EP2253821B1 - Procédé de nettoyage des gaz d'échappement d'un moteur à combustion interne doté d'un catalyseur - Google Patents

Procédé de nettoyage des gaz d'échappement d'un moteur à combustion interne doté d'un catalyseur Download PDF

Info

Publication number
EP2253821B1
EP2253821B1 EP09160947A EP09160947A EP2253821B1 EP 2253821 B1 EP2253821 B1 EP 2253821B1 EP 09160947 A EP09160947 A EP 09160947A EP 09160947 A EP09160947 A EP 09160947A EP 2253821 B1 EP2253821 B1 EP 2253821B1
Authority
EP
European Patent Office
Prior art keywords
lean
rich
pulse
engine
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09160947A
Other languages
German (de)
English (en)
Other versions
EP2253821A1 (fr
Inventor
Martin Votsmeier
Roman Moeller
Christopher Onder
Juergen Gieshoff
Lino Guzzella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT09160947T priority Critical patent/ATE517245T1/de
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to EP09160947A priority patent/EP2253821B1/fr
Priority to JP2012511196A priority patent/JP2012527560A/ja
Priority to US13/321,769 priority patent/US20120067030A1/en
Priority to BRPI1012807A priority patent/BRPI1012807A2/pt
Priority to PCT/EP2010/003111 priority patent/WO2010133370A1/fr
Priority to CN2010800222327A priority patent/CN102439278A/zh
Priority to RU2011152239/06A priority patent/RU2011152239A/ru
Priority to KR1020117027516A priority patent/KR20120024617A/ko
Publication of EP2253821A1 publication Critical patent/EP2253821A1/fr
Application granted granted Critical
Publication of EP2253821B1 publication Critical patent/EP2253821B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Definitions

  • the present invention relates to a method for purifying the exhaust gases of an internal combustion engine with a catalyst containing oxygen-storing components.
  • the invention is concerned with restoring the optimum degree of oxygen storage components to a controlled, stoichiometric operation of the engine after it has been operated under lean conditions.
  • the air ratio lambda ( ⁇ ) is often used. This is the normalized to stoichiometric conditions air / fuel ratio.
  • the air / fuel ratio describes how many kilograms of air per kilogram of fuel are supplied to the combustion engine.
  • the stoichiometric combustion air / fuel ratio is 14.7 for common engine fuels.
  • the air ratio lambda in this point is 1. Air / fuel ratios below 14.7, or air numbers below 1, are considered rich and air / fuel ratios above 14.7 or air ratios above 1 are referred to as lean.
  • the air ratio of the exhaust gas corresponds to the air ratio of the air / fuel mixture supplied to the engine.
  • OSC Oxygen Storage Components
  • Suitable oxygen-storing components in a catalyst are compounds which permit a change in their oxidation state.
  • Ceria is preferably used which can be present both as Ce 2 O 3 and as CeO 2 .
  • CeO 2 is preferably used, for example, as a mixed oxide with zirconium oxide.
  • the storage capacity of the oxygen-storing components means the mass of oxygen that can be absorbed by the oxygen-storing component per gram. Accordingly, the degree of filling denotes the ratio of the mass of oxygen actually stored to the storage capacity.
  • the storage capacity can be determined experimentally by various methods known to those skilled in the art.
  • the aim of controlling the air ratio is to avoid complete filling or extensive emptying of the oxygen storage.
  • a complete filling of the oxygen storage there is a breakthrough of lean exhaust gas and thus the emission of nitrogen oxides.
  • extensive emptying it comes to fat breakthroughs, ie the emission of carbon monoxide and hydrocarbons.
  • the signal of an oxygen probe (lambda probe) is used, which is arranged in the flow direction of the exhaust gas before the catalyst (Vorkat probe).
  • Vorkat probe the air / fuel mixture supplied to the engine is controlled so that the exhaust gas is stoichiometrically composed before entering the catalyst.
  • This regulation is referred to as lambda control in the context of this invention.
  • an oxygen probe is inserted behind the catalyst into the exhaust line.
  • the target stoichiometry of the lambda control can be readjusted.
  • the Schukat control is used especially for monitoring and adjusting the degree of filling of the oxygen storage of the catalyst.
  • the probes generate an electrical voltage depending on the oxygen content of the exhaust gas.
  • two-point lambda probes which are also referred to as jump lambda probes, are used for this purpose.
  • they In lean exhaust gas they have a voltage of about 0.2 V, which jumps in the transition to rich exhaust gas in a very narrow lambda interval of 0.2 V to about 0.7 V.
  • the Schukat control is designed so that a probe voltage of about 0.65 V results. This point lies on the steep branch of the probe characteristic and corresponds to an optimum filling level of the oxygen storage of about 50%. Deviations from the stoichiometry of the exhaust gas up or down can be easily detected and corrected in this way.
  • An Otto engine is operated predominantly with stoichiometric composite air / fuel mixtures. However, if the engine no longer deliver power, usually the fuel supply is interrupted. In this so-called fuel cut, the engine only air is supplied, so that the exhaust gas composition corresponds to the ambient air.
  • the oxygen-storing components of the catalyst are completely saturated with oxygen, or filled.
  • the Häkat control is not possible.
  • a complete filling of the oxygen storage unit may occur, for example due to control errors of the lambda control.
  • the controlled, stoichiometric operation should be resumed as quickly as possible.
  • the degree of filling of the oxygen storage must be returned to its optimum value of about 50%.
  • the engine usually after a fuel cut is briefly with a rich Operated air / fuel mixture.
  • This short-term operation with a rich air / fuel mixture is also referred to as fat pulse.
  • the regular Schukat control is resumed.
  • the DE 10 2004 038 482 B3 deals with the adjustment of the degree of filling of the oxygen storage after a transient operating state of the engine, such as a fuel cut.
  • a transient operating state of the engine such as a fuel cut.
  • the oxygen storage tank should be emptied quickly to an optimum value of approx. 50% of its filling level.
  • a rich air / fuel ratio ⁇ ⁇ 1 is set for a short time and then fed again at an optimized speed against 1.
  • the DE 10 2004 019 831 A1 avoids unwanted oxygen charging of the catalytic converter during a fuel cut-off phase in that the catalyst, a catalyst mass flow is supplied with a defined, predetermined lambda value.
  • the DE 10 2006 044 458 A1 also deals with fuel injection after a fuel cut.
  • the fuel pulse width is set so that a fuel supply amount is greatly increased in relation to an intake air amount, and the ignition timing is set to a first retarded ignition timing.
  • the fuel pulse width having a smaller increase width of the fuel is set, and the ignition timing is set to the second retarded ignition timing having a retard amount smaller than the first retarded ignition timing.
  • the object of the invention is therefore to provide a method by which the transition from the fuel cut to the regulated, stoichiometric operation can be accelerated.
  • the method relates to the purification of the exhaust gases of an internal combustion engine with a catalyst containing an oxygen storage of oxygen-storing components, wherein the engine is equipped with an electronic engine control and operated for the majority of the operating time with a controlled, stoichiometric air / fuel mixture Depending on the driving situations also temporary lean operating phases occur.
  • the method is characterized in that after a lean lean phase of operation of the engine with a lean air / fuel mixture associated with a substantial filling of the oxygen storage and before resuming the controlled engine operation, the degree of filling of the oxygen storage to an optimal degree of filling for stoichiometric operation thereby is attributed that the engine is supplied with a rich pulse followed by a lean pulse, wherein the amount of the lean pulse supplied to the catalyst oxidative components is lower than would be necessary for complete compensation of the rich with the fat pulse amount of rich exhaust gas components.
  • the invention is based on the observation that after an overrun fuel cutoff for the stoichiometric control of the air / fuel ratio optimal filling level of the oxygen storage can then be set very quickly, if a short fat pulse after the fuel cut a short lean pulse follows. Fat pulse and lean pulse are thereby generated by appropriate control of the engine / air ratio supplied. This is preferably done by providing the pretat lambda probe with a corresponding temporal lambda profile. After expiry of the lambda profile and reaching the optimum filling level of the oxygen storage, recognizable by a Schukat signal voltage of about 0.6 to 0.7 volts, preferably 0.65 volts, the regular lambda control of Vorkat control and Deutschenkat- Regulation resumed.
  • an equilibrium state of the oxygen storage is always with the reducing and oxidizing components of the exhaust gas, that is, in the equilibrium state, the reduction of the oxygen storage by carbon monoxide, hydrogen or hydrocarbons is just compensated by a corresponding oxidation with carbon dioxide and water.
  • This pollutant release can be reduced somewhat if the fat pulse is not abruptly stopped, but slowly returned to the stoichiometric value. However, this increases the time between the end of fuel cut and the resumption of controlled operation with the risk of further pollutant emissions.
  • the fat pulse hits the inlet face of the catalyst first. Even if the fat pulse is sized so that it can only partially empty the entire oxygen storage of the catalyst, it comes in the front part of the catalyst to a deep depletion of the oxygen storage and therefore in the wake of the pulse to a delayed release of carbon monoxide and hydrogen.
  • the rear part of the catalyst is only partially emptied in this process. In the most favorable case, the carbon monoxide liberated from the front part of the catalyst and the hydrogen can empty the rear part of the catalyst to the desired extent. However, in this case, due to the slowness of carbon monoxide and hydrogen release, it takes 10 to 100 seconds for the oxygen storage to be completely exhausted over the entire length of the catalyst and for the stoichiometry of the exhaust downstream of the catalyst to be stationary.
  • the described carbon monoxide and hydrogen emissions following a deep reduction of the oxygen storage not only have a negative effect after a fuel cut. Even in normal operation, short-term control errors can occur, especially in dynamic operating phases, which lead to a complete filling of the oxygen storage. If the reservoir is largely filled, and at the same time deviates short the stoichiometry of the exhaust gas into the lean, there is a Mager barnbruch, which is registered by the Schukat probe. As described above, the signal of the Schukat probe is used to readjust the target stoichiometry of the lambda control. The Schukat control in this case means that the air / fuel mixture supplied to the engine is refilled.
  • the described problems of conventional methods are thereby reduced or even completely eliminated, that after completion of the lean operating phase, the filling level of the oxygen storage is returned by at least one rich and one lean pulse to the optimum value for the subsequent Schukat control.
  • the amount of rich exhaust gas components supplied with the rich pulse is greater than that needed to set the optimal stoichiometric fill level, but less than the amount of rich exhaust gas components that would be required to completely empty the oxygen storage storage capacity.
  • a fat pulse is first used which is able to empty the catalyst over its entire length.
  • the front part of the memory is deeply emptied.
  • This deep evacuation in the front part is reversed by a smaller lean pulse.
  • the lean pulse will inevitably refill a small zone at the inlet of the catalytic converter beyond the optimum filling level.
  • Another Fat pulse can be compensated, which is chosen so that the amount of fat components provided by it is smaller than is necessary for the complete compensation of the previous lean pulse.
  • the amount of reducing agent in the first fat pulse must therefore be greater than the equivalent amount of oxygen that must be removed from the catalyst during the transition from the fully oxidized state to the stoichiometric operating state.
  • the catalyst is therefore initially deeply emptied.
  • the amount of reducing agent in the first rich pulse is preferably chosen to be smaller than the equivalent amount of oxygen that can be withdrawn from the catalyst by a steady-state rich operation.
  • the pulse sequence is preferably designed depending on the operating state of the engine and the aging state of the catalyst so that after completion of the pulse train, the memory-load distribution of the distribution corresponds, which would occur even with controlled operation of the catalyst at this operating point.
  • An optimal pulse sequence can be recognized by the fact that the voltage of the post-cat probe after the end of the pulse sequence stably assumes the target value of the Schukat control.
  • the amplitude and / or the temporal length of the fat and lean pulses are available. Amplitude and / or time length of the pulses can be optimized depending on the temperature and space velocity of the exhaust gas and / or an aging state of the catalyst.
  • the motor can be supplied with additional fat and lean pulses after the first fat and lean pulse, whereby the quantity supplied with the respective fat pulse Fat components is greater than can be compensated with the oxidative components of the following lean pulse.
  • the optimum number of consecutive rich / lean pulses can be determined in preliminary tests depending on the operating conditions after an overrun fuel cut.
  • the method is preferably used in the exhaust gas purification of stoichiometrically operated internal combustion engines, in which there are fuel cutoffs when no more engine power is requested.
  • the fuel cutoffs constitute the temporary lean operating phases.
  • Temporary lean operating phases may also be caused by unwanted control variations in stoichiometric operation.
  • Another field of application of the invention is the exhaust gas purification of a lean-burn internal combustion engine, which is operated partly stoichiometrically and partly lean.
  • the engine At low power requirements in city traffic, the engine is operated lean to save fuel. If higher powers are required, the motor must be switched to stoichiometric operation.
  • the oxygen storage in the catalytic converter is completely filled. Switching to stoichiometric operation will cause the same problems as after a fuel cut.
  • unwanted temporary lean operating phases due to a control disturbance are detected by the fact that the Schukat probe indicates a lean exhaust gas.
  • a jumping probe can be used. If its signal voltage falls below a predetermined threshold, then there is a temporary lean operating phase according to this invention.
  • the threshold value can be selected depending on the temperature and space velocity of the exhaust gas, the exhaust gas stoichiometry and the aging state of the catalyst. Preferably, these threshold values are stored in a table of the engine control.
  • the oxygen-storing components of the exhaust gas purification catalyst continuously lose thermal storage due to thermal aging.
  • the method makes it possible to determine the remaining storage capacity.
  • the output signal of the arranged behind the catalyst in the exhaust system oxygen probe can be used. If the signal voltage after the jump from the temporary lean operation phase to the regulated stoichiometric operation is below the expected one Voltage, so the remaining oxygen storage capacity of the catalyst is lower than expected. In this way, therefore, the remaining oxygen storage capacity can be determined from the signal voltage in stoichiometric operation after an overrun fuel cutoff. If the remaining oxygen storage capacity falls below a predetermined value, then a corresponding warning signal can be set.
  • the determination of the remaining oxygen storage capacity makes it possible to adapt the amount of the fat and lean components fed to the catalyst with the fat and lean pulses to the remaining oxygen storage capacity and thus to optimize the transition from fuel cut to regulated, stoichiometric operation. This is preferably done by the amplitudes of the fat and lean pulses are reduced by a factor corresponding to the remaining oxygen storage capacity.
  • the factor can be stored as a function of the remaining oxygen storage capacity in a table of engine control.
  • FIG. 1 illustrates the emission of carbon monoxide and hydrogen after a fuel cut and return to stoichiometric operation by a single rich pulse.
  • a conventional three-way catalyst was investigated in a model gas plant.
  • the upper diagram shows the progression of the air ratio lambda as a function of time (lambda profile).
  • a fuel cut with a lambda value of 1.1 was simulated.
  • the two lower diagrams each show the measured course of the hydrogen and carbon monoxide concentration behind the catalyst. Delayed after the fat pulse, the catalyst liberates hydrogen and carbon monoxide. The emission of these two pollutants persists over a period of more than 40 seconds.
  • FIG. 2 shows the result of simulation calculations in the case of a conventional lambda profile after a fuel cut with complete filling of the oxygen storage. The calculations were made for two different fat pulses with a lambda value of 0.9. The lambda profiles before the catalyst are shown in the upper diagram. The lower diagram shows the calculated signal voltages of the Schukat probe.
  • the signal voltage of the Hinterkat probe starts at about 0.1 V, indicating a very lean exhaust gas (lean operation phase) with a high oxygen content.
  • the oxygen storage has almost a 100% -tigen degree of filling.
  • the exhaust gas is briefly enriched before the catalyst.
  • FIG. 3 shows the result of simulation calculations in the case of a lambda profile according to the invention.
  • the exhaust gas before the catalyst in this example case two pairs of rich and lean pulses with a total duration of about 20 s.
  • the diagram with the signal voltage of the Schukat probe reaches the desired 0.65 V after about 4 s and remains at this voltage level.
  • the oxygen storage has thus already after this short time with only one fat / Magerpulsclam averaged over its entire length optimum filling level achieved. Nevertheless, because of the axial distribution of the degree of filling described above, a further fat / lean pair of powders is necessary in order to optimally adjust the degree of filling over the entire catalyst length.
  • Thesselkat control remains switched off at the end of the preceding lean operating phase at time zero until the end of the last rich / lean pair at about 20 s. Only then the Schukat rule is resumed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (13)

  1. Procédé d'épuration des gaz d'échappement d'un moteur à combustion interne à l'aide d'un catalyseur qui contient un accumulateur d'oxygène constitué de composants accumulant l'oxygène, le moteur étant doté d'une commande électronique et étant pendant la plus grande partie de sa durée d'utilisation alimenté en un mélange stoechiométrique air/carburant régulé, des phases temporaires de fonctionnement en conditions pauvres pouvant également survenir en fonction des situations de roulage,
    caractérisé en ce que
    après une phase temporaire de fonctionnement du moteur en conditions pauvres associée à une haute accumulation dans l'accumulateur d'oxygène et avant la reprise du fonctionnement régulé du moteur, le degré de remplissage de l'accumulateur d'oxygène est ramené à un taux de remplissage optimal pour le fonctionnement en conditions stoechiométriques,
    en ce que le moteur est alimenté par une impulsion riche suivie d'une impulsion pauvre, la quantité de composants oxydants apportés au catalyseur par l'impulsion pauvre étant inférieure à ce qui serait nécessaire pour compenser complètement la quantité de composants riches des gaz d'échappement apportés par l'impulsion riche.
  2. Procédé selon la revendication 1, caractérisé en ce que la quantité de composants riches des gaz d'échappement apportés par l'impulsion riche est supérieure à ce qui est nécessaire pour établir le degré de remplissage optimum pour le fonctionnement en conditions stoechiométriques mais inférieure à la quantité de composants riches qui serait nécessaire dans les gaz d'échappement pour consommer complètement la capacité d'accumulation de l'accumulateur d'oxygène.
  3. Procédé selon la revendication 2, caractérisé en ce qu'après la première impulsion riche et la première impulsion pauvre, le moteur est encore alimenté avec d'autres impulsions riches et impulsions pauvres, la quantité de composants riches apportés par chaque impulsion riche étant supérieure à ce qui pourrait être compensé par les composants oxydants de l'impulsion pauvre qui suit.
  4. Procédé selon les revendications 1 ou 2, caractérisé en ce que l'impulsion riche et l'impulsion pauvre ont une amplitude et une durée et en ce que l'amplitude et/ou la durée sont adaptées en fonction de la température et de la vitesse spatiale des gaz d'échappement et/ou en fonction de l'état de vieillissement du catalyseur.
  5. Procédé selon la revendication 4, caractérisé en ce que l'amplitude des impulsions riches et l'amplitude des impulsions pauvres sont diminuées d'un facteur qui correspond à l'état de vieillissement du catalyseur.
  6. Procédé selon la revendication 1, caractérisé en ce que la phase temporaire de fonctionnement en conditions pauvres est une interruption de la poussée.
  7. Procédé selon la revendication 1, caractérisé en ce que la phase temporaire de fonctionnement en conditions pauvres est une phase de fonctionnement en conditions pauvres d'un moteur à combustion interne utilisé aussi bien en conditions stoechiométriques qu'en conditions pauvres en fonction de la situation de roulage.
  8. Procédé selon la revendication 1, caractérisé en ce que la phase temporaire de fonctionnement en conditions pauvres est provoquée par des variations de la régulation du fonctionnement en conditions stoechiométriques.
  9. Procédé selon la revendication 8, caractérisé en ce que la phase de fonctionnement temporaire en conditions pauvres est détectée en faisant détecter par une sonde d'oxygène qui est disposée en aval du catalyseur et qui indique que les gaz d'échappement sont pauvres si la tension de son signal n'atteint pas une valeur de seuil.
  10. Procédé selon la revendication 9, caractérisé en ce que la valeur de seuil est sélectionnée en fonction de la température et de la vitesse spatiale des gaz d'échappement, de la stoechiométrie des gaz d'échappement et de l'état de vieillissement du catalyseur.
  11. Procédé selon la revendication 1, caractérisé en ce qu'une sonde d'oxygène est disposée en aval du catalyseur dans le conduit de gaz d'échappement et en ce que la tension effectivement atteinte par son signal est utilisée après le passage de la phase temporaire de fonctionnement en conditions pauvres et le fonctionnement en conditions stoechiométriques régulées pour déterminer à partir de là la capacité résiduelle d'accumulation d'oxygène de l'accumulateur d'oxygène.
  12. Procédé selon la revendication 11, caractérisé en ce qu'un signal est affiché lorsque la capacité résiduelle d'accumulation d'oxygène est descendue en dessous d'une valeur prédéterminée.
  13. Procédé selon la revendication 12, caractérisé en ce que la quantité de composants riches et de composants pauvres apportée au catalyseur par les impulsions riches et les impulsions pauvres sont adaptées à la capacité résiduelle d'accumulation d'oxygène.
EP09160947A 2009-05-22 2009-05-22 Procédé de nettoyage des gaz d'échappement d'un moteur à combustion interne doté d'un catalyseur Active EP2253821B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP09160947A EP2253821B1 (fr) 2009-05-22 2009-05-22 Procédé de nettoyage des gaz d'échappement d'un moteur à combustion interne doté d'un catalyseur
AT09160947T ATE517245T1 (de) 2009-05-22 2009-05-22 Verfahren zur reinigung der abgase eines verbrennungsmotors mit einem katalysator
US13/321,769 US20120067030A1 (en) 2009-05-22 2010-05-20 Method for purifying the exhaust gases of an internal combustion engine having a catalytic converter
BRPI1012807A BRPI1012807A2 (pt) 2009-05-22 2010-05-20 método para purificação de gases de exaustão de um motor de combustão interna tendo um conversor catalítico
JP2012511196A JP2012527560A (ja) 2009-05-22 2010-05-20 触媒コンバータを有する内燃機関の排気ガスの浄化方法
PCT/EP2010/003111 WO2010133370A1 (fr) 2009-05-22 2010-05-20 Procédé de purification des gaz d'échappement d'un moteur à combustion interne comportant un pot catalytique
CN2010800222327A CN102439278A (zh) 2009-05-22 2010-05-20 用于净化具有催化转化器的内燃机的排气的方法
RU2011152239/06A RU2011152239A (ru) 2009-05-22 2010-05-20 Способ очистки отработанных газов двигателя внутреннего сгорания, оснащенного каталитическим нейтрализатором
KR1020117027516A KR20120024617A (ko) 2009-05-22 2010-05-20 촉매 컨버터를 갖는 내연기관의 배기 가스를 정화하기 위한 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09160947A EP2253821B1 (fr) 2009-05-22 2009-05-22 Procédé de nettoyage des gaz d'échappement d'un moteur à combustion interne doté d'un catalyseur

Publications (2)

Publication Number Publication Date
EP2253821A1 EP2253821A1 (fr) 2010-11-24
EP2253821B1 true EP2253821B1 (fr) 2011-07-20

Family

ID=41165669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09160947A Active EP2253821B1 (fr) 2009-05-22 2009-05-22 Procédé de nettoyage des gaz d'échappement d'un moteur à combustion interne doté d'un catalyseur

Country Status (9)

Country Link
US (1) US20120067030A1 (fr)
EP (1) EP2253821B1 (fr)
JP (1) JP2012527560A (fr)
KR (1) KR20120024617A (fr)
CN (1) CN102439278A (fr)
AT (1) ATE517245T1 (fr)
BR (1) BRPI1012807A2 (fr)
RU (1) RU2011152239A (fr)
WO (1) WO2010133370A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534552B2 (en) * 2012-08-28 2017-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of spark ignition type internal combustion engine
DE102016219689A1 (de) * 2016-10-11 2018-04-12 Robert Bosch Gmbh Verfahren und Steuereinrichtung zur Regelung einer Sauerstoff-Beladung eines Dreiwege-Katalysators
IT201800003891A1 (it) * 2018-03-22 2019-09-22 Fpt Ind Spa Metodo di gestione di una alimentazione di un motore a combustione interna ad accensione comandata e sistema di alimentazione implementante detto metodo
FR3101673B1 (fr) * 2019-10-07 2021-09-03 Renault Sas Procédé de réglage de la richesse d’un moteur à combustion interne à allumage commandé
EP4259908A1 (fr) * 2020-12-09 2023-10-18 Cummins Inc. Ajustement des seuils de température d'entrée et de sortie de mode de gestion thermique sur la base du vieillissement du système de post-traitement

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348434B2 (ja) * 1991-05-17 2002-11-20 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP3572961B2 (ja) * 1998-10-16 2004-10-06 日産自動車株式会社 エンジンの排気浄化装置
US7198952B2 (en) * 2001-07-18 2007-04-03 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration detecting apparatus and method
DE10240833B4 (de) * 2002-09-04 2017-06-01 Robert Bosch Gmbh Verfahren zum Verringern von Abgasemissionen einer Brennkraftmaschine
JP4280584B2 (ja) * 2003-08-29 2009-06-17 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2005090388A (ja) * 2003-09-18 2005-04-07 Nissan Motor Co Ltd 内燃機関の排気浄化制御装置
DE102004009615B4 (de) * 2004-02-27 2008-03-13 Siemens Ag Verfahren zur Ermittlung der aktuellen Sauerstoffbeladung eines 3-Wege-Katalysators einer lambdageregelten Brennkraftmaschine
JP2005299587A (ja) * 2004-04-15 2005-10-27 Toyota Motor Corp 内燃機関の空燃比制御装置
DE102004019831B4 (de) 2004-04-23 2010-06-10 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges
WO2006001495A1 (fr) * 2004-06-25 2006-01-05 Toyota Jidosha Kabushiki Kaisha Dispositif de purification de gaz d’échappement pour moteur à combustion interne
JP2006022772A (ja) * 2004-07-09 2006-01-26 Mitsubishi Electric Corp 内燃機関の空燃比制御装置
DE102004038482B3 (de) 2004-08-07 2005-07-07 Audi Ag Verfahren zur Regelung des einer Brennkraftmaschine zugeführten Luft/Kraftstoffverhältnisses
JP2006125279A (ja) * 2004-10-28 2006-05-18 Mitsubishi Electric Corp 内燃機関制御装置
US7793489B2 (en) * 2005-06-03 2010-09-14 Gm Global Technology Operations, Inc. Fuel control for robust detection of catalytic converter oxygen storage capacity
JP2007075666A (ja) * 2005-09-09 2007-03-29 Mazda Motor Corp マニホールド触媒コンバータおよび排気システム
JP4466864B2 (ja) * 2005-09-21 2010-05-26 三菱自動車工業株式会社 内燃機関の制御装置
JP4226612B2 (ja) * 2006-04-03 2009-02-18 本田技研工業株式会社 内燃機関の空燃比制御装置
JP4687681B2 (ja) * 2007-03-30 2011-05-25 トヨタ自動車株式会社 内燃機関の触媒劣化判定装置
JP2010084670A (ja) * 2008-09-30 2010-04-15 Denso Corp 内燃機関の空燃比制御装置

Also Published As

Publication number Publication date
WO2010133370A1 (fr) 2010-11-25
JP2012527560A (ja) 2012-11-08
CN102439278A (zh) 2012-05-02
ATE517245T1 (de) 2011-08-15
BRPI1012807A2 (pt) 2018-01-16
KR20120024617A (ko) 2012-03-14
US20120067030A1 (en) 2012-03-22
EP2253821A1 (fr) 2010-11-24
RU2011152239A (ru) 2013-06-27

Similar Documents

Publication Publication Date Title
EP0928890B1 (fr) Procédé d'exploitation d'un catalyseur de stockage de NOx
EP1088157B1 (fr) PROCEDE DE DESULFATATION D'UN CATALYSEUR ACCUMULATEUR DE NO x?
EP1227231B1 (fr) Procédé de mise en oeuvre d'un catalyseur à trois voies dont un élément peut emmagasiner l'oxygène
EP1183453B1 (fr) PROCEDE DE DESULFURATION D'AU MOINS UN CATALYSEUR ACCUMULANT DU NOx, AGENCE DANS UN CONDUIT DE GAZ D'ECHAPPEMENT D'UN MOTEUR A COMBUSTION INTERNE
EP1250524A2 (fr) PROCEDE DE DESULFURATION D'UN CATALYSEUR ACCUMULATEUR DE NO x? MONTE DANS LE CANAL POUR GAZ D'ECHAPPEMENT D'UN MOTEUR A COMBUSTION INTERNE
EP2253821B1 (fr) Procédé de nettoyage des gaz d'échappement d'un moteur à combustion interne doté d'un catalyseur
EP1194683B1 (fr) Procede de commande d'un mode de fonctionnement d'un moteur a combustion interne
EP1718853A1 (fr) Procede permettant de determiner la charge effective en oxygene d'un catalyseur a trois voies d'un moteur a combustion interne a regulation lambda
EP1106798B1 (fr) Dispositif et procédé pour NOx- et/ou SOx régénération d'un catalyseur accumulateur de NOx
EP2122135B1 (fr) Procédé pour désulfurer des catalyseurs à accumulation d'oxydes d'azote dans le système d'échappement d'un moteur à mélange pauvre
DE10361286B4 (de) Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators
DE102006035283A1 (de) Verfahren zur Bestimmung der Schwefelentladung eines NOx-Speicherkatalysators
EP1158146B1 (fr) Procédé de fonctionnement d'un dispositif de purification des gaz d'échappement dans un moteur à allumage commandé
EP1102921A1 (fr) PROCEDE DE DESULFATATION D'UN CATALYSEUR ACCUMULATEUR DE NO x? EN FONCTION DE LA TEMPERATURE ET DE LA VALEUR LAMBDA
EP1204815B1 (fr) Procede de reglage de la temperature des gaz d'echappement d'un moteur a combustion interne a melange pauvre pendant une desulfuration d'un catalyseur
EP1196684B1 (fr) PROCEDE DE COMMANDE DE LA REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx
DE10123148B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
EP1209332B1 (fr) Méthode et appareil de régénération d'un catalyseur accumulateur de NOx
DE10202935A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
DE10057938A1 (de) Verfahren und Vorrichtung zur Regeneration eines NOx-Speicherkatalysators
WO2013079406A1 (fr) Procédé et dispositif de commande d'un régulateur de carburant
EP2786002B1 (fr) Procédé de fonctionnement d'un moteur à combustion interne et appareil de commande pour l'exécution du procédé
DE10347446B4 (de) Verfahren zur Aufheizung und zur Desulfatisierung eines Hauptkatalysators einer mehrflutigen Abgaslage einer mehrzylindrigen Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeugs
DE10010031A1 (de) Verfahren und Vorrichtung zur Durchführung einer NO¶x¶-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators
DE10321311B4 (de) Verfahren zum Aufheizen eines Katalysators und Kraftmaschine mit Steuereinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009000982

Country of ref document: DE

Effective date: 20110915

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111120

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111021

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

26N No opposition filed

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009000982

Country of ref document: DE

Effective date: 20120423

BERE Be: lapsed

Owner name: UMICORE A.G. & CO. KG

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090522

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 517245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140522

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230330

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 15

Ref country code: DE

Payment date: 20230331

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 16