EP2254723A1 - Piston for internal combustion engines, produced by means of a multi-orbital friction welding method - Google Patents

Piston for internal combustion engines, produced by means of a multi-orbital friction welding method

Info

Publication number
EP2254723A1
EP2254723A1 EP09713945A EP09713945A EP2254723A1 EP 2254723 A1 EP2254723 A1 EP 2254723A1 EP 09713945 A EP09713945 A EP 09713945A EP 09713945 A EP09713945 A EP 09713945A EP 2254723 A1 EP2254723 A1 EP 2254723A1
Authority
EP
European Patent Office
Prior art keywords
piston
joining
friction welding
cooling channel
webs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09713945A
Other languages
German (de)
French (fr)
Inventor
Michael Albert Janssen
Gerhard Luz
Volker Gniesmer
Steffen Stork
Martin Weissert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KS Kolbenschmidt GmbH
Original Assignee
KS Kolbenschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KS Kolbenschmidt GmbH filed Critical KS Kolbenschmidt GmbH
Publication of EP2254723A1 publication Critical patent/EP2254723A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/003Pistons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49249Piston making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49249Piston making
    • Y10T29/49252Multi-element piston making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49249Piston making
    • Y10T29/49256Piston making with assembly or composite article making

Definitions

  • Piston for internal combustion engines produced by means of a multi-orbital friction welding process
  • the invention relates to a method for producing a piston of an internal combustion engine, which is designed as a finished one-piece cooling channel piston and comprises a lower part and an upper part, which are supported via corresponding joining webs forming a joint zone and which are materially bonded by means of friction welding, according to the features the preamble of independent claims 1 and 2.
  • Friction welding is based on the principle that sliding movement between two components is produced by relative movement and simultaneous pressure in order to produce the necessary welding energy at the surfaces to be welded in the region of a joining zone.
  • Known rotary friction welding machines use a power chuck and an upsetting device to deliver kinetic energy throughout the welding cycle.
  • two workpieces are rubbed together under pressure with a rotary motion and plasticized by the resulting frictional heat.
  • the workpiece used in the driven chuck is rotated relative to the second stationary in the upsetting device held workpiece. Once the temperature required for welding is reached, the upsetting device presses the two workpieces together.
  • this method requires that one of the two components rotate at high speed to provide the required energy.
  • a cooling channel piston consisting of an upper part and a lower part, which are supported via corresponding, each rotationally symmetrical extending and radially spaced joining webs.
  • US Pat. No. 6,155,157 shows a cooling channel piston with two components that can be produced separately from one another, which are then joined together in a material-locking manner by means of a known friction welding method, to form a one-piece cooling channel piston.
  • This structure allows a relatively simple piston production, wherein the known piston concept is severely limited in terms of geometric freedom, in particular the design of joints.
  • the present invention seeks to improve a geometric design possibility of pistons by means of an optimized joining technique, in order to achieve a flexible piston production and a reduction in weight.
  • the invention according to the features of claim 1 relates to a manufacturing method for a piston with rotationally symmetrical or preferably non-rotationally symmetrical joining webs of the lower part and the upper part, which are materially connected in the region of a joining zone by means of a multi-orbital friction welding process.
  • the multi-orbital friction welding envisages that the individual piston components are tightly clamped on both sides adjacent to the joining zones in so-called Reibsch spagropfen and thereby pressed against each other before the joints are vibrated using the Reibsch spakexcellent.
  • the joining partners are advantageously moved with the same direction of rotation at a preferred phase offset of 180 ° in the smallest circular orbital movements, which are similar to a sander movement, to generate the frictional heat and swing in particular out of phase.
  • the friction energy is introduced simultaneously in the region of several positions, whereby the previous system limits of friction welding are widened.
  • the components to be joined are rubbed against each other over the entire joining zone, which leads to a desired uniform and rapid heating of the entire welding plane.
  • an optimal, homogeneous energy input is established at each point of the joining zone formed by the piston joining points.
  • the machine system stops to press both workpieces with precise final dimensions.
  • the use according to the invention of the multi-orbital friction welding method simplifies the production of the piston due to a large freedom of design with respect to the position, the orientation and the wall thickness of the joining webs and the resulting joining zone. Since the deflection of the piston components to be joined when rubbing with about 0.3 to 1, 2 mm is low, even thin-walled joining joints can be welded.
  • the use of the multi-orbital friction welding process allows flexible, time-optimized production and thus reduced costs in the production of the piston.
  • the economy of the piston production can be substantially increased by shortened process times by the invention.
  • the novel manufacturing method allows an improved design of the piston components, since each component taken by itself can be designed in terms of its geometry to achieve optimum fatigue strength, without consideration of cohesive joining technology.
  • it makes sense to interpret the joints only in terms of optimized stiffness or structural strength and a weight-optimized piston.
  • design features can be realized by the welding process, which were previously not feasible due to the required rotationally symmetric geometry of the joining zones in friction welding.
  • the invention provides a solution with which the ever increasing demands in terms of thermal and mechanical stress of pistons and the demand for reducing the rotational and oscillating components in internal combustion engines can be met.
  • the invention of claim 2 relates to a manufacturing method for pistons having at least two mutually radially spaced, connected by means of a multi-orbital friction welding joining zones. Due to the smallest circular Movements of all joining partners is an advantageous synchronous simultaneous joining a plurality of joining webs possible, even if they are relatively close to each other.
  • the multi-orbital friction welding process can be used cost-optimized for the production of a cooling channel piston whose cooling channel, which is bounded on both sides by joints, extends between the lower part and the upper part.
  • the use according to the invention of the multi-orbital friction welding method on the production of pistons allows a dimensioning of the joining webs adapted to the strength requirements of individual piston regions. Since this method does not require a rotationally symmetrical course, the joining webs on the circumferential side to form variable cross sections on a constant or fluctuating wall thickness.
  • the dimensioning of the joining webs can thus be advantageously adapted to the setting in the individual piston areas, divergent thermal and mechanical loads, which also a weight advantage can be realized.
  • the multi-orbital friction welding method also allows a height offset of the joining zone, whereby the friction welding can be adapted, for example, to predetermined geometric or special constructive piston concepts. Underlining the diversity of interpretation, it continues to offer, in pistons with two radially spaced joining zones to arrange them together so that the individual joining zones both have a different, not rotationally symmetrical course and a height offset.
  • the friction welding requires no closed-shaped joining zone, but allows a local to be designated as a passage recess of the joining zone, for example, as a coolant transfer between two cooling channels is usable.
  • This recess can represent an adaptation of the joining web to the loads which occur in the operating state, as a result of which a reduced piston weight can be realized at the same time.
  • the welding process on the other hand allows partially to provide the joining webs with radially inwardly and / or radially outwardly directed stiffening ribs which extend into the region of the joining zones and are materially connected.
  • the rotationally symmetrical, non-rotationally symmetric or partially approximately parallel to a piston axis extending joining zones are arranged so that they are aligned perpendicular to a piston longitudinal axis.
  • a position or arrangement of the joining zone or the mutually offset joining zones which deviates from a self-adjusting vertical printing direction of the multi-orbital friction welding.
  • the design also makes it possible that the self-adjusting upsetting axes are aligned in the friction welding orthogonal or not orthogonal to each other.
  • the multi-orbital friction welding method does not cause any or small welding beads, which remain on the joining zone after completion of the welding or are removed by means of reworking if necessary.
  • a preferred embodiment of the invention provides that during the Reibsch consultvorgangs the cooling channel is closed. Subsequently, by means of a mechanical processing, if necessary, at least one local opening can be introduced into the joining web in order, for example, to allow coolant to enter the cooling channel. For pistons, a combination of several through Include jointed separate cooling channels, it is advisable to provide the joint with at least one also to be designated as a transfer opening passage, which ensures a coolant exchange between the cooling channels.
  • a further advantageous embodiment according to the invention provides for closing an annular gap provided in the region of the piston outer contour by means of an additional or covering element.
  • the cover element which encloses, for example, a passage or a transfer opening, can thereby be positively and / or non-positively fastened to the lower part or the upper part of the piston or simultaneously cohesively fixed with the multi-orbital friction welding.
  • the invention makes it possible to materially connect piston components made of a matching material or of different materials by the multi-orbital friction welding method.
  • a piston component made of a lightweight material with the main alloying element aluminum may be provided with another piston component made of steel or a ferrous material, e.g. Cast iron can be connected.
  • it may be considered to manufacture the upper and lower parts in the same or different processes, such as forging, pressing, casting, extrusion and the like.
  • FIG. 1 shows a first embodiment of a cooling channel piston according to the invention in a longitudinal section
  • FIG. 2 shows a sectional view of the piston according to FIG. 1,
  • FIG. 3 shows the piston according to FIG. 1 in a longitudinal section rotated by 90 °
  • FIG. 4 shows a sectional view of the piston according to FIG. 3,
  • FIG. 5 shows the piston according to FIG. 1, whose joining zone has a height offset
  • FIG. 6 shows a second embodiment of a cooling channel piston according to the invention in a longitudinal section
  • Figure 7 the piston of Figure 6 in a rotated by 90 ° longitudinal section.
  • a piston head 5 of the upper part 2 includes a combustion bowl 6, which merges circumferentially in a top land 7, to which a ring field 8 is connected for receiving piston rings not shown in FIG.
  • the lower part 3 forms a piston shaft, in which two diametrically opposite pin holes 9 are introduced.
  • joining zone 4 is based Correspondingly arranged joining webs 11, 12, which are assigned to the upper part 2 and the lower part 3.
  • a multi-orbital friction welding is provided in which the joining webs 11, 12 and the associated components, the upper part 2 and the lower part 3, rotates with the same direction of rotation at a preferred phase offset of 180 ° in the smallest circular orbital movements , By this movement, a frictional heat is generated in which sets a homogeneous energy input at each point of the joining zone 4.
  • This special welding weld 13a, 13b forming small welds does not require a rotationally symmetrical arrangement or geometry of the joining zone 4 to a piston axis 10.
  • the joining webs 11, 12 define on the inside and the ring field 8 on the outside a cooling channel 14 integrated in the piston 1.
  • a self-adjusting annular gap 15 between the annular field 8 and the lower part 3 is closed by a separate additional element 16 which is fixed in position by means of a weld or alternatively by a non-positive and / or positive connection to the lower part 3.
  • FIG. 2 which shows the piston 1 in a sectional view according to the course 2-2 of FIG. 1, illustrates in particular the position of the joining web 11, which at the same time defines the surface or the cross section of the joining zone 4.
  • the course of the joining web 11 shows sections "a” and “b” which extend almost parallel to the axis "y” of the piston 1 and are adjoined by sections "c” and “d” arranged largely concentrically with the center of the piston
  • the wall thicknesses of the joining web 11 in the individual sections can be dimensioned differently, in accordance with the respective piston loads that are set in the operating state, in which case wall thicknesses of the sections "a” and “b” are the same or different interpreted and execute the other sections "c” and "d” of the joint 11 again equal or different from the section "a” and / or the section "b".
  • FIG. 3 shows the piston 1 in a longitudinal section offset by 90 ° relative to FIG. 1, and illustrates the design and the course of the joining webs 11, 12 in the sections "c" and “d", which are opposite the sections "a” shown in FIG "and” b "have a reduced wall thickness.
  • the piston 1 is shown in a sectional view according to the course 4-4 of Figure 3 and shows a deviating from Figure 2 course of the joint 11.
  • Joining ribs 17a, 17b, 17c which are arranged radially offset inwardly from one another and which are in some other direction radially outwardly directed stiffening ribs 18a, 18b, on the side opposite the stiffening ribs 11 openings 19a, 19b staggered with respect to one another are introduced into the joining rib 11 , via which, for example, a coolant exchange can take place from the cooling channel 14 into the inner region 20.
  • the piston 1 shown in Figure 5 is largely comparable to the piston 1 shown in Figure 1. Consequently, matching components are given the same reference numerals. 5, the joining zone 4 forms a height offset "v", which is made possible by the multi-orbital friction welding method, in order to realize the orbital welding movement, a free space "s" is required for this purpose.
  • the piston 21 according to FIG. 6 is partially comparable to the piston depicted in FIG. 1, therefore matching components have the same reference numerals.
  • the upper part 22, which includes a piston crown 25 with integrated combustion chamber recess 26 and on the outside a top land 27 and a ring field 28, and the bottom part 23 enclosing a pin bore 29 are supported by two radially offset joint pairs.
  • the radially inner joining webs 31, 32 form the joining zone 24a and the radially outer joining webs 33, 34 form the joining zone 24b.
  • the design of the joining webs 31, 32 or 33, 34 includes different or identical wall thicknesses in opposite sections "a, b" or "e, f". Furthermore, the wall thickness can also be designed differently between the radially spaced joining web pairs.
  • the joining zones 24a, 24b have a height offset "h" relative to one another, the joining zone 24b being arranged at a greater distance from the piston head 25 than the joining zone 24a.
  • two cooling channels 35, 36 are integrated, which are laterally delimited by joining webs
  • the outer annular cooling channel 35 is bounded on the outside by the annular field 28 or the joining webs 33, 34 and on the inside by the joining webs 31, 32.
  • the central cooling channel 36 extends as far as possible over the region of the piston depression 26 and is formed by passage openings 37 connected to the cooling channel 35.
  • FIG. 7 shows the piston 21 in a longitudinal section offset by 90 ° to FIG. 6 and illustrates the design of the joining webs 31, 32; 33, 34, wherein the wall thicknesses of the sections "c, d" and “g” differ at least partially from the wall thicknesses of the sections "a, b, e, f" according to FIG. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The invention relates to a method for producing a piston (1) of an internal combustion engine, designed as a one-piece cooling channel piston. The piston (1) comprises an upper part (2) and a lower part (3) supported by corresponding circumferential joining bosses (11, 12) together forming a joining zone (4). In order to produce a bonded joint of the upper part (2) and the lower part (3), the joining bosses (11, 12) are connected by means of multiorbital friction welding in the region of a rotationally symmetrical or rotationally asymmetrical joining zone (4).

Description

Kolben für Brennkraftmaschinen, hergestellt mittels eines Multi-Orbitalen Reibschweißverfahrens Piston for internal combustion engines, produced by means of a multi-orbital friction welding process
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur Herstellung eines Kolben einer Brennkraftmaschine, der als ein fertiger einteiliger Kühlkanalkolben ausgeführt ist und ein Unterteil und ein Oberteil umfasst, die über korrespondierende, gemeinsam eine Fügezone bildende Fügestege abgestützt und die mittels einer Reibschweißung stoffschlüssig verbunden sind, gemäß den Merkmalen des Oberbegriffes der unabhängigen Ansprüche 1 und 2.The invention relates to a method for producing a piston of an internal combustion engine, which is designed as a finished one-piece cooling channel piston and comprises a lower part and an upper part, which are supported via corresponding joining webs forming a joint zone and which are materially bonded by means of friction welding, according to the features the preamble of independent claims 1 and 2.
Eine Reibschweißung beruht auf dem Prinzip, wonach durch relative Bewegung und gleichzeitigen Druck eine Gleitreibung zwischen zwei Bauteilen erzeugt wird, um die nötige Schweißenergie an den zu verschweißenden Flächen im Bereich einer Fügezone zu erzeugen. Bei bekannten Rotations-Reibschweißmaschinen wird ein motorisch angetriebenes Spannfutter sowie eine Stauchvorrichtung benutzt, um die kinetische Energie während des ganzen Schweißzyklusses zu liefern. Zum Reibschweißen werden zwei Werkstücke unter Druck mit einer Drehbewegung aneinander gerieben und durch die entstehende Reibwärme plastifiziert. Bevorzugt wird das im angetriebenen Spannfutter eingesetzte Werkstück gegenüber dem zweiten in der Stauchvorrichtung ortsfest gehaltenen Werkstück gedreht. Sobald die zur Schweißung erforderliche Temperatur erreicht ist, presst die Stauchvorrichtung die beiden Werkstücke zusammen. Nachteiligweise erfordert dieses Verfahren, dass eines der zwei Bauteile bei hoher Drehzahl rotiert, um die erforderliche Energie bereitzustellen. Aus der DE 10 2004 061 778 A1 ist ein Kühlkanalkolben bekannt, bestehend aus einem Oberteil und einem Unterteil, die über korrespondierende, jeweils rotationsymmetrisch verlaufende und radial beabstandete Fügestege abgestützt sind. Mittels einer Reibschweißung im Bereich einer Fügezone erfolgt eine stoffschlüssige Verbindung der inneren Fügestege. Die radial äußeren Fügestege werden anschließend mittels einer separaten Schweißung zusammengefügt, wobei dazu keine Reibschweißung vorgesehen ist.Friction welding is based on the principle that sliding movement between two components is produced by relative movement and simultaneous pressure in order to produce the necessary welding energy at the surfaces to be welded in the region of a joining zone. Known rotary friction welding machines use a power chuck and an upsetting device to deliver kinetic energy throughout the welding cycle. For friction welding, two workpieces are rubbed together under pressure with a rotary motion and plasticized by the resulting frictional heat. Preferably, the workpiece used in the driven chuck is rotated relative to the second stationary in the upsetting device held workpiece. Once the temperature required for welding is reached, the upsetting device presses the two workpieces together. Disadvantageously, this method requires that one of the two components rotate at high speed to provide the required energy. From DE 10 2004 061 778 A1, a cooling channel piston is known, consisting of an upper part and a lower part, which are supported via corresponding, each rotationally symmetrical extending and radially spaced joining webs. By means of a friction welding in the region of a joining zone, a cohesive connection of the inner joining webs takes place. The radially outer joining webs are then joined together by means of a separate weld, with no friction welding being provided for this purpose.
Die US 6,155,157 zeigt einen Kühlkanalkolben mit zwei separat voneinander herstellbaren Bauteilen, die anschließend über ein bekanntes Reibschweißverfahren stoffschlüssig zusammengefügt sind, zur Bildung eines einteiligen Kühlkanalkolbens. Dieser Aufbau ermöglicht eine relativ einfache Kolbenherstellung, wobei das bekannte Kolbenkonzept hinsichtlich geometrischer Freiheiten, insbesondere der Gestaltung von Fügestegen stark eingeschränkt ist.US Pat. No. 6,155,157 shows a cooling channel piston with two components that can be produced separately from one another, which are then joined together in a material-locking manner by means of a known friction welding method, to form a one-piece cooling channel piston. This structure allows a relatively simple piston production, wherein the known piston concept is severely limited in terms of geometric freedom, in particular the design of joints.
Ausgehend von dem bekannten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine geometrische Gestaltungsmöglichkeit von Kolben mittels einer optimierten Fügetechnik zu verbessern, zwecks Erzielung einer flexiblen Kolbenfertigung und einer Reduzierung des Gewichts.Based on the known prior art, the present invention seeks to improve a geometric design possibility of pistons by means of an optimized joining technique, in order to achieve a flexible piston production and a reduction in weight.
Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche 1 und 2 gelöst.This object is solved by the features of independent claims 1 and 2.
Die Erfindung gemäß den Merkmalen des Anspruchs 1 betrifft ein Herstellungsverfahren für einen Kolben mit rotationssymmetrisch oder vorzugsweise nicht rotationssymmetrisch verlaufenden Fügestegen des Unterteils und des Oberteils, die im Bereich einer Fügezone mittels eines Multi-Orbitalen Reibschweißverfahrens stoffschlüssig verbunden werden. Das Multi-Orbitale Reibschweißen sieht vor, dass die einzelnen Kolbenbauteile beiderseits benachbart zu den Fügezonen in sogenannten Reibschweißköpfen fest verspannt und dabei gegeneinander gedrückt werden, bevor die Fügestege mit Hilfe der Reibschweißköpfe in Schwingung versetzt werden. Die Fügepartner werden vorteilhaft mit gleicher Drehrichtung bei einem bevorzugten Phasenversatz von 180° in kleinsten kreisförmigen Orbitalbewegungen, die einer Schwingschleiferbewegung ähnlich sind, zur Erzeugung der Reibungswärme bewegt und schwingen dabei insbesondere gegenphasig. Durch diese Bewegungsführung wird die Reibenergie im Bereich mehrerer Positionen zeitgleich eingebracht, wodurch die bisherigen Systemgrenzen des Reibschweißens aufgeweitet werden. Bei dem Multi-Orbitalen Reibschweißverfahren werden die zu verbindenden Bauteile auf der ganzen Fügezone aneinander gerieben, was zu einer gewünschten gleichmäßigen und schnellen Erwärmung der gesamten Schweißebene führt. Als Folge stellt sich ein optimaler, homogener Energieeintrag an jedem Punkt der von den Kolben- Fügestegen gebildeten Fügezone ein. Dieser Energieeintrag ist gegensätzlich zu einer ausschließlich rotierenden Bewegung eines Fügepartners bei bekannten Reibschweißverfahren, die auf die Fügezone betrachtet, einen inhomogenen Energieeintrag bewirkt, aufgrund einer fehlenden Innengeschwindigkeit. Mit dem erfindungsgemäß angewandten Reibschweißverfahren können weiterhin die Schweißzeiten vorteilhaft verkürzt sowie Folgeprozesse reduziert werden. Außerdem ist eine höchste Verbindungsqualität erzielbar, die erreichbaren Festigkeitswerte liegen nahe den Materialkennwerten der Fügepartner. Das Verfahren ist weiterhin unabhängig von der Werkstückform, der Werkstoffmasse und der Symmetrie der Schweißfläche bzw. der Fügezone, da der spezifische Schweißdruck bezogen auf die Fläche stets konstant ist. Da beim Multi-Orbitalen Reibschweißen die Materialien im plastischen Zustand verbunden werden, liegt das Temperaturniveau deutlich unter den Schmelztemperaturen herkömmlicher Reibschweißverfahren. Bei Erreichen der Fügetemperatur stoppt das Maschinensystem, um beide Werkstücke unter Druck mit präzisem Endmaß zu fügen. Die erfindungsgemäße Anwendung des Multi-Orbitalen Reibschweißverfahrens vereinfacht die Herstellung des Kolbens aufgrund eines großen Gestaltungsfreiraums hinsichtlich der Lage, der Ausrichtung sowie der Wandstärke der Fügestege und der sich daraus ergebenden Fügezone. Da die Auslenkung der zu fügenden Kolbenbauteile beim Reiben mit ca. 0,3 bis 1 ,2 mm gering ist, können auch dünnwandige Fügestege verschweißt werden. Die Anwendung des Multi-Orbitalen Reibschweißverfahrens ermöglicht eine flexible, zeitoptimierte Fertigung und damit reduzierte Kosten bei der Herstellung des Kolbens. In vorteilhafter weise kann durch die Erfindung die Wirtschaftlichkeit der Kolbenherstellung durch verkürzte Prozesszeiten wesentlich erhöht werden.The invention according to the features of claim 1 relates to a manufacturing method for a piston with rotationally symmetrical or preferably non-rotationally symmetrical joining webs of the lower part and the upper part, which are materially connected in the region of a joining zone by means of a multi-orbital friction welding process. The multi-orbital friction welding envisages that the individual piston components are tightly clamped on both sides adjacent to the joining zones in so-called Reibschweißköpfen and thereby pressed against each other before the joints are vibrated using the Reibschweißköpfe. The joining partners are advantageously moved with the same direction of rotation at a preferred phase offset of 180 ° in the smallest circular orbital movements, which are similar to a sander movement, to generate the frictional heat and swing in particular out of phase. As a result of this motion control, the friction energy is introduced simultaneously in the region of several positions, whereby the previous system limits of friction welding are widened. In the multi-orbital friction welding process, the components to be joined are rubbed against each other over the entire joining zone, which leads to a desired uniform and rapid heating of the entire welding plane. As a result, an optimal, homogeneous energy input is established at each point of the joining zone formed by the piston joining points. Contrary to an exclusively rotating movement of a joining partner in known friction welding processes, which, viewed in the joining zone, causes an inhomogeneous introduction of energy, this energy input is due to a lack of internal speed. With the friction welding method used according to the invention, furthermore, the welding times can advantageously be shortened and follow-up processes can be reduced. In addition, the highest connection quality is achievable, the achievable strength values are close to the material characteristics of the joining partners. The method is also independent of the workpiece shape, the material mass and the symmetry of the welding surface or the joining zone, since the specific welding pressure relative to the surface is always constant. Since multi-orbital friction welding bonds the materials in the plastic state, the temperature level is well below the melting temperatures of conventional friction welding processes. When the joining temperature is reached, the machine system stops to press both workpieces with precise final dimensions. The use according to the invention of the multi-orbital friction welding method simplifies the production of the piston due to a large freedom of design with respect to the position, the orientation and the wall thickness of the joining webs and the resulting joining zone. Since the deflection of the piston components to be joined when rubbing with about 0.3 to 1, 2 mm is low, even thin-walled joining joints can be welded. The use of the multi-orbital friction welding process allows flexible, time-optimized production and thus reduced costs in the production of the piston. Advantageously, the economy of the piston production can be substantially increased by shortened process times by the invention.
Vorteilhaft ermöglicht das neuartige Herstellverfahren eine verbesserte Auslegung der Kolbenbauteile, da jedes Bauteil für sich genommen hinsichtlich seiner Geometrie zur Erzielung einer optimalen Dauerfestigkeit konzipiert werden kann, ohne Berücksichtigung der stoffschlüssigen Fügetechnik. Vorteilhaft bietet es sich an, die Fügestege ausschließlich im Hinblick auf eine optimierte Steifigkeit bzw. Gestaltfestigkeit sowie einen gewichtsoptimierten Kolben auszulegen. Weiterhin können durch das Schweißverfahren Gestaltungsmerkmale realisiert werden, die bisher aufgrund der erforderlichen rotationssymmetrischen Geometrie der Fügezonen bei Reibschweißungen nicht umsetzbar waren. Gleichzeitig stellt die Erfindung eine Lösung vor, mit der die stets steigenden Anforderungen hinsichtlich der thermischen und mechanischen Belastung von Kolben sowie die Forderung nach Reduzierung der rotatorischen und oszillierenden Bauteile in Brennkraftmaschinen erfüllbar sind.Advantageously, the novel manufacturing method allows an improved design of the piston components, since each component taken by itself can be designed in terms of its geometry to achieve optimum fatigue strength, without consideration of cohesive joining technology. Advantageously, it makes sense to interpret the joints only in terms of optimized stiffness or structural strength and a weight-optimized piston. Furthermore, design features can be realized by the welding process, which were previously not feasible due to the required rotationally symmetric geometry of the joining zones in friction welding. At the same time, the invention provides a solution with which the ever increasing demands in terms of thermal and mechanical stress of pistons and the demand for reducing the rotational and oscillating components in internal combustion engines can be met.
Die Erfindung nach Anspruch 2 betrifft ein Herstellverfahren für Kolben, die zumindest zwei zueinander radial beabstandete, mittels einer Multi-Orbitalen Reibschweißung verbundene Fügezonen aufweisen. Aufgrund kleinster kreisförmiger Bewegungen aller Fügepartner ist ein vorteilhaft synchrones zeitgleiches Verbinden mehrerer Fügestege möglich, auch wenn diese relativ nah zueinander beabstandet sind. Beispielsweise kann das Multi-Orbitale Reibschweißverfahren kostenoptimiert zur Herstellung eines Kühlkanalkolbens eingesetzt werden, dessen beidseitig von Fügestegen begrenzter Kühlkanal sich zwischen dem Unterteil und dem Oberteil erstreckt.The invention of claim 2 relates to a manufacturing method for pistons having at least two mutually radially spaced, connected by means of a multi-orbital friction welding joining zones. Due to the smallest circular Movements of all joining partners is an advantageous synchronous simultaneous joining a plurality of joining webs possible, even if they are relatively close to each other. For example, the multi-orbital friction welding process can be used cost-optimized for the production of a cooling channel piston whose cooling channel, which is bounded on both sides by joints, extends between the lower part and the upper part.
Die erfindungsgemäße Anwendung des Multi-Orbitalen Reibschweißverfahrens auf die Kolbenherstellung ermöglicht eine den Festigkeitsvoraussetzungen einzelner Kolbenbereiche angepasste Dimensionierung der Fügestege. Da dieses Verfahren keinen rotationssymmetrischen Verlauf erfordert, weisen die Fügestege umfangsseitig zur Bildung variabler Querschnitte eine konstante oder schwankende Wandstärke auf. Die Dimensionierung der Fügestege kann damit vorteilhaft an die sich in den einzelnen Kolbenbereichen einstellenden, voneinander abweichenden thermischen und mechanischen Belastungen angepasst werden, wodurch außerdem ein Gewichtsvorteil realisierbar ist.The use according to the invention of the multi-orbital friction welding method on the production of pistons allows a dimensioning of the joining webs adapted to the strength requirements of individual piston regions. Since this method does not require a rotationally symmetrical course, the joining webs on the circumferential side to form variable cross sections on a constant or fluctuating wall thickness. The dimensioning of the joining webs can thus be advantageously adapted to the setting in the individual piston areas, divergent thermal and mechanical loads, which also a weight advantage can be realized.
Das Multi-Orbitale Reibschweißverfahren erlaubt außerdem einen Höhenversatz der Fügezone, wodurch das Reibschweißverfahren beispielsweise an vorgegebene geometrische oder spezielle konstruktive Kolbenkonzepte adaptiert werden kann. Die Auslegungsvielfalt unterstreichend bietet es sich weiterhin an, bei Kolben mit zwei radial zueinander beabstandeten Fügezonen diese untereinander so anzuordnen, dass die einzelnen Fügezonen sowohl einen unterschiedlichen, nicht rotationssymmetrischen Verlauf als auch einen Höhenversatz aufweisen.The multi-orbital friction welding method also allows a height offset of the joining zone, whereby the friction welding can be adapted, for example, to predetermined geometric or special constructive piston concepts. Underlining the diversity of interpretation, it continues to offer, in pistons with two radially spaced joining zones to arrange them together so that the individual joining zones both have a different, not rotationally symmetrical course and a height offset.
Das Reibschweißverfahren erfordert keine geschlossen gestaltete Fügezone, sondern ermöglicht eine lokale auch als Durchtritt zu bezeichnende Ausnehmung der Fügezone, die beispielsweise als ein Kühlmittelübertritt zwischen zwei Kühlkanälen nutzbar ist. Diese Ausnehmung kann eine Anpassung des Fügestegs an die sich im Betriebszustand einstellenden Belastungen darstellen, wodurch gleichzeitig ein reduziertes Kolbengewicht realisierbar ist. Um lokalen Festigkeitsanforderungen des Kolbens zu genügen erlaubt das Schweißverfahren andererseits, die Fügestege partiell mit radial nach innen und/oder radial nach außen gerichteten Versteifungsrippen zu versehen, die sich bis in den Bereich der Fügezonen erstrecken und stoffschlüssig verbunden werden.The friction welding requires no closed-shaped joining zone, but allows a local to be designated as a passage recess of the joining zone, for example, as a coolant transfer between two cooling channels is usable. This recess can represent an adaptation of the joining web to the loads which occur in the operating state, as a result of which a reduced piston weight can be realized at the same time. In order to meet local strength requirements of the piston, the welding process on the other hand allows partially to provide the joining webs with radially inwardly and / or radially outwardly directed stiffening ribs which extend into the region of the joining zones and are materially connected.
Bevorzugt sind die rotationssymmetrisch, nicht rotationssymmetrisch oder partiell annähernd parallel zu einer Kolbenachse verlaufenden Fügezonen so angeordnet, dass diese senkrecht zu einer Kolbenlängsachse ausgerichtet sind. Alternativ dazu bietet sich gemäß der Erfindung eine Lage bzw. Anordnung der Fügezone oder der zueinander versetzten Fügezonen an, die von einer sich einstellenden senkrechten Druckrichtung der Multi-Orbitalen Reibschweißung abweicht. Die Auslegung ermöglicht weiterhin, dass die sich einstellenden Stauchachsen bei der Reibschweißung orthogonal oder nicht orthogonal zueinander ausgerichtet sind.Preferably, the rotationally symmetrical, non-rotationally symmetric or partially approximately parallel to a piston axis extending joining zones are arranged so that they are aligned perpendicular to a piston longitudinal axis. Alternatively, according to the invention, a position or arrangement of the joining zone or the mutually offset joining zones, which deviates from a self-adjusting vertical printing direction of the multi-orbital friction welding. The design also makes it possible that the self-adjusting upsetting axes are aligned in the friction welding orthogonal or not orthogonal to each other.
Das Multi-Orbitale Reibschweißverfahren verursacht vorteilhaft keine bzw. geringe Schweißwülste, die nach abgeschlossener Schweißung an der Fügezone verbleiben oder bei Bedarf mittels einer Nacharbeit entfernt werden.Advantageously, the multi-orbital friction welding method does not cause any or small welding beads, which remain on the joining zone after completion of the welding or are removed by means of reworking if necessary.
Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass während des Reibschweißvorgangs der Kühlkanal verschlossen wird. Anschließend kann mittels einer mechanischen Bearbeitung bei Bedarf zumindest eine lokale Öffnung in den Fügesteg eingebracht werden, um beispielsweise einen Kühlmitteleintritt in den Kühlkanal zu ermöglichen. Bei Kolben, die eine Kombination von mehreren durch Fügestege getrennte Kühlkanäle einschließen, bietet es sich an, den Fügesteg mit zumindest einem auch als Übertrittsöffnung zu bezeichnenden Durchtritt zu versehen, der einen Kühlmittelaustausch zwischen den Kühlkanälen sicherstellt.A preferred embodiment of the invention provides that during the Reibschweißvorgangs the cooling channel is closed. Subsequently, by means of a mechanical processing, if necessary, at least one local opening can be introduced into the joining web in order, for example, to allow coolant to enter the cooling channel. For pistons, a combination of several through Include jointed separate cooling channels, it is advisable to provide the joint with at least one also to be designated as a transfer opening passage, which ensures a coolant exchange between the cooling channels.
Eine weitere vorteilhafte erfindungsgemäße Ausgestaltung sieht vor, einen im Bereich der Kolbenaußenkontur vorgesehenen Ringspalt mittels eines Zusatz- bzw. Abdeckelementes zu verschließen. Das Abdeckelement, das beispielsweise einen Durchtritt oder Übertrittsöffnung einschließt, kann dabei form- und/oder kraftschlüssig an dem Unterteil oder dem Oberteil des Kolbens befestigt oder gleichzeitig mit der Multi-Orbitalen Reibschweißung stoffschlüssig fixiert werden.A further advantageous embodiment according to the invention provides for closing an annular gap provided in the region of the piston outer contour by means of an additional or covering element. The cover element, which encloses, for example, a passage or a transfer opening, can thereby be positively and / or non-positively fastened to the lower part or the upper part of the piston or simultaneously cohesively fixed with the multi-orbital friction welding.
In vorteilhafter Weise ermöglicht die Erfindung, Kolbenbauteile aus einem übereinstimmenden Werkstoff oder aus unterschiedlichen Materialen durch das Multi-Orbitale Reibschweißverfahren stoffschlüssig zu verbinden. So kann beispielsweise ein aus einem Leichtbau-Werkstoff mit dem Hauptlegierungselement Aluminium hergestelltes Kolbenbauteil mit einem weiteren Kolbenbauteil aus Stahl oder einem Eisenwerkstoff z.B. Grauguss verbunden werden. Außerdem kann in Betracht gezogen werden, das Oberteil und das Unterteil in gleichen oder verschiedenen Verfahren herzustellen, wie zum Beispiel Schmieden, Pressen, Gießen, Fließpressen und dergleichen.Advantageously, the invention makes it possible to materially connect piston components made of a matching material or of different materials by the multi-orbital friction welding method. Thus, for example, a piston component made of a lightweight material with the main alloying element aluminum may be provided with another piston component made of steel or a ferrous material, e.g. Cast iron can be connected. In addition, it may be considered to manufacture the upper and lower parts in the same or different processes, such as forging, pressing, casting, extrusion and the like.
Die nachfolgende Beschreibung erläutert verschiedene, in den Figuren 1 bis 7 dargestellte erfindungsgemäße Ausführungsbeispiele, wobei die Erfindung nicht darauf beschränkt ist. Es zeigen:The following description explains various exemplary embodiments according to the invention shown in FIGS. 1 to 7, the invention not being restricted thereto. Show it:
Figur 1 : ein erstes Ausführungsbeispiel eines erfindungsgemäßen Kühlkanalkolbens in einem Längsschnitt,1 shows a first embodiment of a cooling channel piston according to the invention in a longitudinal section,
Figur 2: eine Schnittansicht des Kolbens gemäß Figur 1 ,FIG. 2 shows a sectional view of the piston according to FIG. 1,
Figur 3: den Kolben gemäß Figur 1 in einem um 90° gedrehten Längschnitt,FIG. 3 shows the piston according to FIG. 1 in a longitudinal section rotated by 90 °;
Figur 4: eine Schnittansicht des Kolbens gemäß Figur 3,FIG. 4 shows a sectional view of the piston according to FIG. 3,
Figur 5: den Kolben gemäß Figur 1 , dessen Fügezone einen Höhenversatz aufweist,FIG. 5 shows the piston according to FIG. 1, whose joining zone has a height offset,
Figur 6: ein zweites Ausführungsbeispiel eines erfindungsgemäßen Kühlkanalkolbens in einem Längsschnitt,6 shows a second embodiment of a cooling channel piston according to the invention in a longitudinal section,
Figur 7: den Kolben gemäß Figur 6 in einem um 90° gedrehten Längschnitt.Figure 7: the piston of Figure 6 in a rotated by 90 ° longitudinal section.
Die Figur 1 zeigt in einem Längsschnitt einen einteiligen Kolben 1 , bei dem ein Oberteil 2 sowie ein Unterteil 3 über eine Fügezone 4, die auch als Fügefläche zu bezeichnen ist, stoffschlüssig zur Bildung einer Baueinheit zusammengefügt sind. Ein Kolbenboden 5 des Oberteils 2 schließt eine Brennraummulde 6 ein, die umfangsseitig in einen Feuersteg 7 übergeht, an den sich ein zur Aufnahme von in Figur 1 nicht abgebildeten Kolbenringen ein Ringfeld 8 anschließt. Das Unterteil 3 bildet einen Kolbenschaft, in dem zwei diametral gegenüber liegende Bolzenbohrungen 9 eingebracht sind. Im Bereich der Fügezone 4 stützen sich korrespondierend angeordnete Fügestege 11 , 12 ab, die dem Oberteil 2 bzw. dem Unterteil 3 zugeordnet sind. Zur Schaffung einer stoffschlüssigen Verbindung ist eine Multi-Orbitale Reibschweißung vorgesehen, bei der sich die Fügestege 11 , 12 und die damit verbundenen Bauteile, das Oberteil 2 und das Unterteil 3, mit gleicher Drehrichtung bei einem bevorzugten Phasenversatz von 180° in kleinsten kreisförmigen Orbitalbewegungen rotiert. Durch diese Bewegung wird eine Reibungswärme erzeugt, bei der sich ein homogener Energieeintrag an jedem Punkt der Fügezone 4 einstellt. Diese kleine Schweißwülste 13a, 13b bildende spezielle Reibschweißung erfordert keine rotationssymmetrische Anordnung bzw. Geometrie der Fügezone 4 zu einer Kolbenachse 10. Die Fügestege 11 , 12 begrenzen innenseitig und das Ringfeld 8 außenseitig einen im Kolben 1 integrierten Kühlkanal 14. Ein sich einstellender Ringspalt 15 zwischen dem Ringfeld 8 und dem Unterteil 3 wird durch ein separates Zusatzelement 16 geschlossen, das mittels einer Schweißung oder alternativ durch eine kraft- und/oder formschlüssige Verbindung an dem Unterteil 3 lagefixiert ist.1 shows in a longitudinal section a one-piece piston 1, in which an upper part 2 and a lower part 3 via a joining zone 4, which is also to be referred to as a joining surface, are integrally joined together to form a structural unit. A piston head 5 of the upper part 2 includes a combustion bowl 6, which merges circumferentially in a top land 7, to which a ring field 8 is connected for receiving piston rings not shown in FIG. The lower part 3 forms a piston shaft, in which two diametrically opposite pin holes 9 are introduced. In the area of the joining zone 4 are based Correspondingly arranged joining webs 11, 12, which are assigned to the upper part 2 and the lower part 3. To create a cohesive connection, a multi-orbital friction welding is provided in which the joining webs 11, 12 and the associated components, the upper part 2 and the lower part 3, rotates with the same direction of rotation at a preferred phase offset of 180 ° in the smallest circular orbital movements , By this movement, a frictional heat is generated in which sets a homogeneous energy input at each point of the joining zone 4. This special welding weld 13a, 13b forming small welds does not require a rotationally symmetrical arrangement or geometry of the joining zone 4 to a piston axis 10. The joining webs 11, 12 define on the inside and the ring field 8 on the outside a cooling channel 14 integrated in the piston 1. A self-adjusting annular gap 15 between the annular field 8 and the lower part 3 is closed by a separate additional element 16 which is fixed in position by means of a weld or alternatively by a non-positive and / or positive connection to the lower part 3.
Die Figur 2, die den Kolben 1 in einer Schnittansicht gemäß dem Verlauf 2-2 von Figur 1 zeigt, verdeutlicht insbesondere die Lage des Fügestegs 11 , der gleichzeitig die Fläche bzw. den Querschnitt der Fügezone 4 definiert. Der Verlauf des Fügestegs 11 zeigt bereichsweise nahezu parallel zu der Achse „y" des Kolbens 1 verlaufende Abschnitte „a" und „b", an die sich weitestgehend konzentrisch zu dem Kolbenmittelpunkt angeordnete Abschnitte „c" und „d" anschließen. Die Gestaltungsvielfalt unterstreichend, können dabei die Wandstärken des Fügestegs 11 in den einzelnen Abschnitten unterschiedlich dimensioniert werden, abgestimmt auf die sich jeweils einstellenden Kolbenbelastungen im Betriebszustand. Dabei bietet es sich an Wandstärken der Abschnitte „a" und „b" gleich oder unterschiedlich auszulegen und die weiteren Abschnitte „c" und „d" des Fügestegs 11 wiederum gleich oder abweichend zu dem Abschnitt „a" und/oder dem Abschnitt „b" auszuführen.FIG. 2, which shows the piston 1 in a sectional view according to the course 2-2 of FIG. 1, illustrates in particular the position of the joining web 11, which at the same time defines the surface or the cross section of the joining zone 4. The course of the joining web 11 shows sections "a" and "b" which extend almost parallel to the axis "y" of the piston 1 and are adjoined by sections "c" and "d" arranged largely concentrically with the center of the piston In this case, the wall thicknesses of the joining web 11 in the individual sections can be dimensioned differently, in accordance with the respective piston loads that are set in the operating state, in which case wall thicknesses of the sections "a" and "b" are the same or different interpreted and execute the other sections "c" and "d" of the joint 11 again equal or different from the section "a" and / or the section "b".
Die Figur 3 zeigt den Kolben 1 in einem um 90° zur Figur 1 versetzten Längsschnitt und verdeutlicht die Gestaltung und den Verlauf der Fügestege 11 , 12 in den Abschnitten „c" und „d", die gegenüber den in Figur 1 abgebildeten Abschnitten „a" und „b" eine reduzierte Wandstärke aufweisen.FIG. 3 shows the piston 1 in a longitudinal section offset by 90 ° relative to FIG. 1, and illustrates the design and the course of the joining webs 11, 12 in the sections "c" and "d", which are opposite the sections "a" shown in FIG "and" b "have a reduced wall thickness.
In der Figur 4 ist der Kolben 1 in einer Schnittdarstellung gemäß dem Verlauf 4 - 4 aus Figur 3 abgebildet und zeigt einen von Figur 2 abweichenden Verlauf des Fügestegs 11. In einem annähernd parallel zu der Achse „x" des Kolbens 1 verlaufenden Abschnitt schließt der Fügesteg 11 radial nach innen gerichtete, zueinander versetzt angeordnete Versteifungsrippen 17a, 17b, 17c ein, denen teilweise weitere radial nach außen gerichtete Versteifungsrippen 18a, 18b zugeordnet sind. Auf der den Versteifungsrippen gegenüberliegenden Seite sind in dem Fügesteg 11 zueinander versetzte Durchbrüche 19a, 19b eingebracht, über die beispielsweise ein Kühlmittelaustausch von dem Kühlkanal 14 in den Innenbereich 20 erfolgen kann.In the figure 4, the piston 1 is shown in a sectional view according to the course 4-4 of Figure 3 and shows a deviating from Figure 2 course of the joint 11. In an approximately parallel to the axis "x" of the piston 1 extending section of the closes Joining ribs 17a, 17b, 17c which are arranged radially offset inwardly from one another and which are in some other direction radially outwardly directed stiffening ribs 18a, 18b, on the side opposite the stiffening ribs 11 openings 19a, 19b staggered with respect to one another are introduced into the joining rib 11 , via which, for example, a coolant exchange can take place from the cooling channel 14 into the inner region 20.
Der in Figur 5 dargestellte Kolben 1 ist weitestgehend mit dem in Figur 1 abgebildeten Kolben 1 vergleichbar. Folglich sind übereinstimmende Bauteile mit gleichen Bezugsziffern versehen. Im Unterschied zu der Figur 1 bildet die Fügezone 4 gemäß Figur 5 einen Höhenversatz „v", den das Multi-Orbitale Reibschweißverfahren ermöglicht. Zur Realisierung der orbitalen Schweißbewegung ist dazu ein Freiraum „s" erforderlich. Der Kolben 21 gemäß Figur 6 ist teilweise mit dem in Figur 1 abgebildeten Kolben vergleichbar, daher weisen übereinstimmende Bauteile gleiche Bezugsziffern auf. Das einen Kolbenboden 25 mit integrierter Brennraummulde 26 aufweisende sowie außenseitig einen Feuersteg 27 und ein Ringfeld 28 bildende Oberteil 22 und das eine Bolzenbohrung 29 einschließende Unterteil 23 sind über zwei radial versetzte Fügestegpaare abgestützt. Dabei bilden die radial inneren Fügestege 31 , 32 die Fügezone 24a und die radial äußeren Fügestege 33, 34 die Fügezone 24b. Mittels der Multi-Orbitalen Reibschweißung werden die Fügestege 31 , 32; 33, 34 in den Fügezonen 24a, 24b stoffschlüssig verbunden, wobei sich jeweils außenseitig an den Fügezonen 24a, 24b kleine Schweißwülste 30a, 30b, 30c bilden. Die Auslegungsvielfalt unterstreichend schließt die Gestaltung der Fügestege 31 , 32 bzw. 33, 34 in gegenüberliegenden Abschnitten „a, b" bzw. „e, f" voneinander abweichende oder gleiche Wandstärken ein. Weiterhin kann die Wandstärke auch zwischen den radial beabstandeten Fügestegpaaren unterschiedlich ausgelegt werden. Die Fügezonen 24a, 24b weisen zueinander einen Höhenversatz „h" auf, wobei die Fügezone 24b in einem größeren Abstand zum Kolbenboden 25 angeordnet ist als die Fügezone 24a. In dem Kolben 21 sind zwei Kühlkanäle 35, 36 integriert, die seitlich von Fügestegen begrenzt sind. Der äußere kreisringförmig ausgebildete Kühlkanal 35 wird außenseitig von dem Ringfeld 28 bzw. den Fügestegen 33, 34 und innenseitig von den Fügestegen 31 , 32 begrenzt. Der zentrische Kühlkanal 36 erstreckt sich weitestgehend über den Bereich der Kolbenmulde 26 und ist durch Übertrittsöffnungen bildende Durchtritte 37 mit dem Kühlkanal 35 verbunden.The piston 1 shown in Figure 5 is largely comparable to the piston 1 shown in Figure 1. Consequently, matching components are given the same reference numerals. 5, the joining zone 4 forms a height offset "v", which is made possible by the multi-orbital friction welding method, in order to realize the orbital welding movement, a free space "s" is required for this purpose. The piston 21 according to FIG. 6 is partially comparable to the piston depicted in FIG. 1, therefore matching components have the same reference numerals. The upper part 22, which includes a piston crown 25 with integrated combustion chamber recess 26 and on the outside a top land 27 and a ring field 28, and the bottom part 23 enclosing a pin bore 29 are supported by two radially offset joint pairs. The radially inner joining webs 31, 32 form the joining zone 24a and the radially outer joining webs 33, 34 form the joining zone 24b. By means of the multi-orbital friction welding, the joining webs 31, 32; 33, 34 in the joining zones 24a, 24b integrally connected, wherein in each case on the outside of the joining zones 24a, 24b small Schweißwülste 30a, 30b, 30c form. Underlining the diversity of interpretation, the design of the joining webs 31, 32 or 33, 34 includes different or identical wall thicknesses in opposite sections "a, b" or "e, f". Furthermore, the wall thickness can also be designed differently between the radially spaced joining web pairs. The joining zones 24a, 24b have a height offset "h" relative to one another, the joining zone 24b being arranged at a greater distance from the piston head 25 than the joining zone 24a. In the piston 21, two cooling channels 35, 36 are integrated, which are laterally delimited by joining webs The outer annular cooling channel 35 is bounded on the outside by the annular field 28 or the joining webs 33, 34 and on the inside by the joining webs 31, 32. The central cooling channel 36 extends as far as possible over the region of the piston depression 26 and is formed by passage openings 37 connected to the cooling channel 35.
Die Figur 7 zeigt den Kolben 21 in einem um 90° zu der Figur 6 versetzten Längsschnitt und verdeutlicht die Gestaltung der Fügestege 31 , 32; 33, 34, wobei sich die Wandstärken der Abschnitte „c, d" und „g" zumindest teilweise von den Wandstärken der Abschnitte „a, b, e, f " gemäß Figur 6 unterscheiden. Bezugszeichenliste:FIG. 7 shows the piston 21 in a longitudinal section offset by 90 ° to FIG. 6 and illustrates the design of the joining webs 31, 32; 33, 34, wherein the wall thicknesses of the sections "c, d" and "g" differ at least partially from the wall thicknesses of the sections "a, b, e, f" according to FIG. LIST OF REFERENCE NUMBERS
1. Kolben 20. Innenbereich1st piston 20th interior area
2. Oberteil 21. Kolben2. Upper part 21. Piston
3. Unterteil 22. Oberteil3. lower part 22. upper part
4. Fügezone 23. Unterteil4. joining zone 23. lower part
5. Kolbenboden 24a. Fügezone5. piston bottom 24a. joint zone
6. Brennraummulde 24b. Fügezone6. combustion bowl 24b. joint zone
7. Feuersteg 25. Kolbenboden7. Firestone 25. Piston bottom
8. Ringfeld 26. Brennraummulde8. ring field 26. combustion bowl
9. Bolzenbohrung 27. Feuersteg9. Bolt Hole 27. Flank
10. Kolbenachse 28. Ringfeld10. Piston axis 28. Ring field
11. Fügesteg 29. Bolzenbohrung11. Fastening 29. Bolt hole
12. Fügesteg 30a. Schweißwulst12th bridge 30a. weld bead
13a. Schweißwulst 30b. Schweißwulst13a. Welding bead 30b. weld bead
13b. Schweißwulst 30c. Schweißwulst13b. Welding bead 30c. weld bead
14. Kühlkanal 31. Fügesteg14. Cooling channel 31. Fügesteg
15. Ringspalt 32. Fügesteg15. Annular gap 32. Fügesteg
16. Zusatzelement 33. Fügesteg16. Additional element 33. Fügesteg
17a. Versteifungsrippe 34. Fügesteg17a. Stiffening rib 34. Fügesteg
17b. Versteifungsrippe 35. Kühlkanal17b. Stiffening rib 35. Cooling channel
17c. Versteifungsrippe 36. Kühlkanal17c. Stiffening rib 36. Cooling channel
18a. Versteifungsrippe 37. Durchtritt18a. Stiffening rib 37. Passage
18b. Versteifungsrippe18b. stiffening rib
19a. Durchtritt19a. passage
19b Durchtritt 19b passage

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Kolben (1) einer Brennkraftmaschine, ausgeführt als ein nach seiner Herstellung einteiliger Kühlkanalkolben, der ein Oberteil (2) und ein Unterteil (3) umfasst, die über korrespondierende, gemeinsam eine Fügezone (4) bildende Fügestege (11 , 12) abgestützt und mittels einer Reibschweißung stoffschlüssig verbunden sind, dadurch gekennzeichnet, dass ein Multi-Orbitales Reibschweißverfahren durchgeführt wird, um die rotationssymmetrisch oder nicht rotationssymmetrisch verlaufenden Fügestege (11 , 12) des Kolbens (1) zu verbinden.1. A method for producing a piston (1) of an internal combustion engine, designed as a one-piece cooling channel piston after its manufacture, comprising an upper part (2) and a lower part (3), which via corresponding, a joint zone (4) forming joining webs (11 , 12) are supported and materially connected by friction welding, characterized in that a multi-orbital friction welding is performed to connect the rotationally symmetric or non-rotationally symmetrical joining webs (11, 12) of the piston (1).
2. Verfahren zur Herstellung eines Kolbens (21 ) einer Brennkraftmaschine, ausgeführt als ein nach seiner Herstellung einteiliger Kühlkanalkolben, der ein Oberteil (22) und ein Unterteil (23) umfasst, die über korrespondierende, gemeinsam eine Fügezone (24a, 24b) bildende Fügestege (31 , 32, 33, 34) abgestützt sind und die mittels einer Reibschweißung stoffschlüssig verbunden sind, dadurch gekennzeichnet, dass der Kolben (21) eine oder mindestens zwei radial zueinander beabstandete, rotationssymmetrisch oder nicht rotationssymmetrisch verlaufende Fügezonen (24a, 24b) aufweist, deren Fügestege (31 , 32, 33, 34) mittels eines Multi-Orbitalen Reibschweißverfahrens verbunden werden. 2. A method for producing a piston (21) of an internal combustion engine, designed as a one-piece cooling channel piston after its production, comprising an upper part (22) and a lower part (23) via corresponding, a joint zone (24a, 24b) forming joining webs (31, 32, 33, 34) are supported and which are materially connected by means of a friction welding, characterized in that the piston (21) has one or at least two radially spaced-apart, rotationally symmetric or non-rotationally symmetrical joining zones (24a, 24b), their joints (31, 32, 33, 34) are connected by means of a multi-orbital friction welding process.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine sich einstellende Schweißwulst (13a, 13b; 30a, 30b, 30c) nach abgeschlossener Reibschweißung an den Fügezonen (4; 24a, 24b) verbleibt oder entfernt wird.3. The method according to any one of claims 1 or 2, characterized in that a self-adjusting Schweißwulst (13a, 13b, 30a, 30b, 30c) after completion of friction welding at the joining zones (4; 24a, 24b) remains or is removed.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Kühlkanal (14) des Kolbens (1) während des Reibschweißvorgangs verschlossen wird.4. The method according to any one of claims 1 to 3, characterized in that a cooling channel (14) of the piston (1) is closed during the friction welding operation.
5. Kolben hergestellt nach dem Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fügestege (1 1 , 12; 31 , 32, 33, 34) umfangsseitig eine konstante oder unterschiedlich ausgelegte Wandstärke aufweisen.5. Piston produced by the method according to one of the preceding claims, characterized in that the joining webs (1 1, 12, 31, 32, 33, 34) circumferentially have a constant or differently designed wall thickness.
6. Kolben nach Anspruch 5, dadurch gekennzeichnet, dass die im Kolben (1) umlaufend angeordnete Fügezone (4) einen Höhenversatz „v" aufweist.6. Piston according to claim 5, characterized in that in the piston (1) circumferentially arranged joining zone (4) has a height offset "v".
7. Kolben nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zwischen den zwei radial zueinander versetzt angeordneten Fügezonen (24a, 24b) des Kolbens (21) ein Höhenversatz „h" vorgesehen ist.7. Piston according to claim 5 or 6, characterized in that between the two radially mutually offset joining zones (24a, 24b) of the piston (21) is provided a height offset "h".
8. Kolben nach Anspruch 5, 6 oder 7, dadurch gekennzeichnet, dass die Fügestege (11 , 12; 31 , 32, 33, 34) umlaufend geschlossen ausgeführt sind.8. Piston according to claim 5, 6 or 7, characterized in that the joining webs (11, 12; 31, 32, 33, 34) are executed circumferentially closed.
9. Kolben nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass zumindest ein Fügesteg (11 , 31) einen Durchtritt (19a, 19b; 37) einschließt. 9. Piston according to one of claims 5 to 8, characterized in that at least one joining web (11, 31) includes a passage (19a, 19b, 37).
10. Kolben nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass zumindest ein Fügesteg (11) eine radial nach innen und / oder radial nach außen gerichtete Versteifungsrippe (17a, 17b, 17c; 18a, 18b) aufweist.10. Piston according to one of claims 5 to 9, characterized in that at least one joining web (11) has a radially inwardly and / or radially outwardly directed stiffening rib (17a, 17b, 17c, 18a, 18b).
11. Kolben nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass zumindest eine rotationssymmetrisch oder nicht rotationssymmetrisch verlaufende Fügezone (4, 24a, 24b) senkrecht zu einer Kolbenachse (10) verläuft.11. Piston according to one of claims 5 to 10, characterized in that at least one rotationally symmetric or non-rotationally symmetrical joining zone (4, 24a, 24b) perpendicular to a piston axis (10).
12. Kolben nach einem der Ansprüche 5 bis 11 dadurch gekennzeichnet, dass zumindest ein Abschnitt des Fügestegs (11) bereichsweise annähernd parallel zu einer Achse „y" des Kolbens (1) ausgerichtet ist.12. Piston according to one of claims 5 to 11, characterized in that at least a portion of the joining web (11) is partially aligned approximately parallel to an axis "y" of the piston (1).
13. Kolben nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, dass eine Lage der Fügezone (4, 24a, 24b) von einer sich einstellenden senkrechten Druckrichtung der Multi-Orbitalen Reibschweißung abweicht.13. Piston according to one of claims 5 to 12, characterized in that a position of the joining zone (4, 24a, 24b) deviates from a self-adjusting vertical printing direction of the multi-orbital friction welding.
14. Kolben nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, dass Stauchachsen der Multi-Orbitalen Reibschweißung orthogonal oder in einer davon abweichenden Lage oder Richtung zueinander ausgerichtet sind.14. Piston according to one of claims 5 to 13, characterized in that compression axes of the multi-orbital friction welding are aligned orthogonally or in a deviating position or direction to each other.
15. Kolben nach einem der Ansprüche 5 bis 14, dadurch gekennzeichnet, dass der Kolben (21) eine Kombination von einem äußeren Kühlkanal (14) und einem inneren Kühlkanal (20) einschließt, die durch Fügestege (31 , 32) getrennt sind, wobei zumindest ein Fügesteg (31) einen eine Übertrittsöffnung bildenden Durchtritt (37) einschließt. 15. Piston according to one of claims 5 to 14, characterized in that the piston (21) includes a combination of an outer cooling channel (14) and an inner cooling channel (20) which are separated by joining webs (31, 32), wherein at least one joining web (31) enclosing a passage (37) forming a transfer opening.
16. Kolben nach einem der Ansprüche 5 bis 15, dadurch gekennzeichnet, dass der Kühlkanal (14) des Kolbens (1) bereichsweise mit einem separaten Zusatzelement (16) oder Abdeckelement verschlossen ist.16. Piston according to one of claims 5 to 15, characterized in that the cooling channel (14) of the piston (1) is partially closed with a separate additional element (16) or cover.
17. Kolben nach einem der Ansprüche 5 bis 16, dadurch gekennzeichnet, dass das formschlüssig und / oder kraftschlüssig oder stoffschlüssig in dem Kolben (1) eingesetzte Zusatzelement (16) oder Abdeckelement zumindest einen Durchtritt aufweist.17. Piston according to one of claims 5 to 16, characterized in that the form-fitting and / or non-positively or cohesively in the piston (1) inserted additional element (16) or cover has at least one passage.
18. Kolben einem der Ansprüche 5 bis 17, dadurch gekennzeichnet, dass die Kolbenrohlinge, das Oberteil (2, 22) und das Unterteil (3,23) aus einem übereinstimmenden Material oder aus unterschiedlichen Materialien hergestellt sind, wobei als Hauptlegierungselement Aluminium oder Stahl vorgesehen ist.18. Piston one of claims 5 to 17, characterized in that the piston blanks, the upper part (2, 22) and the lower part (3,23) are made of a matching material or of different materials, being provided as the main alloying element aluminum or steel is.
19. Kolben einem der Ansprüche 5 bis 18, dadurch gekennzeichnet, dass als Kolbenrohlinge des Kolbens (1 , 21) ein geschmiedetes, gegossenes oder durch ein Gießpressverfahren hergestelltes Oberteil (2, 22) und Unterteil (3, 23) einsetzbar sind. 19. Piston according to one of claims 5 to 18, characterized in that the piston blanks of the piston (1, 21) a forged, cast or by a casting process produced upper part (2, 22) and lower part (3, 23) can be used.
EP09713945A 2008-02-29 2009-01-30 Piston for internal combustion engines, produced by means of a multi-orbital friction welding method Withdrawn EP2254723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008011922A DE102008011922A1 (en) 2008-02-29 2008-02-29 Piston for internal combustion engines, produced by means of a multi-orbital friction welding process
PCT/EP2009/000627 WO2009106200A1 (en) 2008-02-29 2009-01-30 Piston for internal combustion engines, produced by means of a multi-orbital friction welding method

Publications (1)

Publication Number Publication Date
EP2254723A1 true EP2254723A1 (en) 2010-12-01

Family

ID=40578933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09713945A Withdrawn EP2254723A1 (en) 2008-02-29 2009-01-30 Piston for internal combustion engines, produced by means of a multi-orbital friction welding method

Country Status (5)

Country Link
US (1) US8789273B2 (en)
EP (1) EP2254723A1 (en)
JP (1) JP2011514258A (en)
DE (1) DE102008011922A1 (en)
WO (1) WO2009106200A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061778A1 (en) * 2004-09-29 2006-04-06 Ks Kolbenschmidt Gmbh Simple friction weld
DE102008045456A1 (en) * 2008-09-02 2010-03-04 Mahle International Gmbh Piston for an internal combustion engine
DE102008055848A1 (en) * 2008-11-04 2010-05-06 Ks Kolbenschmidt Gmbh Cooling channel piston of an internal combustion engine with a closure element which closes the cooling channel
DE102009015820A1 (en) * 2009-04-01 2010-10-07 Mahle International Gmbh Piston, for an internal combustion motor, has recesses at the surfaces of the inner supports at the upper and/or lower piston sections which are welded together
JP2011085109A (en) * 2009-10-19 2011-04-28 Niigata Power Systems Co Ltd Piston and engine
DE102010033882A1 (en) 2010-08-10 2012-02-16 Mahle International Gmbh Piston for an internal combustion engine
US9856820B2 (en) 2010-10-05 2018-01-02 Mahle International Gmbh Piston assembly
DE102010052578A1 (en) 2010-11-25 2012-05-31 Daimler Ag Piston for an internal combustion engine
EP2535516B1 (en) * 2011-06-17 2014-02-26 Techspace Aero S.A. Method for friction soldering blades to an axial compressor drum, and corresponding device
US8973484B2 (en) 2011-07-01 2015-03-10 Mahle Industries Inc. Piston with cooling gallery
DE102011106559A1 (en) * 2011-07-05 2013-01-10 Mahle International Gmbh Piston for an internal combustion engine
DE102011113800A1 (en) * 2011-09-20 2013-03-21 Mahle International Gmbh Piston for an internal combustion engine and method for its production
DE102011088066A1 (en) * 2011-12-09 2013-06-13 Ks Kolbenschmidt Gmbh Piston for internal combustion engines
US9216474B2 (en) 2012-04-24 2015-12-22 Industrial Parts Depot, Llc Two-piece friction-welded piston
US10221807B2 (en) 2012-06-27 2019-03-05 Ks Kolbenschmidt Gmbh Particular arrangement of a cooling duct connecting bore of a cooling duct
DE102012214681A1 (en) * 2012-08-17 2014-02-20 Ks Kolbenschmidt Gmbh Piston of internal combustion engine for passenger car, has annulus element that is connected with upper and lower portions over joining zones through friction welding, and ring zone that is provided to receive spaced piston rings
CN105051357B (en) * 2013-01-21 2018-05-18 费德罗-莫格尔公司 Piston and its manufacturing method
US9334958B2 (en) * 2013-02-18 2016-05-10 Federal-Mogul Corporation Complex-shaped forged piston oil galleries
US10787991B2 (en) 2013-02-18 2020-09-29 Tenneco Inc. Complex-shaped forged piston oil galleries
WO2014127319A1 (en) 2013-02-18 2014-08-21 Federal-Mogul Corporation Complex-shaped piston oil galleries with piston crowns made by cast metal or powder metal processes
JP6450911B2 (en) 2013-03-13 2019-01-16 テネコ・インコーポレイテッドTenneco Inc. Piston and method for producing the same
KR101449304B1 (en) 2013-06-27 2014-10-08 현대자동차주식회사 Method for manufacturing piston of automobile engine
JP6362517B2 (en) * 2014-11-11 2018-07-25 オーエスジー株式会社 Cutting tools
US10184422B2 (en) * 2014-12-30 2019-01-22 Tenneco Inc. Reduced compression height dual gallery piston, piston assembly therewith and methods of construction thereof
AT519583B1 (en) * 2017-01-26 2018-11-15 Mahle Koenig Kg Gmbh & Co Kg Piston for use in internal combustion engines
DE102018105928B4 (en) 2018-03-14 2020-06-18 Federal-Mogul Ignition Gmbh Method for producing an electrode arrangement for a spark plug
DE102019214857A1 (en) * 2019-09-27 2021-04-01 Robert Bosch Gmbh Component of the hydraulic system, arrangement with a section of the component, and method for joining the component
DE102020210907A1 (en) 2020-08-28 2022-03-03 Mahle International Gmbh Pistons for an internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB519915A (en) * 1938-01-17 1940-04-09 Charles Emile Stanislas Korytk Piston and process for its manufacture
GB1315676A (en) * 1970-07-18 1973-05-02 Thompson Pipework Ordnance Div Method of and apparatus for friction welding
GB2366607A (en) * 2000-09-06 2002-03-13 Federal Mogul Bradford Ltd I.c. engine piston with body formed from two or more circumferentially incomplete segments
EP1447167A1 (en) * 2003-02-14 2004-08-18 Volker Rossner Process and device for friction welding bonding surfaces of two parts
WO2004108341A2 (en) * 2003-06-10 2004-12-16 Noetic Engineering Inc. Method of induction weld forming with shear displacement step
EP1878902A2 (en) * 2006-07-05 2008-01-16 KS Kolbenschmidt GmbH Cooling duct piston for a combustion engine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1324431A (en) * 1970-01-31 1973-07-25 Clarke Chapman John Thompson L Methods of and apparatus for friction welding
DE2919638A1 (en) 1979-05-16 1980-11-20 Schmidt Gmbh Karl PISTON FOR INTERNAL COMBUSTION ENGINES
GB8601083D0 (en) * 1986-01-17 1986-02-19 Welding Inst Friction welding
JPS632576A (en) 1986-06-23 1988-01-07 Souyou Sangyo Kk Friction pressure welding method
DE3719703A1 (en) 1987-06-12 1988-12-29 Siemens Ag Welded connection for cylindrical pipes
BR9001859A (en) * 1990-04-17 1991-11-12 Metal Leve Sa EMBOLO AND EMBOLO MANUFACTURING PROCESS
BR9005370A (en) 1990-10-18 1992-06-16 Metal Leve Sa COOLED PUMP MANUFACTURING PROCESS
EP0624420B1 (en) * 1993-05-13 1997-08-06 ROLLS-ROYCE plc Friction welding
GB9414381D0 (en) * 1994-07-15 1994-09-07 British Nuclear Fuels Plc A method of friction welding
DE29723201U1 (en) * 1997-11-27 1998-07-02 Vectron Elektronik GmbH, 47807 Krefeld Device for controlling the movement path of the workpiece pick-up head of an orbital vibration welding system
US6032619A (en) * 1998-07-16 2000-03-07 Federal-Mogul World Wide, Inc. Piston having a tube to deliver oil for cooling a crown
US5934174A (en) * 1998-10-02 1999-08-10 Cummins Engine Company, Inc. Lightweight articulated piston head and method of making the piston head
US6155157A (en) 1998-10-06 2000-12-05 Caterpillar Inc. Method and apparatus for making a two piece unitary piston
US6279455B1 (en) * 1998-10-06 2001-08-28 Caterpillar Inc. Method and apparatus for making a two piece unitary piston
DE69927928T2 (en) * 1999-01-11 2006-07-27 Toyota Jidosha K.K., Toyota braking system
DE29905633U1 (en) 1999-03-31 2000-08-10 Kuka Schweissanlagen Gmbh Component preparation for a friction weld connection
US6477941B1 (en) * 1999-10-08 2002-11-12 Federal-Mogul World Wide, Inc. Dual gallery piston
GB9925708D0 (en) * 1999-10-30 1999-12-29 Carey Charles O B A connecting rod/piston pin assembly
US6588320B2 (en) * 1999-12-30 2003-07-08 Federal-Mogul World Wide, Inc. Piston having uncoupled skirt
US6450395B1 (en) * 2000-08-01 2002-09-17 The Boeing Company Method and apparatus for friction stir welding tubular members
DE10106578A1 (en) * 2001-02-13 2002-08-22 Mahle Gmbh Lower part for a built piston
DE10138482A1 (en) * 2001-08-04 2003-02-13 Bosch Gmbh Robert Joining together two, typically plastic, parts, particularly the parts of an insertion sensor to be inserted into a pipeline using vibration or ultrasonic welding with welding pockets between the two parts for excess material
US6910616B2 (en) * 2002-03-07 2005-06-28 The Boeing Company Preforms for forming machined structural assemblies
DE10244512A1 (en) 2002-09-25 2004-04-15 Mahle Gmbh Multi-part cooled piston for an internal combustion engine
US6990890B2 (en) * 2002-11-06 2006-01-31 Federal-Mogul World Wide, Inc. Monobloc piston having open floor
DE10333783A1 (en) * 2003-07-24 2005-02-17 Multi Orbital Systems Gmbh Orbital friction welding method and apparatus for carrying out the method
DE102004038464A1 (en) * 2004-08-07 2006-02-23 Ks Kolbenschmidt Gmbh Piston e.g. coolant duct piston for internal combustion engine has upper section and lower section whereby both sections have three radially surrounding bars which can be brought together during assembly process
DE102004061778A1 (en) 2004-09-29 2006-04-06 Ks Kolbenschmidt Gmbh Simple friction weld
WO2007031109A1 (en) * 2005-09-17 2007-03-22 Ks Kolbenschmidt Gmbh Piston, especially cooling channel piston, of an internal combustion engine, comprising three friction-welded zones
DE102006002949A1 (en) * 2006-01-21 2007-08-02 Ks Kolbenschmidt Gmbh Cooling channel piston for an internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB519915A (en) * 1938-01-17 1940-04-09 Charles Emile Stanislas Korytk Piston and process for its manufacture
GB1315676A (en) * 1970-07-18 1973-05-02 Thompson Pipework Ordnance Div Method of and apparatus for friction welding
GB2366607A (en) * 2000-09-06 2002-03-13 Federal Mogul Bradford Ltd I.c. engine piston with body formed from two or more circumferentially incomplete segments
EP1447167A1 (en) * 2003-02-14 2004-08-18 Volker Rossner Process and device for friction welding bonding surfaces of two parts
WO2004108341A2 (en) * 2003-06-10 2004-12-16 Noetic Engineering Inc. Method of induction weld forming with shear displacement step
EP1878902A2 (en) * 2006-07-05 2008-01-16 KS Kolbenschmidt GmbH Cooling duct piston for a combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2009106200A1 *

Also Published As

Publication number Publication date
WO2009106200A1 (en) 2009-09-03
US8789273B2 (en) 2014-07-29
DE102008011922A1 (en) 2009-09-03
US20110119914A1 (en) 2011-05-26
JP2011514258A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
EP2254723A1 (en) Piston for internal combustion engines, produced by means of a multi-orbital friction welding method
EP2681435B1 (en) Piston for a combustion engine and method for producing same
EP2726714B1 (en) Camshaft with axially slidable cam packet
EP2681437B1 (en) Piston for an internal combustion engine, and method for the production thereof
EP1698423B1 (en) Process of assembling by friction welding a rotor blade to a rotor basic body with displacement of an assembling part located between the rotor blade and the rotor basic body
DE4116088A1 (en) METHOD FOR JOINING STEEL WITH ALUMINUM OR TITANIUM ALLOY PARTS AND TURBOCHARGERS RECEIVED AFTER
DE102006002949A1 (en) Cooling channel piston for an internal combustion engine
WO2006084609A1 (en) Method for permanently fixing at least one component to a base component using a plastically deformed bolt
DE102015101004B4 (en) Method for joining a function module and function module
DE102012008947A1 (en) Method for producing a piston for an internal combustion engine
EP2603347B1 (en) Piston for an internal combustion engine and method for producing same
DE102016118109A1 (en) Joining method for pre-hole-free connection of at least one first component with a second component
DE10209168B4 (en) Steel piston with cooling channel
DE10029299C2 (en) Multi-part assembled valve for reciprocating engines
WO2006131212A1 (en) Method for connecting two components by means of friction welding using an intermediate element, and welded connection
WO2013075701A1 (en) Piston for an internal combustion engine and method for producing same
EP2111323A1 (en) Method for producing a piston for an internal combustion engine comprising a cooling duct, realized by joining the upper part of the piston and the lower part of the piston by means of a forged-upset connection
WO2013083342A1 (en) Piston for internal combustion engines
EP1967763A1 (en) Carrier plates and method for their production
EP0945632B1 (en) Connecting rod for a reciprocating piston engine
DE10311149A1 (en) Method of manufacturing a forged piston for an internal combustion engine
WO2012069103A1 (en) Piston for an internal combustion engine
EP3414109A1 (en) Wheel for a commercial vehicle, and use thereof
DE102012214681A1 (en) Piston of internal combustion engine for passenger car, has annulus element that is connected with upper and lower portions over joining zones through friction welding, and ring zone that is provided to receive spaced piston rings
DE1922488A1 (en) Compound crankshaft for multi-cylinder piston engines, especially internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JANSSEN, MICHAEL, ALBERT

Inventor name: LUZ, GERHARD

Inventor name: GNIESMER, VOLKER

Inventor name: STORK, STEFFEN

Inventor name: WEISSERT, MARTIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120529

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KS KOLBENSCHMIDT GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180228