispielsweise können somit verschiedene Mischverhältnisse der Materialien aus den jeweiligen der Pumpe zugeordneten Materialbehältern realisiert werden.
  • In dem System kann auch mittels einer Steuereinheit die Veränderung des Förderraums einer oder beider der Pumpen steuerbar sein, um den Istwert der Fördergeschwindigkeit der angesteuerten Pumpe in Richtung auf einen Sollwert der Fördergeschwindigkeit der Pumpe hin zu ändern. Die Steuereinheit kann möglicherweise den Sollwert der Fördergeschwindigkeit der Pumpe in Abhängigkeit von Betriebsparametern der Verarbeitungseinheit oder auch in Abhängigkeit von Eigenschaften des Materials, wie etwa der Viskosität des Materials, berechnen. Auch kann der Sollwert der Fördergeschwindigkeit der Pumpe manuell eingebbar sein. Über die Steuereinheit kann die Veränderung des Förderraums dann so steuerbar sein, dass der Istwert der Fördergeschwindigkeit der angesteuerten Pumpe in Richtung auf den entsprechenden Sollwert veränderbar ist.
  • Insbesondere kann es vorteilhaft sein, dass die Veränderung des Förderraums einer oder beider der Pumpen in Abhängigkeit von dem Füllstand zumindest eines der den beiden Pumpen zugeordneten Materialbehälters steuerbar ist. Hierbei kann möglicherweise auch die Differenz oder das Verhältnis der Füllstände in den Materialbehältern berücksichtigt werden. Durch eine entsprechende Anpassung der Fördergeschwindigkeit der Pumpen über die Veränderung des Förderraums kann somit beispielsweise gewährleistet sein, dass die Materialbehälter möglichst zeitgleich entleert sind.
  • Weiterhin umfasst die Erfindung ein Verfahren zum Steuern der Fördergeschwindigkeit einer Pumpe, die als Hubkolbenpumpe ausgebildet ist, wobei die Pumpe fluides Material aus einem Materialbehälter fördert, indem in einem ersten Arbeitsschritt ein Förderraum zumindest abschnittsweise mit Material gefüllt wird und in einem zweiten Arbeitsschritt das Material zumindest teilweise aus dem Förderraum entleert wird, wobei der erste und der zweite Arbeitsschritt jeweils Teil eine Arbeitszyklus sind. In dem erfindungsgemäßen Verfahren wird zur Veränderung des pro Arbeitszyklus geförderten Materialvolumens der Förderraum der Pumpe während des Betriebs der Pumpe verändert wird, wobei das Volumen eines Ergänzungsraums in einer Ergänzungskammer, die von dem Förderraum umfasst und an einem ersten Kolbenraum der Pumpe vorgesehen ist, während des Betriebs der Pumpe verändert, wobei ein Hubkolben der Pumpe in dem ersten Arbeitsschritt zum Fördern des Materials von dem Materialbehälter in den ersten Kolbenraum von einem ersten Totpunkt zu einem zweiten Totpunkt bewegt wird und in dem zweiten Arbeitsschritt zum Entleeren des Materials von dem ersten Kolbenraum in einen zweiten Kolbenraum der Pumpe von dem zweiten Totpunkt zu dem ersten Totpunkt bewegt wird.
  • Im Folgenden wird die Erfindung durch das Beschreiben einer Ausführungsform unter Bezugnahme auf drei Figuren weiter erläutert.
  • Es zeigt
  • Figur 1:
    in einer Prinzipdarstellung vier Zustände einer herkömmlichen Hubkolbenpumpe während eines Arbeitszyklus der Hubkolbenpumpe;
    Figur 2:
    in einer schematischen Darstellung den Verlauf der Kolbenbewegungen sowie des Materialdrucks in einer herkömmlichen und in einer erfindungsgemäßen Hubkolbenpumpe;
    Figur 3:
    in einer Prinzipdarstellung zwei Zustände einer erfindungsgemäßen Pumpe während eines Arbeitszyklus der Pumpe;
    Figur 4:
    in einer Prinzipdarstellung zwei Zustände einer erfindungemäßen Pumpe während eines Arbeitszyklus der Pumpe.
  • In den Figuren sind Elemente mit einer ähnlichen Wirkung mit identischen Bezugszeichen versehen.
  • Zur Erläuterung der Funktionsweise herkömmlicher Pumpen 100 sind in Figur 1 vier Zustände einer herkömmlichen Pumpe 100 während eines Arbeitszyklus der Pumpe 100 abgebildet. In Figur 1 ist eine als Hubkolbenpumpe 100 ausgebildete Pumpe 100 dargestellt.
  • In Figur 1 sind Zustände der Pumpe 100 in einem ersten Arbeitszyklus und zu Beginn des darauffolgenden zweiten Arbeitszyklus dargestellt. Die Zustandsdarstellungen A bis C zeigen die Pumpe 100 in dem ersten Arbeitszyklus, die Zustandsdarstellung D zu Beginn des zweiten Arbeitszyklus. Um deutlich zu machen, dass in dem ersten Arbeitszyklus von der Pumpe 100 Material 2 aus dem Materialbehälter entnommen wird und in dem zweiten Arbeitszyklus neues Material 2a entnommen wird, ist in Figur 1 das Material 2, das im Zusammenhang mit der Entnahme im ersten Arbeitszyklus steht, gerastert dargestellt, während das Material 2a, das im Zusammenhang mit der Entnahme im zweiten Arbeitszyklus steht, schraffiert dargestellt ist. Dadurch soll schematisch verdeutlicht werden, wie das in einem bestimmten Arbeitszyklus von der Pumpe 100 aus dem Materialbehälter entnommene Material 2, 2a in den Arbeitszyklen durch die Pumpe 100 gefördert bzw. ausgestoßen wird.
  • In dem Zustand A ist die herkömmliche Hubkolbenpumpe 100 in das Material 2 in dem Materialbehälter eingetaucht.. Der Materialbehälter und das in dem Materialbehälter befindliche Material sind in Figur 1 nicht dargestellt, sondern es sind nur Prinzipdarstellungen von Pumpen 100 sowie Material 2, 2a in den Pumpen 100 dargestellt. Dies gilt entsprechend für die Darstellung der erfindungsgemäßen Pumpen 1 in den Figuren 3 und 4.
  • In der Zustandsdarstellung A in Figur 1 ist demnach ein Zustand der Hubkolbenpumpe 100 zu Beginn des ersten Arbeitszyklus dargestellt, in dem die Hubkolbenpumpe 100 noch kein Material 2 aus dem Materialbehälter gefördert hat. Das Material 2 ist demnach nur bis zu dem ersten Ventil 6, über das die Hubkolbenpumpe 100 mit dem Material 2 in dem Materialbehälter in Verbindung bringbar ist, in die Hubkolbenpumpe 100 eingetreten. Der erste Kolbenraum 3 und der zweite Kolbenraum 4 sind jeweils nicht mit Material befüllt. Der Hubkolben 8 der Pumpe 100 befindet sich in seinem ersten Totpunkt. Das erste Ventil 6 ist in dem dargestellten Zustand A geöffnet. Es ist jedoch auch möglich, dass das erste Ventil 6 erst mit dem Einsetzen der Hubbewegung des Hubkolbens 8 öffnet.
  • In der Zustandsdarstellung B ist ein Zustand der Pumpe 100 am Ende des ersten Arbeitsschritts dargestellt. Zwischen Zustand A und Zustand B bewegt sich der Hubkolben 8 von dem ersten Totpunkt in Richtung zu dem zweiten Totpunkt, wodurch der erste Kolbenraum 3 mit Material 2 gefüllt wird. Die Bewegungsrichtung des Hubkolbens 8 ist in den Figuren jeweils durch einen Pfeil in dem Hubkolben 8 angezeigt. Während der Bewegung des Hubkolbens 8 wird somit Material 2 von dem Materialbehälter in den ersten Kolbenraum 3 geschöpft, wobei das erste Ventil 6 während des Schöpfvorgangs entsprechend der Schöpfrichtung selbst steuernd geöffnet ist.
  • In der Zustandsdarstellung C ist ein Zustand der Pumpe 100 während des zweiten Arbeitschritts dargestellt. Der Hubkolben 8 bewegt sich von dem zweiten Totpunkt in Richtung zum ersten Totpunkt, wodurch der Hubkolben 8 Druck auf das Material 2 in dem ersten Kolbenraum 3 ausübt, so dass das erste Ventil 6 selbststeuernd geschlossen ist und das zweite Ventil 7 selbststeuernd geöffnet ist. Entsprechend tritt durch den Bypass 9, in dem das zweite Ventil 7 angeordnet ist, Material in den zweiten Kolbenraum 4, wobei sich sowohl erster Kolbenraum 3 als auch zweiter Kolbenraum 4 abschnittsweise in den Bypass 9 erstrecken. Da das Volumen des ersten Kolbenraums 3 größer als das des zweiten Kolbenraums 4 ist, stößt die Pumpe 100 noch während des zweiten Arbeitsschritts nach dem Füllen des zweiten Kolbenraums 4 durch den Auslass 5 Material 2 aus. Der Materialausstoß ist durch einen Pfeil in dem Auslass 5 angezeigt.
  • In der Zustandsdarstellung D ist ein Zustand der Pumpe 100 nach der Durchführung des ersten Arbeitszyklus und während des ersten Arbeitsschritts des zweiten Arbeitszyklus dargestellt. Der Hubkolben 8 bewegt sich von dem ersten Totpunkt in Richtung zum zweiten Totpunkt, und sowohl erstes Ventil 6 als auch zweites Ventil 7 sind geschlossen.
  • Da das Volumen des ersten Kolbenraums 3 größer als das des zweiten Kolbenraums 4 ist, ist der zweite Kolbenraum 4 auch im Zustand D nach Abschluss des ersten Arbeitszyklus der Pumpe 100. mit Material 2 gefüllt. Mit dem Einsetzen des ersten Arbeitsschritts des zweiten Arbeitszyklus der Pumpe 100 bewegt sich der Hubkolben 8 erneut von seinem ersten Totpunkt aus in Richtung zum zweiten Totpunkt, wodurch Material 2a von dem Materialbehälter in den ersten Kolbenraum 3 gefüllt wird. Zur Erläuterung des Arbeitsprinzips der Pumpe 100 ist der Einfachheit halber in der Zustandsdarstellung D in dem ersten Kolbenraum 3 nur das Material 2a dargestellt. Dadurch ist deutlich gemacht, dass in dem ersten Arbeitsschritt des zweiten Arbeitszyklus von dem Materialbehälter das Material 2a in den ersten Kolbenraum 3 geschöpft wird. Dabei sollte berücksichtigt werden, dass in dem ersten Arbeitsschritt des zweiten Arbeitszyklus das Material 2 aus dem ersten Kolbenraum 3 durch Material 2a kontinuierlich in den zweiten Kolbenraum verdrängt wird. Gleichzeitig wird während des ersten Arbeitsschritts des zweiten Arbeitszyklus von der Pumpe 100 Material 2 aus dem Auslass 5 ausgestoßen, da, wie erläutert, auch am Ende des ersten Arbeitszyklus der zweite Kolbenraum 4 mit Material 2 gefüllt ist und während des ersten Arbeitsschritts des zweiten Arbeitszyklus im Wesentlichen das restliche Material 2 aus dem ersten Kolbenraum 3 in den zweiten Kolbenraum 4 verdrängt wird, so dass der Hubkolben 8 während seiner Bewegung von erstem Totpunkt zu zweitem Totpunkt Material 2 in dem zweiten Kolbenraum 4 verdrängt und somit den Ausstoß von Material 2 aus dem Auslass 5 bewirkt.
  • Aus der Darstellung der Funktionsweise der herkömmlichen Pumpe 100 in Figur 1 wird deutlich, dass mit der herkömmlichen Pumpe 100 in einem Arbeitszyklus ein vorbestimmtes, nicht veränderbares Materialvolumen förderbar ist.
  • Die Druckkurve 32 des Materialdrucks in dem Material 2, 2a in dem zweiten Kolbenraum 4 der Pumpe 100 ist in Figur 2 dargestellt. Die Hubkolbenkurve 31 stellt dabei die Hubbewegung des Hubkolbens 8 der Pumpe 100 dar. Die Pfeile geben dabei die Bewegungsrichtung des Hubkolbens 8 an. Ein aufwärts gerichteter Pfeil zeigt die Bewegung des Hubkolbens 8 von dem ersten Totpunkt in Richtung zum zweiten Totpunkt, ein abwärts gerichteter Pfeil von dem zweiten Totpunkt in Richtung zum ersten Totpunkt an. Der erste Totpunkt ist somit als Minimum, der zweite Totpunkt als Maximum der Hubkolbenkurve 31 dargestellt. Aus der Druckkurve 32 wird ein Problem einer herkömmlichen Pumpe ersichtlich: Am zweiten Totpunkt des Hubkolbens 8 erfolgt ein Druckeinbruch, so dass die Förderung des Materials 2, 2a nicht kontinuierlich erfolgen kann und somit nicht präzise über den Arbeitszyklus der Pumpe 100 hinweg einstellbar ist. Dieses Problem kann mit einer wie in den Figuren 3 und 4 dargestellten erfindungsgemäßen Pumpe 1 zumindest teilweise behoben werden. Dies wird später im Zusammenhang mit der Beschreibung der Funktionsweise einer erfindungsgemäßen Pumpe 1 nach Figur 3 weiter erläutert.
  • In Figur 3 sind Zustände einer erfindungsgemäßen Pumpe 1 während eines Arbeitszyklus der Pumpe 1 dargestellt. An dem ersten Kolbenraum 3 der erfindungsgemäßen Pumpe 1 ist eine Ergänzungskammer 10 mit Ergänzungsraum 12 angeordnet, die einen Verdrängungskolben 11 umfasst.
  • Die Pumpe 1 ist in dem in Figur 3 dargestellten Arbeitszyklus so angesteuert, dass pro Arbeitszyklus der Pumpe 1 mehr Volumen des Materials 2 gefördert wird als das Standardvolumen einer nach Figur 1 dargestellten herkömmlichen Pumpe 100 mit identischem Aufbau, bei der nicht entsprechend der Erfindung eine Ergänzungskammer 10 mit Verdrängungskolben 11 und Ergänzungsraum 12 vorgesehen ist.
  • In der Zustandsdarstellung A' der erfindungsgemäßen Pumpe 1 ist ein Zustand der Pumpe 1 am Ende des ersten Arbeitsschritts dargestellt, in dem Material 2 über das offene erste Ventil 6 in den ersten Kolbenraum 3 geschöpft wird. Der Hubkolben 8 ist nahe seines zweiten Totpunkts, und der erste Kolbenraum 3 ist im wesentlichen mit Material 2 gefüllt. Das zweite Ventil 7 ist selbststeuernd geschlossen.
  • Im Zustand A' der Pumpe 1 ist der Ergänzungsraum, dessen Volumen durch die Stellung des Verdrängungskolbens 11 in der Ergänzungskammer 10 festgelegt ist, mit Material 2 gefüllt. In der beschriebenen Ausführungsform ist die Stellung des Verdrängungskolbens 11 zwischen einer ersten Stellung, die in Figur 3 in der Zustandsdarstellung B' dargestellt ist, und einer zweiten Stellung, die in Figur 3 in der Zustandsdarstellung A' dargestellt ist, veränderbar. Bei der ersten Stellung des Verdrängungskolbens 11 hat der Ergänzungsraum 12 ein erstes Volumen, bei der zweiten Stellung des Verdrängungskolbens 11 ein zweites Volumen.
  • Bei der beschriebenen erfindungsgemäßen Pumpe 1 mit der in Figur 3 dargestellten Funktionsweise ist das Füllen des Ergänzungsraums 12 mit Material 2 dadurch sichergestellt, dass der Verdrängungskolben 11 während des ersten Arbeitsschritts von der ersten Stellung in die zweite Stellung bewegt wird und sich dadurch das Volumen des Ergänzungsraums 12 von dem ersten zu dem zweiten Volumen verändert. Je nach der Beschaffenheit des Materials 2, wie etwa der Viskosität, und der Anordnung der Ergänzungskammer 10 kann das Volumen des Materials 2, das sich in dem Zustand A' in dem Ergänzungsraum befindet, durch die Differenz zwischen zweitem und erstem Volumen des Ergänzungsraums 12 oder alleine durch die zweite Stellung des Verdrängungskolbens 11 festgelegt sein. In dem dargestellten Ausführungsbeispiel ist das Volumen des Materials 2 in dem Ergänzungsraum 12 im Zustand A' durch die zweite Stellung des Verdrängungskolbens 11 festgelegt.
  • Die Veränderung der Stellung des Verdrängungskolbens 11 kann dabei sowohl gleichzeitig als auch vor oder nach der Bewegung des Hubkolbens 8 von dem ersten Totpunkt zu dem zweiten Totpunkt erfolgen. Die Stellung des Verdrängungskolbens 11 kann insbesondere erfolgen, wenn der Hubkolben in einem Totpunkt verharrt. Das erste Ventil 6 ist bei der Veränderung der Stellung geöffnet. Das durch die Veränderung der Stellung des Verdrängungskolbens 11 in den Ergänzungsraum 12 gefüllte Materialvolumen, das der Differenz zwischen zweitem und erstem Volumen des Ergänzungsraums 12 entspricht, wird somit während des ersten Arbeitsschritts aus dem Materialbehälter entnommen. Durch eine Steuerung der Stellung des Verdrängungskolbens 11 kann somit das in dem ersten Arbeitsschritt in den ersten Kolbenraum 3 geförderte Materialvolumen verändert werden.
  • In dem Zustand B' in Figur 3 ist die Pumpe 1 in einem Zustand während des zweiten Arbeitsschritts. Dabei bewegt sich der Hubkolben 8 von dem zweiten Totpunkt zu dem ersten Totpunkt und verursacht dabei wie zu Figur 1 erläutert das zumindest teilweise Entleeren von Material 2 von dem ersten Kolbenraum 3 in den zweiten Kolbenraum 4 sowie einen Ausstoß von Material 2. Wie oben erläutert ist in dem zweiten Arbeitsschritt das erste Ventil 6 geschlossen und das zweite Ventil 7 geöffnet. Während des zweiten Arbeitsschritts wird in der beschriebenen erfindungsgemäßen Pumpe 1 der Verdrängungskolben 11 so angesteuert, dass er sich von der zweiten Stellung in die erste Stellung bewegt, wodurch der Ergänzungsraum 12 in der Ergänzungskammer 10 verkleinert wird. Das Volumen des Materials 2, das der Differenz der in der ersten Stellung und der zweiten Stellung des Verdrängungskolbens 11 gebildeten Ergänzungsraumvolumina entspricht, wird demnach während des zweiten Arbeitsschritts aus der Ergänzungskammer 10 in den ersten Kolbenraum 3 gefördert. Da das Material 2 in dem ersten Kolbenraum 3 während des zweiten Arbeitsschritts durch die Bewegung des Hubkolbens 8 von dem zweiten Totpunkt zu dem ersten Totpunkt unter Druck steht und dadurch wie oben beschrieben in den zweiten Kolbenraum 4 gefördert wird, wird das Volumen des Materials 2, das während des zweiten Arbeitsschritts von der Ergänzungskammer 10 in den ersten Kolbenraum 3 entleert wird, auch in den zweiten Kolbenraum. 4 gefördert. Der Verdrängungskolben 11 kann dabei so angesteuert sein, dass er sich zum Verkleinern des Ergänzungsraums 12 von der zweiten Stellung in die erste Stellung bewegt, wenn der Hubkolben 8 zu Beginn des zweiten Arbeitsschritts in dem zweiten Totpunkt ist, am Ende des zweiten Arbeitsschritts in dem ersten Totpunkt ist oder während sich der Hubkolben 8 von dem zweiten Totpunkt zu dem ersten Totpunkt bewegt. Dabei ist stets das erste Ventil 6 geschlossen und das zweite Ventil 7 geöffnet.
  • In der beschriebenen Ausführungsform einer erfindungsgemäßen Pumpe 1 ist der Verdrängungskolben 11 so ansteuerbar, dass erste Stellung und zweite Stellung des Verdrängungskolbens 11 zwischen einer ersten und einer zweiten Endstellung des Verdrängungskolbens 11 kontinuierlich wählbar sind. Wenn die Stellung des Verdrängungskolbens 11 während eines Arbeitszyklus nicht verändert wird, wird das Material 2, das in dem ersten Arbeitsschritt in den Ergänzungsraum 12 gelangt, in dem zweiten Arbeitsschritt im wesentlichen nicht in den zweiten Kolbenraum 4 gefördert, da der Hubkolben 8 das Material 2 in dem Ergänzungsraum 12 während des zweiten Arbeitsschritts in Richtung zu dem Verdrängungskolben 11 unter Druck setzt. Demnach fördert die erfindungsgemäße Pumpe 1, wenn die Stellung des Verdrängungskolbens 11 während des Arbeitszyklus nicht verändert wird, pro Arbeitszyklus im wesentlichen dasselbe Standardmaterialvolumen, das durch eine entsprechende herkömmliche in Figur 1 beschriebene Pumpe 100 in einem Arbeitszyklus gefördert wird.
  • Bei der in Figur 3 beschriebenen Funktionsweise der erfindungsgemäßen Pumpe 1 kann demnach zusätzlich zu dem Standardmaterialvolumen in einem Arbeitszyklus der Pumpe 1 das Volumen gefördert werden, das der Differenz zwischen den zweiten Volumen des Ergänzungsraums 12 in der zweiten Stellung des Verdrängungskolbens 11 und dem ersten Volumen des Ergänzungsraums 12 in der ersten Stellung des Verdrängungskolbens 11 entspricht. Über die Steuerung des Verdrängungskolbens 11 kann demnach durch Veränderung von erster Stellung und zweiter Stellung des Verdrängungskolbens 11 in der Ergänzungskammer 10 das pro Arbeitszyklus der Pumpe 1 geförderte Materialvolumen verändert werden. Entsprechend ist die Fördergeschwindigkeit der erfindungsgemäßen Pumpe 1 veränderbar.
  • In Figur 2 ist beispielhaft die Verdrängungskolbenkurve 21 einer nach der in Figur 3 beschriebenen Funktionsweise arbeitenden Pumpe 1 dargestellt. Die Stellung des Verdrängungskolbens 11 wird dabei während des ersten Arbeitsschritts von der ersten Stellung in die zweite Stellung dahingehend verändert, dass das Volumen des Ergänzungsraums 12 von dem ersten Volumen zu dem zweiten Volumen vergrößert wird. Nach der Durchquerung des zweiten Totpunkts durch den Hubkolben 8 wird dann die Stellung des Verdrängungskolbens 11 von der zweiten Stellung in Richtung zur ersten Stellung verändert. Das Volumen des Ergänzungsraums 12 wird demnach zu Beginn des zweiten Arbeitsschritts von dem zweiten Volumen auf das erste Volumen verkleinert. Dadurch wird zu Beginn des zweiten Arbeitsschritts Druck auf das Material 2 in dem ersten Kolbenraum 3, und über das zweite Ventil 7 demnach auch auf das Material 2 in dem zweiten Kolbenraum 4 aufgebracht. Dadurch kann der Druckabfall, der in der Druckkurve 32 einer herkömmlichen Pumpe 100 in Figur 2 dargestellt ist, gemäß dem Verlauf der Druckkurve 22 einer erfindungsgemäßen Pumpe 1 deutlich verringert werden. Dies kann zu einer kontinuierlichen Förderung von Material 2 und zu einer präziseren Einstellung. der Fördergeschwindigkeit beitragen. Diesen Vorteil kann eine erfindungsgemäße Pumpe 1 auch bei konstant gleichbleibender Fördergeschwindigkeit bieten.
  • In Figur 4 sind die Zustände A" und B" einer erfindungsgemäßen Pumpe 1 dargestellt, wobei die erfindungsgemäße Pumpe so angesteuert ist, dass das pro Arbeitszyklus geförderte Materialvolumen kleiner als das pro Arbeitszyklus geförderte Standardmaterialvolumen einer entsprechenden herkömmlichen Pumpe 100 ist.
  • In dem Zustand A" ist die Pumpe 1 in einem Zustand am Ende des ersten Arbeitsschritts. Das erste Ventil 6 ist geöffnet und das zweite Ventil 7 ist geschlossen, und Material 2 wird von dem Materialbehälter in den ersten Kolbenraum 3 gefördert. In dem Zustand B" ist die Pumpe 1 während des zweiten Arbeitsschritts dargestellt, bei dem durch den über den Verdrängungskolben 11 ausgeübten Druck auf das Material 2 Material 2 von dem ersten Kolbenraum 3 in den zweiten Kolbenraum 4 gefördert wird. In dem Zustand B" ist das erste Ventil 6 geschlossen und das zweite Ventil 7 geöffnet.
  • Bei der in Figur 4 beschriebenen Funktionsweise der erfindungsgemäßen Pumpe 1 ist der Verdrängungskolben 11 in der Ergänzungskammer 10 so gesteuert, dass das erste Volumen des Ergänzungsraums 12 in der ersten Stellung des Verdrängungskolbens 11 während des ersten Arbeitsschritts der Pumpe 1 kleiner ist als das zweite Volumen des Ergänzungsraums 12 in der zweiten Stellung des Verdrängungskolbens 11 während des zweiten Arbeitsschritts der Pumpe 1. Wie oben beschrieben kann die Stellung des Verdrängungskolbens 11 sowohl während der Bewegung des Hubkolbens 8 erfolgen als auch dann, wenn der Hubkolben 8 in seinem ersten oder zweiten Totpunkt ist oder verharrt.
  • Bei der in Figur 4 beschriebenen Funktionsweise der erfindungsgemäßen Pumpe 1 gelangt somit ein Volumen des Materials 2, das der Differenz zwischen erstem und zweitem Volumen des Ergänzungsraums 12 entspricht, nach dem Abschluss des ersten Arbeitsschritts, und somit nach dem Befüllen des ersten Kolbenraums 3 mit Material 2, von dem ersten Kolbenraum 3 in den Ergänzungsraum 12 in der Ergänzungskammer 10. Die Pumpe 1 ist so ausgestaltet, dass der Hubkolben 8 bei dem Entleeren des Materials 2 von dem ersten Kolbenraum 3 in den zweiten Kolbenraum 4 nicht gleichzeitig ein Entleeren von Material 2 aus dem Ergänzungsraum 12 in den zweiten Kolbenraum 4 bewirkt. Entsprechend fördert die in Figur 4 beschriebene erfindungsgemäße Pumpe 1 pro Arbeitszyklus ein Materialvolumen, das dem Standardmaterialvolumen abzüglich der Differenz zwischen erstem Volumen und zweitem Volumen des Ergänzungsraums 12 entspricht. Somit ist die Fördergeschwindigkeit der erfindungsgemäßen Pumpe 1 nach Figur 4 gegenüber einer entsprechenden herkömmlichen Pumpe 100 verringert.
  • Während des ersten Arbeitsschritts eines auf einen ersten Arbeitszyklus folgenden Arbeitszyklus kann die Stellung des Verdrängungskolbens 11 von der zweiten Stellung in die erste Stellung zurückbewegt werden. Dadurch wird das Volumen des Materials 2, das der Differenz zwischen erstem und zweitem Volumen des Ergänzungsraums 12 entspricht, während des ersten Arbeitsschritts, und damit bei dem Befüllen des ersten Kolbenraums 3 mit Material 2, von dem Ergänzungsraum 12 in den ersten Kolbenraum 3 entleert. Diese Entleerung erfolgt, bevor der Hubkolben 8 den zweiten Totpunkt erreicht. Entsprechend wird in diesem ersten Arbeitsschritt aus dem Materialbehälter ein Volumen entnommen, das der Differenz zwischen dem Volumen des ernsten Kolbenraums 3 und dem aus dem Ergänzungsraum 12 entleerten Materialvolumen entspricht. Die. Fördergeschwindigkeit der Pumpe 1 ist also effektiv verringert.
  • In der beschriebenen Ausführungsform der Pumpe 1 erfolgt das Befüllen und Entleeren des ersten Kolbenraums 3 mit Material 2 durch die Bewegung des Hubkolbens 8. Dabei bewirkt der Hubkolben 8 zumindest nicht das Entleeren des Ergänzungsraums 12 gleichzeitig mit dem Entleeren des ersten Kolbenraums 3. In der beschriebenen Ausführungsform wird dies dadurch gewährleistet, dass der Hubkolben 8 in dem zweiten Arbeitsschritt, und damit bei der Bewegung zur Förderung von Material 2 von dem ersten Kolbenraum 3 in den zweiten Kolbenraum 4, Druck auf das Material 2 von dem ersten Kolbenraum 3 weg in Richtung zu der Ergänzungskammer 10 ausübt. Es ist jedoch auch möglich, eine erfindungemäße Pumpe 1 zu realisieren, indem Trennwände vorgesehen sind, deren Stellung veränderbar ist und die ein entsprechendes Entleeren und/oder Befüllen des Ergänzungsraums 12 in Abhängigkeit von ihrer Stellung verhindern oder ermöglichen können. Die Ergänzungskammer 10 muss dabei nicht zwingend als Zylinder-Kolben Einrichtung ausgebildet sein, sondern kann beispielsweise auch durch entsprechende Membranen, deren Stellung ansteuerbar ist, realisiert sein. Auch kann die Ergänzungskammer 10 bei einer erfindungsgemäßen Hubkolbenpumpe 1 innerhalb des ersten Kolbenraums 3 angeordnet sein.
  • Bei den in Figur 3 und 4 beschriebenen Funktionsweisen einer erfindungsgemäßen Pumpe 1 ist der Verdrängungskolben 11 in der Ergänzungskammer 10 durch eine Steuereinheit ansteuerbar. Die Steuereinheit kann dabei möglicherweise auch mit einer Steuerung oder Antriebseinrichtung des Hubkolbens 8 gekoppelt sein.
  • In einer nicht dargestellten Ausführungsform einer erfindungsgemäßen Pumpe 1 kann die Stellung eines Verdrängungsmittels in einer Ergänzungskammer 10 auch während eines Arbeitszyklus konstant gehalten werden, wobei mittels der Stellung des Verdrängungsmittels in der Ergänzungskammer 10 das pro Arbeitszyklus geförderte Materialvolumen veränderbar ist.
  • Bezugszeichenliste
  • 1
    Pumpe, Hubkolbenpumpe
    2, 2a
    Material
    3
    erster Kolbenraum
    4
    zweiter Kolbenraum
    5
    Auslass
    6
    erstes Ventil
    7
    zweites Ventil
    8
    Hubkolben
    9
    Bypass
    10
    Ergänzungskammer
    11
    Verdrängungskolben
    12
    Ergänzungsraum
    100
    herkömmliche Pumpe, herkömmliche Hubkolbenpumpe
    21
    Verdrängungskolbenkurve
    22
    erfindungsgemäße Druckkurve
    31
    Hubkolbenkürve
    32
    herkömmliche Druckkurve

Claims (15)

  1. Pumpe (1) zum Fördern einer Menge von fluidem Material (2, 2a) aus einem Materialbehälter in einem Fördervorgang mit einer Vielzahl von Arbeitszyklen, wobei die Pumpe (1) einen Förderraum umfasst, der in einem ersten Arbeitsschritt der Pumpe (1) zumindest abschnittsweise mit Material (2, 2a) gefüllt wird und in einem zweiten Arbeitsschritt der Pumpe (1) zumindest abschnittsweise entleert wird, um das Material (2, 2a) zu fördern, wobei der erste und zweite Arbeitsschritt jeweils Teil eines Arbeitszyklus sind, wobei die Größe des Förderraums der Pumpe (1) während des Pumpenbetriebs so veränderbar ist, dass in verschiedenen Arbeitszyklen des Fördervorgangs unterschiedliche Volumina des Materials (2, 2a) förderbar sind, wobei der Förderraum eine Ergänzungskammer (10) mit Ergänzungsraum (12) umfasst,
    dadurch gekennzeichnet, dass
    das Volumen des Ergänzungsraums (12) während des Betriebs der Pumpe (1) veränderbar ist, wobei die Pumpe (1) als Hubkolbenpumpe (1) ausgebildet ist, deren Förderraum einen ersten Kolbenraum (3) umfasst, und die einen zweiten Kolbenraum (4) aufweist sowie einen Hubkolben (8), dass an dem ersten Kolbenraum (3) die Ergänzungskammer (10) vorgesehen ist, und dass der Hubkolben (8) in dem ersten Arbeitsschritt zum Fördern des Materials (2, 2a) von dem Materialbehälter in den ersten Kolbenraum (3) von einem ersten Totpunkt zu einem zweiten Totpunkt bewegbar ist und in dem zweiten Arbeitsschritt zum Entleeren des Materials (2, 2a) von dem ersten Kolbenraum (3) in den zweiten Kolbenraum (4) von dem zweiten Totpunkt zu dem ersten Totpunkt bewegbar ist.
  2. Pumpe (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Förderraum Mittel aufweist oder mit diesen zusammenwirkt, durch welche die Größe des Förderraums veränderbar ist, und die während eines Arbeitszyklus zur Änderung der Größe des Förderraums einstellbar sind, so dass das Volumenverhältnis zwischen dem Materialvolumen, das in dem ersten Arbeitsschritt in den Förderraum gefördert wird, und dem Materialvolumen, das in dem zweiten Arbeitsschritt aus dem Förderraum entleert wird, veränderbar ist.
  3. Pumpe (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    der Förderraum einen Pumpenraum umfasst, wobei das Volumen des Ergänzungsraums (12) unabhängig von dem Volumen des Pumpenraums veränderbar ist.
  4. Pumpe (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Förderraum ein Arbeitsmittel aufweist, mittels dessen das Volumen des Ergänzungsraums (12) während eines Arbeitszyklus der Pumpe (1) zwischen einem ersten Volumen und einem zweiten Volumen veränderbar ist, um das in einem Arbeitszyklus geförderte Materialvolumen um das Volumen, das der Differenz zwischen zweitem und erstem Volumen entspricht, zu verändern, wobei das Arbeitsmittel durch eine Steuereinheit gesteuert ist.
  5. Pumpe (1) nach Anspruch 4, dadurch gekennzeichnet, dass das erste- und/oder das zweite Volumen des Ergänzungsraums (12) während des Betriebs der Pumpe (1) veränderbar ist.
  6. Pumpe (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Pumpe (1) ein erstes Ventil (6) und ein zweites Ventil (7) umfasst, wobei der Förderraum bei geöffnetem ersten Ventil (6) zum Füllen mit Material (2, 2a) mit dem Materialbehälter und bei geöffnetem zweiten Ventil (7) zum Entleeren von Material (2, 2a) mit einer Auslasskammer in Verbindung steht, wobei erstes Ventil (6) und zweites Ventil (7) im Betrieb der Pumpe (1) einander abwechselnd geöffnet und geschlossen sind.
  7. Pumpe (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Ergänzungskammer (10) ein Verdrängungsmittel umfasst, wobei das Volumen des Ergänzungsraums (12) durch die Stellung des Verdrängungsmittels in der Ergänzungskammer (10) festgelegt ist.
  8. Pumpe (1) nach Anspruch 7,
    dadurch gekennzeichnet, dass
    Ergänzungskammer (10) und Verdrängungsmittel als Zylinder-Kolben Anordnung ausgebildet sind, wobei das Verdrängungsmittel als Verdrängungskolben (11) ausgebildet ist, durch den der Ergänzungsraum (12) begrenzt ist.
  9. Pumpe (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Pumpe (1) einen Bypass (9) umfasst, durch den der erste Kolbenraum (3) und der zweite Kolbenraum (4) miteinander verbunden sind, dass in dem Bypass (9) das zweite Ventil (7) angeordnet ist, welches als Rückschlagventil ausgebildet ist, so dass ein Rückfluss von Material (2, 2a) von dem zweiten Kolbenraum (4) in den ersten Kolbenraum (3) verhindert ist.
  10. Pumpe (1) nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Volumen des Ergänzungsraums (12) in der Ergänzungskammer (10) im Betrieb so veränderbar ist, dass das Volumenverhältnis zwischen dem Volumen des Ergänzungsraums (12) bei dem Passieren des ersten Totpunkts durch den Hubkolben (8) und dem Volumen des Ergänzungsraums (12) bei dem Passieren des zweiten Totpunkts durch den Hubkolben (8) im Betrieb veränderbar ist.
  11. Pumpe (1) nach Anspruch 10,
    dadurch gekennzeichnet, dass
    das Volumenverhältnis in Abhängigkeit von einer vorgegebenen Fördergeschwingkeit während eines Arbeitszyklus einstellbar ist.
  12. System umfassend zumindest zwei Pumpen (1), von denen zumindest eine nach einem der vorangehenden Ansprüche ausgestaltet ist und die jeweils einem Materialbehältern zugeordnet sind,
    dadurch gekennzeichnet, dass
    beide Pumpen (1) so gekoppelt angetrieben sind, dass sie die Arbeitsschritte synchron mit derselben Frequenz durchführen, und dass die Größe des Förderraums mindestens einer der beiden Pumpen (1) unabhängig von dem der anderen veränderbar ist.
  13. System nach Anspruch 12,
    dadurch gekennzeichnet, dass
    mittels einer Steuereinheit die Veränderung des Förderraums einer oder beider der Pumpen (1) steuerbar ist, um den Istwert der Fördergeschwindigkeit der angesteuerten Pumpe (1) in Richtung auf einen Sollwert der Fördergeschwindigkeit der Pumpe (1) hin zu ändern.
  14. System nach einem der Ansprüche 12 oder 13,
    dadurch gekennzeichnet, dass
    die Veränderung des Förderraums einer oder beider Pumpen (1) in Abhängigkeit von dem Füllstand zumindest eines der beiden den beiden Pumpen (1) zugeordneten Materialbehältern steuerbar ist.
  15. Verfahren zum Steuern der Fördergeschwindigkeit einer Pumpe (1), die als Hubkolbenpumpe (1) ausgebildet ist, wobei die Pumpe (1) fluides Material (2, 2a) aus einem Materialbehälter fördert, indem in einem ersten Arbeitsschritt ein Förderraum zumindest abschnittsweise mit Material (2, 2a) gefüllt wird und in einem zweiten Arbeitsschritt das Material (2, 2a) zumindest teilweise aus dem Förderraum entleert wird, wobei der erste und zweite Arbeitsschritt jeweils Teil eines Arbeitszyklus sind, wobei zur Veränderung des pro Arbeitszyklus geförderten Materialvolumens der Förderraum der Pumpe (1) während des Betriebs der Pumpe (1) verändert wird,
    dadurch gekennzeichnet, dass
    das Volumen eines Ergänzungsraums (12) in einer Ergänzungskammer (10), die von dem Förderraum umfasst und an einem ersten Kolbenraum (3) der Pumpe (1) vorgesehen ist, während des Betriebs der Pumpe (1) verändert wird, wobei ein Hubkolben (8) der Pumpe (1) in dem ersten Arbeitsschritt zum Fördern des Materials (2, 2a) von dem Materialbehälter in den ersten Kolbenraum (3) von einem ersten Totpunkt zu einem zweiten Totpunkt bewegt wird und in dem zweiten Arbeitsschritte zum Entleeren des Materials (2, 2a) von dem ersten Kolbenraum (3) in einen zweiten Kolbenraum (4) der Pumpe (1) von dem zweiten Totpunkt zu dem ersten Totpunkt bewegt wird.
EP12165695.3A 2011-05-16 2012-04-26 Pumpe zum Fördern von fluiden Material aus Materialbehältern Active EP2525094B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201120100757 DE202011100757U1 (de) 2011-05-16 2011-05-16 Pumpe zum Fördern von fluidem Material aus Materialbehältern

Publications (2)

Publication Number Publication Date
EP2525094A1 EP2525094A1 (de) 2012-11-21
EP2525094B1 true EP2525094B1 (de) 2016-07-20

Family

ID=46084821

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12165695.3A Active EP2525094B1 (de) 2011-05-16 2012-04-26 Pumpe zum Fördern von fluiden Material aus Materialbehältern

Country Status (2)

Country Link
EP (1) EP2525094B1 (de)
DE (1) DE202011100757U1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102457681B1 (ko) 2014-10-13 2022-10-20 알파 에스알엘 유체 제품들을 위한 양변위 펌프 및 펌핑 그룹 및 그의 사용을 위한 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE742155C (de) * 1938-09-13 1943-11-23 Esslingen Maschf Reglungseinrichtung fuer die Foerdermenge bei mehrstufigen Kolbenverdichtern
CH227216A (de) * 1942-05-22 1943-05-31 Sulzer Ag Mehrstufenverdichter mit regulierbarer Förderleistung.
GB650060A (en) * 1948-01-19 1951-02-14 William Paterson Improvements in reciprocating plunger pumps
DE1703650A1 (de) * 1968-06-24 1972-01-27 Gni I Pi Neftijanowo Mash Gipr Mehrzylinder-Fluessigkeitspumpe
DE4206817C2 (de) * 1991-10-07 1994-02-24 Ficht Gmbh Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicher-Prinzip für Brennkraftmaschinen
DE102008005429A1 (de) * 2008-01-22 2009-07-23 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Kompressor und Verfahren zur Steuerung eines Kompressors zur Druckluftversorgung eines Nutzfahrzeugs
CH701376B1 (de) 2008-05-21 2011-01-14 Dopag Dosiertechnik Und Pneumatik Ag Vorrichtung zur Entnahme von flüssigen Materialien aus zwei Vorlagebehältern.

Also Published As

Publication number Publication date
DE202011100757U1 (de) 2012-12-07
EP2525094A1 (de) 2012-11-21

Similar Documents

Publication Publication Date Title
EP0409001B1 (de) Vorrichtung zum Injizieren von Flüssigkeiten
WO2010081695A1 (de) Verfahren zur förderung breiiger massen und pumpvorrichtung zur förderung breiiger massen
EP3282124A1 (de) Dickstoffpumpe
DE102013018606B4 (de) 1 - Dickstoffpumpe mit Fördereinheit und Zuführeinheit
EP2013477A2 (de) Verfahren und vorrichtung zum automatisierten fördern von flüssigkeiten oder gasen
DE3102506C2 (de) Kolbenpumpe mit geregelter Förderleistung
EP2525094B1 (de) Pumpe zum Fördern von fluiden Material aus Materialbehältern
EP0407884B1 (de) Anlage zum Konditionieren und Entwässern von Schlämmen in einer Kammerfilterpresse
DE2320205A1 (de) Vorrichtung zum zufuehren von sperroel zu den wellendichtungen von hochdruckschleudergeblaesen beim versagen der sperroelversorgungsanlage
DE102019204874A1 (de) Umschaltvorrichtung und Schmierpumpe
DE19531064B4 (de) Pulsationsfreie Pumpe
EP1936205A1 (de) Verfahren zum Betreiben eines drehzahlregelbaren Kreiselpumpenaggregats
EP3441612A1 (de) Pumpen-einheit, damit ausgestattete lagervorrichtung sowie verfahren zum betreiben der lagervorrichtung
DE2532768C3 (de) Hydraulische Servomotoranlage
DE4219664C2 (de) Fördereinheit für eine Verdrängerdosierpumpe
EP3732975A1 (de) Füllstromteiler
DE1453585A1 (de) Zweizylinder-Pumpe oder Kompressor mit hydraulischem Antrieb
DE4127873A1 (de) Kneteinrichtung fuer eine zu knetende masse
DE19524048C2 (de) Pumpe zur Förderung nicht fließfähiger Medien
EP0924149A2 (de) Verfahren zum hydraulischen Fördern eines Schüttgutes
EP3894701B1 (de) Kolbenpumpe und verfahren zum betrieb einer kolbenpumpe
DE10320550B4 (de) Lackdosiereinrichtung
DE102004062832B4 (de) Kraftstoffdosierpumpeinrichtung
WO2018029078A1 (de) Vorrichtung zum erzeugen eines pulsierenden hydraulikfluiddruckes
EP2362100B1 (de) Dosierpumpenaggregat sowie Verfahren zur Steuerung eines Dosierpumpenaggregates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 814332

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007690

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007690

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

26N No opposition filed

Effective date: 20170421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170426

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012007690

Country of ref document: DE

Owner name: KRACHT GMBH, DE

Free format text: FORMER OWNER: 2 KOMPONENTEN MASCHINENBAU GMBH, 51709 MARIENHEIDE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012007690

Country of ref document: DE

Representative=s name: COHAUSZ HANNIG BORKOWSKI WISSGOTT PATENTANWALT, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012007690

Country of ref document: DE

Representative=s name: COHAUSZ HANNIG BORKOWSKI WISSGOTT, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 814332

Country of ref document: AT

Kind code of ref document: T

Owner name: KRACHT GMBH, DE

Effective date: 20221122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230418

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230414

Year of fee payment: 12