EP2228462A1 - Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks, sowie Werkstück mit einer beschichteten Sitzfläche - Google Patents

Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks, sowie Werkstück mit einer beschichteten Sitzfläche Download PDF

Info

Publication number
EP2228462A1
EP2228462A1 EP10152429A EP10152429A EP2228462A1 EP 2228462 A1 EP2228462 A1 EP 2228462A1 EP 10152429 A EP10152429 A EP 10152429A EP 10152429 A EP10152429 A EP 10152429A EP 2228462 A1 EP2228462 A1 EP 2228462A1
Authority
EP
European Patent Office
Prior art keywords
coating
seat surface
bore
workpiece
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10152429A
Other languages
English (en)
French (fr)
Other versions
EP2228462B1 (de
Inventor
Dietmar Dr. Schlager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wartsila NSD Schweiz AG
Original Assignee
Wartsila NSD Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wartsila NSD Schweiz AG filed Critical Wartsila NSD Schweiz AG
Priority to EP20100152429 priority Critical patent/EP2228462B1/de
Publication of EP2228462A1 publication Critical patent/EP2228462A1/de
Application granted granted Critical
Publication of EP2228462B1 publication Critical patent/EP2228462B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1886Details of valve seats not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings

Definitions

  • the invention relates to a method for applying a coating to a seat surface of a workpiece, in particular a seat in a nozzle body of an injection nozzle of a two-stroke large diesel engine, and a workpiece, in particular injection nozzle with a coated seat according to the preamble of the independent claim of the respective category.
  • needle valves have a seat surface which is often provided deep in very long thin bores such that a nozzle needle of the valve, for example a nozzle needle in an injection valve for injecting fuel into the combustion chamber of an internal combustion engine, with the seat functionally cooperate.
  • the nozzle needle interacts functionally with the seat as a valve.
  • fuel can flow from a pressure chamber into a longitudinal bore adjoining the valve seat downstream and from there into the combustion chamber of the internal combustion engine via nozzle holes. If the nozzle needle moves back into the valve seat, so the fuel supply to the nozzle holes is interrupted and the injection of the fuel is terminated in the Berennraum.
  • injectors such as injectors, control valves for injection components, such as control valves for injection pumps, seats in lubricating oil holes in cylinder inserts of internal combustion engines, for example, in two-stroke large diesel engines, etc.
  • injectors control valves for injection components
  • control valves for injection pumps seats in lubricating oil holes in cylinder inserts of internal combustion engines, for example, in two-stroke large diesel engines, etc.
  • workpieces that are operated in an aggressive environment made of corrosion-resistant materials, so that the corresponding component is protected, among other things against high temperatures or chemical attack.
  • a prominent example of such a highly loaded component are injection nozzles for two-stroke large diesel engines, which are often operated, among other things, with highly aggressive heavy oil.
  • a heavy oil or other diesel fuel - is introduced by means of fuel injection nozzles in the combustion chamber.
  • injectors normally include a nozzle head partially projecting into the combustion chamber, also referred to as a nebulizer.
  • the nozzle head is a wear part, which is subject to a high thermal, mechanical and chemical load collective. Depending on the degree of stress, damage to the nozzle head may occur, for example material removal as a result of corrosion, erosion and / or abrasion, or even cracks that can lead to breakup.
  • the mechanical loads are also based on the high injection pressure, which can be over a thousand bar. Inside the nozzle head, material losses due to cavitation and / or erosion can occur.
  • the thermal loads are based on the high temperatures in the Combustion chamber and the enormous temperature changes between the combustion temperature and the temperature of the freshly supplied purge air. Also in the interior of the nozzle head, through which the fuel is introduced, the intermittent injection leads to shock-like temperature changes.
  • the chemical load of the nozzle head is mainly due to high temperature or hot corrosion. Hot corrosion, which is primarily caused by vanadium, sodium and sulfur contained in the fuel, promotes material degradation and erosion. In particular, the corrosion is the reason that a nozzle head can be unusable after a few thousand hours of operation and must be replaced.
  • alloys with high chromium and nickel content in which the chromium and nickel content is, for example, around 50% weight percent, but above all, alloys with a chromium content of more than 50% - weight percent, such as Cr / Ni 65/35 alloys, which are produced by means of a so-called HIP process, although have very good properties in relation to the above-mentioned problems with high-temperature or hot corrosion.
  • Such materials with high chromium content and excellent chemical properties in terms of high-temperature and hot corrosion are already in the EP 1 353 061 disclosed and described in detail.
  • good corrosion properties of certain materials are at the expense of hardness.
  • the nozzle bodies themselves are well protected against chemically and physically aggressive environments.
  • the seating surfaces with which, for example, the nozzle needles co-operate are insufficient in hardness, which can cause the respective seating surfaces and / or the nozzle needles to wear prematurely, which can lead to leaks, fuel metering inaccuracies, and the like.
  • Fig. 2a will be briefly considered as an example of an injection nozzle for a two-stroke large diesel engine.
  • the reference numerals to features of known workpieces are provided with an apostrophe, while the reference numerals to inventive features carry no apostrophe in the context of this application.
  • the known injection nozzle 31 'of Fig. 2a includes a nozzle body 300 'having a nozzle head 301' connected to the nozzle body 300 '.
  • the connection takes place by means of a holding sleeve 302 ', which tapers at its lower end to the longitudinal axis A' of the fuel injector 31 'out.
  • the longitudinal axis A ' is at the same time also the longitudinal axis A' of the nozzle head 301 '.
  • the retaining sleeve 302 ' is by means of a union nut 303' and an elastic member 304 ', for example a snap ring, attached to the nozzle body 300'.
  • the nozzle head 301 ' is supported in the tapered portion of the retaining sleeve 302' from.
  • the nozzle head 301 ' has a longitudinal bore 305' and in the region of its lower end at least one nozzle hole 306 ', typically z. B. five nozzle holes 306 ', from the longitudinal bore 305' go out and through which the fuel in the combustion chamber B 'can escape.
  • a pressure chamber 307' is provided, in which a feed line 308 'opens for the fuel.
  • the pressure chamber 307 ' is bounded in the axial direction by a valve seat 2'.
  • a nozzle needle 7' is arranged, which extends substantially in the direction of the longitudinal axis A 'and which cooperates with the valve seat 2'. In the in Fig. 2a shown closed position, the lower tip of the nozzle needle 7 'is pressed into the valve seat 2', so that the passage from the pressure chamber 307 'in the downstream adjoining longitudinal bore 305' is closed.
  • the nozzle needle 7 ' is spring-loaded in a conventional manner by means of a compression spring, not shown, and biased against the valve seat 2'. In the open position of the nozzle needle 7 ', this is lifted up out of the valve seat 2', so that between the lower end of the nozzle needle 7 'and the valve seat 2', a passage is open, through which the fuel from the pressure chamber 307 'in the longitudinal bore 305 'can get.
  • the volume between the valve seat 2 'and the nozzle holes 306' is commonly referred to as a blind hole.
  • the longitudinal bore 305 ' is designed in the specific example described here as a substantially cylindrical bore which extends in the direction of the longitudinal axis A'.
  • the diameter d 'of the longitudinal bore 305' defines a flow area, which means the available for the flow of the fuel cross-sectional area in the longitudinal bore 305 'is meant.
  • the nozzle needle 7 ' is in the bore 4', which in Fig. 2a for reasons of space only partially shown, provided and has an inlet opening 5 ', through which the nozzle needle 7' in the bore 4 'can be inserted.
  • the seat surface 2 ' is provided from the inlet opening 5' at a distance L ', wherein the bore 4' itself has an inner diameter D ', which is slightly larger than an outer diameter of the nozzle needle 7', so that the nozzle needle 7 'safe and precisely in the bore 4 'is guided.
  • the distance L ' is typically large against the diameter D' of the bore 4 '. That is, when in the context of the present application of a long thin bore is mentioned, then it is meant a bore whose diameter is small compared to a typical or typical for the bore length.
  • the diameter of the bore is e.g. About 10% of the relevant length of the bore, which of course also significantly different ratios of diameter to bore are possible, depending on which workpiece it is.
  • the object of the invention is therefore to propose a method for applying a coating to a seat surface of a workpiece, as well as a corresponding workpiece, so that the known from the prior art problems with the seat surfaces of the workpiece are avoided, and in particular higher service life and thus shorter maintenance intervals and ultimately a higher level of operational reliability is achieved.
  • a further object of the invention is to provide a method with which a coating can be produced on a seating surface in a thin and long bore.
  • a method is to be made available with which a seat in a thin and long bore of a workpiece can be retrofitted with a coating.
  • a method for applying a coating to a seat surface of a workpiece wherein the seat is provided within a bore in the workpiece at a predetermined distance from an inlet opening of the bore.
  • a coating material is applied to the seat surface in a preceding process step, and in a further process step the coating is formed on the seat surface by means of an energy beam, by directing the energy beam through the bore onto the seat surface.
  • the method of the present invention it is possible for the first time to choose the material properties of a base material from which a workpiece, such as an injection nozzle for a two-stroke large diesel engine is made, completely independent of the material requirements are required to a reliably functioning seat deep inside a long thin bore in the workpiece.
  • a Ni-based, Cr-based, Cu-based or Fe-based alloy material which is relatively soft but offers very good protection against hot gas corrosion or chemical attack.
  • a coating material for the seat for example, a significantly harder material can be selected, so that the seat against permanent mechanical stress better against premature wear, for example. is protected by material removal, cavitation, erosion, micro-welding or material fatigue, etc.
  • the coating of the seat surface is made of a softer material than the workpiece itself, for example, to achieve a better seal on the seat or other or to realize another desired material property on the seat
  • a material of a metal matrix with embedded particles whose hardness is equal to or higher than that of the metal matrix are used.
  • the coating on the seat can be optimized by the coating on the seat.
  • the seat itself must be protected against other corrosive processes, such as e.g. an outer wall of the workpiece itself, which is exposed to another aggressive environment with harmful effects.
  • the present invention is so flexible that by suitable choice of the material for the coating on the Seat and / or the fact that the coating process itself certain coating conditions are selected specifically, such as the energy density of the energy beam or the action of the energy beam during the coating process, virtually any desired property of the coating on the seat can be selectively adjusted.
  • the coating material is applied to an energy input by the energy beam, preferably in the form of a coating powder and / or in the form of a coating wire, or in the form of small pieces of a coating wire and / or in the form of a prefabricated coating body at least on a part of the seat.
  • the coating material may also be applied to the seating surface simultaneously with energy input by the energy beam, i. It is a special case of the well-known order welding.
  • a new workpiece e.g. a new injection nozzle for a two-stroke large diesel engine
  • a function hole can be introduced through which can be transported in the operating state, for example, fuel.
  • a laser beam is used as the energy beam, but also other energy beams such as an electron beam can be used advantageously in certain cases.
  • the seat is provided in a workpiece according to the invention in a long thin bore deep in the workpiece, wherein a smallest diameter of the bore in a region between the inlet opening and the seat maximum 50% of the distance, in particular not more than 25% of the distance, and the smallest diameter of the Bore preferably a maximum of 10% of the distance from the inlet opening amounts.
  • the workpiece is preferred, but not necessary, a nozzle body of a nozzle, in particular an injection nozzle of a two-stroke large diesel engine, or a safety valve or a control valve for a component of an injection system or a lubricating oil hole in a cylinder insert.
  • a coating material is in principle any material in question, with which a desired property of the coating can be adjusted on the seat.
  • a cobalt-based alloy, and / or a chromium-based alloy and / or a nickel-based alloy and / or an iron-based alloy may be used as coating material.
  • the invention further relates to a workpiece in which a seat surface is provided within a bore at a predetermined distance from an entrance opening of the bore, wherein on the seat surface, a coating is formed, which made by means of a directed through the bore on the seat energy beam from a coating material is.
  • a function bore can be provided through the coating.
  • a smallest diameter of the bore is in a region between the inlet opening and the seat maximum 50% of the distance, in particular a maximum of 25% of the distance, and the smallest diameter of the bore may preferably not exceed 10% of the distance of the seat from the inlet opening amount.
  • a hardness of the coating other than a hardness of the workpiece and / or a corrosion resistance of the coating may be different from a corrosion resistance of the workpiece and / or any other property of the coating differ from the corresponding characteristic of the workpiece.
  • a first simple embodiment of a method for producing a coating 1 on a seat surface 2 in a long thin bore 4 of a workpiece 3 is exemplified.
  • the workpiece 3 of Fig. 1 is a partially sectional control valve 3 of a component of an injection system for a two-stroke large diesel engine.
  • the seat 2 is used in the assembled state of the control valve 3 for supporting a movable along the axis A valve needle, which is used only after application of the coating 1 to the valve seat 2 in the control valve 3.
  • the hole 4 according to Fig. 1a - 1c it is a thin long hole in the sense of registration.
  • the bore has a diameter of 3.5 mm and the Seat 2 is arranged from the inlet opening 5 at a distance L of about 25 mm deep in the bore. That is, the smallest diameter D of the bore, which is constant in the present case along the axis A, is only about 14% of the distance L of the seat 2 of the input port. 5
  • the coating powder 100 is heated, thereby wholly or partially melted or melted, so that finally on the seat 2, the coating 2 is formed, for example due to formation of a fusion metallurgical compound or adherence of the layer.
  • Fig. 1 c is to see the finished coating 1 on the seat 2, which may need to be reworked, if necessary, to ensure a secure fit of the valve needle, not shown on the coating 1.
  • a per se known injector 31 'for a two-stroke large diesel engine with a coating 1 can be retrofitted.
  • Fig. 2a is an injection nozzle 31 'known from the prior art partially and schematically shown in section.
  • the Fig. 2a has already been described in detail above, so that with the description of the Fig. 2b is continued.
  • a prefabricated coating body 102 made of a coating material 100 was placed on the seat surface 2 through the bore 4. Since the injection nozzle 3, 31 is already a workpiece 3 according to the present invention at the latest, and no longer an injection nozzle 31 'known from the prior art, from now on all reference symbols without apostrophes are used, since the corresponding ones are used Features relate to an inventive injection nozzle 3, 31.
  • Fig. 2d is the completion of the seat 1 just completed.
  • the laser is about to shut down.
  • the coating body 102 was heated by the laser beam 6 from the laser 600 in a predetermined heating process such that the coating body 102 was reliably connected to the seat surface 2 and thus forms a coating 1 according to the present invention on the seat surface 2.
  • a known per se injection valve has been successfully retrofitted with a seat coating 1 according to the invention.
  • Fig. 3a is a blank of a nozzle head 301 partially and schematically shown in section.
  • the blank of the nozzle head 301 has a blind bore 4, at the lower end of which a seat 2 is provided at a distance L from an inlet opening 5 such that the seat surface 2 extends over the entire cross section of the blind hole 4.
  • a coating powder 100, 101 introduced, which covers the seat 2.
  • the laser 600 has just been switched on and heated with the laser beam 6 through the bore 4 through the coating material 100, 101, whereby a coating 1 on the seat surface 2 is formed.
  • Fig. 3b the laser 600 has already been switched off because the coating 1 on the seat surface 2 is finished.
  • the injection nozzle 31 can fulfill its function, according to Fig. 3c by means of a suitable drill through the bore 4 through a longitudinal bore 305 in the form of a blind hole through the coating 1 and the seat 2 is introduced.
  • the nozzle head according to the invention is therefore suitable, inter alia, in particular for future generations of large diesel engines, which are even more powerful and place even greater demands on the load capacity of the nozzle heads.
  • already in-service components according to the invention can be retrofitted.
  • the invention is not limited to special applications in large diesel engines, but the invention can be used successfully wherever long thin holes in the sense of present invention seating surfaces must be provided with coatings that have to fulfill certain functions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Aufbringen einer Beschichtung (1) auf eine Sitzfläche (2) eines Werkstücks (3), wobei die Sitzfläche (2) innerhalb einer Bohrung (4) im Werkstück (3) in einem vorgegebenen Abstand (L) von einer Eingangsöffnung (5) der Bohrung (4) vorgesehen wird. Erfindungsgemäss wird in einem vorgängigen Verfahrensschritt ein Beschichtungsmaterial (100, 101, 102) auf die Sitzfläche (2) aufgebracht und in einem weiteren Verfahrensschritt die Beschichtung (1) auf der Sitzfläche (2) mittels eines Energiestrahls (6) ausgebildet, indem der Energiestrahl (6) durch die Bohrung (4) hindurch auf die Sitzfläche (2) gerichtet wird. Darüber hinaus betrifft die Erfindung ein Werkstück (3) mit einer erfindungsgemäss beschichteten Sitzfläche (2).

Description

  • Die Erfindung betrifft ein Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks, insbesondere auf eine Sitzfläche in einem Düsenkörper einer Einspritzdüse eines Zweitakt-Grossdieselmotors, sowie ein Werkstück, insbesondere Einspritzdüse mit einer beschichteten Sitzfläche gemäss dem Oberbegriff des unabhängigen Anspruchs der jeweiligen Kategorie.
  • Es ist wohl bekannt, dass beispielsweise Nadelventile eine Sitzfläche aufweisen, die oft tief in sehr langen dünnen Bohrungen derart vorgesehen ist, dass eine Düsennadel des Ventils, zum Beispiel eine Düsennadel in einem Einspritzventil zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine, mit der Sitzfläche funktional zusammenwirken kann. So wirkt zum Beispiel im Fall von Einspritzdüsen die Düsennadel mit der Sitzfläche funktional als Ventil zusammen. Wenn sich die Düsennadel aus dem Ventilsitz heraus hebt, kann Treibstoff aus einem Druckraum in eine sich stromabwärts an den Ventilsitz anschliessende Längsbohrung strömen und von dort über Düsenlöcher in den Brennraum der Bennkraftmaschine gelangen. Wird die Düsennadel wieder in den Ventilsitz zurück bewegt, so wird die Treibstoffzufuhr zu den Düsenlöchern unterbrochen und die Einspritzung des Treibstoffs in den Berennraum beendet.
  • Dabei werden an die in Rede stehenden Werkstücke wie Einspritzdüsen, Steuerventile für Einspritzkomponenten, wie zum Beispiel Steuerventile für Einspritzpumpen, Sitzflächen in Schmierölbohrungen in Zylindereinsätzen von Verbrennungsmotoren, zum Beispiel in Zweitakt-Grossdieselmotoren usw. oft spezielle Anforderungen hinsichtlich des verwendbaren Materials gestellt. So werden beispielsweise Werkstücke, die in einer aggressiven Umgebung betrieben werden aus korrosionsfesten Materialien hergestellt, so dass die entsprechende Komponente unter anderem gegen hohe Temperaturen oder chemische Angriffe geschützt ist.
  • Ein prominentes Beispiel einer solchen hoch belasteten Komponente sind Einspritzdüsen für Zweitakt-Grossdieselmotoren, die unter anderem oft mit hochaggressivem Schweröl betrieben werden.
  • Bei Grossdieselmotoren, die unter anderem als Antriebsaggregate für Schiffe oder zur Stromerzeugung in Stationäranlagen verwendet werden, wird der Brennstoff - typischerweise ist das, wie oben erwähnt ein Schweröl oder ein anderer Dieselbrennstoff - mittels Brennstoffeinspritzdüsen in den Verbrennungsraum eingebracht. Diese Einspritzdüsen umfassen normalerweise einen teilweise in den Verbrennungsraum hineinragenden Düsenkopf, der auch als Zerstäuber bezeichnet wird. Der Düsenkopf ist ein Verschleissteil, das einem hohen thermischen, mechanischen und chemischen Belastungskollektiv unterliegt. Je nach Grad der Belastung können am Düsenkopf Schäden, beispielsweise Materialabtrag infolge von Korrosion, Erosion und / oder Abrasion auftreten, oder auch Risse, die bis zum Auseinanderbrechen führen können.
  • Die mechanischen Belastungen beruhen auch auf dem hohen Einspritzdruck, der über tausend bar betragen kann. Im Inneren des Düsenkopfs können Materialverluste durch Kavitation und / oder Erosion auftreten. Die thermischen Belastungen beruhen auf den hohen Temperaturen im Brennraum und den enormen Temperaturwechseln zwischen der Verbrennungstemperatur und der Temperatur der frisch zugeführten Spülluft. Auch im Inneren des Düsenkopfs, durch welches der Brennstoff eingebracht wird, führt das intermittierende Einspritzen zu schockartigen Temperaturwechseln. Die chemische Belastung des Düsenkopfs ist hauptsächlich in der Hochtemperatur- oder Heisskorrosion begründet. Die Heisskorrosion, die in erster Linie durch im Brennstoff enthaltenes Vanadium, Natrium und Schwefel verursacht wird, begünstigt die Materialabzehrung und Erosion. Insbesondere die Korrosion ist der Grund dafür, dass ein Düsenkopf bereits nach wenigen tausend Betriebsstunden unbrauchbar sein kann und ersetzt werden muss.
  • Als Werkstoff für die Düsenköpfe in Grossdieselmotoren werden daher üblicherweise Stähle oder Legierungen auf Nickel- oder Cobalt-Basis, beispielsweise Stellite 6 verwendet. Mit der Cobalt-Basis-Legierung Stellite 6 lassen sich heute für Düsenköpfe in Grossdieselmotoren vertretbare Bauteilstandzeiten im Hinblick auf Erosion, Abrasion und Kavitation (insbesondere in den Bohrungen des Düsenkopfs) erreichen.
  • Dabei hat sich gezeigt, dass Legierungen mit hohem Chrom- und Nickelgehalt, bei welchen der Chrom- und Nickelgehalt z.B. um die 50%-Gewichtsprozent beträgt, aber vor allem auch Legierungen mit einem Chromgehalt von mehr als 50%- Gewichtsprozent, wie z.B. Cr/Ni 65/35 Legierungen, die mittels eines sogenannten HIP-Prozesses hergestellt werden, zwar sehr gute Eigenschaften in Bezug auf die oben erwähnten Probleme mit Hochtemperatur- oder Heisskorrosion haben. Solche Werkstoffe mit hohem Chrom-Gehalt und hervorragenden chemischen Eigenschaften in Bezug auf Hochtemperatur- und Heisskorrosion sind zum Beispiel bereits in der EP 1 353 061 offenbart und ausführlich beschrieben.
  • In der EP 2 000 550 hat die Anmelderin dabei bereits einen verbesserten Werkstoff vorgeschlagen, der insbesondere im Hinblick auf Sprödigkeit bzw. Duktilität deutliche Fortschritte bringt. Insbesondere deshalb, weil die Entwicklung im Motorenbau, vor allem im Fall von Zweitakt-Grossdieselmotoren erwarten lässt, dass bei zukünftigen, noch leistungsfähigeren Motoren vor allem auch die mechanischen Belastungsanforderungen speziell für hoch belastete Teile wie die Düsenkopfe oder Vorkammern weiter zunehmen werden. Das heisst, es werden mehr und mehr neue oder modifizierte Materialien benötigt werden, wobei gleichzeitig jedoch die hervorragenden chemischen Eigenschaften der oben beschriebenen bekannten Materialien in Bezug auf Hochtemperatur- oder Heisskorrosion erhalten bleiben müssen. In der EP 2 000 550 wird daher ein neuer Werkstoff auf Basis einer CrNi-Legierung zur Herstellung eines Halbzeugs als Ausgangsmaterial für die Bildung einer Komponente eines Verbrennungsmotors, insbesondere Grossdieselmotor, vorgeschlagen, wobei der Werkstoff einen Stickstoffgehalt von weniger als 0.1 %- Gewichtsprozent aufweist.
  • Obwohl der in der EP 2 000 550 vorgeschlagene neue Werkstoff zu deutlich verbesserten Eigenschaften in Bezug auf chemische und physikalische Belastungen der daraus gefertigten Komponenten führt, ist damit bei bestimmten Bauteilen auch ein Kompromiss verbunden.
  • So gehen gute Korrosionseigenschaften bestimmter Werkstoffe zum Beispiel zu Lasten der Härte. Zum Beispiel im Fall von Einspritzdüsen zum Einspritzen von Brennstoff, sind die Düsenkörper an sich gut gegen chemisch und physikalisch aggressive Umgebungen geschützt. Jedoch zeigen die Sitzflächen, mit denen zum Beispiel die Düsennadeln zusammenwirken, eine ungenügende Härte, was dazu führen kann, dass die entsprechenden Sitzflächen und / oder die Düsennadeln vorzeitig verschleissen, was zu Undichtigkeiten, Ungenauigkeiten bei der Treibstoffdosierung usw. führen kann.
  • Um Schäden am Motor insgesamt, einen durch den vorzeitigen Verschleiss des Einspritzventils erhöhten Treibstoffverbrauch oder zum Beispiel eine Erhöhung der Schadstoffe in den Verbrennungsgasen zu vermeiden, müssen die Einspritzdüsen oder zumindest deren betroffenen Komponenten frühzeitig ausgetauscht oder gewartet werden, was natürlich personal- und kostenintensiv ist und, wenn die Verschleissschäden nicht rechtzeitig erkannt werden, können diese Schäden vor allem im Fall von Hochseeschiffen zu einem erheblichen Sicherheitsrisiko werden.
  • Im Prinzip können diese Probleme dadurch gelöst werden, dass die Sitzflächen mit einer geeigneten Beschichtung versehen werden, so dass der Sitzfläche durch die Beschichtung die geforderten physikalischen und / oder chemischen Eigenschaften vermittelt werden.
  • Allerdings steht bisher kein Verfahren zur Herstellung oder Beschichtung von Sitzflächen zur Verfügung, die tief unten in langen dünnen Bohrungen vorgesehen werden müssen.
  • Zur Illustration des Problems soll anhand der Fig. 2a im Folgenden kurz als Beispiel eine Einspritzdüse für einen Zweitakt-Grossdieselmotor betrachtet werden. Zur besseren Unterscheidung des Stands der Technik von der vorliegenden Erfindung werden im Rahmen dieser Anmeldung die Bezugszeichen zu Merkmalen bekannter Werkstücke mit einem Hochkomma versehen, während die Bezugszeichen zu erfindungsgemässen Merkmalen kein Hochkomma tragen.
  • Die bekannte Einspritzdüse 31' der Fig. 2a umfasst einen Düsenkörper 300' mit einem Düsenkopfs 301', der mit dem Düsenkörper 300' verbunden ist. Bei dem hier beschriebenen Ausführungsbeispiel erfolgt die Verbindung mittels einer Haltehülse 302', die sich an ihrem unteren Ende zur Längsachse A' der Brennstoffeinspritzdüse 31' hin verjüngt. Die Längsachse A' ist gleichzeitig auch Längsachse A' des Düsenkopfs 301'. Die Haltehülse 302' ist mittels einer Überwurfmutter 303' sowie eines elastischen Elements 304', zum Beispiel eines Sprengrings, am Düsenkörper 300' befestigt. Der Düsenkopf 301' stützt sich in dem sich verjüngenden Teil der Haltehülse 302' ab.
  • Der Düsenkopf 301' weist eine Längsbohrung 305' auf und im Bereich seines unteren Endes mindestens ein Düsenloch 306', typischerweise z. B. fünf Düsenlöcher 306', die von der Längsbohrung 305' ausgehen und durch welche der Brennstoff in den Brennraum B' austreten kann.
  • Im Innern des Düsenkörpers 300' ist ein Druckraum 307' vorgesehen, in welchen eine Zuführleitung 308' für den Brennstoff einmündet. Der Druckraum 307' wird in axialer Richtung von einem Ventilsitz 2' begrenzt. Ferner ist im Innern des Düsenkörpers 300' eine Düsennadel 7' angeordnet, die sich im Wesentlichen in Richtung der Längsachse A' erstreckt und die mit dem Ventilsitz 2' zusammenwirkt. In der in Fig. 2a dargestellten Schliessstellung wird die untere Spitze der Düsennadel 7' in den Ventilsitz 2' gedrückt, sodass der Durchlass aus dem Druckraum 307' in die sich stromabwärts anschliessende Längsbohrung 305' verschlossen ist. Die Düsennadel 7' ist in an sich bekannter Weise mittels einer nicht dargestellten Druckfeder federbelastet und gegen den Ventilsitz 2' vorgespannt. In der Offenstellung der Düsennadel 7' ist diese nach oben aus dem Ventilsitz 2' herausgehoben, so dass zwischen dem unteren Ende der Düsennadel 7' und dem Ventilsitz 2' ein Durchlass offen ist, durch welchen der Brennstoff aus dem Druckraum 307' in die Längsbohrung 305' gelangen kann.
  • Das Volumen zwischen dem Ventilsitz 2' und den Düsenlöchern 306' wird üblicherweise als Sackloch bezeichnet.
  • Die Längsbohrung 305' ist bei dem hier beschriebenen speziellen Beispiel als im wesentlichen zylindrische Bohrung ausgestaltet, die sich in Richtung der Längsachse A' erstreckt. Der Durchmesser d' der Längsbohrung 305' legt einen Strömungsquerschnitt fest, womit die für die Strömung des Brennstoffs zur Verfügung stehende Querschnittsfläche in der Längsbohrung 305' gemeint ist.
  • Die Düsennadel 7' ist in der Bohrung 4', die in Fig. 2a aus Platzgründen nur teilweise dargestellt ist, vorgesehen und hat eine Eingangsöffnung 5', durch welche die Düsennadel 7' in die Bohrung 4' einführbar ist. Die Sitzfläche 2' ist von der Eingangsöffnung 5' in einem Abstand L' vorgesehen, wobei die Bohrung 4' selbst einen inneren Durchmesser D' hat, der etwas grösser ist als ein äusserer Durchmesser der Düsennadel 7', so dass die Düsennadel 7' sicher und präzise in der Bohrung 4' geführt wird.
  • Der Abstand L' ist dabei typischerweise gross gegen den Durchmesser D' der Bohrung 4'. Das heisst, wenn im Rahmen der vorliegenden Anmeldung von einer langen dünnen Bohrung die Rede ist, dann ist damit eine Bohrung gemeint, deren Durchmesser klein im Vergleich zu einer für die Bohrung typischen bzw. wesentlichen Länge ist.
  • Im Beispiel einer Einspritzdüse gemäss Fig. 2a ist der Abstand L' der Sitzfläche 2' von der Eingangsöffnung 5' beispielsweise im Bereich von L' = 30 mm, während der Durchmesser D' der Bohrung 4' zum Beispiel nur D' =2.5 mm gross ist.
  • Das heisst, bei einer langen dünnen Bohrung im Sinne der vorliegenden Anmeldung beträgt der Durchmesser der Bohrung z.B. ca. 10% der massgeblichen Länge der Bohrung, wobei natürlich auch deutlich andere Verhältnisse von Durchmesser zu Bohrung möglich sind, je nachdem um welches Werkstück es sich handelt.
  • An dem zuvor exemplarisch geschilderten Beispiel wird klar, dass es grundsätzlich schwierig ist, die Sitzfläche im Inneren einer langen dünnen Bohrung zu bearbeiten. Wenn die absoluten Abmessungen sogar z.B. im Bereich von nur wenigen Millimetern bis zu wenigen 10 Millimetern liegen, wie beim oben diskutierten Beispiel einer Einspritzdüse, ist ein Beschichten einer Sitzfläche tief im Inneren in einer so dünnen Bohrung bisher überhaupt nicht möglich.
  • Die Aufgabe der Erfindung ist es daher, ein Verfahren zum Aufbringen einer Beschichtung auf einer Sitzfläche eines Werkstücks, sowie ein entsprechendes Werkstück vorzuschlagen, so dass die aus dem Stand der Technik bekannten Probleme mit den Sitzflächen des Werkstücks vermieden werden, und insbesondere höhere Standzeiten und damit kürzere Wartungsintervalle und letztlich auch eine höhere Betriebssicherheit erreicht wird.
  • Es wird somit speziell ein Verfahren bereitgestellt, mit welchem ein Werkstück, insbesondere eine Düse herstellbar ist, welche in einer dünnen und langen Bohrung, d.h. in einer im Verhältnis zum Durchmesser langen Bohrung, eine Beschichtung auf einer Sitzfläche aufweist. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren bereitzustellen, mit welchem auf einer Sitzfläche in einer dünnen und langen Bohrung eine Beschichtung herstellbar ist. Insbesondere soll auch ein Verfahren zur Verfügung gestellt werden, mit welchem eine Sitzfläche in einer dünnen und langen Bohrung eines Werkstücks mit einer Beschichtung nachgerüstet werden kann. Darüber hinaus ist es eine Aufgabe der Erfindung, ein Werkstück, insbesondere einen Düsenkörper bereitzustellen, der in einer dünnen und langen Bohrung eine beschichtete Sitzfläche hat.
  • Die diese Aufgabe lösenden Gegenstände der Erfindung sind durch die Merkmale des unabhängigen Anspruchs der jeweiligen Kategorie gekennzeichnet.
  • Die abhängigen Ansprüche betreffen besonders vorteilhafte Ausführungsformen der Erfindung.
  • Es wird somit ein Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks vorgeschlagen, wobei die Sitzfläche innerhalb einer Bohrung im Werkstück in einem vorgegebenen Abstand von einer Eingangsöffnung der Bohrung vorgesehen wird. Erfindungsgemäss wird in einem vorgängigen Verfahrensschritt ein Beschichtungsmaterial auf die Sitzfläche aufgebracht und in einem weiteren Verfahrensschritt die Beschichtung auf der Sitzfläche mittels eines Energiestrahls ausgebildet, indem der Energiestrahl durch die Bohrung hindurch auf die Sitzfläche gerichtet wird.
  • Durch das Verfahren der vorliegenden Erfindung ist es erstmals möglich, die Materialeigenschaften eines Basismaterials aus dem ein Werkstück, wie beispielsweise eine Einspritzdüse für einen Zweitakt-Grossdieselmotor gefertigt ist, völlig unabhängig von den Materialanforderungen zu wählen, die an eine zuverlässig funktionierende Sitzfläche tief im Inneren einer langen dünnen Bohrung im Werkstück gefordert sind.
  • Das wird dadurch erreicht, dass die Sitzfläche tief im Inneren der langen dünnen Bohrung mit einer Beschichtung versehen wird, deren Material je nach Anforderungen an die Eigenschaften der Sitzfläche frei wählbar ist.
  • So kann für das Werkstück an sich z.B. ein Werkstoff auf einer Ni-Basis, einer Cr-Basislegierung, einer Cu-Basis- oder auf Grundlage einer Fe-Basislegierung gewählt werden, das verhältnismässig weich ist aber sehr gute Eigenschaften in Bezug auf Schutz gegen Heissgaskorrosion oder chemische Angriffe bietet. Als Beschichtungsmaterial für die Sitzfläche kann dann zum Beispiel ein deutlich härteres Material gewählt werden, so dass die Sitzfläche gegen permanente mechanische Belastungen besser gegen vorzeitigen Verschleiss z.B. durch Materialabtrag, Kavitation, Erosion, Mikroverschweissung oder Materialermüdung usw. geschützt ist.
  • In einem anderen Beispiel ist es auch möglich, dass die Beschichtung der Sitzfläche aus einem weicheren Material als das Werkstück an sich gefertigt ist, beispielweise um eine bessere Dichtigkeit an der Sitzfläche zu erreichen oder eine andere gewünschte Materialeigenschaft an der Sitzfläche zu realisieren oder aber es kann beispielsweise auch ein Material aus einer Metallmatrix mit eingelagerten Partikeln, deren Härte gleich oder höher als die der Metallmatrix ist, verwendet werden.
  • Auch andere Eigenschaften können durch die Beschichtung auf der Sitzfläche optimiert werden. Beispielsweise ist es möglich, dass die Sitzfläche selbst gegen andere korrosiv wirkende Prozesse geschützt werden muss, als z.B. eine Aussenwand des Werkstücks selbst, das einer anderen aggressiven Umgebung mit schädlichen Einwirkungen ausgesetzt wird.
  • Der Fachmann versteht sofort, dass die vorliegende Erfindung so flexibel ist, dass durch geeignete Wahl des Materials für die Beschichtung auf der Sitzfläche und / oder dadurch, dass beim Beschichtungsprozess selbst bestimmte Beschichtungsbedingungen gezielt ausgewählt werden, wie zum Beispiel die Energiedichte des Energiestrahls oder die Einwirkzeit des Energiestrahls während des Beschichtungsvorgangs, praktisch jede gewünschte Eigenschaft der Beschichtung auf der Sitzfläche gezielt eingestellt werden kann.
  • Das Beschichtungsmaterial wird dabei vor einem Energieeintrag durch den Energiestrahl, bevorzugt in Form eines Beschichtungspulvers und / oder in Form eines Beschichtungsdrahts, oder in Form von kleinen Stücken eines Beschichtungsdrahts und / oder in Form eines vorgefertigten Beschichtungskörpers zumindest auf einen Teil der Sitzfläche aufgebracht.
  • Bei einem anderen Ausführungsbeispiel der Erfindung kann das Beschichtungsmaterial auch gleichzeitig mit einem Energieeintrag durch den Energiestrahl auf die Sitzfläche aufgebracht werden, d.h. es handelt sich um einen Spezialfall des an sich bekannten Auftragsschweissens.
  • Insbesondere zur Herstellung eines neuen Werkstücks, z.B. einer neuen Einspritzdüse für einen Zweitakt-Grossdieselmotor, kann nach der Ausbildung der Beschichtung auf der Sitzfläche durch die Beschichtung hindurch eine Funktionsbohrung eingebracht werden, durch die im Betriebszustand zum Beispiel Brennstoff transportiert werden kann.
  • Besonders bevorzugt kommt als Energiestrahl ein Laserstrahl zur Verwendung, aber auch andere Energiestrahlen wie zum Beispiel ein Elektronenstrahl können in bestimmten Fällen vorteilhaft eingesetzt werden.
  • Wie mehrfach erwähnt, ist die Sitzfläche in einem erfindungsgemässen Werkstück in einer langen dünnen Bohrung tief im Werkstück vorgesehen, wobei ein kleinster Durchmesser der Bohrung in einem Bereich zwischen der Eingangsöffnung und der Sitzfläche maximal 50% des Abstands, insbesondere maximal 25% des Abstands, und der kleinste Durchmesser der Bohrung bevorzugt maximal 10% des Abstands von der Eingangsöffnung beträgt.
  • Dabei ist das Werkstück bevorzugt, aber nicht notwendig, ein Düsenkörper einer Düse, insbesondere eine Einspritzdüse eines Zweitakt-Grossdieselmotors, oder ein Sicherheitsventil oder ein Steuerventil für eine Komponente einer Einspritzanlage oder eine Schmierölbohrung in einem Zylindereinsatz.
  • Als Beschichtungsmaterial kommt im Prinzip jedes Material in Frage, mit welchem sich eine gewünschte Eigenschaft der Beschichtung auf der Sitzfläche einstellen lässt. Bevorzugt kommt als Beschichtungsmaterial zum Beispiel eine Kobalt-Basislegierung, und / oder eine Chrom-Basislegierung und / oder eine Nickel-Basislegierung und / oder eine Eisen-Basislegierung in Frage.
  • Die Erfindung betrifft weiterhin ein Werkstück in welchem eine Sitzfläche innerhalb einer Bohrung in einem vorgegebenen Abstand von einer Eingangsöffnung der Bohrung vorgesehen ist, wobei auf der Sitzfläche eine Beschichtung ausgebildet ist, die mittels eines durch die Bohrung hindurch auf die Sitzfläche gerichteten Energiestrahls aus einem Beschichtungsmaterial hergestellt ist.
  • Im speziellen kann durch die Beschichtung hindurch eine Funktionsbohrung vorgesehen sein.
  • Ein kleinster Durchmesser der Bohrung beträgt in einem Bereich zwischen der Eingangsöffnung und der Sitzfläche maximal 50% des Abstands, insbesondere maximal 25% des Abstands, und der kleinste Durchmesser der Bohrung kann bevorzugt maximal 10% des Abstandes der Sitzfläche von der Eingangsöffnung betragen.
  • Da die Eigenschaften der Beschichtung auf der Sitzfläche praktisch beliebig flexibel einstellbar sind, kann beispielsweise eine Härte der Beschichtung verschieden von einer Härte des Werkstücks und/ oder eine Korrosionsbeständigkeit der Beschichtung kann verschieden von einer Korrosionsbeständigkeit des Werkstücks und / oder jede andere Eigenschaft der Beschichtung kann sich von der entsprechenden Eigenschaft des Werksstücks unterscheiden.
  • Im Folgenden wird die Erfindung anhand der schematischen Zeichnung näher erläutert. Es zeigen:
  • Fig. 1a - 1 c:
    ein erfindungsgemässes Verfahren zur Herstellung einer Beschichtung auf einer Sitzfläche;
    Fig. 2a - 2d:
    ein erfindungsgemässes Verfahren zur Nachrüstung einer Einspritzdüse mit einer Sitzflächenbeschichtung;
    Fig. 3a - 3d:
    ein erfindungsgemässes Verfahren zur Herstellung einer Einspritzdüse mit einer Sitzflächenbeschichtung.
  • Anhand der Fig. 1 a bis 1 c wird ein erstes einfaches Ausführungsbeispiel eines Verfahrens zur Erzeugung einer Beschichtung 1 auf einer Sitzfläche 2 in einer langen dünnen Bohrung 4 eines Werkstücks 3 exemplarisch erläutert. Das Werkstück 3 der Fig. 1 ist ein teilweise im Schnitt dargestelltes Steuerventil 3 einer Komponente eines Einspritzsystems für einen Zweitakt-Grossdieselmotor. Die Sitzfläche 2 dient im zusammengesetzten Zustand des Steuerventils 3 zur Abstützung einer entlang der Achse A beweglichen Ventilnadel, die erst nach Aufbringen der Beschichtung 1 auf den Ventilsitz 2 in das Steuerventil 3 eingesetzt wird. Bei der Bohrung 4 gemäss Fig. 1a - 1c handelt es sich um eine dünne lange Bohrung im Sinne der Anmeldung. Im vorliegenden Fall hat die Bohrung einen Durchmesser von 3.5 mm und die Sitzfläche 2 ist von der Eingangsöffnung 5 in einem Abstand L von ca. 25 mm tief in der Bohrung angeordnet. Das heisst, der kleinste Durchmesser D der Bohrung, der im vorliegenden Fall entlang der Achse A konstant ist, beträgt nur ca. 14% des Abstands L der Sitzfläche 2 von der Eingangsöffnung 5.
  • In einem vorgängigen Verfahrensschritt ist gemäss Fig. 1a ein Beschichtungspulver 100, 101 auf die Sitzfläche 2 in einer solchen vorgegeben Menge aufgebracht, dass die Beschichtung 1 in der vorgegeben Dicke und Geometrie auf der Sitzfläche 2 erzeugbar ist. In einem weiteren Verfahrensschritt wird gemäss Fig. 1b ein Energiestrahl 6, der im vorliegenden Fall ein sehr feiner Laserstrahl 6 ist, der einen Durchmesser hat, der kleiner als der Durchmesser D der Bohrung 4 ist, von einem Laser 600 erzeugt und durch die Bohrung 4 hindurch auf die Sitzfläche 2 gerichtet.
    Durch den Energieeintrag durch den Laserstrahl 6 wird das Beschichtungspulver 100 erhitzt, dadurch ganz oder teilweise angeschmolzen oder aufgeschmolzen, so dass sich schliesslich auf der Sitzfläche 2 die Beschichtung 2 ausbildet, z.B. aufgrund von Bildung einer schmelzmetallurgischen Verbindung oder eines Anhaftens der Schicht.
  • In Fig. 1 c ist die fertige Beschichtung 1 auf der Sitzfläche 2 zu sehen, die eventuell, falls notwendig, noch nachbearbeitet werden muss, um einen sicheren Sitz der nicht gezeigten Ventilnadel auf der Beschichtung 1 zu gewährleisten.
  • Anhand der Fig. 2a bis 2d soll im Folgenden schematisch erläutert werden, wie mit Hilfe der Erfindung eine an sich bekannte Einspritzdüse 31' für einen Zweitakt-Grossdieselmotor mit einer Beschichtung 1 nachgerüstet werden kann.
  • In Fig. 2a ist eine aus dem Stand der Technik bekannte Einspritzdüse 31' teilweise und im Schnitt schematisch dargestellt. Die Fig. 2a wurde bereits eingehend weiter oben beschrieben, so dass mit der Beschreibung der Fig. 2b fortgefahren wird.
  • Zur Anwendung eines erfindungsgemässen Verfahrens wurde gemäss Fig. 2b aus der Einspritzdüse 31' zunächst die Düsennadel 7' entfernt.
  • In Fig. 2c, die den hier interessieren Bereich um die Sitzfläche 2 etwas deutlicher im Detail zeigt, wurde durch die Bohrung 4 hindurch ein vorgefertigter Beschichtungskörper 102 aus einem Beschichtungsmaterial 100 auf die Sitzfläche 2 aufgelegt. Da es sich spätestens jetzt bei der Einspritzdüse 3, 31 bereits um ein Werkstück 3 gemäss der vorliegenden Erfindung handelt, und nicht mehr um eine aus dem Stand der Technik bekannte Einspritzdüse 31', werden ab jetzt alle Bezugszeichen ohne Hochkomma verwendet, da sich die entsprechenden Merkmale auf eine erfindungsgemässe Einspritzdüse 3, 31 beziehen.
  • In Fig. 2d ist die Fertigstellung der Sitzfläche 1 gerade abgeschlossen. Der Laser steht unmittelbar vor der Abschaltung. Der Beschichtungskörper 102 wurde durch den Laserstrahl 6 vom Laser 600 in einem vorgegeben Erhitzungsverfahren derart erhitzt, dass der Beschichtungskörper 102 zuverlässig mit der Sitzfläche 2 verbunden wurde und so eine Beschichtung 1 gemäss der vorliegenden Erfindung auf der Sitzfläche 2 bildet. Somit ist ein an sich bekanntes Einspritzventil erfolgreich mit einer erfindungsgemässen Sitzbeschichtung 1 nachgerüstet worden.
  • Anhand der Fig. 3a bis 3d soll schliesslich noch ein weiteres Ausführungsbeispiel eines erfindungsgemässen Verfahrens schematisch erläutert werden, mit welchem eine Einspritzdüse 3, 31 der vorliegenden Erfindung neu hergestellt werden kann.
  • In Fig. 3a ist ein Rohling eines Düsenkopfes 301 teilweise und im Schnitt schematisch dargestellt. Der Rohling des Düsenkopfes 301 hat eine Sacklochbohrung 4, an deren darstellungsgemäss unterem Ende im Abstand L von einer Eingangsöffnung 5 eine Sitzfläche 2 derart vorgesehen ist, dass sich die Sitzfläche 2 über den gesamten Querschnitt der Sacklochbohrung 4 erstreckt. In die Bohrung 4 wurde ein Beschichtungspulver 100, 101 eingebracht, das die Sitzfläche 2 bedeckt. Der Laser 600 wurde soeben erst eingeschaltet und erwärmt mit dem Laserstrahl 6 durch die Bohrung 4 hindurch das Beschichtungsmaterial 100, 101, wodurch sich eine Beschichtung 1 auf der Sitzfläche 2 ausbildet. In Fig. 3b wurde der Laser 600 bereits abgeschaltet, weil die Beschichtung 1 auf der Sitzfläche 2 fertig ausgebildet ist.
  • Damit im fertigen Zustand die Einspritzdüse 31 ihre Funktion erfüllen kann, wird gemäss Fig. 3c mittels eines geeigneten Bohrgerätes durch die Bohrung 4 hindurch eine Längsbohrung 305 in Form einer Sacklochbohrung durch die Beschichtung 1 und die Sitzfläche 2 hindurch eingebracht.
  • Schliesslich werden in den Düsenkopf 301 von aussen noch Düsenlöcher 306, wie in Fig. 3d schematisch dargestellt, eingebracht, so dass im Betriebszustand Brennstoff über die Längsbohrung 305 und die Düsenlöcher 306 in an sich bekannter Weise durch die Einspritzdüse 301 in den Brennraum einer Brennkraftmaschine eingespritzt werden kann.
  • Durch ein erfindungsgemässes Werkstück 3, zum Beispiel in Form einer Düse 31 können bisher nicht erreichbare Standzeiten realisiert werden, was insbesondere unter wirtschaftlichen Gesichtspunkten von grosser Bedeutung ist.
  • Der erfindungsgemässe Düsenkopf eignet sich einerseits somit unter anderem insbesondere für zukünftige Generationen von Grossdieselmotoren, die noch leistungsfähiger sind und noch höhere Anforderungen an die Belastbarkeit der Düsenköpfe stellen. Anderseits können auch bereits sich im Betrieb befindliche Komponenten gemäss der Erfindung nachgerüstet werden.
  • Dabei ist die Erfindung selbstverständlich nicht auf spezielle Anwendungen in Grossdieselmotoren beschränkt, sondern die Erfindung kann überall dort erfolgreich eingesetzt werden, wo in langen dünnen Bohrungen im Sinne der vorliegenden Erfindung Sitzflächen mit Beschichtungen versehen werden müssen, die bestimmte Funktionen zu erfüllen haben.

Claims (13)

  1. Verfahren zum Aufbringen einer Beschichtung (1) auf eine Sitzfläche (2) eines Werkstücks (3), wobei die Sitzfläche (2) innerhalb einer Bohrung (4) im Werkstück (3) in einem vorgegebenen Abstand (L) von einer Eingangsöffnung (5) der Bohrung (4) vorgesehen wird, und ein kleinster Durchmesser (D) der Bohrung (4) in einem Bereich zwischen der Eingangsöffnung (5) und der Sitzfläche (2) maximal 50% des Abstands (L) beträgt, dadurch gekennzeichnet, dass in einem vorgängigen Verfahrensschritt ein Beschichtungsmaterial (100, 101, 102) auf die Sitzfläche (2) aufgebracht wird und in einem weiteren Verfahrensschritt die Beschichtung (1) auf der Sitzfläche (2) mittels eines Energiestrahls (6) ausgebildet wird, indem der Energiestrahl (6) durch die Bohrung (4) hindurch auf die Sitzfläche (2) gerichtet wird, wobei als Energiestrahl (6) ein Laserstrahl (6) oder ein Elektronenstrahl (6) verwendet wird.
  2. Verfahren nach Anspruch 1, wobei der kleinste Durchmesser (D) der Bohrung (4) in einem Bereich zwischen der Eingangsöffnung (5) und der Sitzfläche (2) maximal 25% des Abstands (L), und der kleinste Durchmesser (D) der Bohrung (4) bevorzugt maximal 10% des Abstands (L) beträgt.
  3. Verfahren nach Anspruch 1 oder 2, wobei das Beschichtungsmaterial (100) vor einem Energieeintrag durch den Energiestrahl (6), in Form eines Beschichtungspulvers (101) und / oder in Form eines Beschichtungsdrahts (101) und / oder in Form eines vorgefertigten Beschichtungskörpers (102) zumindest auf einen Teil der Sitzfläche (2) aufgebracht wird.
  4. Verfahren nach einem der vorangehenden Ansprüche, wobei nach der Ausbildung der Beschichtung (1) auf der Sitzfläche (2), durch die Beschichtung (1) hindurch eine Funktionsbohrung (7) eingebracht wird.
  5. Verfahren nach einem der vorangehenden Ansprüche, wobei das Werkstück (3) ein Düsenkörper einer Düse (31), insbesondere eine Einspritzdüse (31) eines Zweitakt-Grossdieselmotors, oder ein Sicherheitsventil oder ein Steuerventil für eine Komponente einer Einspritzanlage oder eine Schmierölbohrung in einem Zylindereinsatz ist.
  6. Verfahren nach einem der vorangehenden Ansprüche, wobei das Beschichtungsmaterial (100, 101, 102) eine Kobalt-Basislegierung und /oder eine Nickel-Basislegierung und / oder eine Chrom-Basislegierung und / oder eine Eisen-Basislegierung ist.
  7. Werkstück (3) in welchem eine Sitzfläche (2) innerhalb einer Bohrung (4) in einem vorgegebenen Abstand (L) von einer Eingangsöffnung (5) der Bohrung (4) vorgesehen ist, dadurch gekennzeichnet, dass auf der Sitzfläche (2) eine Beschichtung (1) ausgebildet ist, die mittels eines durch die Bohrung (4) hindurch auf die Sitzfläche (2) gerichteten Energiestrahls (6) aus einem Beschichtungsmaterial (100, 101, 102) hergestellt ist.
  8. Werkstück nach Anspruch 7, wobei durch die Beschichtung (1) hindurch eine Funktionsbohrung (7) vorgesehen ist.
  9. Werkstück nach einem der Ansprüche 7 oder 8, wobei ein kleinster Durchmesser (D) der Bohrung (4) in einem Bereich zwischen der Eingangsöffnung (5) und der Sitzfläche (2) maximal 50% des Abstands (L), insbesondere maximal 25% des Abstands (L), und der kleinste Durchmesser (D) der Bohrung (4) bevorzugt maximal 10% des Abstands (L) beträgt.
  10. Werkstück nach einem der Ansprüche 7 bis 9, wobei das Werkstück (3) ein Düsenkörper einer Düse (31), insbesondere einer Einspritzdüse (31) eines Zweitakt-Grossdieselmotors oder ein Sicherheitsventil oder ein Steuerventil für eine Komponente einer Einspritzanlage oder eine Schmierölbohrung in einem Zylindereinsatz ist.
  11. Werkstück nach einem der Ansprüche 7 bis 10, wobei das Beschichtungsmaterial (100, 101, 102) eine Kobalt-Basislegierung und /oder eine Nickel-Basislegierung und / oder eine Eisen-Basislegierung ist.
  12. Werkstück nach einem der Ansprüche 7 bis 11, wobei eine Härte der Beschichtung (1) verschieden von einer Härte des Werkstücks (3) ist.
  13. Werkstück nach einem der Ansprüche 7 bis 12, wobei eine Korrosionsbeständigkeit der Beschichtung (1) verschieden von einer Korrosionsbeständigkeit des Werkstücks (3) ist.
EP20100152429 2009-03-09 2010-02-02 Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks Not-in-force EP2228462B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20100152429 EP2228462B1 (de) 2009-03-09 2010-02-02 Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09154587 2009-03-09
EP20100152429 EP2228462B1 (de) 2009-03-09 2010-02-02 Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks

Publications (2)

Publication Number Publication Date
EP2228462A1 true EP2228462A1 (de) 2010-09-15
EP2228462B1 EP2228462B1 (de) 2014-09-24

Family

ID=40825222

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100152429 Not-in-force EP2228462B1 (de) 2009-03-09 2010-02-02 Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks

Country Status (5)

Country Link
EP (1) EP2228462B1 (de)
JP (1) JP5481222B2 (de)
KR (1) KR20100101516A (de)
CN (1) CN101829650B (de)
DK (1) DK2228462T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604376B1 (de) * 2011-12-16 2016-04-20 Mitsubishi Heavy Industries, Ltd. Auftragschweißverfahren und Auftragschweißvorrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181864A1 (ja) * 2013-05-10 2014-11-13 株式会社Ihi ユニフロー掃気式2サイクルエンジン
CN105189968B (zh) * 2013-05-10 2018-04-13 株式会社 Ihi 单流扫气式二冲程发动机
CN104745999B (zh) * 2015-03-02 2017-03-08 安徽工业大学 一种基于激光冲击波技术的内孔孔壁冲击喷涂的方法及装置
JP2019060251A (ja) * 2017-09-25 2019-04-18 日立オートモティブシステムズ株式会社 高圧燃料供給装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529208A1 (de) * 1991-08-27 1993-03-03 FUKUDA METAL FOIL & POWDER CO., LTD Aufschweisslegierungen auf Chrom-Basis
DE10038954A1 (de) * 2000-08-09 2002-02-28 Siemens Ag Ventil, insbesondere Einspritzventil
DE10163933A1 (de) * 2001-12-22 2003-07-10 Federal Mogul Friedberg Gmbh Werkstoffdraht zur Erzeugung einer Verschleißschutzschicht mittels eines Lichtbogenspritzverfahrens
EP1353061A2 (de) 2002-04-11 2003-10-15 Wärtsilä Schweiz AG Werkstoff für einen Düsenkopf und Düsenkopf aus einem solchen Werkstoff
WO2007148716A1 (ja) * 2006-06-21 2007-12-27 Bosch Corporation 放電による表面処理方法及びドレッシング方法
EP2000550A1 (de) 2007-06-08 2008-12-10 Wärtsilä Schweiz AG Werkstoff auf Basis einer CrNi-Legierung, Halbzeug, Komponente für einen Verbrennungsmotor, sowie ein Verfahren zur Herstellung des Werkstoffs und des Halbzeugs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123885A (ja) * 1990-09-11 1992-04-23 Toyota Motor Corp シリンダヘッドのバルブシート部の肉盛方法
CN1030337C (zh) * 1991-08-27 1995-11-22 福田金属箔粉工业株式会社 使表面硬化的铬基合金
JPH07284970A (ja) * 1994-04-20 1995-10-31 Nissan Motor Co Ltd レーザ肉盛り方法
JPH0938788A (ja) * 1995-07-28 1997-02-10 Aisin Takaoka Ltd 中空孔内壁面へのレーザ肉盛方法及びレーザ肉盛治具
JPH10141132A (ja) * 1996-11-11 1998-05-26 Nissan Motor Co Ltd 肉盛りバルブシートおよびその肉盛り方法
JP2000042773A (ja) * 1998-07-28 2000-02-15 Ishikawajima Harima Heavy Ind Co Ltd レーザクラッディング装置
EP0982493B1 (de) * 1998-08-27 2003-09-24 Wärtsilä Schweiz AG Verfahren zum Herstellen einer Brennstoffeinspritzdüse und Brennstoffeinspritzdüse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529208A1 (de) * 1991-08-27 1993-03-03 FUKUDA METAL FOIL & POWDER CO., LTD Aufschweisslegierungen auf Chrom-Basis
DE10038954A1 (de) * 2000-08-09 2002-02-28 Siemens Ag Ventil, insbesondere Einspritzventil
DE10163933A1 (de) * 2001-12-22 2003-07-10 Federal Mogul Friedberg Gmbh Werkstoffdraht zur Erzeugung einer Verschleißschutzschicht mittels eines Lichtbogenspritzverfahrens
EP1353061A2 (de) 2002-04-11 2003-10-15 Wärtsilä Schweiz AG Werkstoff für einen Düsenkopf und Düsenkopf aus einem solchen Werkstoff
WO2007148716A1 (ja) * 2006-06-21 2007-12-27 Bosch Corporation 放電による表面処理方法及びドレッシング方法
EP2039802A1 (de) * 2006-06-21 2009-03-25 Bosch Corporation Oberflächenbearbeitungsverfahren durch elektrische entladung und klebeverfahren
EP2000550A1 (de) 2007-06-08 2008-12-10 Wärtsilä Schweiz AG Werkstoff auf Basis einer CrNi-Legierung, Halbzeug, Komponente für einen Verbrennungsmotor, sowie ein Verfahren zur Herstellung des Werkstoffs und des Halbzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHLAGER D ET AL: "Protection against high temperature corrosion with laser welded claddings - applied and tested on exhaust valve discs of large diesel engines burning heavy fuel oil", MATERIALS AND CORROSION - WERKSTOFFE UND KORROSION, WILEY VCH., WEINHEIM, DE, vol. 53, no. 2, 1 January 2002 (2002-01-01), pages 103 - 110, XP002361318, ISSN: 0947-5117 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604376B1 (de) * 2011-12-16 2016-04-20 Mitsubishi Heavy Industries, Ltd. Auftragschweißverfahren und Auftragschweißvorrichtung

Also Published As

Publication number Publication date
CN101829650A (zh) 2010-09-15
JP5481222B2 (ja) 2014-04-23
DK2228462T3 (en) 2014-12-08
CN101829650B (zh) 2015-11-25
JP2010209464A (ja) 2010-09-24
KR20100101516A (ko) 2010-09-17
EP2228462B1 (de) 2014-09-24

Similar Documents

Publication Publication Date Title
EP0982493B1 (de) Verfahren zum Herstellen einer Brennstoffeinspritzdüse und Brennstoffeinspritzdüse
EP1781931B1 (de) Einspritzdüse für brennkraftmaschinen
EP1778968B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP0929742B1 (de) Kraftstoffeinspritzdüse
EP2480783B1 (de) Kraftstoff-einspritzventil für eine brennkraftmaschine
EP2228462B1 (de) Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks
WO2006021015A1 (de) Steuerventil für eine einspritzdüse
AT511880B1 (de) Verschleissoptimierte herstellung von konischen spritzlöchern
AT508050B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
WO2016034339A1 (de) Ventil und verfahren zur herstellung eines ventils
EP0961025A1 (de) Brennstoffeinspritzdüse
EP3274581B1 (de) Kraftstoff-hochdruckpumpe mit einem elektromagnetisch betätigtbarem mengensteuerventil als einlassventil, zur steuerung der fördermenge der kraftstoff-hochdruckpumpe
EP1649160B1 (de) Brennstoffeinspritzventil für brennkraftmaschinen
WO2007017377A1 (de) Kraftstoffeinspritzdüse und verfahren zum erhöhen der resistenz einer derartigen düse gegen eine betriebsbedingte verschlechterung der einspritzeigenschaften
EP1566539B1 (de) Brennstoffeinspritzdüse
DE102006027330A1 (de) Kraftstoffinjektor
DE102011083005B4 (de) Verfahren zur Spülung eines Ankerraums eines zur Steuerung eines Fluidmassenstroms vorgesehenen Magnetventils und Magnetventil
WO2018188925A1 (de) Ventil für eine kraftstoff-hochdruckpumpe und verfahren zur herstellung des ventils
AT512423A1 (de) Einspritzdüse zum einspritzen von medien in den brennraum einer brennkraftmaschine
EP0995903B1 (de) Vorrichtung zum Einspritzen von Flüssigkeiten in einen Zylinder einer Dieselbrennkraftmaschine und Dieselbrennkraftmaschine
DE102008041167A1 (de) Kraftstoffinjektor
DE102004021340A1 (de) Düsenbaugruppe und Ventil
EP3267027A1 (de) Düsenkopf für eine brennstoffeinspritzdüse eines grossdieselmotors, sowie verfahren zum herstellen eines solchen
WO2008046677A2 (de) Kraftstoffinjektor mit abdichtelement
DE102016217508A1 (de) Kraftstoffinjektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17P Request for examination filed

Effective date: 20110315

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140605

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 688702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010007934

Country of ref document: DE

Effective date: 20141106

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150126

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150124

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150219

Year of fee payment: 6

Ref country code: IT

Payment date: 20150227

Year of fee payment: 6

Ref country code: DK

Payment date: 20150218

Year of fee payment: 6

Ref country code: CH

Payment date: 20150218

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007934

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 688702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010007934

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140924