EP2244834B1 - Electrostatic precipitator - Google Patents
Electrostatic precipitator Download PDFInfo
- Publication number
- EP2244834B1 EP2244834B1 EP09714062A EP09714062A EP2244834B1 EP 2244834 B1 EP2244834 B1 EP 2244834B1 EP 09714062 A EP09714062 A EP 09714062A EP 09714062 A EP09714062 A EP 09714062A EP 2244834 B1 EP2244834 B1 EP 2244834B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- housing
- insulator
- grid
- voltage
- precipitator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 239000012717 electrostatic precipitator Substances 0.000 title claims abstract description 53
- 239000000443 aerosol Substances 0.000 claims abstract description 36
- 239000007788 liquid Substances 0.000 claims abstract description 20
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000012716 precipitator Substances 0.000 claims abstract 22
- 239000012212 insulator Substances 0.000 claims description 110
- 238000011144 upstream manufacturing Methods 0.000 claims description 20
- 238000011045 prefiltration Methods 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 description 45
- 210000001061 forehead Anatomy 0.000 description 13
- 230000005684 electric field Effects 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 240000001439 Opuntia Species 0.000 description 1
- 235000004727 Opuntia ficus indica Nutrition 0.000 description 1
- -1 accumulated Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/45—Collecting-electrodes
- B03C3/49—Collecting-electrodes tubular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/41—Ionising-electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/86—Electrode-carrying means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/08—Ionising electrode being a rod
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/10—Ionising electrode with two or more serrated ends or sides
Definitions
- the invention relates to an electrostatic precipitator for removing the solid and liquid components from an aerosol.
- Such a separator consists of a separator housing having an access, the raw gas inlet, for the aerosol to be cleaned and an outlet, the clean gas outlet, for the purified aerosol. At least one flow channel leading in the aerosol flanges to the raw gas inlet. The freed of the solid and liquid particles gas exits the separator as pure gas, either immediately into the environment or is passed on in a flanging channel on.
- a discharge device for the discharge of there excreted from the aerosol, accumulated, solid and liquid components.
- An electrical high-voltage bushing electrically supplies an ionization stage in the separator from the outside.
- the ionization stage consists of at least one protruding into the flow path of the aerosol metallic, acted upon by electrical high voltage rod, which is equipped with radially serrated electrode discs and in the corona discharges, the solid and liquid particles are electrically charged in the gas flowing past.
- electrical high voltage rod which is equipped with radially serrated electrode discs and in the corona discharges, the solid and liquid particles are electrically charged in the gas flowing past.
- the separator downstream of the ionizer, there is a collector device in which the solid and liquid particles of the gas stream are deposited.
- Electrostatic precipitators are the most effective means of cleaning fine and ultrafine aerosols. Electrostatic precipitators have several advantages over gas purifiers of other technology: they require less energy than mechanical collector devices and have no moving parts; Maintenance costs are low and downtime is low.
- the construction of a compact electrostatic precipitator of high efficiency for drop aerosols is described in US Pat US 6,221,136 described.
- the electrostatic precipitator has a high voltage electrode with multiple wire segments positioned within an electrically conductive porous medium and having a central axis, on which the electrode structure expands.
- the electrode assembly consists of a plurality of longitudinally positioned wires which propagate along the longitudinal axis of the porous medium.
- the wire segments are arranged to have a substantially longer overall length than the extension length along the longitudinal axis.
- the particles are passed through the porous medium and past the electrode and are charged via the high voltage.
- the porous medium has a substantially lower voltage than the high voltage electrode.
- Electrostatic shields are mounted around the high voltage insulators to reduce the likelihood of insulator contamination causing leakage currents.
- the separator has several problems.
- the porous medium as a collector plays the following two roles: first, it is used as a grounded electrode; second, it collects aerosol particles, which can be droplets and solid particles. Covering the filter surface with a dielectric fluid, such as lubricating oil, will weaken the electric field strength in the electrode assembly, thereby reducing the efficiency of the particle charge.
- the high velocity of the gas stream in the ionizer stabilizes the operation of the electrostatic precipitator, reduces the influence of the space charge on the charged particles and reduces the suppression of the corona discharge.
- the low velocity in the collector improves its efficiency and reduces the pressure drop in it.
- the grounded electrode in the electrode assembly and the collector are spatially separated. This reduces the clogging of the collector.
- the grounded grid / mesh or nozzle allows the passage of charged aerosol particles. The electric wind can pass through the mesh electrode without pressure loss.
- the use of star-shaped electrodes and the high speed in the electrode zone reduces the deposition of sticky particles or droplets on the high voltage electrodes.
- the separator is relatively bulky due to the spatial separation of the ionization stage from the collector.
- the high-voltage insulator is positioned in the raw gas or clean gas flow, which is why additional measures against contamination are necessary.
- the compact electrostatic precipitator consists, as is known, of the two housed in a separator housing assemblies: ionization and downstream gas collector following collector.
- the electrostatic precipitator has at least one metallic high-voltage rod which, clamped in an insulator at the end face, protrudes into the gas flow path via this isolator, which is seated away from the gas flow path of the aerosol.
- the high-voltage insulator is in a pot-like, not traversed by the aerosol, to an electrical reference potential, usually ground potential, connected housing, the insulator housing, positioned and exposed therein.
- the high-voltage rod is equipped with a disc-shaped electrode, the high-voltage electrode, at least at its free end portion and another disc-shaped electrode, the guard electrode, outside the insulator housing at a distance d to the opening in the bottom plate.
- the guard electrode sits on the edge or outside the gas flow.
- the high voltage electrode and guard electrode have radially directed circumferentially equally spaced tips adjacent to the surrounding hollow cylindrical sleeve of perforated sheet metal or wire mesh, the grid or wire mesh electrode, having the smallest pitch H.
- the high-voltage rod protrudes coaxially into the grid or wire mesh electrode, which sits with its first end face positively in the opening to the insulator housing and to the reference potential, usually ground potential, is connected. To the extent of High voltage electrode / n and the guard electrode are equally distributed cleavage of the smallest width H to the surrounding grid or wire mesh electrode.
- the grid or wire mesh electrode is seated with its second end portion in a nozzle in the lying on electrical reference potential plate, the nozzle plate, or abuts with its second end on a gas-impermeable plate, the face plate. Thereby, the grid or wire mesh electrode (s) are positioned in the gas flow path of the aerosol.
- the grid or wire mesh electrode (s) is / are completely surrounded by a porous collector located at electrical reference potential highest over its length. As a result, the entire aerosol stream must in any case flow through the porous collector.
- a high-voltage bushing through which the high-voltage rod or the high-voltage rods are connected from the outside to a high voltage electrical potential.
- the high-voltage feedthrough go directly or through the separator housing through to the outside.
- claim 3 sits in the insulator housing further a pipe socket through which a clean gas can be flowed into the interior of the insulator housing under pressure that in the insulator housing overpressure, at least a slight overpressure, compared to the pressure in the housing of the separator. This would also avoid an inflow of process to be processed aerosol.
- the inflow of clean gas or pure air through this pipe socket can also be done with a predetermined temperature, preferably with a higher temperature than in the space of the high voltage rod with electrodes and the grid or wire mesh electrode.
- a predetermined temperature preferably with a higher temperature than in the space of the high voltage rod with electrodes and the grid or wire mesh electrode.
- the insulator housing for the High voltage insulator sits concentrically on the over the clear cross section of the separator housing reaching bottom plate.
- the insulator housing sits the high-voltage insulator with a freely exposed forehead.
- the high-voltage rod is stuck with a frontal area in the exposed forehead of the high-voltage insulator.
- the grid or mesh electrode sets with its one end portion in the central passage of the bottom plate. With its other end region, the mesh or mesh electrode inserted through the nozzle in the seated on the clear cross-section of the separator housing nozzle plate.
- the bottom plate between the insulator housing and the wall of the separator housing for the gas flow is continuous.
- the separator housing covers the bottom plate with insulator housing centrally seated thereon.
- a prefilter over the clear cross-section of the housing inclined to the axis of the separator with its deepest portion next to a drain pipe in the separator housing, preferably to direct the outflow of liquid there.
- a flange for the raw gas inlet to which the supply channel for the aerosol, the raw gas docks.
- the insulator housing and the bottom plate covering the wall of the separator sitting front or shell wall side another flange for the clean gas outlet.
- the bottom plate is not continuous between the insulator housing and the wall of the separator housing.
- the bottom plate and the central insulator housing cover the separator.
- Forehead or preferably shell wall side because of the drain cock in the local front side separator wall is in the wall of the separator housing the flange for the raw gas inlet.
- the flange for The clean gas outlet is now in the separator wall in the area between the bottom plate and the nozzle plate.
- a further modified embodiment of the electrostatic precipitator is described according to claim 3.
- the insulator housing is also located on an over the clear cross section of the separator housing reaching bottom plate, only now is the high voltage insulator with its one forehead positioned centrally on the bottom plate.
- a high voltage grid is attached to which the high voltage bars are distributed evenly around the axis of the separator and at the same radial distance thereto and each project coaxially into the associated grid or mesh electrode.
- the bottom plate between the insulator housing and the wall of the separator housing is continuous.
- upstream of the grid or mesh electrodes upstream of the grid plate and in front of the nozzle plate a prefilter over the clear cross-section of the housing inclined to the axis of the separator.
- a plate the fixing plate, is attached centrally to the bottom plate and outside of the insulator housing according to claim 12, through which the grid or mesh electrodes pass in a form-fitting manner.
- the insulator housing sits concentrically on a reaching over the clear cross-section of the separator housing bottom plate.
- the high-voltage insulator sits centrally on the frontal ground.
- the high voltage rod is stuck with a forehead areas in the high voltage insulator.
- the grid or mesh electrode sets with a frontal area in a central passage of the bottom plate and abuts with its other forehead on the centrally mounted, non-gas permeable plate and is completely covered.
- the nozzle plate is located between the bottom plate and the end plate. The collector sits between the nozzle plate and the end plate and completely surrounds the sleeve.
- the raw gas is in the bottom plate or in the wall region of the separator between the carrier and nozzle plate.
- the clean gas outlet is located in the wall area of the separator, which covers the collector.
- the insulator housing sits concentrically on the over the clear cross-section of the separator housing reaching bottom plate.
- the high-voltage insulator is mounted centrally on the frontal floor.
- a high-voltage grid is attached to which the rods are distributed evenly around the axis of the separator at the same radial distance from this axis and each project coaxially into the associated grid or mesh electrode.
- the mesh or mesh electrodes sitting in the bottom plate push with their other forehead on the covering face plate.
- the grid or mesh electrodes form-fit pass through the nozzle plate between the bottom plate and the end plate.
- the arrangement of the grid or mesh electrodes between the nozzle plate and the face plate is completely surrounded by the porous collector.
- the clean gas outlet is in the wall area of the separator housing, in which the porous collector is exposed.
- the Indian FIG. 1 proposed electrostatic precipitator has the raw gas inlet 18 below in the jacket wall of the separator housing 1.
- the grounded nozzle plate 2 is installed, in which a nozzle 3 is centrally located here.
- a grounded grid electrode 8 is seated positively in the nozzle and is slightly upstream of the nozzle plate 2 upstream of the gas.
- a disk-shaped high voltage electrode 4 is attached with radially directed tips.
- the high voltage electrode 4 may be configured differently, such as from DE 10 2005 023 521 is apparent. It is a needle-shaped electrode, has disc shape or is star-shaped.
- the high voltage electrode 4 is positioned within the grid electrode 8 such that the peaks / pips around it form the smallest distance H to the grid electrode 8.
- the porous collector 11, the porous filter 11, is used.
- the grid electrode 8 and the collector are installed here between the bottom plate 9 and the nozzle plate 2 in the separator housing 1.
- the high voltage rod 5 is clamped with an end face in the high voltage insulator 6, which is centrally attached to the bottom of the insulator housing 7 and exposed to the interior.
- the high-voltage insulator 6 is exposed in the interior of the insulator housing 7 and is therefore not in the raw gas stream.
- Through the high-voltage bushing 13 through the high-voltage rod 5 is located at the high voltage terminal of a not shown here high voltage power supply unit.
- the high voltage electrode 12 is fixed to the high voltage rod 5 just before the opening in the insulator housing 7. It has a similar or the same shape as the high voltage electrode 4 at the free end of the high voltage rod 5.
- the arrangement of high voltage electrodes 4, 12 and high voltage rod 5 is coaxial with the grid electrode 8.
- the bottom plate 9 has passages 10, through which the gas flow flows unhindered, at best insignificantly prevented.
- the porous collector 11 surrounds the grid electrode 8 completely and concentrically at a distance. The entire gas flow must forcibly pass through the porous collector through this structure.
- the electrostatic precipitator has the flange-like raw gas inlet 18, through which the gas flow 16 introduced via a channel (not shown) enters. Downstream of the gas, the purified gas stream, after penetration of the porous collector 11, exits via the clean gas outlet opening 19 or is led further in a flanged channel (not shown).
- the arrows 16 in the figures indicate the flow path through the separator.
- the electrostatic precipitator further has a pipe 15 through the wall 1 of the separator and the wall of the insulator housing 7, through which clean air or clean gas can be flowed into the insulator housing 7 to protect the high voltage insulator 6 from contamination by deposits.
- the connected clean air or clean gas reservoir is not shown.
- the clean air or the clean gas can also be introduced heated.
- the electrostatic precipitator has a pre-filter 14, which is installed in the separator housing 1 upstream of the nozzle plate 2 here in an oblique position. With him larger particles in the raw gas stream already be intercepted, namely particles of at least the size, which certainly can not pass through the perforations / mesh of the grid or wire mesh electrode 8 due to their diameter.
- the separator has away from the nozzle plate 2, a pipe 17 through the Abscheiderwand 1 to the outside, through which accumulated on the nozzle plate 2, discharged from the porous collector 11, contaminated liquid can be discharged.
- the separator has a tube 20 which is installed at the bottom of the separator housing 1 to drain contaminated, dripping from the pre-filter 14, collected liquid also can.
- the insulator housing 7 may be installed inside the separator on the clean gas side, as in FIG FIG. 1 shown. Or it can be located outside the separator, then the bottom plate 9 would have no openings 10 for the clean gas passage, as in FIG. 2 will be shown.
- a plurality of high voltage electrodes 4 may be mounted on the high voltage rod 5.
- the geometry and size of the high voltage electrodes 4, their position, the width H of the electrode gap will be determined by the conditions under which the trap has to operate.
- the fixing plate 21 is installed between the bottom plate 9 and the nozzle plate 2 (see FIG. 2b ).
- the fixing plate 9 has an opening or opening through which the grid electrode passes positively.
- the fixing plate 21 is attached to the bottom plate via fixing elements or spacer elements 22. There is a gap between the fixing plate 21 and the porous collector 11, the collector filter 11.
- the grid or wire mesh electrode 8 may be provided with open ( FIG. 6a ) or shielded forehead 110, 111.
- open here is meant that the forehead has sharp or pointed spots, ie freestanding cut wire ends. In this way, corona discharges opposite thereto can occur whose polarity is opposite to that of the intended corona discharge between the electrodes 11 and 4 or 12.
- shielded forehead 110, 111 it is meant that the forehead is smooth, ie peaks or sharp edges are avoided so that no counter corona discharge can occur.
- the front edges are after Figure 6b, 6d covered with a dielectric or metallic ring 110, 111.
- the grid or wire mesh electrode 8 may be incorporated in the nozzle 3 such that the entrance through the open, exposed Front of the grid or wire mesh electrode 8 gas upstream of the nozzle plate 2 sits ( Figure 7a ) or the shielded end edge 110 upstream ( FIG. 7b ) or the open end edge in the nozzle 3 (FIG. FIG. 7c ) or the open end edge on a fixing ring 112 downstream of the nozzle 3 ends ( FIG. 7d ).
- the flow direction of the gas stream to be cleaned is in FIGS. 7a to d indicated each time by the arrow 16.
- the grid or wire mesh electrode 8 is installed in the passages of the carrier pacts 9 in the region of the insulator housing 7 such that the local free end edge of the grid or wire mesh electrode 8 is at the height of the bottom plate 9 (FIG. FIG. 8a, b ) or protrudes into the insulator housing 7 ( FIGS. 8c to f ).
- FIG. 8a ends the free end of the grid or wire mesh electrode 8 in the passage in the bottom plate, according to Figure 8b sits a ring 101 on the bottom plate 9 and surrounds the grid or wire mesh electrode 8.
- FIG. 8c ends the free edge of the front of the grid or wire mesh electrode 8 in the insulator housing, after FIG. 8d this is completed with a ring.
- To FIG. 8e is the front edge of the grid or wire mesh electrode 8 completed with a projecting into the insulator housing dielectric ring 110, after FIG. 8f additionally with a ring placed on top.
- the gas flow into the grid or wire mesh electrode 8 may be covered like a sieve, as in the FIGS. 9a to d is exemplified, namely by a flat flat grid gevie FIG. 9a , a flat, to the entrance end of the grid or wire mesh electrode 8 inclined grid ( FIG. 9b ), to FIG. 9c a conical grid and after FIG. 9d a hemispherical grid. It can thus be ensured that particles of a certain particle size corresponding to the mesh size can no longer flow into the interior of the mesh or wire mesh electrode 8 and impair them.
- FIG. 3 A compact electrostatic precipitator with more than one grid or wire mesh electrode 8 is shown FIG. 3 , with two Grid or wire mesh electrodes 8.
- the separator also consists of the housing 1 and the nozzle plate 2 with two nozzles 3.
- the two grid or wire mesh electrodes 8 extend from the nozzle plate 2 to the bottom plate 9 and stuck in the respective nozzle 3 and Opening in the bottom plate 9 positively.
- the high voltage insulator 6 is also now off the gas stream but now mounted on the bottom plate 9 and exposed in the insulator housing.
- the high voltage grid 23 is connected to the high voltage feedthrough 13.
- FIG. 1 shows FIG. 3
- Gas upstream sits in front of the nozzle plate 2 and installed at an angle to her, also the pre-filter 14 to catch coarse particles. Collected on the nozzle plate 2, with particles offset from the porous collector effluent liquid can be discharged through the outlet 17.
- the two high-voltage rods 5 are also inside the grid or wire mesh electrodes 8 with high voltage electrodes 4, 12 coaxially equipped.
- the fixing plate 21 is mounted on spacer elements 22 from below to the bottom plate 9.
- the two grid or wire mesh electrodes 8 are positively passed through them.
- the raw gas stream enters the front of the bottom of the separator, as the arrow 16 indicates.
- FIG. 3 The construction in FIG. 3 is exemplary.
- the installation variant for raw gas inlet, Hochnapssisolatoreinbau according to FIG. 1 would be feasible without special effort. It is essential that the forced Gastromweg, as indicated by the arrows 16, is set up, even if it divides in through the section of the ionization stage in two.
- FIG. 2 shows FIG. 4 by way of example a compact electrostatic precipitator in which the insulator housing 7 is on and not in ( FIG. 1 ) is seated in the separator housing 1.
- the separator has an ionization stage of only one grid or wire mesh electrode 8 into which coaxial with the high voltage electrode 4, 12 equipped high voltage rod 5 protrudes, which protrudes from the mounted on the bottom of the insulator housing high voltage insulator.
- the interior of the insulator housing 7 is also flushable via the pipe 15 through the housing wall 7 with clean gas, air.
- the high voltage rod 5 is electrically connected to the high voltage feedthrough 13.
- the grid or wire mesh electrode 8 is seated with its one end positively in the opening of the bottom plate in the interior of the insulator housing 7 and abuts with the other end on the gas-impermeable end plate 24, whereby the grid or wire mesh electrode 8 is positioned defined.
- the porous collector surrounds the grid or wire mesh electrode 8 completely but not over their entire length, but only partially.
- the nozzle plate 2 In the intermediate longitudinal region of the grid or wire mesh electrode 8 sits the nozzle plate 2, through which it goes positively.
- the raw gas inlet 18 is located in the bottom plate 9, the clean gas outlet 19 in the almond wall of the separator housing 1. Thus, one and only one gas flow path is forced, as indicated by the arrows 16 is displayed.
- the ionization stage of the coaxial electrode arrangement is now divided into two regions, namely a gas inlet region 81 above the collector region and a gas outlet region 82 in the collector region. From the collector dripping, contaminated with liquid now accumulates at the bottom of the separator housing 1, but can also be drained via the built-in housing wall cock 17.
- the exemplary installation of a prefilter 25 is not shown in this figure, but can be taken from the figure 13a.
- FIG. 5 Another example of a construction of the compact electrostatic precipitator is shown in FIG FIG. 5 shown.
- This separator has, as in FIG. 3 already executed, more than two nozzles, namely two.
- the insulator housing 7 sits like in FIG. 4 outside of the separator housing 1.
- the high voltage insulator 6 is at the bottom of the insulator housing, as to FIG. 3 indicated, mounted.
- the high voltage grid 28 is attached to the free end of the high voltage insulator and exposed inside the insulator housing.
- the two high-voltage bars 5 are suspended from the high voltage grid 28 and protrude through the bottom plate 9 coaxially in the two grid or wire mesh electrodes 8.
- the high voltage grid 28 is electrically connected to the high voltage bushing 13.
- the interior of the insulator housing is through the pipe 15 through the wall of the insulator housing with clean gas, air under pressure and / or tempered Wegbar.
- Both high-voltage bars 5 are in the area of the two grid or wire mesh electrodes 8 similarly equipped with high voltage electrodes 4, 12.
- the two grid or wire mesh electrodes 8 abut the end face on the gas-impermeable end plate 24 and are fixed there. With their other forehead, the two grid or wire mesh electrodes 8 sit positively in the respective opening of the bottom plate 9 to the interior of the insulator housing 7.
- the nozzle plate 2 is now located in the longitudinal region of the two grid or wire mesh electrodes 8, through which they form fit through the respective nozzle. 3 pass. As a result, both are additionally fixed.
- both grid or wire mesh electrodes 8 are both grid or wire mesh electrodes 8 in the region between the face plate 24 and the nozzle plate 2 of the porous collector 11, which is clamped between them.
- the raw gas inlet 18 is located in the bottom plate 9 outside, the clean gas outlet 19 in the jacket wall at the bottom of the separator housing 1.
- the gas stream is divided by the ionizer into two branches.
- the gas flow is forced through the separator and leads from the raw gas inlet 18 completely and solely through the ionizer and the collector to the clean gas outlet 19, as indicated by the arrows 16.
- the exemplary, possible installation of a prefilter 25 for the separation of large particles is like to FIG. 4 indicated in Figure 13a.
- FIGS. 4 and 5 is indicated in each case that the porous collector 11 is clamped between the nozzle plate 2 and the end plate 24.
- This construction can be modified without violating the forced gas flow path in such a way that the grid or wire mesh electrode 8 ends flush with the face plate 24, but the porous collector 11 is clamped between the nozzle plate 2 and a collector plate 25 Gas outlet region 82 projects freely into the collector region, as shown in Figure 13 b for a grid or wire mesh electrode 8 in the cutout.
- the nozzle plate 2 at its nozzle 3 / its nozzles 3 may be surrounded upstream by a ring which allows the collection and collection of contaminated liquid from the gas stream without running down and contaminating the grid or wire mesh electrode 8 Perforations / meshes clogged.
- this contaminated liquid Via a pipe 27 through the nozzle plate 2, upstream or downstream of the porous gas collector 11, this contaminated liquid can run off in a targeted manner in the intended area of the separator.
- FIG. 13c this is sketched in the section upstream of the gas stream and in FIG. 13d even more in detail as a U-shaped tube 27.
- the entrance of this tube 27 is located downstream of a possibly installed prefilter 25.
- the compact electrostatic precipitator with the forced gas flow path in it operates as follows:
- the raw gas is introduced via a flanging at the separator channel and flows through the pre-filter to separate coarse particles, collect and discharge from the separator.
- a corona discharge occurs at the sharp edges / tips of the high voltage electrodes.
- the entrained particles in the gas stream are charged there electrically and move to the grid or wire mesh electrode.
- the particle movement occurs under the influence of the gas-dynamic forces and the electric field in the electrode gap.
- Part of the particles are deposited in the grid or wire mesh electrode.
- the liquid taken there is electrically neutralized due to the reference / ground potential of the grid or wire mesh electrode, runs down it, drips into the separator and is discharged as needed.
- the other part passes through the mesh of the mesh or wire mesh electrode and forms a space charge zone between the mesh or mesh electrode and the porous collector.
- the charged particles accumulate on the grounded surfaces and are electrically neutralized.
- the mixed with the particles of liquid runs off, is collected in the separator in the intended area and discharged as needed.
- This electric field drives the charged particles onto the grid or wire mesh electrode, where they are partially collected, partially penetrate and penetrate into the space between the grid or wire mesh electrode and the porous collector.
- a small portion of the charged particles reaches the upper zone of the grid or wire mesh electrode where the additional high voltage electrode sits next to the bottom plate.
- the corona discharge at the additional high voltage electrode generates an electrical wind directed toward the grid or wire mesh electrode.
- the geometry of the electrode gap is chosen so that the speed of the electric wind is equal to or higher than the velocity of the gas flow in the upper part of the grid or wire mesh electrode.
- the electric wind protects the high-voltage insulator in the insulator housing, as well as the clean gas introduced into the interior of the insulator housing or the clean air. So it can not penetrate charged particles in the interior of the insulator housing.
- Particles are also deposited on the fixing plate 21 since they are likewise connected to the reference potential or earthed, thus reducing the number of particles that can fly to the insulator housing.
- the fixing plate is mounted at a distance 2d from the passage in the bottom plate, thereby allowing the electric wind to pass at maximum speed in the electrode gap through the grid wire mesh electrode produced by the bottom plate and the fixing plate, thereby blowing off the charged particles become. This situation applies in the two cases that the Gastromweg through the entire grid or wire mesh electrode in one direction only, FIGS. 1 . 2 and 3 , or regionally opposite, FIGS. 4 and 5 , go.
- the porous collector may be made of porous materials of different thickness and density. It can be made of different porous materials, dielectric, electrically semiconductive or conductive. Also, the porous material or the mesh or wire mesh electrode may be provided with additional catalytic additives. The materials must be process-oriented, at least largely process-oriented.
- the precipitation efficiency for a single-module, compact electrostatic precipitator is between 92 and 95%, for a two-modulus between 97 and 99%.
Landscapes
- Electrostatic Separation (AREA)
Abstract
Description
Die Erfindung betrifft einen elektrostatischen Abscheider zum Entfernen der festen und flüssigen Bestandteile aus einem Aerosol.The invention relates to an electrostatic precipitator for removing the solid and liquid components from an aerosol.
Ein solcher Abscheider besteht aus einem Abscheidergehäuse, das einen Zugang, den Rohgaseintritt, für das zu reinigende Aerosol und einen Ausgang, den Reingasaustritt, für das gereinigte Aerosol hat. Zumindest ein das Aerosol heranführender Strömungskanal flanscht an den Rohgaseintritt an. Das von den festen und flüssigen Partikeln befreite Gas tritt als Reingas aus dem Abscheider aus, entweder sofort in die Umgebung oder wird in einem anflanschenden Kanal weiter geleitet. Üblicherweise befindet sich im Kollektorbereich des Abscheiders eine Ablasseinrichtung für den Ablass der dort aus dem Aerosol ausgeschiedenen, angesammelten, festen und flüssigen Bestandteile. Über eine elektrische Hochspannungsdurchführung wird von außen eine Ionisierungsstufe in dem Abscheider elektrisch versorgt. Die Ionisierungsstufe besteht aus mindestens einem in den Strömungsweg des Aerosols ragenden metallischen, mit elektrischer Hochspannung beaufschlagbaren Stab, der mit radial gezackten Elektrodenscheiben bestückt ist und in dem über Koronaentladungen die festen und flüssigen Partikel im vorbeiströmenden Gas elektrisch aufgeladen werden. Im Abscheider sitzt gasstromabwärts des Ionisators eine Kollektoreinrichtung, in der sich die festen und flüssigen Partikel des Gasstroms abscheiden.Such a separator consists of a separator housing having an access, the raw gas inlet, for the aerosol to be cleaned and an outlet, the clean gas outlet, for the purified aerosol. At least one flow channel leading in the aerosol flanges to the raw gas inlet. The freed of the solid and liquid particles gas exits the separator as pure gas, either immediately into the environment or is passed on in a flanging channel on. Usually located in the collector region of the separator, a discharge device for the discharge of there excreted from the aerosol, accumulated, solid and liquid components. An electrical high-voltage bushing electrically supplies an ionization stage in the separator from the outside. The ionization stage consists of at least one protruding into the flow path of the aerosol metallic, acted upon by electrical high voltage rod, which is equipped with radially serrated electrode discs and in the corona discharges, the solid and liquid particles are electrically charged in the gas flowing past. In the separator, downstream of the ionizer, there is a collector device in which the solid and liquid particles of the gas stream are deposited.
Elektrostatische Abscheider sind die wirkungsvollsten Einrichtungen für die Reinigung feiner und ultrafeiner Aerosole. Elektrostatische Abscheider haben gegenüber Gasreinigern anderer Technologie mehrere Vorteile: sie benötigen weniger Energie als mechanische Kollektoreinrichtungen und haben keine bewegten Teile; die Wartungskosten sind niedrig und die Ausfallzeiten gering.Electrostatic precipitators are the most effective means of cleaning fine and ultrafine aerosols. Electrostatic precipitators have several advantages over gas purifiers of other technology: they require less energy than mechanical collector devices and have no moving parts; Maintenance costs are low and downtime is low.
Der Aufbau eines kompakten elektrostatischen Abscheiders hoher Effizienz für tropfenförmige Aerosole wird in der
Trotz dieses Aufbaus hat der Abscheider mehrere Probleme. Erstens, während der Prozessierung mit klebrigen Aerosolen werden die Elektroden mit Partikeln bedeckt, die die Effizienz des Abscheiders mindern. Zweitens ist der Isolator innerhalb des Kollektors positioniert, wo die geladenen Partikel sind und die Raumladung bilden. Ein Teil der geladenen Tröpfchen kann sich unter dem Einfluss der Raumladung aufder Isolatoroberfläche absetzen, die dann zur Verschmutzung der Isolatoroberfläche führt. Drittens ist der Abstand zwischen den elektrostatischen Abschirmungen und dem Gehäuse des Abscheiders klein. Wenn die Abschirmungen mit Partikeln bedeckt werden, kann das zu Überschlägen innerhalb des Abscheiders führen. Die Funkenentladungen vermindern die Effizienz des Kollektors. Das poröse Medium als Kollektor spielt folgende zwei Rollen: erstens wird er als geerdete Elektrode verwendet; zweitens sammelt er Aerosolpartikel, die Tröpfchen und Festkörperpartikel sein können. Wenn die Filteroberfläche mit einer dielektrischen Flüssigkeit wie Schmieröl bedeckt ist, wird das die elektrische Feldstärke in der Elektrodenanordnung schwächen und damit die Effizienz der Partikelladung mindern.Despite this structure, the separator has several problems. First, during processing with sticky aerosols, the electrodes are covered with particles which reduce the efficiency of the separator. Second, the insulator is positioned inside the collector where the charged particles are and which form the space charge. Part of the charged droplets can settle on the insulator surface under the influence of the space charge, which then leads to contamination of the insulator surface. Third, the distance between the electrostatic shields and the housing of the separator is small. If the shields are covered with particles, this can lead to flashovers within the separator. The spark discharges reduce the efficiency of the collector. The porous medium as a collector plays the following two roles: first, it is used as a grounded electrode; second, it collects aerosol particles, which can be droplets and solid particles. Covering the filter surface with a dielectric fluid, such as lubricating oil, will weaken the electric field strength in the electrode assembly, thereby reducing the efficiency of the particle charge.
Diese Probleme werden im Wesentlichen durch die in der
Trotz dieser Verbesserungen der Effizienz der Partikelladung und -abscheidung, des Gebrauchs niedriger Betriebshochspannung, der Stabilität des Betriebs aufgrund der Koronasuppression und der Vermeidung der Ablage auf der Elektrodenanordnung ist der Abscheider aufgrund der räumlichen Trennung der Ionisierungsstufe von dem Kollektor verhältnismäßig voluminös. Der Hochspannungsisolator ist im Rohgas oder Reingasstrom positioniert, weshalb zusätzliche Maßnahmen gegen Verschmutzung notwendig sind.Despite these improvements in the efficiency of particle loading and deposition, the use of low operating high voltage, the stability of operation due to corona suppression and the avoidance of deposition on the electrode assembly, the separator is relatively bulky due to the spatial separation of the ionization stage from the collector. The high-voltage insulator is positioned in the raw gas or clean gas flow, which is why additional measures against contamination are necessary.
Deshalb entstand die Aufgabe, einen kompakten elektrostatischen Abscheider mit hoher Betriebszuverlässigkeit zu bauen. Dabei sollte die Betriebshochspannung des Abscheiders ebenfalls niedrig bleiben. Die Effizienz des Kollektors als auch die langzeitliche Betriebsstabilität sollte gewährt werden können. Diese Aufgabe liegt der Erfindung zugrunde.Therefore, the task arose to build a compact electrostatic precipitator with high operational reliability. The should High operating voltage of the separator also remain low. The efficiency of the collector as well as the long-term operational stability should be able to be granted. This object is based on the invention.
Die Aufgabe wird durch die in Anspruch 1 gekennzeichneten Merkmale gelöst. Nützliche, vorteilhafte Merkmale des elektrostatischen Abscheiders sind in den Ansprüchen 2 und 3 beschrieben.The object is solved by the features characterized in
In den Ansprüchen 4 bis 6, 7 und 8, 9 bis 12, 13 und 14 und 15 und 16 sind aus Anspruch 1 ableitbare Ausgestaltungen des elektrostatischen Abscheiders gekennzeichnet und beschrieben.In
Der kompakte elektrostatische Abscheider besteht, wie bekannt, aus den beiden in einem Abscheidergehäuse untergebrachten Baugruppen: Ionisierungsstufe und gasstromabwärts folgendem Kollektor.The compact electrostatic precipitator consists, as is known, of the two housed in a separator housing assemblies: ionization and downstream gas collector following collector.
Der elektrostatische Abscheider hat mindestens einen metallischen Hochspannungsstab, der, stirnseitig in einen Isolator eingespannt, über diesen abseits des Gasströmungsweges des Aerosols sitzenden Isolator in den Gasströmungsweg ragt. Der Hochspannungsisolator ist in einem topfartigen, vom Aerosol nicht durchströmten, an ein elektrisches Bezugspotential, meist Erdpotential, angeschlossenen Gehäuse, dem Isolatorgehäuse, positioniert und darin exponiert.The electrostatic precipitator has at least one metallic high-voltage rod which, clamped in an insulator at the end face, protrudes into the gas flow path via this isolator, which is seated away from the gas flow path of the aerosol. The high-voltage insulator is in a pot-like, not traversed by the aerosol, to an electrical reference potential, usually ground potential, connected housing, the insulator housing, positioned and exposed therein.
Der Hochspannungsstab ist mit einer scheibenförmigen Elektrode, der Hochspannungselektrode, mindestens an seinem freien Endbereich und einer weiteren scheibenförmigen Elektrode, der Schutzelektrode, außerhalb des Isolatorgehäuses im Abstand d zu der Öffnung in der Bodenplatte bestückt. Die Schutzelektrode sitzt am Rande oder außerhalb der Gasströmung. Die Hochspannungselektrode/n und Schutzelektrode haben radial gerichtete, um den Umfang gleich verteilte Spitzen, die zu der umgebenden, hohlzylindrischen Hülse aus perforiertem Blech oder Maschendraht, der Gitter- oder Maschendrahtelektrode, den kleinsten Abstand H haben. Der Hochspannungsstab ragt koaxial in die Gitter- oder Maschendrahtelektrode, die mit ihrem ersten Stirnbereich formschlüssig in der Öffnung zum Isolatorgehäuse sitzt und an das Bezugspotential, meist Erdpotential, angeschlossen ist. Um den Umfang der Hochspannungselektrode/n und der Schutzelektrode bestehen gleichverteilt Spaltstellen der kleinsten Weite H zur Umgebenden Gitter- oder Maschendrahtelektrode.The high-voltage rod is equipped with a disc-shaped electrode, the high-voltage electrode, at least at its free end portion and another disc-shaped electrode, the guard electrode, outside the insulator housing at a distance d to the opening in the bottom plate. The guard electrode sits on the edge or outside the gas flow. The high voltage electrode and guard electrode have radially directed circumferentially equally spaced tips adjacent to the surrounding hollow cylindrical sleeve of perforated sheet metal or wire mesh, the grid or wire mesh electrode, having the smallest pitch H. The high-voltage rod protrudes coaxially into the grid or wire mesh electrode, which sits with its first end face positively in the opening to the insulator housing and to the reference potential, usually ground potential, is connected. To the extent of High voltage electrode / n and the guard electrode are equally distributed cleavage of the smallest width H to the surrounding grid or wire mesh electrode.
Die Gitter- oder Maschendrahtelektrode sitzt mit ihrem zweiten Stirnbereich in einer Düse in der auf elektrischem Bezugspotential liegende Platte, der Düsenplatte, oder stößt mit ihrer zweiten Stirn auf eine die gasundurchlässige Platte, die Stirnplatte. Dadurch ist/sind die Gitter- oder Maschendrahtelektrode/n im Gasströmungsweg des Aerosols positioniert.The grid or wire mesh electrode is seated with its second end portion in a nozzle in the lying on electrical reference potential plate, the nozzle plate, or abuts with its second end on a gas-impermeable plate, the face plate. Thereby, the grid or wire mesh electrode (s) are positioned in the gas flow path of the aerosol.
Die Gitter- oder Maschendrahtelektrode/n ist/sind von einem porösen, auf elektrischem Bezugspotential liegenden Kollektor höchsten über ihre Länge vollständig umgeben. Dadurch muss der gesamte Aerosolstrom auf jeden Fall durch den porösen Kollektor strömen.The grid or wire mesh electrode (s) is / are completely surrounded by a porous collector located at electrical reference potential highest over its length. As a result, the entire aerosol stream must in any case flow through the porous collector.
In dem Isolatorgehäuse sitzt nach Anspruch 2 eine Hochspannungsdurchführung, durch die hindurch der Hochspannungsstab oder die Hochspannungsstäbe von außen mit einem elektrischen Hochspannungspotential verbunden sind. Je nach Bauweise des Abscheiders, siehe unten, gehen die Hochspannungsdurchführung direkt oder noch durch das Abscheidergehäuse hindurch nach außen. Nach Anspruch 3 sitzt im Isolatorgehäuse weiter ein Rohrstutzen, durch den hindurch ein Reingas in das Innere des Isolatorgehäuses derart unter Druck geströmt werden kann, dass im Isolatorgehäuse ein Überdruck, zumindest ein leichter Überdruck, gegenüber dem Druck im Gehäuse des Abscheiders besteht. Damit schon wäre auch ein Einströmen von zu prozessierendem Aerosol vermieden. Die Einströmung des Reingases oder der reinen Luft über diesen Rohrstutzen kann auch noch mit vorgegebener Temperatur erfolgen, vorzugsweise mit größerer Temperatur als im Zwischenraum vom Hochspannungsstab mit Elektroden und der Gitter- oder Maschendrahtelektrode besteht. Durch den dann bestehenden Temperaturgradienten von Isolatorgehäuse zu Abscheidergehäuse würde das Einströmen von Aerosol zusätzlich unterdrückt werden.In the insulator housing sits according to
Daraus lässt sich die in Anspruch 4 beschrieben Ausgestaltung des elektrostatischen Abscheiders entwickeln. Das Isolatorgehäuse für den Hochspannungsisolator sitzt konzentrisch auf der über den lichten Querschnitt des Abscheidergehäuses reichenden Bodenplatte. In dem Isolatorgehäuse sitzt der Hochspannungsisolator mit einer frei exponierten Stirn. Der Hochspannungsstab steckt mit einem Stirnbereich in der exponierten Stirn des Hochspannungsisolators. Die Gitter- oder Maschenelektrode setzt mit ihrem einen Stirnbereich im zentralen Durchgang der Bodenplatte an. Mit ihrem andern Stirnbereich steckt die Gitter- oder Maschenelektrode durch die Düse in der über den lichten Querschnitt des Abscheidergehäuses sitzenden Düsenplatte. Nach Anspruch 5 ist die Bodenplatte zwischen dem Isolatorgehäuse und der Wand des Abscheidergehäuses für den Gasstrom durchgängig. In dieser Ausgestaltung überdeckt das Abscheidergehäuse die Bodenplatte mit darauf zentral sitzendem Isolatorgehäuse.From this, the embodiment of the electrostatic precipitator described in
Gasstromaufwärts sitzt vor der Düsenplatte des elektrostatischen Abscheiders nach Anspruch 6 ein Vorfilter über den lichten Querschnitt des Gehäuses geneigt zur Achse des Abscheiders mit seinem tiefsten Bereich nächst eines Ablassrohrs im Abscheidergehäuse, um das Abfließen von Flüssigkeit vorzugsweise dorthin zu lenken. Auf der gleichen Seite des Vorfilters gegenüber dem Ablassrohr sitzt gasstromaufwärts in der Wand des Abscheiders stirn- oder mantelwandseitig ein Flansch für den Rohgaseintritt, an dem der Zuführungskanal für das Aerosol, das Rohgas, andockt. In der das Isolatorgehäuse und die Bodenplatte überdeckenden Wand des Abscheiders sitzt stirn- oder mantelwandseitig ein weiterer Flansch für den Reingasaustritt.Upstream of the nozzle plate of the electrostatic precipitator according to
Eine modifizierte, aus den Ansprüchen 1 bis 3 bzw. dem Anspruch 4 weiter entwickelbare Ausgestaltung ist in Anspruch 7 beschrieben. Die Bodenplatte ist dort zwischen dem Isolatorgehäuse und der Wand des Abscheidergehäuses nicht durchgängig. Die Bodenplatte und das darauf zentral sitzende Isolatorgehäuse decken den Abscheider ab.A modified, from the
Nach Anspruch 8 sitzt gasstromaufwärts vor der freien Stirn der Gitter- oder Maschenelektrode und der Düsenplatte das Vorfilter über den lichten Querschnitt des Gehäuses geneigt zur Achse des Stabes.According to
Stirn- oder vorzugsweise mantelwandseitig wegen des Ablasshahns in der dortigen stirnseitigen Abscheiderwand ist in der Wand des Abscheidergehäuses der Flansch für den Rohgaseintritt. Der Flansch für den Reingasaustritt befindet sich jetzt in der Abscheiderwand im Bereich zwischen der Bodenplatte und der Düsenplatte.Forehead or preferably shell wall side because of the drain cock in the local front side separator wall is in the wall of the separator housing the flange for the raw gas inlet. The flange for The clean gas outlet is now in the separator wall in the area between the bottom plate and the nozzle plate.
In Anspruch 9 wird eine weitere, modifizierte Ausgestaltung des elektrostatischen Abscheiders nach Anspruch 3 beschrieben. Jetzt sitzt das Isolatorgehäuse ebenfalls auf einer über den lichten Querschnitt des Abscheidergehäuses reichenden Bodenplatte, nur ist jetzt der Hochspannungsisolator mit seiner einen Stirn zentral auf der Bodenplatte positioniert. Auf der in das Isolatorgehäuse ragenden Stirn des Hochspannungsisolators ist ein Hochspannungsgitter befestigt, an dem die Hochspannungsstäbe gleichverteilt um die Achse des Abscheiders und im gleichen radialen Abstand dazu angebracht sind und jeweils koaxial in die zugehörige Gitter- oder Maschenelektrode ragen. Nach Anspruch 10 ist die Bodenplatte zwischen dem Isolatorgehäuse und der Wand des Abscheidergehäuses durchgängig. Wiederum sitzt nach Anspruch 11 gasstromaufwärts vor den Gitter- oder Maschenelektroden und vor der Düsenplatte ein Vorfilter über den lichten Querschnitt des Gehäuses geneigt zur Achse des Abscheiders.In
Zur Lagestabilisierung insbesondere bei Gasströmung ist nach Anspruch 12 an der Bodenplatte zentral und außerhalb des Isolatorgehäuses über Befestigungselemente eine Platte, die Fixierplatte, befestigt, durch die hindurch die Gitter- oder Maschenelektroden formschlüssig gehen.In order to stabilize the position, in particular in the case of gas flow, a plate, the fixing plate, is attached centrally to the bottom plate and outside of the insulator housing according to
Eine andere Erweiterung des Abscheiders nach Anspruch 3 beschreibt Anspruch 13. Demnach sitzt das Isolatorgehäuse auf einer über den lichten Querschnitt des Abscheidergehäuses reichenden Bodenplatte konzentrisch. In dem Isolatorgehäuse sitzt der Hochspannungsisolator zentral am stirnseitigen Boden. Der Hochspannungsstab steckt mit einem Stirnbereiche im Hochspannungsisolator. Die Gitter- oder Maschenelektrode setzt mit einem Stirnbereich in einem zentralen Durchgang der Bodenplatte an und stößt mit ihrer andern Stirn auf der zentral angebrachten, nicht gasdurchlässigen Platte und wird davon völlig abgedeckt. Die Düsenplatte befindet sich zwischen der Bodenplatte und der Stirnplatte. Der Kollektor sitzt zwischen der Düsenplatte und der Stirnplatte und umgibt die Hülse vollständig.Another extension of the separator according to
Nach Anspruch 14 befindet sich der Rohgaseintritt in der Bodenplatte oder im Wandbereich des Abscheiders zwischen der Träger- und Düsenplatte. Der Reingasaustritt befindet sich im Wandbereich des Abscheiders, der den Kollektor überdeckt.According to
Noch eine andere Erweiterung des elektrostatischen Abscheiders nach Anspruch 3 ist in Anspruch 15 beschrieben. Das Isolatorgehäuse sitzt auf der über den lichten Querschnitt des Abscheidergehäuses reichenden Bodenplatte konzentrisch. In dem Isolatorgehäuse ist der Hochspannungsisolator zentral am stirnseitigen Boden angebracht. Auf der in das Isolatorgehäuse ragenden Stirn des Hochspannungsisolators ist ein Hochspannungsgitter befestigt, an dem die Stäbe gleichverteilt um die Achse des Abscheiders im gleichen radialen Abstand zu dieser Achse angebracht sind und ragen jeweils koaxial in die zugehörige Gitter- oder Maschenelektrode. Die in der Bodenplatte sitzenden Gitter- oder Maschenelektroden stoßen mit ihrer andern Stirn auf die abdeckende Stirnplatte. Die Gitter- oder Maschenelektroden gehen zwischen der Bodenplatte und der Stirnplatte formschlüssig durch die Düsenplatte. Die Anordnung der Gitter- oder Maschenelektroden zwischen der Düsenplatte und der Stirnplatte ist von dem porösen Kollektor vollständig umgeben.Yet another extension of the electrostatic precipitator according to
Nach Anspruch 16 ist der Rohgaseintritt in der Bodenplatte oder in der Mantelwand des Abscheiders zwischen der Boden- und Düsenplatte. Der Reingasaustritt ist im Wandbereich des Abscheidergehäuses, in das der poröse Kollektor exponiert ist.According to
Die Vorteile des elektrostatischen Abscheiders sind:
- Aerosole mit Partikelkonzentrationen > 1g/Nm3 können technisch effizient, auch in wirtschaftlicher Hinsicht effizient prozessiert werden*;
- er hat eine raumsparende, kompakte Bauweise;
- er zeichnet sich durch eine lange Betriebsdauer aus;
- geringe Wartungskosten wegen geringer Hochspannungsisolatorverschmutzung;
- verbesserte Partikelladung aufgrund der geerdeten Gitter- oder Maschendrahtelektrode;
- erhöhte Partikelablagerung aufgrund der Raumladungseffekte zwischen Gitter- oder Maschendrahtelektrode und porösem Kollektor;
- Erhöhung der Betriebsdauer des Kollektors zwischen zwei Reinigungspausen;
- robuste Hochspannungselektroden;
- Modulbauweise, ein- oder mehrdüsig;
- Verwendung einer Gitter- oder Maschendrahtelektrode als Vorfilter.
- Aerosols with particle concentrations> 1g / Nm 3 can be processed efficiently and economically even in economic terms *;
- he has a space-saving, compact design;
- it is characterized by a long service life;
- low maintenance costs due to low high voltage insulator contamination;
- improved particle charge due to the grounded grid or wire mesh electrode;
- increased particle deposition due to the space charge effects between grid wire or wire mesh electrode and porous collector;
- Increasing the operating time of the collector between two cleaning pauses;
- robust high-voltage electrodes;
- Modular construction, single or multi-nozzle;
- Using a grid or wire mesh electrode as a pre-filter.
Zur weiteren, detaillierten Beschreibung der Erfindung werden die folgenden Figuren herangezogen. Sie zeigen im Einzelnen:
-
Figur 1a Längsschnitt durch einen ersten elektrostatischen Abscheider; -
Figur 1b mehrere Hochspannungselektroden am Hochspannungsstab; -
Figur 2a Längsschnitt durch einen zweiten elektrostatischen Abscheider; -
Figur 2b Anbau der Fixierplatte; -
Figur 2c Abstand der zur Bodenplatte nächsten Hochspannungselektrode; -
Längsschnitt durch einen dritten elektrostatischen Abscheider;Figur 3 -
Längsschnitt durch einen vierten elektrostatischen Abscheider;Figur 4 -
Figur 5a Längsschnitt durch einen fünften elektrostatischen Abscheider; -
Figur 5b Vorfilter zu denAbscheidern gemäß Figuren 4 und5 ; -
Figur 5c Kollektormodifikation zuden Figuren 4 und5a ; -
Figur 5d Düsenmodifikation zuden Figuren 4 und5a ; -
Figur 5e Flüssigkeitsablass von der Düsenplatte; -
Figuren 6a bis d Ausführungsformen der Gitter- oder Maschendrahtelektrode; -
Figuren 7a bis d Einbau der Gitter- oder Maschendrahtelektrode in die Düsenplatte; -
Figuren 8a bis d Einbau der Gitter- oder Maschendrahtelektrode in die Bodenplatte; -
Figuren 9a bis d Abschluss der Gitter- oder Maschendrahtelektrode an der Düsenplatte.
-
FIG. 1a Longitudinal section through a first electrostatic precipitator; -
FIG. 1b several high voltage electrodes on the high voltage rod; -
FIG. 2a Longitudinal section through a second electrostatic precipitator; -
FIG. 2b Attachment of the fixing plate; -
Figure 2c Distance of the next high voltage electrode to the bottom plate; -
FIG. 3 Longitudinal section through a third electrostatic precipitator; -
FIG. 4 Longitudinal section through a fourth electrostatic precipitator; -
FIG. 5a Longitudinal section through a fifth electrostatic precipitator; -
FIG. 5b Prefilter to the separators according toFIGS. 4 and5 ; -
FIG. 5c Collector modification to theFIGS. 4 and5a ; -
FIG. 5d Nozzle modification to theFIGS. 4 and5a ; -
FIG. 5e Liquid discharge from the nozzle plate; -
FIGS. 6a to d Embodiments of the mesh or wire mesh electrode; -
FIGS. 7a to d Installation of the grid or wire mesh electrode in the nozzle plate; -
FIGS. 8a to d Installation of the grid or wire mesh electrode in the bottom plate; -
FIGS. 9a to d Completing the grid or wire mesh electrode on the nozzle plate.
Der in der
Zur Aufsammlung der festen und flüssigen Partikel des Aerosols wird der poröse Kollektor 11, das poröse Filter 11, eingesetzt. Die Gitterelektrode 8 und der Kollektor sind hier zwischen der Bodenplatte 9 und der Düsenplatte 2 im Abscheidergehäuse 1 eingebaut. Der Hochspannungsstab 5 ist mit einer Stirnseite in dem Hochspannungsisolator 6 eingespannt, der am Boden des Isolatorgehäuses 7 zentral befestigt und in das Innere exponiert ist. Der Hochspannungsisolator 6 ist im Innern des Isolatorgehäuses 7 exponiert und steht damit nicht im Rohgasstrom. Durch die Hochspannungsdurchführung 13 hindurch liegt der Hochspannungsstab 5 an der Hochspannungsklemme eines hier nicht eingezeichneten Hochspannungsnetzgerätes.To collect the solid and liquid particles of the aerosol, the
Zusätzlich ist die Hochspannungselektrode 12 am Hochspannungsstab 5 kurz vor der Öffnung in das Isolatorgehäuse 7 befestigt. Sie hat eine ähnliche oder gleiche Gestalt wie die Hochspannungselektrode 4 am freien Ende des Hochspannungsstabes 5. Die Anordnung aus Hochspannungselektroden 4, 12 und Hochspannungsstab 5 ist zusammen mit der Gitterelektrode 8 koaxial.In addition, the
Die Bodenplatte 9 hat Durchgänge 10, durch die hindurch der Gasstrom ungehindert, allenfalls unbedeutend gehindert strömt. Der poröse Kollektor 11 umgibt die Gitterelektrode 8 ganz und konzentrisch im Abstand. Der gesamte Gasstrom muss durch diesen Aufbau zwangsweise durch den porösen Kollektor hindurch.The
Der elektrostatische Abscheider hat den flanschartigen Rohgaseintritt 18, durch den hindurch der über einen Kanal (nicht eingezeichnet) herangeführte Gasstrom 16 eintritt. Gasstromabwärts tritt der gereinigte Gasstrom nach Durchdringung des porösen Kollektors 11 über die Reingasaustrittsöffnung 19 ins Freie oder wird in einem angeflanschten Kanal (nicht eingezeichnet) weiter geführt. Die Pfeile 16 in den Figuren deuten den Strömungsweg durch den Abscheider an.The electrostatic precipitator has the flange-like
Der elektrostatische Abscheider hat weiter ein Rohr 15 durch die Wand 1 des Abscheiders und die Wand des Isolatorgehäuses 7, durch das hindurch saubere Luft oder sauberes Gas in das Isolatorgehäuse 7 eingeströmt werden kann, um den Hochspannungsisolator 6 vor Verunreinigung durch Ablagerungen zu schützen. Das angeschlossene Reinluft oder Reingasreservoir ist nicht eingezeichnet. Gegebenenfalls kann die Reinluft oder das Reingas auch erwärmt eingeleitet werden.The electrostatic precipitator further has a
Der elektrostatische Abscheider hat ein Vorfilter 14, das in dem Abscheidergehäuse 1 gasstromaufwärts der Düsenplatte 2 hier in schräger Lage eingebaut ist. Mit ihm sollen größere Partikel im Rohgasstrom schon abgefangen werden, und zwar Partikel mindestens der Größe, die aufgrund ihres Durchmessers sicher nicht mehr durch die Perforationen/Maschen der Gitter- oder Maschendrahtelektrode 8 frei durchtreten können.The electrostatic precipitator has a pre-filter 14, which is installed in the
Weiter hat der Abscheider von der Düsenplatte 2 weg ein Rohr 17 durch die Abscheiderwand 1 nach außen, durch das hindurch auf der Düsenplatte 2 angesammelte, vom porösen Kollektor 11 abgelaufene, verunreinigte Flüssigkeit abgelassen werden kann. Weiter hat der Abscheider ein Rohr 20, das am Boden des Abscheidergehäuses 1 eingebaut ist, um verunreinigte, vom Vorfilter 14 abtropfende, aufgefangene Flüssigkeit ebenfalls ablassen zu können.Further, the separator has away from the
Das Isolatorgehäuse 7 kann innerhalb des Abscheiders auf der Reingasseite installiert sein, wie in
In einem elektrostatischen Abscheider können auf dem Hochspannungsstab 5 mehrere Hochspannungselektroden 4 angebracht sein. Die Geometrie und die Größe der Hochspannungelektroden 4, ihre Position, die Weite H des Elektrodenspalts werden von den Bedingungen unter denen der Abscheider zu arbeiten hat, bestimmt.In an
Um mechanische Stabilität und definierte Lage zu garantieren, ist zwischen der Bodenplatte 9 und der Düsenplatte 2 die Fixierplatte 21 eingebaut ist (siehe
Die Gitter- oder Maschendrahtelektrode 8 kann mit offener (
Die Gitter- oder Maschendrahtelektrode 8 kann derart in der Düse 3 eingebracht sein, dass der Eintritt durch die offene, freiliegende Stirn der Gitter- oder Maschendrahtelektrode 8 gasstromaufwärts zu der Düsenplatte 2 sitzt (
Im kompakten elektrostatischen Abscheider ist die Gitter- oder Maschendrahtelektrode 8 in den Durchgängen der Trägerpakte 9 im Bereich des Isolatorgehäuses 7 derart eingebaut, dass die dortige freie Stirnkante der Gitter- oder Maschendrahtelektrode 8 auf der Höhe der Bodenplatte 9 (
Der Gasstromeintritt in die Gitter- oder Maschendrahtelektrode 8 kann siebartig abgedeckt sein, wie das in den
Einen kompakten elektrostatischen Abscheider mit mehr als einer Gitter- oder Maschendrahtelektrode 8 zeigt
Der Aufbau in
Wie in
Ein weiterer, beispielhafter Aufbau des kompakten elektrostatischen Abscheiders ist in
In den
Für die Struktur des elektrostatischen Abscheiders nach den
Der kompakte elektrostatische Abscheider mit dem erzwungenen Gasstromweg in ihm arbeitet folgendermaßen:
Das Rohgas wird über einen an dem Abscheider anflanschenden Kanal eingeleitet und strömt durch das Vorfilter, um Grobpartikel abzuscheiden, aufzusammeln und aus dem Abscheider abzuleiten. Der durch das Vorfilter durchgetretene Gasstrom mit seinen nunmehr feinen Partikel, die frei durch die Maschen der Gitter- oder Maschendrahtelektrode 8 treten können, tritt in die Düse ein und gelangt durch den Elektrodenzwischenraum zwischen dem Hochspannungsstab mit seinen koaxialen Hochspannungselektroden und der koaxial umgebenden Gitter- oder Maschendrahtelektrode 8. Bei Anlegen einer Hochspannung an den Hochspannungsstab kommt es zu einer Koronaentladung an den scharfen Kanten/Spitzen der Hochspannungselektroden. Die mitgeführten Partikel im Gasstrom werden dort elektrisch geladen und bewegen sich auf die Gitter- oder Maschendrahtelektrode zu. Die Partikelbewegung geschieht unter dem Einfluss der gasdynamischen Kräfte und des elektrischen Feldes im Elektrodenzwischenraum. Ein Teil der Partikel wird in der Gitter- oder Maschendrahtelektrode abgelagert. Die dort aufgenommene Flüssigkeit wird aufgrund des Bezugs-/Erdpotentials der Gitter- oder Maschendrahtelektrode elektrisch neutralisiert, läuft daran herunter, tropft in den Abscheider ab und wird bedarfsweise daraus ausgeleitet. Der andere Teil gelangt durch die Maschen der Gitter- oder Maschendrahtelektrode und bildet zwischen der Gitter- oder Maschendrahtelektrode und dem porösen Kollektor eine Raumladungszone. Unter dem Einfluss der Raumladung und der elektrostatischen Kräfte zwischen den geladenen Partikel und der geerdeten Oberfläche der Gitter- oder Maschendrahtelektrode, Düsenplatte, Bodenplatte und porösem Kollektor sammeln sich die geladenen Partikel an den geerdeten Oberflächen an und werden elektrisch neutralisiert. Die mit den Partikeln versetzte Flüssigkeit läuft ab, wird in dem Abscheider in vorgesehenen Bereich aufgesammelt und bedarfsweise ausgeleitet.The compact electrostatic precipitator with the forced gas flow path in it operates as follows:
The raw gas is introduced via a flanging at the separator channel and flows through the pre-filter to separate coarse particles, collect and discharge from the separator. The permeated through the prefilter gas stream with its now fine particles that can pass freely through the mesh of the grid or
Ein Teil der Partikel dringen in den Raum gasstromabwärts der Hochspannungselektrode und werden dort unter dem Einfluss des elektrischen Feldes zwischen dem Hochspannungsstab und der Gitter- oder Maschendrahtelektrode zu elektrisch geladenen Partikel gemacht. Dieses elektrische Feld treibt die geladenen Partikel auf die Gitter- oder Maschendrahtelektrode zu, wo sie teilweise aufgesammelt werden, teilweise durchdringen und in den Raum zwischen der Gitter- oder Maschendrahtelektrode und dem porösen Kollektor eindringen. Ein kleiner Teil der geladenen Partikel erreicht die obere Zone der Gitter- oder Maschendrahtelektrode, an der die zusätzliche Hochspannungselektrode nächst der Bodenplatte sitzt. Wenn Hochspannung an den Hochspannungsstab gelegt wird, besteht ein hohes elektrisches Feld zischen dieser zusätzlichen Hochspannungselektrode und der Gitter- oder Maschendrahtelektrode. Die Koronaentladung an der zusätzlichen Hochspannungselektrode erzeugt einen elektrischen Wind der in Richtung zur Gitter- oder Maschendrahtelektrode gerichtet ist. Nun ist die Geometrie des Elektrodenspalts so gewählt, dass die Geschwindigkeit des elektrischen Windes gleich oder höher als die Geschwindigkeit der Gasströmung im oberen Teil der Gitter- oder Maschendrahtelektrode ist. Unter diesen Bedingungen schützt der elektrische Wind den Hochspannungsisolator im Isolatorgehäuse, wie auch das ins Innere des Isolatorgehäuses eingeleitete Reingas oder die Reinluft. Es können also keine geladenen Partikel in das Innere des Isolatorgehäuses dringen.A portion of the particles penetrate into the space downstream of the high voltage electrode and are made into electrically charged particles under the influence of the electric field between the high voltage rod and the grid or wire mesh electrode. This electric field drives the charged particles onto the grid or wire mesh electrode, where they are partially collected, partially penetrate and penetrate into the space between the grid or wire mesh electrode and the porous collector. A small portion of the charged particles reaches the upper zone of the grid or wire mesh electrode where the additional high voltage electrode sits next to the bottom plate. When high voltage is applied to the high voltage bar, there is a high electric field between this additional high voltage electrode and the grid or wire mesh electrode. The corona discharge at the additional high voltage electrode generates an electrical wind directed toward the grid or wire mesh electrode. Now, the geometry of the electrode gap is chosen so that the speed of the electric wind is equal to or higher than the velocity of the gas flow in the upper part of the grid or wire mesh electrode. Under these conditions, the electric wind protects the high-voltage insulator in the insulator housing, as well as the clean gas introduced into the interior of the insulator housing or the clean air. So it can not penetrate charged particles in the interior of the insulator housing.
An der Fixierplatte 21 lagern sich auch Partikel ab, da sie ja ebenfalls an das Bezugspotential angebunden, bzw. geerdet ist und verringert damit Zahl der Partikel, die zum Isolatorgehäuse fliegen können. Die Fixierplatte ist im Abstand 2d von dem Durchgang in der Bodenplatte montiert, das dadurch zulässt, dass der elektrische Wind mit maximaler Geschwindigkeit im Elektrodenspalt durch die Gitter- oder Maschendrahtelektrode geht, der von der Bodenplatte und der Fixierplatte erzeugt wird, womit die geladenen Partikel weggeblasen werden. Diese Situation gilt in den beiden Fällen, dass der Gastromweg durch die gesamte Gitter- oder Maschendrahtelektrode nur in eine Richtung,
Der poröse Kollektor kann aus porösen Materialien, unterschiedlicher Dicke und Dichte hergestellt sein. Er kann aus unterschiedlich porösen Materialien hergestellt sein, dielektrisch, elektrisch halbleitend oder leitend. Auch kann das poröse Material oder die Gitter- oder Maschendrahtelektrode mit zusätzlichen katalytischen Beigaben versehen sein. Die Materialien müssen prozessinert, zumindest weitestgehend prozessinert sein.The porous collector may be made of porous materials of different thickness and density. It can be made of different porous materials, dielectric, electrically semiconductive or conductive. Also, the porous material or the mesh or wire mesh electrode may be provided with additional catalytic additives. The materials must be process-oriented, at least largely process-oriented.
Die Dimensionen und der Betrieb einer bestehenden, kompakten elektrostatischen Pilotanlage sind beispielsweise:
Die lichte Weite der Düse ist 50 mm; der Außendurchmesser der Gitter- oder Maschendrahtelektrode ist D = 50/48 mm; der Elektrodenspalt beträgt 13 mm, verwendet werden zwei 7-zackige scheibenförmige Hochspannungselektroden; die Hochspannung ist eine DC-Spannung negativer Polarität von 12 bis 20 kV; der Koronastrom beträgt 0,5 bis 1 mA; Der Gasdurchsatz beträgt 30 m3/h; prozessiert wurde ölnebeliges Aerosol mit einer Partikelmassenkonzentration von 100 bis 1 500 mg/Nm3, einer Partikelgröße < 2 µm und mittlerer Partikelgröße von 0,3 bis 0,4 µm.The dimensions and operation of an existing, compact electrostatic pilot plant include:
The clear width of the nozzle is 50 mm; the outside diameter of the mesh or wire mesh electrode is D = 50/48 mm; the electrode gap is 13 mm, using two 7-pin disk-shaped high-voltage electrodes; the high voltage is a negative polarity DC voltage of 12 to 20 kV; the corona current is 0.5 to 1 mA; The gas flow rate is 30 m 3 / h; was processed oil-mist aerosol having a particle mass concentration of 100 to 1 500 mg / Nm 3 , a particle size <2 microns and average particle size of 0.3 to 0.4 microns.
Die Ausscheidungseffizienz für einen einmoduligen, kompakten elektrostatischen Abscheider liegt zwischen 92 und 95%, für einen zweimoduligen zwischen 97 und 99%.The precipitation efficiency for a single-module, compact electrostatic precipitator is between 92 and 95%, for a two-modulus between 97 and 99%.
Claims (16)
- An electrostatic precipitator for removing the solid and liquid components from an aerosol, comprising:a precipitator housing (1) having an inlet, the raw gas inlet (18), for the aerosol to be cleaned, and an outlet, the clean gas outlet (19), for the cleaned aerosol, with at least one flow duct that brings along the aerosol being flanged to the raw gas inlet (18),a drain device (17) for the solid and liquid and separated components removed from the aerosol, an ionization stage which is supplied from the exterior via an electrical high-voltage feedthrough (13) and which consists of at least one metal bar (5), the high-voltage bar (5), extending into the flow path of the aerosol and to which electrical high voltage can be applied, a collector stage located downstream of the ionization stage in the flow path,wherein:the at least one high-voltage bar (5) extends into the gas flow path over a high-voltage insulator (6) sitting beside the gas flow path, and the high-voltage insulator (6) sits in a bowl-like insulator housing (7) through which aerosol does not flow and which is connected to an electrical reference potential,the high-voltage bar (5) with an electrode (4), the high-voltage electrode (4), sits at least at the free end and [sic] of a last electrode (12), the protection electrode (12), at distance d from the opening to the insulator housing (7), and the electrodes (4, 12) are provided disc-like with radially aligned spikes uniformly distributed about the periphery,the high-voltage bar (5) extends coaxially into a hollow-cylindrical sleeve (8) of perforated sheet metal or wire mesh, the grid or mesh electrode (8), which is attached at one end to a baseplate (9) for the insulator housing (7) and connected to a reference potential, and in such a way as to create for each electrode (4, 12) a concentric gap of the smallest width H from the enclosing grid or mesh electrode (8),the grid or mesh electrode (8) abuts against or sticks in a perforated plate (2), the nozzle plate (2), lying on the electrical reference potential,the grid or mesh electrode(s) (8) is(are) enclosed at most over the length of the sleeve, but completely around their periphery, by a porous collector (11), and the entire aerosol stream flows through the porous collector.
- An electrostatic precipitator according to claim 1 wherein a high-voltage feedthrough (13) leads from the surroundings through the insulator housing (7).
- An electrostatic precipitator according to claim 2 wherein a tube (15) for admitting clean gas or clean air at a given temperature and given pressure leads from the surroundings through the insulator housing (7).
- An electrostatic precipitator according to claim 3 wherein:the insulator housing (7) sits on the baseplate (9) which extends concentrically across the unobstructed cross-section of the precipitator housing (1),the high-voltage insulator (6) in which the high-voltage bar (5) is clamped by its end sits centrally in the insulator housing (7),the grid or mesh electrode (8) sits with its one end region in a passage in the baseplate (9) andwith its other end region in a nozzle (3) in the nozzle plate (2) seated across the unobstructed cross-section of the precipitator housing (1).
- An electrostatic precipitator according to claim 4 wherein the baseplate (9) is perforated between the insulator housing (7) and the wall of the precipitator housing (1) and the precipitator housing (1) covers the perforated baseplate (9) as well as the insulator housing (7).
- An electrostatic precipitator according to claim 5 wherein upstream of the free end of the grid or mesh electrode (8) and of the nozzle plate (2) in the direction of the gas flow sits a pre-filter (14) across the unobstructed cross-section of the precipitator housing (1) at a angle to the centreline of the high-voltage bar (5), with the raw gas inlet (18) being located upstream of the pre-filter (14) in the direction of the gas flow in the jacket-wall-side wall of the precipitator housing (1) and the clean gas outlet (19) being located in the precipitator housing (1) which covers the baseplate (9) as well as the insulator housing (7).
- An electrostatic precipitator according to claim 4 wherein the baseplate (9) is not perforated between the insulator housing (7) and the wall of the precipitator housing (1) and of which the end forms part of the wall of the precipitator housing (1).
- An electrostatic precipitator according to claim 7 wherein upstream of the free end of the grid or wire mesh electrode (8) and of the nozzle plate (2) in the direction of the gas flow sits a pre-filter (14) across the unobstructed cross-section of the housing at an angle to the centreline of the bar (5), with the raw gas inlet (18) being located in the wall of the precipitator housing (1) at the jacket-wall end upstream of the pre-filter (14) in the direction of the gas flow and the clean gas outlet being located downstream in the direction of the gas flow between the baseplate (9) and the nozzle plate (2).
- An electrostatic precipitator according to claim 3 wherein:the insulator housing (7) for the high-voltage insulator (6) sits on the baseplate (9) which reaches concentrically across the unobstructed cross-section of the precipitator housing (1), in the insulator housing (7) the high-voltage insulator (6) sits centrally on the baseplate (9) and extends into the insulator housing (7),on that end of the high-voltage insulator (6) which extends into the insulator housing (7) is fixed a high-voltage grid (23) on which the high-voltage bars (5) are attached uniformly distributed about the axis of the precipitator at the same radial distance from that axis and each coaxially extending into the associated grid or mesh electrode (8).
- An electrostatic precipitator according to claim 9 wherein the baseplate (9) is perforated between the insulator housing (7) and the inner wall of the precipitator housing (1).
- An electrostatic precipitator according to claim 10 wherein:upstream of the free arrangement of the grid or mesh electrode(s) (8) and of nozzle plate (2) in the direction of the gas flow sits a pre-filter (14) across the unobstructed cross-section of the precipitator housing (1) at an angle to the centreline of the precipitator.
- An electrostatic precipitator according to claim 11 wherein a plate (21), the fixing plate (21), through which the grid or wire mesh electrodes (8) are guided is attached by fixing elements (22) to the baseplate (9) centrally and away from the insulator.
- An electrostatic precipitator according to claim 3 wherein
the insulator housing (7) for the high-voltage insulator (6) sits concentrically on the baseplate (9) which extends across the unobstructed cross-section of the precipitator housing (1), the high-voltage insulator (6) in which the high-voltage bar (5) sticks axially sits centrally on the end base in the insulator housing (7),
the grid or mesh electrode (8) starts with its one end in a central passage of the baseplate (9) and with its other end abuts a centrally mounted plate (24), the end plate (24), which covers the grid or mesh electrode (8) beyond the cross-section, with the nozzle plate (2) being located between the end plate (24) and the baseplate (9) and the grid or mesh electrode (8) being completely enclosed by the porous collector (11) between the nozzle plate (2) and the end plate (24). - An electrostatic precipitator according to claim 13 wherein the raw gas inlet (18) sits in the nozzle plate (9) and the clean gas outlet is located in the wall of the precipitator housing (1) in the region of the porous collector (11).
- An electrostatic precipitator according to claim 3 wherein
the insulator housing (7) for the high-voltage insulator (6) sits concentrically on the baseplate (9) which extends across the unobstructed cross-section of the precipitator housing (1), the high-voltage insulator (6) is mounted centrally in the insulator housing (7) on the frontal base,
on that end of the high-voltage insulator (6) which extends into the insulator housing (7) is fixed a high-voltage grid (23) on which the high-voltage bars (5) are attached uniformly distributed about the axis of the precipitator at the same radial distance from that axis and each coaxially extending into the associated grid or mesh electrode (8),
the grid or wire mesh electrodes (8) that stick in the baseplate (9) abut the covering end plate (24) by their free ends,
the grid or wire mesh electrodes between the baseplate (9) and the end plate (24) pass through the nozzle plate (2), the assembly of grid or wire mesh electrodes (8) between the nozzle plate (2) and the covering end plate (24) is complete enclosed by the porous collector (11). - An electrostatic precipitator according to claim 15 wherein the raw gas inlet (18) sits in the nozzle plate (9) and the clean gas outlet (19) is located in the wall of the precipitator housing (1) in the region of the porous collector (11).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008011949A DE102008011949A1 (en) | 2008-02-29 | 2008-02-29 | Electrostatic separator |
PCT/EP2009/000158 WO2009106192A1 (en) | 2008-02-29 | 2009-01-14 | Electrostatic precipitator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2244834A1 EP2244834A1 (en) | 2010-11-03 |
EP2244834B1 true EP2244834B1 (en) | 2012-03-07 |
Family
ID=40792681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09714062A Not-in-force EP2244834B1 (en) | 2008-02-29 | 2009-01-14 | Electrostatic precipitator |
Country Status (5)
Country | Link |
---|---|
US (1) | US8337600B2 (en) |
EP (1) | EP2244834B1 (en) |
AT (1) | ATE548120T1 (en) |
DE (1) | DE102008011949A1 (en) |
WO (1) | WO2009106192A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108372029A (en) * | 2018-04-04 | 2018-08-07 | 昆山奕盛来环境科技有限公司 | A kind of electrostatic air cleaning plate |
EP3492175A1 (en) | 2017-12-04 | 2019-06-05 | PHX Innovation ApS | Electrostatic precipitator system having a grid for collection of particles |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009030804B4 (en) | 2009-06-27 | 2011-07-28 | Karlsruher Institut für Technologie, 76131 | Electrostatic separator for particle separation |
US8092768B2 (en) * | 2010-02-11 | 2012-01-10 | Energy & Environmental Research Center Foundation | Advanced particulate matter control apparatus and methods |
HK1150374A2 (en) * | 2011-06-07 | 2011-12-16 | Yiu Ming Chan | An air purification device and method |
KR101322689B1 (en) | 2012-02-06 | 2013-10-30 | 한양대학교 에리카산학협력단 | Method and system for separating fibrous particles |
ITAN20120152A1 (en) * | 2012-11-20 | 2014-05-21 | S C M Societa Costruzioni Metal Liche S R L | PERFECTED ELECTROSTATIC FILTER. |
US20150059580A1 (en) * | 2013-08-27 | 2015-03-05 | Mriglobal | Forensic air and surface sampler technology (fasst) collector |
US9827573B2 (en) * | 2014-09-11 | 2017-11-28 | University Of Washington | Electrostatic precipitator |
JP6345127B2 (en) * | 2015-01-22 | 2018-06-20 | 三菱重工業株式会社 | Exhaust gas treatment system and method |
CN104741278B (en) * | 2015-04-07 | 2017-04-26 | 深圳爱浦发空气净化科技有限公司 | High-pressure electrostatic water mist generating device |
JP2019503840A (en) * | 2015-12-02 | 2019-02-14 | ランドバーグ・エルエルシー | System, apparatus, and method for improving turbine operation using electrostatic precipitator |
CN105797862A (en) * | 2016-05-10 | 2016-07-27 | 艾尼科环保技术(安徽)有限公司 | Top beating electrostatic dust remover insulator and insulation accessory device |
CN106799307A (en) * | 2017-02-17 | 2017-06-06 | 白三妮 | Air particles deposit adsorbent equipment |
US10864526B2 (en) * | 2017-05-03 | 2020-12-15 | Airgard, Inc. | Electrode for electrostatic precipitator gas scrubbing apparatus |
JP2018202297A (en) * | 2017-05-31 | 2018-12-27 | 臼井国際産業株式会社 | Discharge electrode of electric precipitator for diesel engine exhaust gas |
KR101975183B1 (en) * | 2017-09-01 | 2019-05-13 | 주식회사 알링크 | Fine dust removal system with conductive filter module |
CN108480045B (en) * | 2018-04-04 | 2020-12-01 | 五河县纬立农业科技有限公司 | Array air purification board of non-uniform arrangement |
CN108380390B (en) * | 2018-04-04 | 2020-11-06 | 泗县田原秸秆回收再利用有限责任公司 | Novel electrostatic air purification plate |
USD1028199S1 (en) | 2018-06-13 | 2024-05-21 | Exodraft a/s | Smoke extractor |
CN111001269B (en) * | 2018-10-04 | 2022-02-11 | 斗山重工业建设有限公司 | Dust collection module and desulfurization device provided with same |
KR102066479B1 (en) | 2018-10-10 | 2020-01-15 | 주식회사 알링크 | Conductive filter unit, conductive filter module comprising conductive filter unit, and fine dust removal system comprising conductive filter module |
KR102097737B1 (en) * | 2018-10-12 | 2020-04-06 | (주)에코솔루텍 | Electrostatic precipitator with insulating hanger rods |
EP3722003A1 (en) * | 2019-04-09 | 2020-10-14 | Technische Universität Dortmund | Electrostatic precipitator |
US11123751B2 (en) | 2019-08-01 | 2021-09-21 | Infinite Cooling Inc. | Panels for use in collecting fluid from a gas stream |
US11298706B2 (en) | 2019-08-01 | 2022-04-12 | Infinite Cooling Inc. | Systems and methods for collecting fluid from a gas stream |
WO2021173178A1 (en) * | 2020-02-27 | 2021-09-02 | Infinite Cooling Inc. | Systems, devices, and methods for collecting species from a gas stream |
KR102186099B1 (en) * | 2020-05-25 | 2020-12-03 | 주식회사 에프에이치아이코리아 | Removing Device For Radon Gas Comprising Ionization Catalyst Mesh |
KR102186098B1 (en) * | 2020-05-25 | 2020-12-03 | 주식회사 에프에이치아이코리아 | Removing Device For Radon Gas |
CN217109926U (en) * | 2021-05-12 | 2022-08-02 | 微喂苍穹(上海)健康科技有限公司 | One-section type air disinfection device |
CN113275125A (en) * | 2021-05-19 | 2021-08-20 | 扬州大学 | Electrostatic dust collector and breakdown prevention device and using method thereof |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1605648A (en) * | 1921-03-07 | 1926-11-02 | Milton W Cooke | Art of separating suspended matter from gases |
US2273194A (en) * | 1941-03-11 | 1942-02-17 | Research Corp | Gas cleaning |
US3818678A (en) * | 1967-04-10 | 1974-06-25 | Filteron Int Inc | Methods of and apparatus for separating solid and liquid particles from air and other gases |
US3740925A (en) * | 1971-07-06 | 1973-06-26 | Filteron Int Inc | Methods of and apparatus for separating solid and liquid particles from air and other gases |
DE2134576C3 (en) * | 1971-07-10 | 1975-10-30 | Metallgesellschaft Ag, 6000 Frankfurt | Tube n-Na electrostatic precipitator |
SE385271B (en) * | 1974-02-13 | 1976-06-21 | Lectrostatic Ab | ELECTROSTATIC FILTER |
JPS54156277A (en) * | 1978-05-31 | 1979-12-10 | Mitsubishi Electric Corp | Elecrtospark type gas treating system |
US4529418A (en) * | 1982-01-15 | 1985-07-16 | Santek, Inc. | Inlet section for inertial-electrostatic precipitator unit |
US4604112A (en) * | 1984-10-05 | 1986-08-05 | Westinghouse Electric Corp. | Electrostatic precipitator with readily cleanable collecting electrode |
CA2108539C (en) * | 1993-10-15 | 1999-01-26 | Constantinos J. Joannou | Ionizing type air cleaner |
JP2000001320A (en) * | 1998-06-15 | 2000-01-07 | Canon Inc | Method for forming glass gob as optical element or blank for producing the same |
US6221136B1 (en) | 1998-11-25 | 2001-04-24 | Msp Corporation | Compact electrostatic precipitator for droplet aerosol collection |
US6193782B1 (en) * | 1999-03-30 | 2001-02-27 | Croll Reynolds Clean Air Technologies, Inc. | Modular condensing wet electrostatic precipitators and method |
DE19946283C1 (en) * | 1999-07-31 | 2000-09-28 | Metallgesellschaft Ag | Earth conductor for earthing systems consists of conducting part on current source, earth sides connected via liquid-tight graphite part with attached unencased conducting part core sections |
DE10132582C1 (en) * | 2001-07-10 | 2002-08-08 | Karlsruhe Forschzent | System for electrostatically cleaning gas and method for operating the same |
US6508861B1 (en) * | 2001-10-26 | 2003-01-21 | Croll Reynolds Clean Air Technologies, Inc. | Integrated single-pass dual-field electrostatic precipitator and method |
DE10244051C1 (en) | 2002-09-21 | 2003-11-20 | Karlsruhe Forschzent | Ionizer used in an exhaust gas purification device for moist gases comprises a nozzle plate connected to an electrical reference potential, and a high voltage electrode grid connected in the flow direction |
US6902604B2 (en) * | 2003-05-15 | 2005-06-07 | Fleetguard, Inc. | Electrostatic precipitator with internal power supply |
DE102004037286B3 (en) | 2004-07-31 | 2005-08-11 | Forschungszentrum Karlsruhe Gmbh | Structural principle of exhaust gas cleaning system has exhaust cleaning section with upright U structure, ionization zone in one leg, connecting zone with outlet(s) for particle-enriched liquid at lowest point, collector zone in other leg |
DE102005023521B3 (en) * | 2005-05-21 | 2006-06-29 | Forschungszentrum Karlsruhe Gmbh | Wet electrostatic ionizing step in electrostatic separator of particles from aerosols and gases has thin sheath around through holes in earth plate with nearby electrodes |
US7270697B2 (en) * | 2005-10-11 | 2007-09-18 | Durr Systems, Inc. | Electrostatic precipitator |
WO2007116131A1 (en) | 2006-04-11 | 2007-10-18 | Renault S.A.S | Device and method for capturing and eliminating agglomerated particles emanating from a motor vehicle particle filter |
US7582144B2 (en) | 2007-12-17 | 2009-09-01 | Henry Krigmont | Space efficient hybrid air purifier |
US7582145B2 (en) | 2007-12-17 | 2009-09-01 | Krigmont Henry V | Space efficient hybrid collector |
-
2008
- 2008-02-29 DE DE102008011949A patent/DE102008011949A1/en not_active Withdrawn
-
2009
- 2009-01-14 US US12/919,877 patent/US8337600B2/en not_active Expired - Fee Related
- 2009-01-14 WO PCT/EP2009/000158 patent/WO2009106192A1/en active Application Filing
- 2009-01-14 EP EP09714062A patent/EP2244834B1/en not_active Not-in-force
- 2009-01-14 AT AT09714062T patent/ATE548120T1/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3492175A1 (en) | 2017-12-04 | 2019-06-05 | PHX Innovation ApS | Electrostatic precipitator system having a grid for collection of particles |
CN108372029A (en) * | 2018-04-04 | 2018-08-07 | 昆山奕盛来环境科技有限公司 | A kind of electrostatic air cleaning plate |
CN108372029B (en) * | 2018-04-04 | 2020-12-04 | 五河县纬立农业科技有限公司 | Electrostatic air purification plate |
Also Published As
Publication number | Publication date |
---|---|
WO2009106192A1 (en) | 2009-09-03 |
EP2244834A1 (en) | 2010-11-03 |
US20110011265A1 (en) | 2011-01-20 |
US8337600B2 (en) | 2012-12-25 |
ATE548120T1 (en) | 2012-03-15 |
DE102008011949A1 (en) | 2010-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2244834B1 (en) | Electrostatic precipitator | |
DE102004022288B4 (en) | Electrostatic separator with internal power supply | |
DE102005045010B3 (en) | Electrostatic ionization stage within a separator for aerosol particles has high-voltage electrode located downstream from gas jet inlet | |
DE10132582C1 (en) | System for electrostatically cleaning gas and method for operating the same | |
DE3122515C2 (en) | Electrostatic filter assembly | |
WO2006125485A1 (en) | Wet electrostatic ionising step in an electrostatic deposition device | |
DE102008055547A1 (en) | Systems and methods for separating solid particles in a filtration system | |
DE102007020504A1 (en) | Electrostatic precipitator for diesel engine electrostatic crankcase ventilation system, has corona discharge electrode comprising axially extending hollow drum that surrounds tube, and charged particles shielded by tube | |
DE102006057705B3 (en) | Energy generation heating system by combustion of energy source such as biomass for motor vehicle, has electrode feed coated with insulator and enclosing particle rejecting unit, which prevents exhaust gas particle deposition on insulator | |
EP2091653B1 (en) | Ionization stage and collector for an exhaust gas purification system | |
EP1771254B1 (en) | Structural principle of an exhaust gas purification installation, and associated method for purifying an exhaust gas | |
EP0715894B1 (en) | Electrostatic filter unit | |
DE10227703B3 (en) | Feed-through for electrical high voltage through a wall that separates a surrounding area from a process area | |
EP3025785B1 (en) | Device and method for purification of flue gas of a metallurgical plant | |
CH623240A5 (en) | ||
EP2266702B1 (en) | Electrostatic separator for cleaning waste gas with an electrical restriction field | |
DE102009036957A1 (en) | Electrostatic separator and heating system | |
DE102017114638B4 (en) | Electrostatic precipitator and method for the electrostatic precipitation of substances from an exhaust gas stream | |
DE19841973C2 (en) | Electro filter stage made up of spray electrodes and a precipitation electrode | |
EP4000738B1 (en) | Filter for cleaning a gas flow | |
DE2235531B2 (en) | Method and device for separating extremely fine foreign matter particles from a gas flow | |
EP2195115B1 (en) | Physical structure of exhaust-gas cleaning installations | |
AT394664B (en) | Electrostatic granular-bed filter system | |
AT232803B (en) | Method and device for cleaning exhaust gases from internal combustion engines | |
DD204411A1 (en) | DEVICE FOR DISPERSING FOGS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100624 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 548120 Country of ref document: AT Kind code of ref document: T Effective date: 20120315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009002962 Country of ref document: DE Effective date: 20120503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120607 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120608 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120707 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120709 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
26N | No opposition filed |
Effective date: 20121210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009002962 Country of ref document: DE Effective date: 20121210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120618 |
|
BERE | Be: lapsed |
Owner name: KARLSRUHER INSTITUT FUR TECHNOLOGIE Effective date: 20130131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090114 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130114 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20180124 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180125 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20180122 Year of fee payment: 10 Ref country code: FR Payment date: 20180124 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20190201 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 548120 Country of ref document: AT Kind code of ref document: T Effective date: 20190114 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190114 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210120 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009002962 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220802 |