EP2254723A1 - Piston pour moteurs à combustion interne, fabriqué grâce à un procédé multi-orbital de soudure par friction - Google Patents

Piston pour moteurs à combustion interne, fabriqué grâce à un procédé multi-orbital de soudure par friction

Info

Publication number
EP2254723A1
EP2254723A1 EP09713945A EP09713945A EP2254723A1 EP 2254723 A1 EP2254723 A1 EP 2254723A1 EP 09713945 A EP09713945 A EP 09713945A EP 09713945 A EP09713945 A EP 09713945A EP 2254723 A1 EP2254723 A1 EP 2254723A1
Authority
EP
European Patent Office
Prior art keywords
piston
joining
friction welding
cooling channel
webs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09713945A
Other languages
German (de)
English (en)
Inventor
Michael Albert Janssen
Gerhard Luz
Volker Gniesmer
Steffen Stork
Martin Weissert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KS Kolbenschmidt GmbH
Original Assignee
KS Kolbenschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KS Kolbenschmidt GmbH filed Critical KS Kolbenschmidt GmbH
Publication of EP2254723A1 publication Critical patent/EP2254723A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/003Pistons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49249Piston making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49249Piston making
    • Y10T29/49252Multi-element piston making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49249Piston making
    • Y10T29/49256Piston making with assembly or composite article making

Definitions

  • Piston for internal combustion engines produced by means of a multi-orbital friction welding process
  • the invention relates to a method for producing a piston of an internal combustion engine, which is designed as a finished one-piece cooling channel piston and comprises a lower part and an upper part, which are supported via corresponding joining webs forming a joint zone and which are materially bonded by means of friction welding, according to the features the preamble of independent claims 1 and 2.
  • Friction welding is based on the principle that sliding movement between two components is produced by relative movement and simultaneous pressure in order to produce the necessary welding energy at the surfaces to be welded in the region of a joining zone.
  • Known rotary friction welding machines use a power chuck and an upsetting device to deliver kinetic energy throughout the welding cycle.
  • two workpieces are rubbed together under pressure with a rotary motion and plasticized by the resulting frictional heat.
  • the workpiece used in the driven chuck is rotated relative to the second stationary in the upsetting device held workpiece. Once the temperature required for welding is reached, the upsetting device presses the two workpieces together.
  • this method requires that one of the two components rotate at high speed to provide the required energy.
  • a cooling channel piston consisting of an upper part and a lower part, which are supported via corresponding, each rotationally symmetrical extending and radially spaced joining webs.
  • US Pat. No. 6,155,157 shows a cooling channel piston with two components that can be produced separately from one another, which are then joined together in a material-locking manner by means of a known friction welding method, to form a one-piece cooling channel piston.
  • This structure allows a relatively simple piston production, wherein the known piston concept is severely limited in terms of geometric freedom, in particular the design of joints.
  • the present invention seeks to improve a geometric design possibility of pistons by means of an optimized joining technique, in order to achieve a flexible piston production and a reduction in weight.
  • the invention according to the features of claim 1 relates to a manufacturing method for a piston with rotationally symmetrical or preferably non-rotationally symmetrical joining webs of the lower part and the upper part, which are materially connected in the region of a joining zone by means of a multi-orbital friction welding process.
  • the multi-orbital friction welding envisages that the individual piston components are tightly clamped on both sides adjacent to the joining zones in so-called Reibsch spagropfen and thereby pressed against each other before the joints are vibrated using the Reibsch spakexcellent.
  • the joining partners are advantageously moved with the same direction of rotation at a preferred phase offset of 180 ° in the smallest circular orbital movements, which are similar to a sander movement, to generate the frictional heat and swing in particular out of phase.
  • the friction energy is introduced simultaneously in the region of several positions, whereby the previous system limits of friction welding are widened.
  • the components to be joined are rubbed against each other over the entire joining zone, which leads to a desired uniform and rapid heating of the entire welding plane.
  • an optimal, homogeneous energy input is established at each point of the joining zone formed by the piston joining points.
  • the machine system stops to press both workpieces with precise final dimensions.
  • the use according to the invention of the multi-orbital friction welding method simplifies the production of the piston due to a large freedom of design with respect to the position, the orientation and the wall thickness of the joining webs and the resulting joining zone. Since the deflection of the piston components to be joined when rubbing with about 0.3 to 1, 2 mm is low, even thin-walled joining joints can be welded.
  • the use of the multi-orbital friction welding process allows flexible, time-optimized production and thus reduced costs in the production of the piston.
  • the economy of the piston production can be substantially increased by shortened process times by the invention.
  • the novel manufacturing method allows an improved design of the piston components, since each component taken by itself can be designed in terms of its geometry to achieve optimum fatigue strength, without consideration of cohesive joining technology.
  • it makes sense to interpret the joints only in terms of optimized stiffness or structural strength and a weight-optimized piston.
  • design features can be realized by the welding process, which were previously not feasible due to the required rotationally symmetric geometry of the joining zones in friction welding.
  • the invention provides a solution with which the ever increasing demands in terms of thermal and mechanical stress of pistons and the demand for reducing the rotational and oscillating components in internal combustion engines can be met.
  • the invention of claim 2 relates to a manufacturing method for pistons having at least two mutually radially spaced, connected by means of a multi-orbital friction welding joining zones. Due to the smallest circular Movements of all joining partners is an advantageous synchronous simultaneous joining a plurality of joining webs possible, even if they are relatively close to each other.
  • the multi-orbital friction welding process can be used cost-optimized for the production of a cooling channel piston whose cooling channel, which is bounded on both sides by joints, extends between the lower part and the upper part.
  • the use according to the invention of the multi-orbital friction welding method on the production of pistons allows a dimensioning of the joining webs adapted to the strength requirements of individual piston regions. Since this method does not require a rotationally symmetrical course, the joining webs on the circumferential side to form variable cross sections on a constant or fluctuating wall thickness.
  • the dimensioning of the joining webs can thus be advantageously adapted to the setting in the individual piston areas, divergent thermal and mechanical loads, which also a weight advantage can be realized.
  • the multi-orbital friction welding method also allows a height offset of the joining zone, whereby the friction welding can be adapted, for example, to predetermined geometric or special constructive piston concepts. Underlining the diversity of interpretation, it continues to offer, in pistons with two radially spaced joining zones to arrange them together so that the individual joining zones both have a different, not rotationally symmetrical course and a height offset.
  • the friction welding requires no closed-shaped joining zone, but allows a local to be designated as a passage recess of the joining zone, for example, as a coolant transfer between two cooling channels is usable.
  • This recess can represent an adaptation of the joining web to the loads which occur in the operating state, as a result of which a reduced piston weight can be realized at the same time.
  • the welding process on the other hand allows partially to provide the joining webs with radially inwardly and / or radially outwardly directed stiffening ribs which extend into the region of the joining zones and are materially connected.
  • the rotationally symmetrical, non-rotationally symmetric or partially approximately parallel to a piston axis extending joining zones are arranged so that they are aligned perpendicular to a piston longitudinal axis.
  • a position or arrangement of the joining zone or the mutually offset joining zones which deviates from a self-adjusting vertical printing direction of the multi-orbital friction welding.
  • the design also makes it possible that the self-adjusting upsetting axes are aligned in the friction welding orthogonal or not orthogonal to each other.
  • the multi-orbital friction welding method does not cause any or small welding beads, which remain on the joining zone after completion of the welding or are removed by means of reworking if necessary.
  • a preferred embodiment of the invention provides that during the Reibsch consultvorgangs the cooling channel is closed. Subsequently, by means of a mechanical processing, if necessary, at least one local opening can be introduced into the joining web in order, for example, to allow coolant to enter the cooling channel. For pistons, a combination of several through Include jointed separate cooling channels, it is advisable to provide the joint with at least one also to be designated as a transfer opening passage, which ensures a coolant exchange between the cooling channels.
  • a further advantageous embodiment according to the invention provides for closing an annular gap provided in the region of the piston outer contour by means of an additional or covering element.
  • the cover element which encloses, for example, a passage or a transfer opening, can thereby be positively and / or non-positively fastened to the lower part or the upper part of the piston or simultaneously cohesively fixed with the multi-orbital friction welding.
  • the invention makes it possible to materially connect piston components made of a matching material or of different materials by the multi-orbital friction welding method.
  • a piston component made of a lightweight material with the main alloying element aluminum may be provided with another piston component made of steel or a ferrous material, e.g. Cast iron can be connected.
  • it may be considered to manufacture the upper and lower parts in the same or different processes, such as forging, pressing, casting, extrusion and the like.
  • FIG. 1 shows a first embodiment of a cooling channel piston according to the invention in a longitudinal section
  • FIG. 2 shows a sectional view of the piston according to FIG. 1,
  • FIG. 3 shows the piston according to FIG. 1 in a longitudinal section rotated by 90 °
  • FIG. 4 shows a sectional view of the piston according to FIG. 3,
  • FIG. 5 shows the piston according to FIG. 1, whose joining zone has a height offset
  • FIG. 6 shows a second embodiment of a cooling channel piston according to the invention in a longitudinal section
  • Figure 7 the piston of Figure 6 in a rotated by 90 ° longitudinal section.
  • a piston head 5 of the upper part 2 includes a combustion bowl 6, which merges circumferentially in a top land 7, to which a ring field 8 is connected for receiving piston rings not shown in FIG.
  • the lower part 3 forms a piston shaft, in which two diametrically opposite pin holes 9 are introduced.
  • joining zone 4 is based Correspondingly arranged joining webs 11, 12, which are assigned to the upper part 2 and the lower part 3.
  • a multi-orbital friction welding is provided in which the joining webs 11, 12 and the associated components, the upper part 2 and the lower part 3, rotates with the same direction of rotation at a preferred phase offset of 180 ° in the smallest circular orbital movements , By this movement, a frictional heat is generated in which sets a homogeneous energy input at each point of the joining zone 4.
  • This special welding weld 13a, 13b forming small welds does not require a rotationally symmetrical arrangement or geometry of the joining zone 4 to a piston axis 10.
  • the joining webs 11, 12 define on the inside and the ring field 8 on the outside a cooling channel 14 integrated in the piston 1.
  • a self-adjusting annular gap 15 between the annular field 8 and the lower part 3 is closed by a separate additional element 16 which is fixed in position by means of a weld or alternatively by a non-positive and / or positive connection to the lower part 3.
  • FIG. 2 which shows the piston 1 in a sectional view according to the course 2-2 of FIG. 1, illustrates in particular the position of the joining web 11, which at the same time defines the surface or the cross section of the joining zone 4.
  • the course of the joining web 11 shows sections "a” and “b” which extend almost parallel to the axis "y” of the piston 1 and are adjoined by sections "c” and “d” arranged largely concentrically with the center of the piston
  • the wall thicknesses of the joining web 11 in the individual sections can be dimensioned differently, in accordance with the respective piston loads that are set in the operating state, in which case wall thicknesses of the sections "a” and “b” are the same or different interpreted and execute the other sections "c” and "d” of the joint 11 again equal or different from the section "a” and / or the section "b".
  • FIG. 3 shows the piston 1 in a longitudinal section offset by 90 ° relative to FIG. 1, and illustrates the design and the course of the joining webs 11, 12 in the sections "c" and “d", which are opposite the sections "a” shown in FIG "and” b "have a reduced wall thickness.
  • the piston 1 is shown in a sectional view according to the course 4-4 of Figure 3 and shows a deviating from Figure 2 course of the joint 11.
  • Joining ribs 17a, 17b, 17c which are arranged radially offset inwardly from one another and which are in some other direction radially outwardly directed stiffening ribs 18a, 18b, on the side opposite the stiffening ribs 11 openings 19a, 19b staggered with respect to one another are introduced into the joining rib 11 , via which, for example, a coolant exchange can take place from the cooling channel 14 into the inner region 20.
  • the piston 1 shown in Figure 5 is largely comparable to the piston 1 shown in Figure 1. Consequently, matching components are given the same reference numerals. 5, the joining zone 4 forms a height offset "v", which is made possible by the multi-orbital friction welding method, in order to realize the orbital welding movement, a free space "s" is required for this purpose.
  • the piston 21 according to FIG. 6 is partially comparable to the piston depicted in FIG. 1, therefore matching components have the same reference numerals.
  • the upper part 22, which includes a piston crown 25 with integrated combustion chamber recess 26 and on the outside a top land 27 and a ring field 28, and the bottom part 23 enclosing a pin bore 29 are supported by two radially offset joint pairs.
  • the radially inner joining webs 31, 32 form the joining zone 24a and the radially outer joining webs 33, 34 form the joining zone 24b.
  • the design of the joining webs 31, 32 or 33, 34 includes different or identical wall thicknesses in opposite sections "a, b" or "e, f". Furthermore, the wall thickness can also be designed differently between the radially spaced joining web pairs.
  • the joining zones 24a, 24b have a height offset "h" relative to one another, the joining zone 24b being arranged at a greater distance from the piston head 25 than the joining zone 24a.
  • two cooling channels 35, 36 are integrated, which are laterally delimited by joining webs
  • the outer annular cooling channel 35 is bounded on the outside by the annular field 28 or the joining webs 33, 34 and on the inside by the joining webs 31, 32.
  • the central cooling channel 36 extends as far as possible over the region of the piston depression 26 and is formed by passage openings 37 connected to the cooling channel 35.
  • FIG. 7 shows the piston 21 in a longitudinal section offset by 90 ° to FIG. 6 and illustrates the design of the joining webs 31, 32; 33, 34, wherein the wall thicknesses of the sections "c, d" and “g” differ at least partially from the wall thicknesses of the sections "a, b, e, f" according to FIG. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un piston (1) d'un moteur à combustion interne, qui est réalisé sous la forme d'un piston à canal de refroidissement monobloc. Le piston (1) comprend une partie supérieure (2) et une partie inférieure (3), qui sont consolidés par des entretoises de jonction (11, 12) circulaires correspondantes formant en commun une zone de jonction (4). En vue de la création d'un raccord de jonction à fermeture par liaison de matière de la partie supérieure (2) et de la partie inférieure (3), les entretoises de jonction (11, 12) sont reliées dans le secteur d'une zone de jonction (4) à symétrie de rotation ou sans symétrie de rotation grâce à une soudure multi-orbitale par friction.
EP09713945A 2008-02-29 2009-01-30 Piston pour moteurs à combustion interne, fabriqué grâce à un procédé multi-orbital de soudure par friction Withdrawn EP2254723A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008011922A DE102008011922A1 (de) 2008-02-29 2008-02-29 Kolben für Brennkraftmaschinen, hergestellt mittels eines Multi-Orbitalen Reibschweißverfahrens
PCT/EP2009/000627 WO2009106200A1 (fr) 2008-02-29 2009-01-30 Piston pour moteurs à combustion interne, fabriqué grâce à un procédé multi-orbital de soudure par friction

Publications (1)

Publication Number Publication Date
EP2254723A1 true EP2254723A1 (fr) 2010-12-01

Family

ID=40578933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09713945A Withdrawn EP2254723A1 (fr) 2008-02-29 2009-01-30 Piston pour moteurs à combustion interne, fabriqué grâce à un procédé multi-orbital de soudure par friction

Country Status (5)

Country Link
US (1) US8789273B2 (fr)
EP (1) EP2254723A1 (fr)
JP (1) JP2011514258A (fr)
DE (1) DE102008011922A1 (fr)
WO (1) WO2009106200A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061778A1 (de) * 2004-09-29 2006-04-06 Ks Kolbenschmidt Gmbh Einfach-Reibschweißung
DE102008045456A1 (de) * 2008-09-02 2010-03-04 Mahle International Gmbh Kolben für einen Verbrennungsmotor
DE102008055848A1 (de) * 2008-11-04 2010-05-06 Ks Kolbenschmidt Gmbh Kühlkanalkolben einer Brennkraftmaschine mit einem Verschlusselement, das den Kühlkanal verschließt
DE102009015820A1 (de) * 2009-04-01 2010-10-07 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
JP2011085109A (ja) * 2009-10-19 2011-04-28 Niigata Power Systems Co Ltd ピストン及びエンジン
DE102010033882A1 (de) 2010-08-10 2012-02-16 Mahle International Gmbh Kolben für einen Verbrennungsmotor
US9856820B2 (en) 2010-10-05 2018-01-02 Mahle International Gmbh Piston assembly
DE102010052578A1 (de) 2010-11-25 2012-05-31 Daimler Ag Kolben für eine Brennkraftmaschine
EP2535516B1 (fr) * 2011-06-17 2014-02-26 Techspace Aero S.A. Procédé de soudage par friction d'aubes à un tambour de compresseur axial et dispositif correspondant
US8973484B2 (en) 2011-07-01 2015-03-10 Mahle Industries Inc. Piston with cooling gallery
DE102011106559A1 (de) * 2011-07-05 2013-01-10 Mahle International Gmbh Kolben für einen Verbrennungsmotor
DE102011113800A1 (de) * 2011-09-20 2013-03-21 Mahle International Gmbh Kolben für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
DE102011088066A1 (de) * 2011-12-09 2013-06-13 Ks Kolbenschmidt Gmbh Kolben für Brennkraftmaschinen
US9216474B2 (en) 2012-04-24 2015-12-22 Industrial Parts Depot, Llc Two-piece friction-welded piston
DE102013211953A1 (de) * 2012-06-27 2014-01-02 Ks Kolbenschmidt Gmbh Besondere Anordnung einer Kühlkanalverbindungsbohrung eines Kühlkanales
DE102012214681A1 (de) * 2012-08-17 2014-02-20 Ks Kolbenschmidt Gmbh Kolben mit einer lokalen Ringnut- und/oder Muldenrandverstärkung
EP2946100B1 (fr) * 2013-01-21 2016-11-23 Federal-Mogul Corporation Piston et procédé de fabrication d'un piston
CN105121823B (zh) 2013-02-18 2018-01-30 费德罗-莫格尔公司 形状复杂的活塞油道与由铸造金属或粉末金属工艺制成的活塞冠部
US9334958B2 (en) 2013-02-18 2016-05-10 Federal-Mogul Corporation Complex-shaped forged piston oil galleries
US10787991B2 (en) 2013-02-18 2020-09-29 Tenneco Inc. Complex-shaped forged piston oil galleries
EP2971717B1 (fr) 2013-03-13 2017-05-10 Federal-Mogul Corporation Piston et son procédé de construction
KR101449304B1 (ko) 2013-06-27 2014-10-08 현대자동차주식회사 자동차 엔진용 피스톤의 제조 방법
JP6362517B2 (ja) * 2014-11-11 2018-07-25 オーエスジー株式会社 切削工具
US10184422B2 (en) * 2014-12-30 2019-01-22 Tenneco Inc. Reduced compression height dual gallery piston, piston assembly therewith and methods of construction thereof
AT519583B1 (de) * 2017-01-26 2018-11-15 Mahle Koenig Kg Gmbh & Co Kg Kolben zum Einsatz in Verbrennungskraftmaschinen
DE102018105928B4 (de) 2018-03-14 2020-06-18 Federal-Mogul Ignition Gmbh Verfahren zum Herstellen einer Elektrodenanordnung für eine Zündkerze
DE102019214857A1 (de) * 2019-09-27 2021-04-01 Robert Bosch Gmbh Bauteil der Hydraulik, Anordnung mit einem Abschnitt des Bauteils, und Verfahren zum Fügen des Bauteils
DE102020210907A1 (de) 2020-08-28 2022-03-03 Mahle International Gmbh Kolben für eine Brennkraftmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB519915A (en) * 1938-01-17 1940-04-09 Charles Emile Stanislas Korytk Piston and process for its manufacture
GB1315676A (en) * 1970-07-18 1973-05-02 Thompson Pipework Ordnance Div Method of and apparatus for friction welding
GB2366607A (en) * 2000-09-06 2002-03-13 Federal Mogul Bradford Ltd I.c. engine piston with body formed from two or more circumferentially incomplete segments
EP1447167A1 (fr) * 2003-02-14 2004-08-18 Volker Rossner Procédé et dispositif de soudage par friction de surfaces d'assemblage de deux pièces
WO2004108341A2 (fr) * 2003-06-10 2004-12-16 Noetic Engineering Inc. Procede de formation de soudure par induction comprenant une etape de deplacement du au cisaillement
EP1878902A2 (fr) * 2006-07-05 2008-01-16 KS Kolbenschmidt GmbH Piston à canal de refroidissement pour moteur à combustion interne

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1324431A (en) * 1970-01-31 1973-07-25 Clarke Chapman John Thompson L Methods of and apparatus for friction welding
DE2919638A1 (de) 1979-05-16 1980-11-20 Schmidt Gmbh Karl Kolben fuer brennkraftmaschinen
GB8601083D0 (en) * 1986-01-17 1986-02-19 Welding Inst Friction welding
JPS632576A (ja) 1986-06-23 1988-01-07 Souyou Sangyo Kk 摩擦圧接法
DE3719703A1 (de) 1987-06-12 1988-12-29 Siemens Ag Geschweisste verbindung fuer zylindrische rohre
BR9001859A (pt) * 1990-04-17 1991-11-12 Metal Leve Sa Processo de fabricacao de embolo e embolo
BR9005370A (pt) 1990-10-18 1992-06-16 Metal Leve Sa Processo de fabricacao de embolo refrigerado
EP0624420B1 (fr) * 1993-05-13 1997-08-06 ROLLS-ROYCE plc Soudage par friction
GB9414381D0 (en) * 1994-07-15 1994-09-07 British Nuclear Fuels Plc A method of friction welding
DE29723201U1 (de) * 1997-11-27 1998-07-02 Vectron Elektronik Gmbh Vorrichtung zur Regelung der Bewegungsbahn des Werkstückaufnahmekopfes eines Orbital-Vibrationsschweißsystems
US6032619A (en) * 1998-07-16 2000-03-07 Federal-Mogul World Wide, Inc. Piston having a tube to deliver oil for cooling a crown
US5934174A (en) * 1998-10-02 1999-08-10 Cummins Engine Company, Inc. Lightweight articulated piston head and method of making the piston head
US6279455B1 (en) 1998-10-06 2001-08-28 Caterpillar Inc. Method and apparatus for making a two piece unitary piston
US6155157A (en) 1998-10-06 2000-12-05 Caterpillar Inc. Method and apparatus for making a two piece unitary piston
DE69927928T2 (de) * 1999-01-11 2006-07-27 Toyota Jidosha K.K., Toyota Bremssystem
DE29905633U1 (de) 1999-03-31 2000-08-10 Kuka Schweissanlagen Gmbh Bauteilvorbereitung für eine Reibschweißverbindung
DE60028800T3 (de) * 1999-10-08 2018-06-21 Federal-Mogul Corp. Kolben mit zwei kühlmittelkanälen
GB9925708D0 (en) * 1999-10-30 1999-12-29 Carey Charles O B A connecting rod/piston pin assembly
WO2001050042A1 (fr) * 1999-12-30 2001-07-12 Federal-Mogul Corporation Piston a jupe decouplee
US6450395B1 (en) * 2000-08-01 2002-09-17 The Boeing Company Method and apparatus for friction stir welding tubular members
DE10106578A1 (de) * 2001-02-13 2002-08-22 Mahle Gmbh Unterteil für einen gebauten Kolben
DE10138482A1 (de) * 2001-08-04 2003-02-13 Bosch Gmbh Robert Vorrichtung zumindest bestehend aus zwei Teilen, die miteinander verbunden sind
US6910616B2 (en) * 2002-03-07 2005-06-28 The Boeing Company Preforms for forming machined structural assemblies
DE10244512A1 (de) 2002-09-25 2004-04-15 Mahle Gmbh Mehrteiliger gekühlter Kolben für einen Verbrennungsmotor
US6990890B2 (en) * 2002-11-06 2006-01-31 Federal-Mogul World Wide, Inc. Monobloc piston having open floor
DE10333783A1 (de) * 2003-07-24 2005-02-17 Multi Orbital Systems Gmbh Orbital-Reibschweissverfahren und Vorrichtung zur Durchführung des Verfahrens
DE102004038464A1 (de) * 2004-08-07 2006-02-23 Ks Kolbenschmidt Gmbh Kolben, insbesondere Kühlkanalkolben, mit drei Reibschweißzonen
DE102004061778A1 (de) 2004-09-29 2006-04-06 Ks Kolbenschmidt Gmbh Einfach-Reibschweißung
WO2007031109A1 (fr) * 2005-09-17 2007-03-22 Ks Kolbenschmidt Gmbh Piston, en particulier piston a canal de refroidissement d'un moteur a combustion interne, comportant au moins trois zones de soudure par friction
DE102006002949A1 (de) * 2006-01-21 2007-08-02 Ks Kolbenschmidt Gmbh Kühlkanalkolben für eine Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB519915A (en) * 1938-01-17 1940-04-09 Charles Emile Stanislas Korytk Piston and process for its manufacture
GB1315676A (en) * 1970-07-18 1973-05-02 Thompson Pipework Ordnance Div Method of and apparatus for friction welding
GB2366607A (en) * 2000-09-06 2002-03-13 Federal Mogul Bradford Ltd I.c. engine piston with body formed from two or more circumferentially incomplete segments
EP1447167A1 (fr) * 2003-02-14 2004-08-18 Volker Rossner Procédé et dispositif de soudage par friction de surfaces d'assemblage de deux pièces
WO2004108341A2 (fr) * 2003-06-10 2004-12-16 Noetic Engineering Inc. Procede de formation de soudure par induction comprenant une etape de deplacement du au cisaillement
EP1878902A2 (fr) * 2006-07-05 2008-01-16 KS Kolbenschmidt GmbH Piston à canal de refroidissement pour moteur à combustion interne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2009106200A1 *

Also Published As

Publication number Publication date
JP2011514258A (ja) 2011-05-06
US20110119914A1 (en) 2011-05-26
WO2009106200A1 (fr) 2009-09-03
US8789273B2 (en) 2014-07-29
DE102008011922A1 (de) 2009-09-03

Similar Documents

Publication Publication Date Title
EP2254723A1 (fr) Piston pour moteurs à combustion interne, fabriqué grâce à un procédé multi-orbital de soudure par friction
EP2681435B1 (fr) Piston pour un moteur à combustion interne et procédé de fabrication
EP2726714B1 (fr) Arbre à cames à paquet de cames déplacable axialement
EP1698423B1 (fr) Procédé d'assemblage par soudage par fiction d'une aube de rotor avec le corps d'un rotor comprenant le déplacement d'une pièce de liaison entre l'aube de rotor et le corps du rotor
DE4116088A1 (de) Verfahren zum verbinden von stahl mit aluminium- bzw. titanlegierungsteilen und danach erhaltene turbolader
DE102006002949A1 (de) Kühlkanalkolben für eine Brennkraftmaschine
WO2006084609A1 (fr) Procede pour la fixation inamovible d'au moins une piece sur un element de base au moyen d'un boulon plastiquement deforme
WO2012119591A2 (fr) Piston pour moteur à combustion interne et son procédé de production
DE102015101004B4 (de) Verfahren zum Fügen einer Funktionsbaugruppe sowie Funktionsbaugruppe
DE102012008947A1 (de) Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
EP2603347B1 (fr) Piston pour un moteur à combustion interne et procédé de fabrication correspondant
DE102016118109A1 (de) Fügeverfahren zum vorlochfreien Verbinden von wenigstens einem ersten Bauteil mit einem zweiten Bauteil
DE10209168B4 (de) Stahlkolben mit Kühlkanal
DE10029299C2 (de) Mehrteilig zusammengesetztes Ventil für Hubkolbenmaschinen
WO2006131212A1 (fr) Procede d'assemblage de deux composants par soudage par friction, avec utilisation d'un element intermediaire, et assemblage soude correspondant
WO2013075701A1 (fr) Piston pour moteur à combustion interne et procédé de fabrication correspondant
EP2111323A1 (fr) Procédé de fabrication d'un piston pour un moteur à combustion interne avec un canal de refroidissement, réalisé par assemblage de la partie supérieure du piston et de la partie inférieure du piston à l'aide d'un assemblage par forgeage par compression
WO2013083342A1 (fr) Piston de moteur à combustion interne
EP1967763A1 (fr) Disques d'entraînement et procédé destiné à leur fabrication
EP0945632B1 (fr) Bielle pour un moteur à pistons alternatifs
DE10311149A1 (de) Verfahren zur Herstellung eines geschmiedeten Kolbens für einen Verbrennungsmotor
WO2012069103A1 (fr) Piston pour un moteur à combustion interne
EP3414109A1 (fr) Roue de véhicule utilitaire et utilisation
DE102012214681A1 (de) Kolben mit einer lokalen Ringnut- und/oder Muldenrandverstärkung
DE1922488A1 (de) Zusammengesetzte Kurbelwelle fuer mehrzylindrige Kolbenmaschinen,insbesondere Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JANSSEN, MICHAEL, ALBERT

Inventor name: LUZ, GERHARD

Inventor name: GNIESMER, VOLKER

Inventor name: STORK, STEFFEN

Inventor name: WEISSERT, MARTIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120529

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KS KOLBENSCHMIDT GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180228