EP0929742B1 - Kraftstoffeinspritzdüse - Google Patents

Kraftstoffeinspritzdüse Download PDF

Info

Publication number
EP0929742B1
EP0929742B1 EP98916834A EP98916834A EP0929742B1 EP 0929742 B1 EP0929742 B1 EP 0929742B1 EP 98916834 A EP98916834 A EP 98916834A EP 98916834 A EP98916834 A EP 98916834A EP 0929742 B1 EP0929742 B1 EP 0929742B1
Authority
EP
European Patent Office
Prior art keywords
weight
nozzle body
hardened
fuel injector
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98916834A
Other languages
English (en)
French (fr)
Other versions
EP0929742A1 (de
Inventor
Max Seitter
Friedrich MÜHLEDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0929742A1 publication Critical patent/EP0929742A1/de
Application granted granted Critical
Publication of EP0929742B1 publication Critical patent/EP0929742B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/19Nozzle materials

Definitions

  • the invention relates to a fuel injector for Internal combustion engines with a nozzle body, in which a valve needle with a sealing surface slidable is mounted on a sealing surface adapted to it comes to the system, which on an inner wall area of a Forehead of the nozzle body is formed and in the at least one spray hole is provided, both the inner wall area with the sealing surface arranged on it of the nozzle body as well as its outer wall area are hardened.
  • Such a fuel injector for internal combustion engines goes for example from EP 0 233 190 B1 out.
  • This is the one with the valve seat provided inner wall area of the forehead by hardening of the outer layer with a greater hardness than that Outside wall area and that between the valve seat surface and the opposite outer wall area middle edge area.
  • the nozzle body of these fuel injectors is made made of case hardening steel, which is used to train the different Degrees of hardness are carburized differently.
  • Such fuel injectors are, for example used in diesel fuel injection systems where they exposed to very high temperatures. If with direct injection diesel engines, for example can be operated in engine braking mode very high temperatures at the diesel injectors arise, whereby they "soft annealed” and thereby for further operation may become unsuitable (wear, Risk of breakage).
  • the invention is therefore based on the object generic fuel injector to that effect improve that on the one hand at very high temperatures can be used, in particular the above Soft annealing mentioned in connection with diesel engines should be avoided, and that on the other hand they have a high Has corrosion resistance, so that also an insert is possible in gasoline direct injection systems.
  • the Fuel injector should be as simple as possible and therefore be inexpensive to manufacture.
  • Spray holes are hardened.
  • stainless martensitic steels Steels with the following composition in question: ⁇ 0.1, preferably 0.01% by weight of C; of 0.03 up to 0.3, preferably 0.1% by weight of N; from 0.01 to 1.0, preferably 0.06% by weight of Si; from 10.0 to 20.0, preferably 13.7% by weight of Cr; ⁇ 5.0, preferably 1.5 % By weight Mo; ⁇ 0.5, preferably 0% by weight Nb; ⁇ 0.5, preferably 0.1% by weight of V and alloy additives to suppress ⁇ -ferrite.
  • Alloy additives with the following composition: from 0.01 to 1.0, preferably 0.03% by weight Mn; ⁇ 5.0, preferably 2.2% by weight Ni; ⁇ 5.0, preferably 2.7% by weight of Co added.
  • the nozzle body is advantageously case hardened at a temperature of 1050 to 1200 ° C, preferably at 1100 ° C, at a pressure of 0.5 to 10 bar, preferably at 3 bar over a period of 1 h hardened to 30 h, preferably 4 h.
  • the advantages are: There is a better one Machinability of the uncured raw material.
  • the Surface hardening takes place with high manufacturing reliability, for uniform surface hardness and hardening, especially with the spray holes leads forming holes without cleaning problems arise.
  • Due to a simple production, the Fuel injectors are not just technically simple Way, but also made particularly inexpensive are not between fuel injectors for diesel injection systems and fuel injectors differentiated for gasoline injection systems must become.
  • FIG. 1 is a schematic longitudinal section through the injection-side end portion of an embodiment a fuel injector.
  • the injection nozzle shown in Figure 1 has one Nozzle body 10 in which a valve needle 20 is slidably mounted.
  • the valve needle 20 instructs at its lower end a conical sealing surface 22, the on a matching and therefore conical valve seat 12 comes to the plant.
  • the valve seat surface 12 is on an inner wall region 31 of a forehead 30 of the Nozzle body 10 formed. From the valve seat surface 12 go out of several spray holes 32 which the wall of Pierce forehead 30 at an angle to the nozzle axis.
  • the inner wall of the nozzle body 10 is an annular space 13 formed in which a fuel supply line, not shown opens.
  • the valve needle 20 is one also not shown valve spring against the Valve seat surface 12 pressed. If the fuel pressure in the Annulus 13 has risen to a predetermined value, becomes the valve needle 20 against the force of the valve spring raised and the fuel through the spray holes 32 sprayed.
  • the Cone angle of the sealing surface 22 on the valve needle 20 be chosen slightly larger than the angle of the valve seat surface 12, so that initially on the upper edge 24 of the Sealing surface 22 gives the highest sealing pressure.
  • sealing surface 22 can also be spherical and the Valve seat and the end cap 30 hollow spherical be trained.
  • the spray holes 32 can also below the sealing surface 22 may be arranged in the end cap 30.
  • valve needle 20 In the operation of the fuel injector, this becomes very highly stressed. This high stress results in one that the valve needle 20 by permanent The fuel injector opens and closes continuously meets the valve seat surface 12, on the other but also from the fact that the entire fuel injector for example, in overrun mode with a diesel engine operated vehicle in which the Engine braking effect is used, a very high Temperature is exposed.
  • the fuel injector is made up of a stainless martensitic steel, for example of the following composition: 0.01% by weight of C; 0.1 % By weight N; 0.06% by weight Si; 13.7% by weight of Cr; 1.5 % By weight Mo; 0.1% by weight V and alloy additives for the suppression of ⁇ -ferrite with the following composition: 0.03% by weight Mn; 2.2% by weight Ni; 2.7% by weight Co, which is hardened by case hardening with nitrogen.
  • a stainless martensitic steel for example of the following composition: 0.01% by weight of C; 0.1 % By weight N; 0.06% by weight Si; 13.7% by weight of Cr; 1.5 % By weight Mo; 0.1% by weight V and alloy additives for the suppression of ⁇ -ferrite with the following composition: 0.03% by weight Mn; 2.2% by weight Ni; 2.7% by weight Co, which is hardened by case hardening with nitrogen.
  • the case hardening with nitrogen is preferably carried out at a temperature of 1100 ° C and a pressure of 3 bar over a period of 4 h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der Technik
Die Erfindung betrifft eine Kraftstoffeinspritzdüse für Brennkraftmaschinen mit einem Düsenkörper, in welchem eine Ventilnadel mit einer Dichtfläche verschiebbar gelagert ist, die an einer auf sie angepaßten Dichtfläche zur Anlage kommt, welche an einem Innenwandbereich einer Stirnkuppe des Düsenkörpers gebildet ist und in der wenigstens ein Spritzloch vorgesehen ist, wobei sowohl der Innenwandbereich mit der an ihm angeordneten Dichtfläche des Düsenkörpers als auch sein Außenwandbereich gehärtet sind.
Eine derartige Kraftstoffeinspritzdüse für Brennkraftmaschinen geht beispielsweise aus der EP 0 233 190 B1 hervor. Bei dieser ist der mit der Ventilsitzfläche versehene Innenwandbereich der Stirnkuppe durch Randschichthärtung mit einer größeren Härte versehen als der Außenwandbereich und der zwischen der Ventilsitzfläche und dem gegenüberliegenden Außenwandbereich liegende mittlere Randbereich.
Der Düsenkörper dieser Kraftstoffeinspritzdüsen besteht aus Einsatzstahl, der zur Ausbildung der unterschiedlichen Härtegrade unterschiedlich aufgekohlt wird.
Derartige Kraftstoffeinspritzdüsen werden beispielsweise in Dieselkraftstoffeinspritsystemen verwendet, wo sie sehr hohen Temperaturen ausgesetzt sind. Wenn nämlich mit einer Direkteinspritzung versehene Dieselmotoren beispielsweise im Motorbremsbetrieb betrieben werden, können sehr hohe Temperaturen an den Dieseleinspritzdüsen entstehen, wodurch sie "weichgeglüht" und hierdurch für einen weiteren Betrieb untauglich werden können (Verschleiß, Bruchgefahr).
Bei Verwendung derartiger Kraftstoffeinspritzdüsen in mit Direkteinspritzsystemen versehenen Benzinmotoren entstehen außer Verschleiß auch Probleme durch Korrosion der Kraftstoffeinspritzdüsen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine gattungsgemäße Kraftstoffeinspritzdüse dahingehend zu verbessern, daß sie einerseits bei sehr hohen Temperaturen eingesetzt werden kann, wobei insbesondere das oben im Zusammenhang mit Dieselmotoren erwähnte Weichglühen vermieden werden soll, und daß sie andererseits eine hohe Korrosionsbeständigkeit aufweist, so daß auch ein Einsatz in Benzindirekteinspritzungssystemen möglich ist. Die Kraftstoffeinspritzdüse soll dabei auf möglichst einfache und daher kostengünstige Weise herstellbar sein.
Vorteile der Erfindung
Diese Aufgabe wird bei einer Kraftstoffeinspritzdüse gemäß Anspruch 1.
Die Verbesserung des Korrosionswiderstandes martensitischer nichtrostender Stähle durch Einsatzhärten mit Stickstoff geht beispielsweise aus der DE 40 33 706 A1 hervor. Bei dem aus dieser Druckschrift bekannten Wärmebehandlungsverfahren steht die Erhöhung des Korrosionswiderstandes im Vordergrund.
Aufgrund einer Vielzahl von Versuchen hat sich gezeigt, daß das aus der DE 40 33 706 A1 hervorgehende Wärmebehandlungsverfahren überraschenderweise auch dafür eingesetzt werden kann, die Temperaturbeständigkeit von Düsenkörpern zu erhöhen. Insbesondere hat sich gezeigt, daß das obenbeschriebene Weichglühen des Düsenkörpers bei hohen Temperaturen bei Verwendung eines martensitischen nichtrostenden Stahls, der durch Einsatzhärten mit Stickstoff gehärtet wurde, vermieden werden kann.
Besonders vorteilhaft hierbei ist es, daß auch die Spritzlöcher gehärtet sind.
Als nichtrostende martensitische Stähle kommen vorteilhafterweise Stähle mit der folgenden Zusammensetzung in Frage: < 0,1, vorzugsweise 0,01 Gewichts-% C; von 0,03 bis 0,3, vorzugsweise 0,1 Gewichts-% N; von 0,01 bis 1,0, vorzugsweise 0,06 Gewichts-% Si; von 10,0 bis 20,0, vorzugsweise 13,7 Gewichts-% Cr; < 5,0, vorzugsweise 1,5 Gewichts-% Mo; < 0,5, vorzugsweise 0 Gewichts-% Nb; < 0,5, vorzugsweise 0,1 Gewichts-% V und Legierungszusätze zur Unterdrückung von δ-Ferrit.
Zur Unterdrückung der δ-Ferritbildung werden vorzugsweise Legierungszusätze folgender Zusammensetzung: von 0,01 bis 1,0, vorzugsweise 0,03 Gewichts-% Mn; < 5,0, vorzugsweise 2,2 Gewichts-% Ni; < 5,0, vorzugsweise 2,7 Gewichts-% Co zugesetzt.
Hinsichtlich des Einsatzhärtens wurden bislang noch keine näheren Angaben gemacht.
Der Düsenkörper ist vorteilhafterweise durch Einsatzhärten bei einer Temperatur von 1050 bis 1200 °C, vorzugsweise bei 1100 °C, bei einem Druck von 0,5 bis 10 bar, vorzugsweise bei 3 bar über einen Zeitraum von 1 h bis 30 h, vorzugsweise 4 h gehärtet.
Durch eine derartige Ausbildung des Düsenkörpers aus nichtrostendem martensitischem Stahl, der wie oben beschrieben durch Einsatzhärten mit Stickstoff gehärtet ist, wird nicht nur der Korrosions- und Verschleißwiderstand, sondern auch die Anlaßbeständigkeit und die Warmhärte wesentlich erhöht.
Die Vorteile dabei sind: Es ergibt sich eine bessere Zerspanbarkeit des ungehärteten Ausgangswerkstoffes. Die Randschichthärtung erfolgt mit hoher Fertigungssicherheit, die zu gleichmäßiger Oberflächenhärte und Einhärtung, insbesondere auch bei den die Spritzlöcher bildenden Bohrungen führt, ohne daß Reinigungsprobleme entstehen. Aufgrund einer einfachen Fertigung können die Kraftstoffeinspritzdüsen nicht nur auf technisch einfache Weise, sondern auch besonders kostengünstig hergestellt werden, wobei hierbei nicht zwischen Kraftstoffeinspritzdüsen für Dieseleinspritzsysteme und Kraftstoffeinspritzdüsen für Benzineinspritzsysteme unterschieden werden muß.
Zeichnung
Weitere Merkmale und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung eines Ausführungsbeispiels.
In der Figur ist schematisch ein Längsschnitt durch den einspritzseitigen Endabschnitt eines Ausführungsbeispiels einer Kraftstoffeinspritzdüse dargestellt.
Beschreibung der Ausführungsbeispiele
Im folgenden wird die Erfindung schematisch anhand einer Kraftstoffeinspritzdüse für eine Dieselbrennkraftmaschine erläutert. Es versteht sich, daß die Erfindung nicht auf Kraftstoffeinspritzdüsen für Dieselbrennkraftmaschinen beschränkt ist, sondern sich auch auf Kraftstoffeinspritzdüsen für Benzindirekteinspritsysteme erstreckt.
Die in Figur 1 dargestellte Einspritzdüse weist einen Düsenkörper 10 auf, in welchem eine Ventilnadel 20 verschiebbar gelagert ist. Die Ventilnadel 20 weist an ihrem unteren Ende eine kegelige Dichtfläche 22 auf, die an einer auf sie angepaßten und daher konischen Ventilsitzfläche 12 zur Anlage kommt. Die Ventilsitzfläche 12 ist an einem Innenwandbereich 31 einer Stirnkuppe 30 des Düsenkörpers 10 gebildet. Von der Ventilsitzfläche 12 gehen mehrere Spritzlöcher 32 aus, welche die Wand der Stirnkuppe 30 in einem Winkel zur Düsenachse durchstoßen.
Zwischen der Ventilnadel 20 und einer zylindrischen Innenwand des Düsenkörpers 10 ist ein Ringraum 13 gebildet, in welchen eine nicht dargestellte Kraftstoffzuleitung einmündet. Die Ventilnadel 20 wird von einer ebenfalls nicht dargestellten Ventilfeder gegen die Ventilsitzfläche 12 gepreßt. Wenn der Kraftstoffdruck im Ringraum 13 auf einen vorgegebenen Wert angestiegen ist, wird die Ventilnadel 20 entgegen der Kraft der Ventilfeder angehoben und der Kraftstoff durch die Spritzlöcher 32 ausgespritzt. Wie in der Figur dargestellt, kann der Kegelwinkel der Dichtfläche 22 an der Ventilnadel 20 etwas größer gewählt sein als der Winkel der Ventilsitzfläche 12, so daß sich anfangs an der oberen Kante 24 der Dichtfläche 22 die höchste Dichtpreßkraft ergibt.
Bei Kraftstoffeinspritzdüsen für Benzindirekteinspritzsysteme kann die Dichtfläche 22 auch kugelförmig und die Ventilsitzfläche sowie die Stirnkuppe 30 hohlkugelförmig ausgebildet sein.
Darüber hinaus können die Spritzlöcher 32 auch unterhalb der Dichtfläche 22 in der Stirnkuppe 30 angeordnet sein.
Im Betrieb der Kraftstoffeinspritzdüse wird diese sehr hoch beansprucht. Diese hohe Beanspruchung resultiert zum einen daraus, daß die Ventilnadel 20 durch dauerndes Öffnen und Schließen der Kraftstoffeinspritzdüse ununterbrochen auf die Ventilsitzfläche 12 trifft, zum anderen aber auch daraus, daß die gesamte Kraftstoffeinspritzdüse beispielsweise im Schubbetrieb eines mit einer Dieselbrennkraftmaschine betriebenen Fahrzeugs, bei der die Motorbremswirkung eingesetzt wird, einer sehr hohen Temepratur ausgesetzt ist.
Bei Einsatz der Kraftstoffeinspritzdüse in Benzindirekteinspritzsystemen kann es zur Korrosion der Kraftstoffeinspritzdüse kommen, so daß deren sichere Funktion nicht gewährleistet ist.
Aus diesem Grunde besteht die Kraftstoffeinspritzdüse aus einem nichtrostenden martensitischen Stahl beispielsweise folgender Zusammensetzung: 0,01 Gewichts-% C; 0,1 Gewichts-% N; 0,06 Gewichts-% Si; 13,7 Gewichts-% Cr; 1,5 Gewichts-% Mo; 0,1 Gewichts-% V und Legierungszusätzen zur Unterdrückung von δ-Ferrit folgender Zusammensetzung: 0,03 Gewichts-% Mn; 2,2 Gewichts-% Ni; 2,7 Gewichts-% Co, der durch Einsatzhärten mit Stickstoff gehärtet ist.
Das Einsatzhärten mit Stickstoff erfolgt vorzugsweise bei einer Temperatur von 1100 °C und einem Druck von 3 bar über einem Zeitraum von 4 h.
Die Verwendung eines auf diese Weise gehärteten nichtrostenden, martensitischen Stahl verhindert einerseits, daß die Kraftstoffeinspritzdüse bei sehr hoher Temperaturbeanspruchung weichgeglüht und daher untauglich wird, so daß eine Bruchgefahr oder ein erhöhter Verschleiß entsteht, zum anderen ergibt sich zusätzlich ein sehr guter Korrosionswiderstand, so daß die Kraftstoffeinspritzdüse sowohl bei direktdieseleinspritzenden als auch direktbenzineinspritzenden Systemen eingesetzt werden kann.

Claims (3)

  1. Kraftstoffeinspritzdüse für Brennkraftmaschinen mit einem Düsenkörper (10), in welchem eine Ventilnadel (20) mit einer Dichtfläche (2) verschiebbar gelagert ist, die an einer auf sie angepaßten Ventilsitzfläche (12) zur Anlage kommt, welche an einem Innenwandbereich (31) einer Stirnkuppe (30) des Düsenkörpers (10) gebildet ist und in der wenigstens ein Spritzloch (32) vorgesehen ist, wobei sowohl der Innenwandbereich (31) mit der an ihm angeordneten Ventilsitzfläche (12) des Düsenkörpers (10) als auch sein Außenwandbereich gehärtet sind, dadurch gekennzeichnet, daß der Düsenkörper (10) aus einem nichtrostenden martensitischen Stahl besteht, der durch Einsatzhärten mit Stickstoff gehärtet ist, wobei auch die Spritzlöcher (32) gehärtet sind, und der Stahl folgende Zusammensetzung aufweist: < 0,1, vorzugsweise 0,01 Gewichts-% C; von 0,03 bis 0,3, vorzugsweise 0,1 Gewichts-% N; von 0,01 bis 1,0, vorzugsweise 0,06 Gewichts-% Si; von 10,0 bis 20,0, vorzugsweise 13,7 Gewichts-% Cr; < 5,0, vorzugsweise 1,5 Gewichts-% Mo; < 0,5, vorzugsweise 0 Gewichts-% Nb; < 0,5, vorzugsweise 0,1 Gewichts-% V und Legierungszusätze zur Unterdrückung von δ-Ferrit.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß dem Stahl Legierungszusätze zur Unterdrückung von δ-Ferrit folgender Zusammensetzung: von 0,01 bis 1,0, vorzugsweise 0,03 Gewichts-% Mn; < 5,0, vorzugsweise 2,2 Gewichts-% Ni; < 5,0, vorzugsweise 2,7 Gewichts-% Co zugesetzt sind.
  3. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Düsenkörper (10) durch Einsatzhärten bei einer Temperatur von 1050 bis 1200 °C, vorzugsweise bei 1100 °C, bei einem Druck von 0,5 bis 10 bar, vorzugsweise bei 3 bar und über einen Zeitraum von 1 bis 30 h, vorzugsweise 4 h gehärtet ist.
EP98916834A 1997-07-31 1998-03-04 Kraftstoffeinspritzdüse Expired - Lifetime EP0929742B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE29713628U 1997-07-31
DE29713628U DE29713628U1 (de) 1997-07-31 1997-07-31 Kraftstoffeinspritzdüse
PCT/DE1998/000620 WO1999006692A1 (de) 1997-07-31 1998-03-04 Kraftstoffeinspritzdüse

Publications (2)

Publication Number Publication Date
EP0929742A1 EP0929742A1 (de) 1999-07-21
EP0929742B1 true EP0929742B1 (de) 2003-01-22

Family

ID=8043949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916834A Expired - Lifetime EP0929742B1 (de) 1997-07-31 1998-03-04 Kraftstoffeinspritzdüse

Country Status (5)

Country Link
US (1) US6168095B1 (de)
EP (1) EP0929742B1 (de)
JP (1) JP2001504192A (de)
DE (2) DE29713628U1 (de)
WO (1) WO1999006692A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630076B2 (ja) * 2000-05-30 2005-03-16 株式会社デンソー 弁装置
JP3908491B2 (ja) * 2001-08-03 2007-04-25 株式会社日立製作所 電子燃料噴射弁
DE10147205C1 (de) * 2001-09-25 2003-05-08 Bosch Gmbh Robert Verfahren zur Wärmebehandlung von Werkstücken aus temperaturbeständigen Stählen
JP2003120463A (ja) * 2001-10-16 2003-04-23 Hitachi Ltd 燃料噴射弁、ノズルボディ、流体通路を有する円筒部品の製造方法
DE10261175A1 (de) * 2002-12-20 2004-07-08 Daimlerchrysler Ag Schieberventil
EP1596059B1 (de) * 2003-02-04 2013-11-06 Mitsubishi Denki Kabushiki Kaisha Kraftstoffeinspritzventil
DE102004039926B4 (de) * 2004-08-18 2016-09-22 Robert Bosch Gmbh Verfahren zur Herstellung eines temperatur- und korrosionsbeständigen Kraftstoffinjektorkörpers
US7185831B2 (en) * 2004-11-05 2007-03-06 Ford Motor Company Low pressure fuel injector nozzle
US7137577B2 (en) * 2004-11-05 2006-11-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7124963B2 (en) * 2004-11-05 2006-10-24 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7104475B2 (en) * 2004-11-05 2006-09-12 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7198207B2 (en) * 2004-11-05 2007-04-03 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7168637B2 (en) * 2004-11-05 2007-01-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7438241B2 (en) * 2004-11-05 2008-10-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7051957B1 (en) * 2004-11-05 2006-05-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
JP2006170192A (ja) 2004-11-17 2006-06-29 Denso Corp 燃料噴射ノズル及びその製造方法
US20070176025A1 (en) * 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
US8029627B2 (en) * 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
FR2908838A1 (fr) 2006-11-20 2008-05-23 Peugeot Citroen Automobiles Sa Injecteur de carburant muni d'une aiguille creuse
JP4948295B2 (ja) * 2007-07-06 2012-06-06 愛三工業株式会社 燃料噴射弁
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US20100025500A1 (en) 2008-07-31 2010-02-04 Caterpillar Inc. Materials for fuel injector components
AT511880B1 (de) * 2011-09-06 2013-12-15 Bosch Gmbh Robert Verschleissoptimierte herstellung von konischen spritzlöchern
DE102016222904A1 (de) * 2016-11-21 2018-05-24 Robert Bosch Gmbh Komponente, die zum Führen und/oder Speichern von zumindest einem Fluid und insbesondere für eine Brennstoffeinspritzanlage dient, Brennstoffeinspritzanlage und Verfahren zur Herstellung einer Komponente
CN109082608A (zh) * 2018-10-26 2018-12-25 成都先进金属材料产业技术研究院有限公司 控制低铬不锈钢中δ铁素体含量的方法
JP6888146B1 (ja) 2020-03-27 2021-06-16 日立Astemo株式会社 直噴式燃料噴射弁
WO2022077366A1 (en) 2020-10-15 2022-04-21 Cummins Inc. Fuel system components
CA3235020A1 (en) * 2021-10-14 2023-04-20 Icom North America Llc High flow inline air/fuel vortex injection system for internal combustion engines

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545520B2 (ja) * 1985-08-10 1996-10-23 ロ−ベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関用の燃料噴射ノズル
DE4033706A1 (de) 1990-10-24 1991-02-21 Hans Prof Dr Ing Berns Einsatzhaerten mit stickstoff zur verbesserung des korrosionswiderstandes martensitischer nichtrostender staehle
JP2592542B2 (ja) * 1990-11-24 1997-03-19 株式会社日立製作所 電磁バルブのノズルの製造方法
JP3125162B2 (ja) * 1992-08-10 2001-01-15 株式会社日立製作所 燃料噴射装置のノズルボディ及び弁
JP2769422B2 (ja) * 1993-04-19 1998-06-25 日立金属株式会社 内燃機関の燃料噴射ノズルまたはニードル用高強度ステンレス鋼、内燃機関用燃料噴射ノズルおよびその製造方法
JP3559307B2 (ja) * 1993-05-11 2004-09-02 本田技研工業株式会社 燃料噴射弁の弁体または弁座
FR2713100B1 (fr) * 1993-11-30 1996-01-05 Rossignol Sa Ski.

Also Published As

Publication number Publication date
DE59807000D1 (de) 2003-02-27
WO1999006692A1 (de) 1999-02-11
JP2001504192A (ja) 2001-03-27
US6168095B1 (en) 2001-01-02
EP0929742A1 (de) 1999-07-21
DE29713628U1 (de) 1998-11-26

Similar Documents

Publication Publication Date Title
EP0929742B1 (de) Kraftstoffeinspritzdüse
EP0233190B1 (de) Kraftstoff-einspritzdüse für brennkraftmaschinen
EP0982493B1 (de) Verfahren zum Herstellen einer Brennstoffeinspritzdüse und Brennstoffeinspritzdüse
DE102015223437A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor sowie Kraftstoffinjektor
EP0961025A1 (de) Brennstoffeinspritzdüse
DE102006049885A1 (de) Injektor zur Einspritzung von Kraftstoff in Brennräume von Brennkraftmaschinen
DE19507171C1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1408231B1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
DE19634933A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1627147B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10247958A1 (de) Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
EP2228462A1 (de) Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks, sowie Werkstück mit einer beschichteten Sitzfläche
DE102017101931A1 (de) Hochfeste Schraube mit einem enthärteten Gewindeende
EP1566539A1 (de) Brennstoffeinspritzdüse
DE19618650B4 (de) Verfahren zur Herstellung eines Kraftstoffeinspritzventils für Brennkraftmaschinen
DE102018206101A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
EP0730089A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102008040637A1 (de) Kraftstoffeinspritzventileinrichtung
DE102021201085A1 (de) Gasventil mit nach außen öffnendem Ventilschließelement
WO2011006692A1 (de) Antriebsaggregat
EP1655483B1 (de) Ventil zum Einspritzen von Brennstoff
DE102017216872A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
EP1042609B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102018005075A1 (de) Kraftstoffinjektor
EP1915527B1 (de) Teilentdrosseltes einspritzventilglied für kraftstoffinjektoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19990811

17Q First examination report despatched

Effective date: 20010710

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59807000

Country of ref document: DE

Date of ref document: 20030227

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030319

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030324

Year of fee payment: 6

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030501

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040304

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110525

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807000

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002