EP2244834B1 - Séparateur électrostatique - Google Patents

Séparateur électrostatique Download PDF

Info

Publication number
EP2244834B1
EP2244834B1 EP09714062A EP09714062A EP2244834B1 EP 2244834 B1 EP2244834 B1 EP 2244834B1 EP 09714062 A EP09714062 A EP 09714062A EP 09714062 A EP09714062 A EP 09714062A EP 2244834 B1 EP2244834 B1 EP 2244834B1
Authority
EP
European Patent Office
Prior art keywords
housing
insulator
grid
voltage
precipitator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09714062A
Other languages
German (de)
English (en)
Other versions
EP2244834A1 (fr
Inventor
Hanns-Rudolf Paur
Andrei Bologa
Klaus Woletz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2244834A1 publication Critical patent/EP2244834A1/fr
Application granted granted Critical
Publication of EP2244834B1 publication Critical patent/EP2244834B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/08Ionising electrode being a rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts

Definitions

  • the invention relates to an electrostatic precipitator for removing the solid and liquid components from an aerosol.
  • Such a separator consists of a separator housing having an access, the raw gas inlet, for the aerosol to be cleaned and an outlet, the clean gas outlet, for the purified aerosol. At least one flow channel leading in the aerosol flanges to the raw gas inlet. The freed of the solid and liquid particles gas exits the separator as pure gas, either immediately into the environment or is passed on in a flanging channel on.
  • a discharge device for the discharge of there excreted from the aerosol, accumulated, solid and liquid components.
  • An electrical high-voltage bushing electrically supplies an ionization stage in the separator from the outside.
  • the ionization stage consists of at least one protruding into the flow path of the aerosol metallic, acted upon by electrical high voltage rod, which is equipped with radially serrated electrode discs and in the corona discharges, the solid and liquid particles are electrically charged in the gas flowing past.
  • electrical high voltage rod which is equipped with radially serrated electrode discs and in the corona discharges, the solid and liquid particles are electrically charged in the gas flowing past.
  • the separator downstream of the ionizer, there is a collector device in which the solid and liquid particles of the gas stream are deposited.
  • Electrostatic precipitators are the most effective means of cleaning fine and ultrafine aerosols. Electrostatic precipitators have several advantages over gas purifiers of other technology: they require less energy than mechanical collector devices and have no moving parts; Maintenance costs are low and downtime is low.
  • the construction of a compact electrostatic precipitator of high efficiency for drop aerosols is described in US Pat US 6,221,136 described.
  • the electrostatic precipitator has a high voltage electrode with multiple wire segments positioned within an electrically conductive porous medium and having a central axis, on which the electrode structure expands.
  • the electrode assembly consists of a plurality of longitudinally positioned wires which propagate along the longitudinal axis of the porous medium.
  • the wire segments are arranged to have a substantially longer overall length than the extension length along the longitudinal axis.
  • the particles are passed through the porous medium and past the electrode and are charged via the high voltage.
  • the porous medium has a substantially lower voltage than the high voltage electrode.
  • Electrostatic shields are mounted around the high voltage insulators to reduce the likelihood of insulator contamination causing leakage currents.
  • the separator has several problems.
  • the porous medium as a collector plays the following two roles: first, it is used as a grounded electrode; second, it collects aerosol particles, which can be droplets and solid particles. Covering the filter surface with a dielectric fluid, such as lubricating oil, will weaken the electric field strength in the electrode assembly, thereby reducing the efficiency of the particle charge.
  • the high velocity of the gas stream in the ionizer stabilizes the operation of the electrostatic precipitator, reduces the influence of the space charge on the charged particles and reduces the suppression of the corona discharge.
  • the low velocity in the collector improves its efficiency and reduces the pressure drop in it.
  • the grounded electrode in the electrode assembly and the collector are spatially separated. This reduces the clogging of the collector.
  • the grounded grid / mesh or nozzle allows the passage of charged aerosol particles. The electric wind can pass through the mesh electrode without pressure loss.
  • the use of star-shaped electrodes and the high speed in the electrode zone reduces the deposition of sticky particles or droplets on the high voltage electrodes.
  • the separator is relatively bulky due to the spatial separation of the ionization stage from the collector.
  • the high-voltage insulator is positioned in the raw gas or clean gas flow, which is why additional measures against contamination are necessary.
  • the compact electrostatic precipitator consists, as is known, of the two housed in a separator housing assemblies: ionization and downstream gas collector following collector.
  • the electrostatic precipitator has at least one metallic high-voltage rod which, clamped in an insulator at the end face, protrudes into the gas flow path via this isolator, which is seated away from the gas flow path of the aerosol.
  • the high-voltage insulator is in a pot-like, not traversed by the aerosol, to an electrical reference potential, usually ground potential, connected housing, the insulator housing, positioned and exposed therein.
  • the high-voltage rod is equipped with a disc-shaped electrode, the high-voltage electrode, at least at its free end portion and another disc-shaped electrode, the guard electrode, outside the insulator housing at a distance d to the opening in the bottom plate.
  • the guard electrode sits on the edge or outside the gas flow.
  • the high voltage electrode and guard electrode have radially directed circumferentially equally spaced tips adjacent to the surrounding hollow cylindrical sleeve of perforated sheet metal or wire mesh, the grid or wire mesh electrode, having the smallest pitch H.
  • the high-voltage rod protrudes coaxially into the grid or wire mesh electrode, which sits with its first end face positively in the opening to the insulator housing and to the reference potential, usually ground potential, is connected. To the extent of High voltage electrode / n and the guard electrode are equally distributed cleavage of the smallest width H to the surrounding grid or wire mesh electrode.
  • the grid or wire mesh electrode is seated with its second end portion in a nozzle in the lying on electrical reference potential plate, the nozzle plate, or abuts with its second end on a gas-impermeable plate, the face plate. Thereby, the grid or wire mesh electrode (s) are positioned in the gas flow path of the aerosol.
  • the grid or wire mesh electrode (s) is / are completely surrounded by a porous collector located at electrical reference potential highest over its length. As a result, the entire aerosol stream must in any case flow through the porous collector.
  • a high-voltage bushing through which the high-voltage rod or the high-voltage rods are connected from the outside to a high voltage electrical potential.
  • the high-voltage feedthrough go directly or through the separator housing through to the outside.
  • claim 3 sits in the insulator housing further a pipe socket through which a clean gas can be flowed into the interior of the insulator housing under pressure that in the insulator housing overpressure, at least a slight overpressure, compared to the pressure in the housing of the separator. This would also avoid an inflow of process to be processed aerosol.
  • the inflow of clean gas or pure air through this pipe socket can also be done with a predetermined temperature, preferably with a higher temperature than in the space of the high voltage rod with electrodes and the grid or wire mesh electrode.
  • a predetermined temperature preferably with a higher temperature than in the space of the high voltage rod with electrodes and the grid or wire mesh electrode.
  • the insulator housing for the High voltage insulator sits concentrically on the over the clear cross section of the separator housing reaching bottom plate.
  • the insulator housing sits the high-voltage insulator with a freely exposed forehead.
  • the high-voltage rod is stuck with a frontal area in the exposed forehead of the high-voltage insulator.
  • the grid or mesh electrode sets with its one end portion in the central passage of the bottom plate. With its other end region, the mesh or mesh electrode inserted through the nozzle in the seated on the clear cross-section of the separator housing nozzle plate.
  • the bottom plate between the insulator housing and the wall of the separator housing for the gas flow is continuous.
  • the separator housing covers the bottom plate with insulator housing centrally seated thereon.
  • a prefilter over the clear cross-section of the housing inclined to the axis of the separator with its deepest portion next to a drain pipe in the separator housing, preferably to direct the outflow of liquid there.
  • a flange for the raw gas inlet to which the supply channel for the aerosol, the raw gas docks.
  • the insulator housing and the bottom plate covering the wall of the separator sitting front or shell wall side another flange for the clean gas outlet.
  • the bottom plate is not continuous between the insulator housing and the wall of the separator housing.
  • the bottom plate and the central insulator housing cover the separator.
  • Forehead or preferably shell wall side because of the drain cock in the local front side separator wall is in the wall of the separator housing the flange for the raw gas inlet.
  • the flange for The clean gas outlet is now in the separator wall in the area between the bottom plate and the nozzle plate.
  • a further modified embodiment of the electrostatic precipitator is described according to claim 3.
  • the insulator housing is also located on an over the clear cross section of the separator housing reaching bottom plate, only now is the high voltage insulator with its one forehead positioned centrally on the bottom plate.
  • a high voltage grid is attached to which the high voltage bars are distributed evenly around the axis of the separator and at the same radial distance thereto and each project coaxially into the associated grid or mesh electrode.
  • the bottom plate between the insulator housing and the wall of the separator housing is continuous.
  • upstream of the grid or mesh electrodes upstream of the grid plate and in front of the nozzle plate a prefilter over the clear cross-section of the housing inclined to the axis of the separator.
  • a plate the fixing plate, is attached centrally to the bottom plate and outside of the insulator housing according to claim 12, through which the grid or mesh electrodes pass in a form-fitting manner.
  • the insulator housing sits concentrically on a reaching over the clear cross-section of the separator housing bottom plate.
  • the high-voltage insulator sits centrally on the frontal ground.
  • the high voltage rod is stuck with a forehead areas in the high voltage insulator.
  • the grid or mesh electrode sets with a frontal area in a central passage of the bottom plate and abuts with its other forehead on the centrally mounted, non-gas permeable plate and is completely covered.
  • the nozzle plate is located between the bottom plate and the end plate. The collector sits between the nozzle plate and the end plate and completely surrounds the sleeve.
  • the raw gas is in the bottom plate or in the wall region of the separator between the carrier and nozzle plate.
  • the clean gas outlet is located in the wall area of the separator, which covers the collector.
  • the insulator housing sits concentrically on the over the clear cross-section of the separator housing reaching bottom plate.
  • the high-voltage insulator is mounted centrally on the frontal floor.
  • a high-voltage grid is attached to which the rods are distributed evenly around the axis of the separator at the same radial distance from this axis and each project coaxially into the associated grid or mesh electrode.
  • the mesh or mesh electrodes sitting in the bottom plate push with their other forehead on the covering face plate.
  • the grid or mesh electrodes form-fit pass through the nozzle plate between the bottom plate and the end plate.
  • the arrangement of the grid or mesh electrodes between the nozzle plate and the face plate is completely surrounded by the porous collector.
  • the clean gas outlet is in the wall area of the separator housing, in which the porous collector is exposed.
  • the Indian FIG. 1 proposed electrostatic precipitator has the raw gas inlet 18 below in the jacket wall of the separator housing 1.
  • the grounded nozzle plate 2 is installed, in which a nozzle 3 is centrally located here.
  • a grounded grid electrode 8 is seated positively in the nozzle and is slightly upstream of the nozzle plate 2 upstream of the gas.
  • a disk-shaped high voltage electrode 4 is attached with radially directed tips.
  • the high voltage electrode 4 may be configured differently, such as from DE 10 2005 023 521 is apparent. It is a needle-shaped electrode, has disc shape or is star-shaped.
  • the high voltage electrode 4 is positioned within the grid electrode 8 such that the peaks / pips around it form the smallest distance H to the grid electrode 8.
  • the porous collector 11, the porous filter 11, is used.
  • the grid electrode 8 and the collector are installed here between the bottom plate 9 and the nozzle plate 2 in the separator housing 1.
  • the high voltage rod 5 is clamped with an end face in the high voltage insulator 6, which is centrally attached to the bottom of the insulator housing 7 and exposed to the interior.
  • the high-voltage insulator 6 is exposed in the interior of the insulator housing 7 and is therefore not in the raw gas stream.
  • Through the high-voltage bushing 13 through the high-voltage rod 5 is located at the high voltage terminal of a not shown here high voltage power supply unit.
  • the high voltage electrode 12 is fixed to the high voltage rod 5 just before the opening in the insulator housing 7. It has a similar or the same shape as the high voltage electrode 4 at the free end of the high voltage rod 5.
  • the arrangement of high voltage electrodes 4, 12 and high voltage rod 5 is coaxial with the grid electrode 8.
  • the bottom plate 9 has passages 10, through which the gas flow flows unhindered, at best insignificantly prevented.
  • the porous collector 11 surrounds the grid electrode 8 completely and concentrically at a distance. The entire gas flow must forcibly pass through the porous collector through this structure.
  • the electrostatic precipitator has the flange-like raw gas inlet 18, through which the gas flow 16 introduced via a channel (not shown) enters. Downstream of the gas, the purified gas stream, after penetration of the porous collector 11, exits via the clean gas outlet opening 19 or is led further in a flanged channel (not shown).
  • the arrows 16 in the figures indicate the flow path through the separator.
  • the electrostatic precipitator further has a pipe 15 through the wall 1 of the separator and the wall of the insulator housing 7, through which clean air or clean gas can be flowed into the insulator housing 7 to protect the high voltage insulator 6 from contamination by deposits.
  • the connected clean air or clean gas reservoir is not shown.
  • the clean air or the clean gas can also be introduced heated.
  • the electrostatic precipitator has a pre-filter 14, which is installed in the separator housing 1 upstream of the nozzle plate 2 here in an oblique position. With him larger particles in the raw gas stream already be intercepted, namely particles of at least the size, which certainly can not pass through the perforations / mesh of the grid or wire mesh electrode 8 due to their diameter.
  • the separator has away from the nozzle plate 2, a pipe 17 through the Abscheiderwand 1 to the outside, through which accumulated on the nozzle plate 2, discharged from the porous collector 11, contaminated liquid can be discharged.
  • the separator has a tube 20 which is installed at the bottom of the separator housing 1 to drain contaminated, dripping from the pre-filter 14, collected liquid also can.
  • the insulator housing 7 may be installed inside the separator on the clean gas side, as in FIG FIG. 1 shown. Or it can be located outside the separator, then the bottom plate 9 would have no openings 10 for the clean gas passage, as in FIG. 2 will be shown.
  • a plurality of high voltage electrodes 4 may be mounted on the high voltage rod 5.
  • the geometry and size of the high voltage electrodes 4, their position, the width H of the electrode gap will be determined by the conditions under which the trap has to operate.
  • the fixing plate 21 is installed between the bottom plate 9 and the nozzle plate 2 (see FIG. 2b ).
  • the fixing plate 9 has an opening or opening through which the grid electrode passes positively.
  • the fixing plate 21 is attached to the bottom plate via fixing elements or spacer elements 22. There is a gap between the fixing plate 21 and the porous collector 11, the collector filter 11.
  • the grid or wire mesh electrode 8 may be provided with open ( FIG. 6a ) or shielded forehead 110, 111.
  • open here is meant that the forehead has sharp or pointed spots, ie freestanding cut wire ends. In this way, corona discharges opposite thereto can occur whose polarity is opposite to that of the intended corona discharge between the electrodes 11 and 4 or 12.
  • shielded forehead 110, 111 it is meant that the forehead is smooth, ie peaks or sharp edges are avoided so that no counter corona discharge can occur.
  • the front edges are after Figure 6b, 6d covered with a dielectric or metallic ring 110, 111.
  • the grid or wire mesh electrode 8 may be incorporated in the nozzle 3 such that the entrance through the open, exposed Front of the grid or wire mesh electrode 8 gas upstream of the nozzle plate 2 sits ( Figure 7a ) or the shielded end edge 110 upstream ( FIG. 7b ) or the open end edge in the nozzle 3 (FIG. FIG. 7c ) or the open end edge on a fixing ring 112 downstream of the nozzle 3 ends ( FIG. 7d ).
  • the flow direction of the gas stream to be cleaned is in FIGS. 7a to d indicated each time by the arrow 16.
  • the grid or wire mesh electrode 8 is installed in the passages of the carrier pacts 9 in the region of the insulator housing 7 such that the local free end edge of the grid or wire mesh electrode 8 is at the height of the bottom plate 9 (FIG. FIG. 8a, b ) or protrudes into the insulator housing 7 ( FIGS. 8c to f ).
  • FIG. 8a ends the free end of the grid or wire mesh electrode 8 in the passage in the bottom plate, according to Figure 8b sits a ring 101 on the bottom plate 9 and surrounds the grid or wire mesh electrode 8.
  • FIG. 8c ends the free edge of the front of the grid or wire mesh electrode 8 in the insulator housing, after FIG. 8d this is completed with a ring.
  • To FIG. 8e is the front edge of the grid or wire mesh electrode 8 completed with a projecting into the insulator housing dielectric ring 110, after FIG. 8f additionally with a ring placed on top.
  • the gas flow into the grid or wire mesh electrode 8 may be covered like a sieve, as in the FIGS. 9a to d is exemplified, namely by a flat flat grid gevie FIG. 9a , a flat, to the entrance end of the grid or wire mesh electrode 8 inclined grid ( FIG. 9b ), to FIG. 9c a conical grid and after FIG. 9d a hemispherical grid. It can thus be ensured that particles of a certain particle size corresponding to the mesh size can no longer flow into the interior of the mesh or wire mesh electrode 8 and impair them.
  • FIG. 3 A compact electrostatic precipitator with more than one grid or wire mesh electrode 8 is shown FIG. 3 , with two Grid or wire mesh electrodes 8.
  • the separator also consists of the housing 1 and the nozzle plate 2 with two nozzles 3.
  • the two grid or wire mesh electrodes 8 extend from the nozzle plate 2 to the bottom plate 9 and stuck in the respective nozzle 3 and Opening in the bottom plate 9 positively.
  • the high voltage insulator 6 is also now off the gas stream but now mounted on the bottom plate 9 and exposed in the insulator housing.
  • the high voltage grid 23 is connected to the high voltage feedthrough 13.
  • FIG. 1 shows FIG. 3
  • Gas upstream sits in front of the nozzle plate 2 and installed at an angle to her, also the pre-filter 14 to catch coarse particles. Collected on the nozzle plate 2, with particles offset from the porous collector effluent liquid can be discharged through the outlet 17.
  • the two high-voltage rods 5 are also inside the grid or wire mesh electrodes 8 with high voltage electrodes 4, 12 coaxially equipped.
  • the fixing plate 21 is mounted on spacer elements 22 from below to the bottom plate 9.
  • the two grid or wire mesh electrodes 8 are positively passed through them.
  • the raw gas stream enters the front of the bottom of the separator, as the arrow 16 indicates.
  • FIG. 3 The construction in FIG. 3 is exemplary.
  • the installation variant for raw gas inlet, Hochnapssisolatoreinbau according to FIG. 1 would be feasible without special effort. It is essential that the forced Gastromweg, as indicated by the arrows 16, is set up, even if it divides in through the section of the ionization stage in two.
  • FIG. 2 shows FIG. 4 by way of example a compact electrostatic precipitator in which the insulator housing 7 is on and not in ( FIG. 1 ) is seated in the separator housing 1.
  • the separator has an ionization stage of only one grid or wire mesh electrode 8 into which coaxial with the high voltage electrode 4, 12 equipped high voltage rod 5 protrudes, which protrudes from the mounted on the bottom of the insulator housing high voltage insulator.
  • the interior of the insulator housing 7 is also flushable via the pipe 15 through the housing wall 7 with clean gas, air.
  • the high voltage rod 5 is electrically connected to the high voltage feedthrough 13.
  • the grid or wire mesh electrode 8 is seated with its one end positively in the opening of the bottom plate in the interior of the insulator housing 7 and abuts with the other end on the gas-impermeable end plate 24, whereby the grid or wire mesh electrode 8 is positioned defined.
  • the porous collector surrounds the grid or wire mesh electrode 8 completely but not over their entire length, but only partially.
  • the nozzle plate 2 In the intermediate longitudinal region of the grid or wire mesh electrode 8 sits the nozzle plate 2, through which it goes positively.
  • the raw gas inlet 18 is located in the bottom plate 9, the clean gas outlet 19 in the almond wall of the separator housing 1. Thus, one and only one gas flow path is forced, as indicated by the arrows 16 is displayed.
  • the ionization stage of the coaxial electrode arrangement is now divided into two regions, namely a gas inlet region 81 above the collector region and a gas outlet region 82 in the collector region. From the collector dripping, contaminated with liquid now accumulates at the bottom of the separator housing 1, but can also be drained via the built-in housing wall cock 17.
  • the exemplary installation of a prefilter 25 is not shown in this figure, but can be taken from the figure 13a.
  • FIG. 5 Another example of a construction of the compact electrostatic precipitator is shown in FIG FIG. 5 shown.
  • This separator has, as in FIG. 3 already executed, more than two nozzles, namely two.
  • the insulator housing 7 sits like in FIG. 4 outside of the separator housing 1.
  • the high voltage insulator 6 is at the bottom of the insulator housing, as to FIG. 3 indicated, mounted.
  • the high voltage grid 28 is attached to the free end of the high voltage insulator and exposed inside the insulator housing.
  • the two high-voltage bars 5 are suspended from the high voltage grid 28 and protrude through the bottom plate 9 coaxially in the two grid or wire mesh electrodes 8.
  • the high voltage grid 28 is electrically connected to the high voltage bushing 13.
  • the interior of the insulator housing is through the pipe 15 through the wall of the insulator housing with clean gas, air under pressure and / or tempered Wegbar.
  • Both high-voltage bars 5 are in the area of the two grid or wire mesh electrodes 8 similarly equipped with high voltage electrodes 4, 12.
  • the two grid or wire mesh electrodes 8 abut the end face on the gas-impermeable end plate 24 and are fixed there. With their other forehead, the two grid or wire mesh electrodes 8 sit positively in the respective opening of the bottom plate 9 to the interior of the insulator housing 7.
  • the nozzle plate 2 is now located in the longitudinal region of the two grid or wire mesh electrodes 8, through which they form fit through the respective nozzle. 3 pass. As a result, both are additionally fixed.
  • both grid or wire mesh electrodes 8 are both grid or wire mesh electrodes 8 in the region between the face plate 24 and the nozzle plate 2 of the porous collector 11, which is clamped between them.
  • the raw gas inlet 18 is located in the bottom plate 9 outside, the clean gas outlet 19 in the jacket wall at the bottom of the separator housing 1.
  • the gas stream is divided by the ionizer into two branches.
  • the gas flow is forced through the separator and leads from the raw gas inlet 18 completely and solely through the ionizer and the collector to the clean gas outlet 19, as indicated by the arrows 16.
  • the exemplary, possible installation of a prefilter 25 for the separation of large particles is like to FIG. 4 indicated in Figure 13a.
  • FIGS. 4 and 5 is indicated in each case that the porous collector 11 is clamped between the nozzle plate 2 and the end plate 24.
  • This construction can be modified without violating the forced gas flow path in such a way that the grid or wire mesh electrode 8 ends flush with the face plate 24, but the porous collector 11 is clamped between the nozzle plate 2 and a collector plate 25 Gas outlet region 82 projects freely into the collector region, as shown in Figure 13 b for a grid or wire mesh electrode 8 in the cutout.
  • the nozzle plate 2 at its nozzle 3 / its nozzles 3 may be surrounded upstream by a ring which allows the collection and collection of contaminated liquid from the gas stream without running down and contaminating the grid or wire mesh electrode 8 Perforations / meshes clogged.
  • this contaminated liquid Via a pipe 27 through the nozzle plate 2, upstream or downstream of the porous gas collector 11, this contaminated liquid can run off in a targeted manner in the intended area of the separator.
  • FIG. 13c this is sketched in the section upstream of the gas stream and in FIG. 13d even more in detail as a U-shaped tube 27.
  • the entrance of this tube 27 is located downstream of a possibly installed prefilter 25.
  • the compact electrostatic precipitator with the forced gas flow path in it operates as follows:
  • the raw gas is introduced via a flanging at the separator channel and flows through the pre-filter to separate coarse particles, collect and discharge from the separator.
  • a corona discharge occurs at the sharp edges / tips of the high voltage electrodes.
  • the entrained particles in the gas stream are charged there electrically and move to the grid or wire mesh electrode.
  • the particle movement occurs under the influence of the gas-dynamic forces and the electric field in the electrode gap.
  • Part of the particles are deposited in the grid or wire mesh electrode.
  • the liquid taken there is electrically neutralized due to the reference / ground potential of the grid or wire mesh electrode, runs down it, drips into the separator and is discharged as needed.
  • the other part passes through the mesh of the mesh or wire mesh electrode and forms a space charge zone between the mesh or mesh electrode and the porous collector.
  • the charged particles accumulate on the grounded surfaces and are electrically neutralized.
  • the mixed with the particles of liquid runs off, is collected in the separator in the intended area and discharged as needed.
  • This electric field drives the charged particles onto the grid or wire mesh electrode, where they are partially collected, partially penetrate and penetrate into the space between the grid or wire mesh electrode and the porous collector.
  • a small portion of the charged particles reaches the upper zone of the grid or wire mesh electrode where the additional high voltage electrode sits next to the bottom plate.
  • the corona discharge at the additional high voltage electrode generates an electrical wind directed toward the grid or wire mesh electrode.
  • the geometry of the electrode gap is chosen so that the speed of the electric wind is equal to or higher than the velocity of the gas flow in the upper part of the grid or wire mesh electrode.
  • the electric wind protects the high-voltage insulator in the insulator housing, as well as the clean gas introduced into the interior of the insulator housing or the clean air. So it can not penetrate charged particles in the interior of the insulator housing.
  • Particles are also deposited on the fixing plate 21 since they are likewise connected to the reference potential or earthed, thus reducing the number of particles that can fly to the insulator housing.
  • the fixing plate is mounted at a distance 2d from the passage in the bottom plate, thereby allowing the electric wind to pass at maximum speed in the electrode gap through the grid wire mesh electrode produced by the bottom plate and the fixing plate, thereby blowing off the charged particles become. This situation applies in the two cases that the Gastromweg through the entire grid or wire mesh electrode in one direction only, FIGS. 1 . 2 and 3 , or regionally opposite, FIGS. 4 and 5 , go.
  • the porous collector may be made of porous materials of different thickness and density. It can be made of different porous materials, dielectric, electrically semiconductive or conductive. Also, the porous material or the mesh or wire mesh electrode may be provided with additional catalytic additives. The materials must be process-oriented, at least largely process-oriented.
  • the precipitation efficiency for a single-module, compact electrostatic precipitator is between 92 and 95%, for a two-modulus between 97 and 99%.

Landscapes

  • Electrostatic Separation (AREA)

Claims (16)

  1. Séparateur électrostatique pour éliminer des composants solides ou liquides d'un aérosol comprenant :
    - un boîtier de séparateur (1) ayant un accès sous forme d'entrée de gaz brut (18) pour l'aérosol à nettoyer et une sortie, la sortie de gaz nettoyé (19) pour l'aérosol nettoyé,
    - au moins un canal d'écoulement fournissant l'aérosol, en étant bridé sur l'entrée de gaz brut (18),
    - une installation de sortie (17) pour évacuer les composants solides et liquides séparés de l'aérosol,
    - un étage d'ionisation alimenté de l'extérieur par une alimentation électrique à haute tension (13) composée d'au moins un barreau (5) métallique venant en saillie dans le chemin de passage de l'aérosol et mis à une haute tension électrique, à savoir le barreau haute tension (5),
    - un étage collecteur en aval de l'étage d'ionisation dans le chemin de passage,
    séparateur caractérisé en ce que
    - au moins un barreau haute tension (5) pénètre par l'intermédiaire d'un isolateur haute tension (6) situé à l'écart du chemin de passage de gaz pour pénétrer dans le chemin de passage de gaz et l'isolateur haute tension (6) est logé dans un boîtier d'isolateur (7) en forme de pot, non traversé par l'aérosol, et relié à un potentiel électrique de référence,
    - le barreau haute tension (5) est muni d'une électrode (4), l'électrode haute tension (4) au moins à l'extrémité libre et d'une dernière électrode (12), l'électrode de protection (12) à la distance (d) de l'ouverture du boîtier d'isolateur (7) et les électrodes (4, 12) sont en forme de disque avec des pointes dirigées radialement et réparties régulièrement en périphérie,
    - le barreau haute tension (5) pénètre coaxialement dans une enveloppe cylindrique creuse (8) en tôle perforée ou en mailles de fil, de l'électrode en forme de grille ou de mailles de fil (8), l'électrode s'appliquant par sa face frontale contre une plaque de fond (9) du boîtier d'isolateur (7) et elle est reliée à un potentiel de référence de façon qu'il subsiste par électrode (4, 12) un intervalle concentrique de très petite dimension (H) par rapport à l'électrode en forme de grille ou de mailles de fil (8) qui l'entoure,
    - l'électrode en forme de grille ou de mailles de fil (8) vient contre une plaque perforée (2), c'est-à-dire une plaque de buse (2), ou est engagée dans celle-ci, cette plaque étant à un potentiel électrique de référence,
    - la ou les électrodes en forme de grille ou de mailles de fil (8) est(sont) entourée(s) par un collecteur poreux (11) au plus sur toute la longueur du manchon mais toutefois complètement sur la périphérie et tout le flux d'aérosol traverse le collecteur poreux.
  2. Séparateur électrostatique selon la revendication 1,
    caractérisé en ce qu'
    un passage de haute tension (13) arrive de l'environnement et traverse le boîtier d'isolateur (7).
  3. Séparateur électrostatique selon la revendication 2,
    caractérisé en ce qu'
    un tube (15) arrivant de l'environnement traverse le boîtier d'isolateur (7) pour introduire du gaz nettoyé ou de l'air nettoyé à une température donnée et sous une pression donnée.
  4. Séparateur électrostatique selon la revendication 3,
    caractérisé en ce que
    - le boîtier d'isolateur (7) repose concentriquement sur la plaque de fond (9) qui occupe toute la section libre du boîtier de séparateur (1),
    - un isolateur haute tension (6) repose en position centrale dans le boîtier d'isolateur (7) et le barreau haute tension (5) est enserré frontalement dans celui-ci,
    - l'électrode en forme de grille ou de mailles de fil (8) vient par une zone frontale dans un passage de la plaque de fond (9) et par son autre zone frontale dans une plaque de buse (2) occupant la section libre du boîtier de séparateur (1), dans une buse (3).
  5. Séparateur électrostatique selon la revendication 4,
    caractérisé en ce que
    - la plaque de fond (9) est perforée entre le boîtier d'isolateur (7) et la paroi du boîtier de séparateur (1), et
    - le boîtier de séparateur (1) couvre la plaque de fond perforée (9) ainsi que le boîtier d'isolateur (7).
  6. Séparateur électrostatique selon la revendication 5,
    caractérisé en ce qu'
    en amont de la face frontale libre de l'électrode en forme de grille ou de mailles de fil (8) et de la plaque de buse (2), il est prévu un filtre amont (14) incliné à travers la section libre du boîtier de séparateur (1) par rapport à l'axe du barreau haute tension (5), et en amont du pré-filtre (14), la paroi coté enveloppe du boîtier de séparateur (1) comporte l'entrée de gaz brut (18) et dans le boîtier de séparateur (1), il y a la plaque de fond (9) ainsi que le boîtier d'isolateur (7) avec la sortie de gaz nettoyé (19).
  7. Séparateur électrostatique selon la revendication 4,
    caractérisé en ce que
    la plaque de fond (9) n'est pas perforée entre le boîtier d'isolateur (7) et la paroi du boîtier de séparateur (1) et par le côté frontal elle forme une partie de la paroi du boîtier de séparateur (1).
  8. Séparateur électrostatique selon la revendication 7,
    caractérisé en ce qu'
    en amont selon le sens de passage de la veine de gaz de la face frontale libre de l'électrode en forme de grille ou de mailles de fil (8) et de la plaque de buse (2), il y a un pré-filtre (14) incliné dans la section libre du boîtier par rapport à l'axe du barreau (5),
    du côté de la paroi enveloppe, en amont selon le sens de passage de la veine de gaz devant le pré-filtre (14), la paroi du boîtier de séparateur (1) comporte l'entrée de gaz brut (18) et en aval de la plaque de fond (9) et de la plaque de buse (2), il y a la sortie de gaz nettoyé.
  9. Séparateur électrostatique selon la revendication 3,
    caractérisé en ce que
    - le boîtier (7) de l'isolateur haute tension (6) est installé concentriquement sur la plaque de fond (9) occupant la section libre du boîtier de séparateur (1),
    - dans le boîtier (7), l'isolateur haute tension (6) est installé en position centrale sur la plaque de fond (9) et vient en saillie dans le boîtier d'isolateur (7),
    - une grille haute tension (23) est fixée sur la face frontale de l'isolateur haute tension (6) venant en saillie dans le boîtier d'isolateur (7), grille comportant des barreaux haute tension (5) répartis régulièrement autour de l'axe du séparateur à la même distance radiale de l'axe et venant à chaque fois en saillie coaxialement dans l'électrode en forme de grille ou de mailles de fil (8) associée.
  10. Séparateur électrostatique selon la revendication 9,
    caractérisé en ce que
    la plaque de fond (9) est perforée entre le boîtier d'isolateur (7) et la paroi intérieure du boîtier de séparateur (1).
  11. Séparateur électrostatique selon la revendication 10,
    caractérisé en ce qu'
    en amont selon le sens de passage du gaz, du côté frontal du montage libre de l'électrode en forme de grille ou de mailles de fil (8) et de la plaque de buse (2), un pré-filtre (14) est installé incliné par rapport à l'axe du séparateur au-dessus de la section libre du boîtier de séparateur (1).
  12. Séparateur électrostatique selon la revendication 11,
    caractérisé en ce qu'
    une plaque (21), c'est-à-dire la plaque de fixation (21), est fixée à la plaque de fond (9) en position centrale, du côté opposé à l'isolateur, par l'intermédiaire d'éléments de fixation (22), cette plaque étant traversée par la ou les électrodes en forme de grille ou de mailles de fil (8).
  13. Séparateur électrostatique selon la revendication 3,
    caractérisé en ce que
    - le boîtier (7) de l'isolateur haute tension (6) s'appuie concentriquement sur la plaque de fond (9) occupant la section libre du boîtier de séparateur (1), l'isolateur haute tension (6) reposant en position centrale sur le fond côté frontal dans le boîtier d'isolateur (7) et recevant axialement le barreau haute tension (5),
    - l'électrode en forme de grille ou de mailles de fil (8) venant par sa face frontale dans un passage traversant de la plaque de fond (9) et par son autre face frontale sur une plaque centrale (24), c'est-à-dire la plaque frontale (24) qui couvre l'électrode en forme de grille ou de mailles de fil (8) au-delà de sa section,
    - la plaque de buse (2) se trouve entre la plaque frontale (24) et la plaque de fond (9) et l'électrode en forme de grille ou de mailles de fil (8) est entourée complètement par le collecteur poreux (11) entre la plaque de buse (2) et la plaque frontale (24).
  14. Séparateur électrostatique selon la revendication 13,
    caractérisé en ce que
    l'entrée de gaz brut (18) se trouve dans la plaque de buse (9) et la sortie de gaz brut se trouve dans la paroi du boîtier de séparateur (1) au niveau du collecteur poreux (11).
  15. Séparateur électrostatique selon la revendication 3,
    caractérisé en ce que
    - le boîtier (7) de l'isolateur haute tension (6) est concentrique sur la plaque de fond (9) occupant la section libre du boîtier de séparateur (1),
    - l'isolateur haute tension (6) est installé en position centrale du boitier d'isolateur (7) contre le fond côté frontal,
    - la face frontale de l'isolateur haute tension (6) qui vient en saillie dans le boîtier d'isolateur (7) porte solidairement une grille haute tension (28) munie de barreaux haute tension (5) répartis régulièrement autour de l'axe du séparateur à la même distance radiale de l'axe et venant à chaque fois en saillie coaxialement dans l'électrode en forme de grille ou de mailles de fil (8) associée,
    - les électrodes en forme de grille ou de mailles de fil (8) engagées dans la plaque de fond (9) viennent par leur face frontale libre contre la plaque frontale de couverture (24),
    - les électrodes en forme de grille ou de mailles de fil passant entre la plaque de fond (9) et la plaque frontale (24) à travers la plaque de buse (2), le montage des électrodes en forme de grille ou de mailles de fil (8) entre la plaque de buse (2) et la plaque frontale de couverture (24) étant complètement entouré par le collecteur poreux (11).
  16. Séparateur électrostatique selon la revendication 15,
    caractérisé en ce que
    l'entrée de gaz brut (18) se trouve dans la plaque de buse (9) et la sortie de gaz brut (19) se trouve dans la paroi du boîtier de séparateur (1) au niveau du collecteur poreux (11).
EP09714062A 2008-02-29 2009-01-14 Séparateur électrostatique Not-in-force EP2244834B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008011949A DE102008011949A1 (de) 2008-02-29 2008-02-29 Elektrostatischer Abscheider
PCT/EP2009/000158 WO2009106192A1 (fr) 2008-02-29 2009-01-14 Séparateur électrostatique

Publications (2)

Publication Number Publication Date
EP2244834A1 EP2244834A1 (fr) 2010-11-03
EP2244834B1 true EP2244834B1 (fr) 2012-03-07

Family

ID=40792681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09714062A Not-in-force EP2244834B1 (fr) 2008-02-29 2009-01-14 Séparateur électrostatique

Country Status (5)

Country Link
US (1) US8337600B2 (fr)
EP (1) EP2244834B1 (fr)
AT (1) ATE548120T1 (fr)
DE (1) DE102008011949A1 (fr)
WO (1) WO2009106192A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108372029A (zh) * 2018-04-04 2018-08-07 昆山奕盛来环境科技有限公司 一种静电空气净化板
EP3492175A1 (fr) 2017-12-04 2019-06-05 PHX Innovation ApS Système précipitateur électrostatique ayant une grille pour la collecte de particules

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009030804B4 (de) 2009-06-27 2011-07-28 Karlsruher Institut für Technologie, 76131 Elektrostatischer Abscheider zur Partikelabscheidung
US8092768B2 (en) * 2010-02-11 2012-01-10 Energy & Environmental Research Center Foundation Advanced particulate matter control apparatus and methods
HK1150374A2 (en) * 2011-06-07 2011-12-16 Yiu Ming Chan An air purification device and method
KR101322689B1 (ko) 2012-02-06 2013-10-30 한양대학교 에리카산학협력단 섬유형상 입자의 분리 방법 및 시스템
ITAN20120152A1 (it) * 2012-11-20 2014-05-21 S C M Societa Costruzioni Metal Liche S R L Filtro elettrostatico perfezionato.
US20150059580A1 (en) * 2013-08-27 2015-03-05 Mriglobal Forensic air and surface sampler technology (fasst) collector
US9827573B2 (en) * 2014-09-11 2017-11-28 University Of Washington Electrostatic precipitator
JP6345127B2 (ja) * 2015-01-22 2018-06-20 三菱重工業株式会社 排ガス処理システム及び方法
CN104741278B (zh) * 2015-04-07 2017-04-26 深圳爱浦发空气净化科技有限公司 高压静电水雾发生装置
AU2016362314B2 (en) * 2015-12-02 2020-04-02 Airtech Innovations, Llc System, apparatuses, and methods for improving the operation of a turbine by using electrostatic precipitation
CN105797862A (zh) * 2016-05-10 2016-07-27 艾尼科环保技术(安徽)有限公司 一种顶打静电除尘器绝缘子及绝缘附件装置
CN106799307A (zh) * 2017-02-17 2017-06-06 白三妮 空气颗粒沉积吸附装置
US10864526B2 (en) * 2017-05-03 2020-12-15 Airgard, Inc. Electrode for electrostatic precipitator gas scrubbing apparatus
JP2018202297A (ja) * 2017-05-31 2018-12-27 臼井国際産業株式会社 ディーゼルエンジン排ガス処理用電気集塵装置の放電電極
KR101975183B1 (ko) * 2017-09-01 2019-05-13 주식회사 알링크 전도성 필터 모듈이 구비된 미세먼지 제거 시스템
CN108380390B (zh) * 2018-04-04 2020-11-06 泗县田原秸秆回收再利用有限责任公司 一种新型的静电空气净化板
CN108480045B (zh) * 2018-04-04 2020-12-01 五河县纬立农业科技有限公司 一种非均匀排布的阵列式空气净化板
USD1028199S1 (en) 2018-06-13 2024-05-21 Exodraft a/s Smoke extractor
CN111001269B (zh) * 2018-10-04 2022-02-11 斗山重工业建设有限公司 集尘模块及具备集尘模块的脱硫装置
KR102066479B1 (ko) 2018-10-10 2020-01-15 주식회사 알링크 전도성 필터 유닛, 전도성 필터 유닛을 포함하는 전도성 필터 모듈, 및 전도성 필터 모듈이 구비된 미세먼지 제거 시스템
KR102097737B1 (ko) * 2018-10-12 2020-04-06 (주)에코솔루텍 절연 행거봉이 구비된 전기집진기
WO2021021370A1 (fr) 2019-08-01 2021-02-04 Infinite Cooling Inc. Panneaux destinés à être utilisés dans la collecte de fluide à partir d'un flux de gaz
EP4007658A1 (fr) 2019-08-01 2022-06-08 Infinite Cooling Inc. Systèmes et procédés pour collecter un fluide contenu dans un flux de gaz
US11123752B1 (en) * 2020-02-27 2021-09-21 Infinite Cooling Inc. Systems, devices, and methods for collecting species from a gas stream
KR102186099B1 (ko) * 2020-05-25 2020-12-03 주식회사 에프에이치아이코리아 이온화 촉매 메쉬를 포함하는 라돈 가스 제거기
KR102186098B1 (ko) * 2020-05-25 2020-12-03 주식회사 에프에이치아이코리아 라돈 가스 제거기
CN217109926U (zh) * 2021-05-12 2022-08-02 微喂苍穹(上海)健康科技有限公司 一段式空气消毒装置
CN113275125A (zh) * 2021-05-19 2021-08-20 扬州大学 一种静电除尘器及其防击穿装置和使用方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1605648A (en) * 1921-03-07 1926-11-02 Milton W Cooke Art of separating suspended matter from gases
US2273194A (en) * 1941-03-11 1942-02-17 Research Corp Gas cleaning
US3818678A (en) * 1967-04-10 1974-06-25 Filteron Int Inc Methods of and apparatus for separating solid and liquid particles from air and other gases
US3740925A (en) * 1971-07-06 1973-06-26 Filteron Int Inc Methods of and apparatus for separating solid and liquid particles from air and other gases
DE2134576C3 (de) * 1971-07-10 1975-10-30 Metallgesellschaft Ag, 6000 Frankfurt Röhre n-NaBelektroabscheider
SE385271B (sv) * 1974-02-13 1976-06-21 Lectrostatic Ab Elektrostatisk filter
JPS54156277A (en) * 1978-05-31 1979-12-10 Mitsubishi Electric Corp Elecrtospark type gas treating system
US4529418A (en) * 1982-01-15 1985-07-16 Santek, Inc. Inlet section for inertial-electrostatic precipitator unit
US4604112A (en) * 1984-10-05 1986-08-05 Westinghouse Electric Corp. Electrostatic precipitator with readily cleanable collecting electrode
CA2108539C (fr) * 1993-10-15 1999-01-26 Constantinos J. Joannou Purificateur d'air ionisant
JP2000001320A (ja) * 1998-06-15 2000-01-07 Canon Inc 光学素子またはその製造用素材としてのガラス塊の成形方法
US6221136B1 (en) 1998-11-25 2001-04-24 Msp Corporation Compact electrostatic precipitator for droplet aerosol collection
US6193782B1 (en) * 1999-03-30 2001-02-27 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators and method
DE19946283C1 (de) * 1999-07-31 2000-09-28 Metallgesellschaft Ag Erdleiter für Erdungsanlagen
DE10132582C1 (de) * 2001-07-10 2002-08-08 Karlsruhe Forschzent Anlage zum elektrostatischen Reinigen von Gas und Verfahren zum Betreiben derselben
US6508861B1 (en) * 2001-10-26 2003-01-21 Croll Reynolds Clean Air Technologies, Inc. Integrated single-pass dual-field electrostatic precipitator and method
DE10244051C1 (de) 2002-09-21 2003-11-20 Karlsruhe Forschzent Ionisator und seine Verwendung in einer Abgasreinigungsanlage für tropfenbeladene und/oder kondensierende Feuchtgase
US6902604B2 (en) * 2003-05-15 2005-06-07 Fleetguard, Inc. Electrostatic precipitator with internal power supply
DE102004037286B3 (de) 2004-07-31 2005-08-11 Forschungszentrum Karlsruhe Gmbh Bauprinzip einer Abgasreinigungsanlage und Verfahren zum Reinigen eines Abgases damit
DE102005023521B3 (de) 2005-05-21 2006-06-29 Forschungszentrum Karlsruhe Gmbh Nasselektrostatische Ionisierungsstufe in einer elektrostatischen Abscheideeinrichtung
US7270697B2 (en) * 2005-10-11 2007-09-18 Durr Systems, Inc. Electrostatic precipitator
WO2007116131A1 (fr) * 2006-04-11 2007-10-18 Renault S.A.S Dispositif et procede de capture et d’elimination de particules agglomerees issues d’un filtre a particules de vehicule automobile
US7582145B2 (en) 2007-12-17 2009-09-01 Krigmont Henry V Space efficient hybrid collector
US7582144B2 (en) 2007-12-17 2009-09-01 Henry Krigmont Space efficient hybrid air purifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492175A1 (fr) 2017-12-04 2019-06-05 PHX Innovation ApS Système précipitateur électrostatique ayant une grille pour la collecte de particules
CN108372029A (zh) * 2018-04-04 2018-08-07 昆山奕盛来环境科技有限公司 一种静电空气净化板
CN108372029B (zh) * 2018-04-04 2020-12-04 五河县纬立农业科技有限公司 一种静电空气净化板

Also Published As

Publication number Publication date
DE102008011949A1 (de) 2010-01-21
US20110011265A1 (en) 2011-01-20
EP2244834A1 (fr) 2010-11-03
WO2009106192A1 (fr) 2009-09-03
ATE548120T1 (de) 2012-03-15
US8337600B2 (en) 2012-12-25

Similar Documents

Publication Publication Date Title
EP2244834B1 (fr) Séparateur électrostatique
DE102004022288B4 (de) Elektrostatischer Abscheider mit internem Netzgerät
DE10132582C1 (de) Anlage zum elektrostatischen Reinigen von Gas und Verfahren zum Betreiben derselben
DE3122515C2 (de) Elektrostatische Filteranordnung
DE102005045010B3 (de) Elektrostatische Ionisierungsstufe in einer Abscheidungseinrichtung
EP1883477A1 (fr) Etage d'ionisation electrostatique en voie humide dans un dispositif de separation electrostatique
DE102008055547A1 (de) Systeme und Verfahren zum Abscheiden von Feststoffpartikeln in einem Filtersystem
DE102007020504A1 (de) Elektrostatischer Abscheider mit Beseitigung von Verunreinigungen der Masseelektrode
DE102006057705B3 (de) Optimierter elektrostatischer Abscheider
EP2091653B1 (fr) Étage d'ionisation et collecteur pour installation d'épuration de gaz d'échappement
EP1771254B1 (fr) Principe structurel d'un systeme de purification de gaz d'echappement, et procede pour purifier des gaz d'echappement a l'aide de celui-ci
EP0715894B1 (fr) Installation de filtrage électrostatique
EP3025785B1 (fr) Dispositif et procédé de nettoyage de gaz de fumée d'une installation métallurgique
CH623240A5 (fr)
EP2266702B1 (fr) Séparateur électrostatique destiné au nettoyage de gaz de fumée avec un champ de verrouillage électrique
DE102009036957A1 (de) Elektrostatischer Abscheider und Heizungssystem
DE10227703B3 (de) Durchführung für elektrische Hochspannung durch eine Wand, die einen Umgebungsbereich von einem Prozessbereich trennt
DE19841973C2 (de) Aus Sprühelektroden und einer Niederschlagselektrode gebildete Elektro-Filterstufe
DE102017114638B4 (de) Elektrostatischer Abscheider und Verfahren zur elektrostatischen Abscheidung von Stoffen aus einem Abgasstrom
EP4000738B1 (fr) Filtre de nettoyage d'un flux gazeux
DE2235531B2 (de) Verfahren und Einrichtung zum Abscheiden von feinsten Fremdstoffpartikeln aus einem Gasstrom
EP2195115B1 (fr) Structure de construction de dispositifs d'epuration de gaz d'echappement
AT394664B (de) Elektro-schuettschichtfilter-anlage
AT232803B (de) Verfahren und Einrichtung zur Reinigung der Abgase von Verbrennungskraftmaschinen
DD204411A1 (de) Vorrichtung zur abscheidung von nebeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 548120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002962

Country of ref document: DE

Effective date: 20120503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120707

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120709

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

26N No opposition filed

Effective date: 20121210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002962

Country of ref document: DE

Effective date: 20121210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120618

BERE Be: lapsed

Owner name: KARLSRUHER INSTITUT FUR TECHNOLOGIE

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090114

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180124

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180125

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180122

Year of fee payment: 10

Ref country code: FR

Payment date: 20180124

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 548120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190114

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190114

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210120

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009002962

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802