WO1999006692A1 - Kraftstoffeinspritzdüse - Google Patents

Kraftstoffeinspritzdüse Download PDF

Info

Publication number
WO1999006692A1
WO1999006692A1 PCT/DE1998/000620 DE9800620W WO9906692A1 WO 1999006692 A1 WO1999006692 A1 WO 1999006692A1 DE 9800620 W DE9800620 W DE 9800620W WO 9906692 A1 WO9906692 A1 WO 9906692A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
fuel injection
nozzle body
hardened
seat surface
Prior art date
Application number
PCT/DE1998/000620
Other languages
English (en)
French (fr)
Inventor
Max Seitter
Friedrich MÜHLEDER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US09/269,667 priority Critical patent/US6168095B1/en
Priority to JP51033199A priority patent/JP2001504192A/ja
Priority to DE59807000T priority patent/DE59807000D1/de
Priority to EP98916834A priority patent/EP0929742B1/de
Publication of WO1999006692A1 publication Critical patent/WO1999006692A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/19Nozzle materials

Definitions

  • the invention relates to a fuel injection nozzle for internal combustion engines with a nozzle body, in which a valve needle with a sealing surface is slidably mounted, which comes to rest on a sealing surface adapted to it, which is formed on an inner wall region of an end cap of the nozzle body and in which at least one spray hole is provided , both the inner wall area with the sealing surface of the nozzle body arranged on it and its outer wall area being hardened.
  • Such a fuel injection nozzle for internal combustion engines can be found, for example, in EP 0 233 190 B1.
  • the inner wall area of the end cap provided with the valve seat surface is provided with a greater hardness by hardening the outer layer than the outer wall area and that between the valve seat surface and the central edge area lying opposite the outer wall area.
  • the nozzle body of these fuel injection nozzles consists of case-hardened steel, which is carburized differently to form the different degrees of hardness.
  • Such fuel injectors are used, for example, in diesel fuel injection systems where they are exposed to very high temperatures. If, for example, diesel engines provided with direct injection are operated in engine braking mode, very high temperatures can arise at the diesel injection nozzles, as a result of which they are "soft-annealed” and can thus become unsuitable for further operation (wear, risk of breakage).
  • the invention is therefore based on the object of improving a generic fuel injector in such a way that it can be used at very high temperatures on the one hand, in particular the soft annealing mentioned above in connection with diesel engines should be avoided and on the other hand it has a high corrosion resistance, so that use in direct petrol injection systems is also possible.
  • the fuel injector should be able to be manufactured in the simplest possible and therefore inexpensive manner.
  • a fuel injection nozzle of the type described in the introduction in that the nozzle body consists of a stainless martensitic steel which is hardened by case hardening with nitrogen.
  • the spray holes are hardened.
  • Suitable stainless martensitic steels are advantageously steels with the following composition: ⁇ 0.1, preferably 0.01% by weight C; from 0.03 to 0.3, preferably 0.1% by weight N; from 0.01 to 1.0, preferably 0.06% by weight of Si; from 10.0 to 20.0, preferably 13.7% by weight of Cr; ⁇ 5.0, preferably 1.5% by weight Mo; ⁇ 0.5, preferably 0% by weight Nb; ⁇ 0.5, preferably 0.1% by weight V and alloy additives for suppressing ⁇ -ferrite.
  • alloy additives of the following composition are preferably used: from 0.01 to 1.0, preferably 0.03% by weight of Mn; ⁇ 5.0, preferably 2.2% by weight Ni; ⁇ 5.0, preferably 2.7% by weight of Co is added.
  • the nozzle body is advantageously hardened at a temperature of 1050 to 1200 ° C, preferably at 1100 ° C, at a pressure of 0.5 to 10 bar, preferably at 3 bar over a period of 1 h to 30 h, preferably 4 h hardened.
  • the advantages are: There is a better machinability of the unhardened starting material.
  • the surface layer hardening takes place with a high level of production reliability, which leads to uniform surface hardness and hardening, in particular also in the bores forming the spray holes, without there being any cleaning problems.
  • Due to a simple production the Fuel injection nozzles are not only produced in a technically simple manner, but also particularly cost-effectively, it not being necessary to differentiate between fuel injection nozzles for diesel injection systems and fuel injection nozzles for gasoline injection systems.
  • the figure schematically shows a longitudinal section through the injection-side end section of an exemplary embodiment of a fuel injection nozzle.
  • the invention is explained schematically on the basis of a fuel injection nozzle for a diesel internal combustion engine. It is understood that the invention is not limited to fuel injection nozzles for diesel engines, but also extends to fuel injection nozzles for gasoline direct injection systems.
  • the injection nozzle shown in FIG. 1 has a nozzle body 10, in which a valve needle 20 is slidably mounted.
  • the valve needle 20 has at its lower end a conical sealing surface 22 which comes into contact with a valve seat surface 12 which is adapted to it and is therefore conical.
  • the valve seat surface 12 is formed on an inner wall region 31 of an end cap 30 of the nozzle body 10. From the valve seat surface 12 go out of several spray holes 32 which pierce the wall of the end cap 30 at an angle to the nozzle axis.
  • An annular space 13 is formed between the valve needle 20 and a cylindrical inner wall of the nozzle body 10, into which an unillustrated fuel supply line opens.
  • the valve needle 20 is pressed against the valve seat surface 12 by a valve spring, also not shown.
  • the valve needle 20 is raised against the force of the valve spring and the fuel is sprayed out through the spray holes 32.
  • the cone angle of the sealing surface 22 on the valve needle 20 can be selected to be somewhat larger than the angle of the valve seat surface 12, so that the highest sealing press force results initially at the upper edge 24 of the sealing surface 22.
  • the sealing surface 22 can also be spherical and the valve seat surface and the end cap 30 can be hollow.
  • the spray holes 32 can also be arranged below the sealing surface 22 in the end cap 30.
  • the fuel injector may corrode, so that its safe function is not guaranteed.
  • the fuel injector is made of a stainless martensitic steel, for example of the following composition: 0.01% by weight C; 0.1% by weight N; 0.06% by weight Si; 13.7% by weight of Cr; 1.5% by weight Mo; 0.1% by weight of V and alloy additives for suppressing ⁇ -ferrite of the following composition: 0.03% by weight of Mn; 2.2% by weight Ni; 2.7% by weight of Co which is hardened by case hardening with nitrogen.
  • the case hardening with nitrogen is preferably carried out at a temperature of 1100 ° C. and a pressure of 3 bar over a period of 4 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzdüse für Brennkraftmaschinen mit einem Düsenkörper (10), in welchem eine Ventilnadel (20) mit einer Dichtfläche (22) verschiebbar gelagert ist, die an einer auf sie angepaßten Ventilsitzfläche (12) zur Anlage kommt, welche an einem Innenwandbereich (31) einer Stirnkuppe (30) des Düsenkörpers (10) gebildet ist und in der wenigstens ein Spritzloch (32) vorgesehen ist, wobei sowohl der Innenwandbereich (31) mit der an ihm angeordneten Ventilsitzfläche (12) des Düsenkörpers (10) als auch sein Außenwandbereich gehärtet sind. Dabei besteht der Düsenkörper (10) aus einem nicht rostenden martensitischen Stahl, der durch Einsatzhärten mit Stickstoff gehärtet ist.

Description

Kraftstoffeinspritzdüsβ
Stand der Technik
Die Erfindung betrifft eine Kraftstoffeinspritzdüse für Brennkraftmaschinen mit einem Düsenkörper, in welchem eine Ventilnadel mit einer Dichtfläche verschiebbar gelagert ist, die an einer auf sie angepaßten Dichtfläche zur Anlage kommt, welche an einem Innenwandbereich einer Stirnkuppe des Düsenkörpers gebildet ist und in der wenigstens ein Spritzloch vorgesehen ist, wobei sowohl der Innenwandbereich mit der an ihm angeordneten Dicht - fläche des Düsenkörpers als auch sein Außenwandbereich gehärtet sind.
Eine derartige Kraftstoffeinspritzdüse für Brennkraftmaschinen geht beispielsweise aus der EP 0 233 190 Bl hervor. Bei dieser ist der mit der Ventilsitzflache versehene Innenwandbereich der Stirnkuppe durch Rand- schichthärtung mit einer größeren Härte versehen als der Außenwandbereich und der zwischen der Ventilsitzfläche und dem gegenüberliegenden Außenwandbereich liegende mittlere Randbereich.
Der Düsenkörper dieser Kraftstoffeinspritzdüsen besteht aus Einsatzstahl, der zur Ausbildung der unterschiedlichen Härtegrade unterschiedlich aufgekohlt wird.
Derartige Kraftstoffeinspritzdüsen werden beispielsweise in Dieselkraftstoffeinspritsystemen verwendet, wo sie sehr hohen Temperaturen ausgesetzt sind. Wenn nämlich mit einer Direkteinspritzung versehene Dieselmotoren beispielsweise im Motorbremsbetrieb betrieben werden, können sehr hohe Temperaturen an den Dieseleinspritzdüsen entstehen, wodurch sie "weichgeglüht" und hierdurch für einen weiteren Betrieb untauglich werden können (Verschleiß, Bruchgefahr) .
Bei Verwendung derartiger Kraftstoffeinspritzdüsen in mit Direkteinspritzsystemen versehenen Benzinmotoren entstehen außer Verschleiß auch Probleme durch Korrosion der Kraftstoffeinspritzdüsen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine gattungsgemäße Kraftstoffeinspritzdüse dahingehend zu verbessern, daß sie einerseits bei sehr hohen Temperaturen eingesetzt werden kann, wobei insbesondere das oben im Zusammenhang mit Dieselmotoren erwähnte Weichglühen vermieden werden soll, und daß sie andererseits eine hohe Korrosionsbeständigkeit aufweist, so daß auch ein Einsatz in Benzindirekteinspritzungssystemen möglich ist. Die Kraftstoffeinspritzdüse soll dabei auf möglichst einfache und daher kostengünstige Weise herstellbar sein. Vorteile der Erfindung
Diese Aufgabe wird bei einer Kraftstoffeinspritzdüse der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß der Düsenkörper aus einem nichtrostenden martensitischen Stahl besteht, der durch Einsatzhärten mit Stickstoff gehärtet ist.
Die Verbesserung des Korrosionswiderstandes martensiti- scher nichtrostender Stähle durch Einsatzhärten mit Stickstoff geht beispielsweise aus der DE 40 33 706 AI hervor. Bei dem aus dieser Druckschrift bekannten Wärmebehandlungsverfahren steht die Erhöhung des Korro- sionswiderstandes im Vordergrund.
Aufgrund einer Vielzahl von Versuchen hat sich gezeigt, daß das aus der DE 40 33 706 AI hervorgehende Wärmebehandlungsverfahren überraschenderweise auch dafür eingesetzt werden kann, die Temperaturbeständigkeit von Düsenkörpern zu erhöhen. Insbesondere hat sich gezeigt, daß das obenbeschriebene Weichglühen des Düsenkörpers bei hohen Temperaturen bei Verwendung eines martensitischen nichtrostenden Stahls, der durch Einsatzhärten mit Stickstoff gehärtet wurde, vermieden werden kann.
Besonders vorteilhaft hierbei ist es, daß auch die Spritzlöcher gehärtet sind.
Als nichtrostende martensitische Stähle kommen vorteilhafterweise Stähle mit der folgenden Zusammensetzung in Frage: < 0,1, vorzugsweise 0,01 Gewichts-% C; von 0,03 bis 0,3, vorzugsweise 0,1 Gewichtε-% N; von 0,01 bis 1,0, vorzugsweise 0,06 Gewichts-% Si; von 10,0 bis 20,0, vorzugsweise 13,7 Gewichts-% Cr; < 5,0, vorzugsweise 1,5 Gewichts-% Mo; < 0,5, vorzugsweise 0 Gewichts-% Nb; < 0,5, vorzugsweise 0,1 Gewichts-% V und Legierungszusätze zur Unterdrückung von δ-Ferrit.
Zur Unterdrückung der δ -Ferritbildung werden vorzugsweise Legierungszusätze folgender Zusammensetzung: von 0,01 bis 1,0, vorzugsweise 0,03 Gewichts-% Mn; < 5,0, vorzugsweise 2,2 Gewichts-% Ni ; < 5,0, vorzugsweise 2,7 Gewichts-% Co zugesetzt .
Hinsichtlich des Einsatzhärtens wurden bislang noch keine näheren Angaben gemacht .
Der Düsenkörper ist vorteilhafterweise durch Einsatzhärten bei einer Temperatur von 1050 bis 1200 °C, vorzugsweise bei 1100 °C, bei einem Druck von 0,5 bis 10 bar, vorzugsweise bei 3 bar über einen Zeitraum von 1 h bis 30 h, vorzugsweise 4 h gehärtet.
Durch eine derartige Ausbildung des Düsenkörpers aus nichtrostendem martensitischem Stahl, der wie oben beschrieben durch Einsatzhärten mit Stickstoff gehärtet ist, wird nicht nur der Korrosions- und Verschleißwiderstand, sondern auch die Anlaßbeständigkeit und die Warmhärte wesentlich erhöht.
Die Vorteile dabei sind: Es ergibt sich eine bessere Zerspanbarkeit des ungehärteten Ausgangswerkstoffes . Die Randschichthärtung erfolgt mit hoher Fertigungssicherheit, die zu gleichmäßiger Oberflächenhärte und Ein- härtung, insbesondere auch bei den die Spritzlöcher bildenden Bohrungen führt, ohne daß Reinigungsprobleme entstehen. Aufgrund einer einfachen Fertigung können die Kraftstoffeinspritzdüsen nicht nur auf technisch einfache Weise, sondern auch besonders kostengünstig hergestellt werden, wobei hierbei nicht zwischen Kraftstoffeinspritzdüsen für Dieseleinspritzsysteme und Kraftstoffeinspritzdüsen für Benzineinspritzsysteme unterschieden werden muß.
Zeichnung
Weitere Merkmale und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung eines Ausführungsbeispiels.
In der Figur ist schematisch ein Längsschnitt durch den einspritzseitigen Endabschnitt eines Ausführungsbeispiels einer Kraftstoffeinspritzdüse dargestellt.
Beschreibung der Ausführungsbeispiele
Im folgenden wird die Erfindung schematisch anhand einer Kraftstoffeinspritzdüse für eine Dieselbrennkraftmaschine erläutert. Es versteht sich, daß die Erfindung nicht auf Kraftstoffeinspritzdüsen für Dieselbrennkraftmaschinen beschränkt ist, sondern sich auch auf Kraftstoffeinspritzdüsen für Benzindirekteinspritsysteme erstreckt.
Die in Figur 1 dargestellte Einspritzdüse weist einen Düsenkörper 10 auf, in welchem eine Ventilnadel 20 -verschiebbar gelagert ist. Die Ventilnadel 20 weist an ihrem unteren Ende eine kegelige Dichtfläche 22 auf, die an einer auf sie angepaßten und daher konischen Ventilsitzfläche 12 zur Anlage kommt. Die Ventilsitzflache 12 ist an einem Innenwandbereich 31 einer Stirnkuppe 30 des Düsenkörpers 10 gebildet. Von der Ventilsitzflache 12 gehen mehrere Spritzlöcher 32 aus, welche die Wand der Stirnkuppe 30 in einem Winkel zur Düsenachse durchstoßen.
Zwischen der Ventilnadel 20 und einer zylindrischen Innenwand des Düsenkörpers 10 ist ein Ringraum 13 gebildet, in welchen eine nicht dargestellte Kraftstoff - Zuleitung einmündet. Die Ventilnadel 20 wird von einer ebenfalls nicht dargestellten Ventilfeder gegen die Ventilsitzfläche 12 gepreßt. Wenn der Kraftstoffdruck im Ringraum 13 auf einen vorgegebenen Wert angestiegen ist, wird die Ventilnadel 20 entgegen der Kraft der Ventilfeder angehoben und der Kraftstoff durch die Spritzlöcher 32 ausgespritzt. Wie in der Figur dargestellt, kann der Kegelwinkel der Dichtfläche 22 an der Ventilnadel 20 etwas größer gewählt sein als der Winkel der Ventilsitzfläche 12, so daß sich anfangs an der oberen Kante 24 der Dichtfläche 22 die höchste Dichtpreßkraft ergibt.
Bei Kraftstoffeinspritzdüsen für Benzindirekteinspritzsy- steme kann die Dichtfläche 22 auch kugelförmig und die Ventilsitzflache sowie die Stirnkuppe 30 hohlkugelförmig ausgebildet sein.
Darüber hinaus können die Spritzlδcher 32 auch unterhalb der Dichtfläche 22 in der Stirnkuppe 30 angeordnet sein.
Im Betrieb der Kraftstoffeinspritzdüse wird diese sehr hoch beansprucht. Diese hohe Beanspruchung resultiert zum einen daraus, daß die Ventilnadel 20 durch dauerndes Öffnen und Schließen der Kraf stoffeinspritzdüse ununterbrochen auf die Ventilsitzflache 12 trifft, zum anderen aber auch daraus, daß die gesamte Kraftstoffeinspritzdüse beispielsweise im Schubbetrieb eines mit einer Diesel- brennkraftmaschine betriebenen Fahrzeugs, bei der die Motorbremswirkung eingesetzt wird, einer sehr hohen Temepratur ausgesetzt ist.
Bei Einsatz der Kraftstoffeinspritzdüse in Benzindirekt- einspritzsystemen kann es zur Korrosion der Kraftstoff- einspritzdüse kommen, so daß deren sichere Funktion nicht gewährleistet ist .
Aus diesem Grunde besteht die Kraftstoffeinspritzdüse aus einem nichtrostenden martensitischen Stahl beispielsweise folgender Zusammensetzung: 0,01 Gewichts-% C; 0,1 Gewichts-% N; 0,06 Gewichts-% Si; 13,7 Gewichts-% Cr; 1,5 Gewichts-% Mo; 0,1 Gewichts-% V und Legierungszusätzen zur Unterdrückung von δ-Ferrit folgender Zusammensetzung: 0,03 Gewichts-% Mn; 2,2 Gewichts-% Ni ; 2,7 Gewichts-% Co, der durch Einsatzhärten mit Stickstoff gehärtet ist.
Das Einsatzhärten mit Stickstoff erfolgt vorzugsweise bei einer Temperatur von 1100 °C und einem Druck von 3 bar über einem Zeitraum von 4 h.
Die Verwendung eines auf diese Weise gehärteten nichtrostenden, martensitischen Stahl verhindert einerseits, daß die Kraftstoffeinspritzdüse bei sehr hoher Temperaturbeanspruchung weichgeglüht und daher untauglich wird, so daß eine Bruchgefahr oder ein erhöhter Verschleiß entsteht, zum anderen ergibt sich zusätzlich ein sehr guter Korrosionswiderstand, so daß die Kraftstoffein- ' spritzdüse sowohl bei direktdieseleinspritzenden als auch direktbenzineinspritzenden Systemen eingesetzt werden kann.

Claims

Schutzansprüche
1. Kraftstoffeinspritzdüse für Brennkraftmaschinen mit einem Düsenkörper (10) , in welchem eine Ventilnadel (20) mit einer Dichtfläche (22) verschiebbar gelagert ist, die an einer auf sie angepaßten Ventilsitzflache (12) zur Anlage kommt, welche an einem Innenwandbereich (31) einer Stirnkuppe (30) des Düsenkörpers (10) gebildet ist und in der wenigstens ein Spritzloch (32) vorgesehen ist, wobei sowohl der Innenwandbereich (31) mit der an ihm angeordneten Ventilsitzfläche (12) des Düsenkörpers (10) als auch sein Außenwandbereich gehärtet sind, dadurch gekennzeichnet, daß der Düsenkörper (10) aus einem nichtrostenden martensitischen Stahl besteht, der durch Einsatzhärten mit Stickstoff gehärtet ist.
-2. Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß die Spritzlöcher (32) gehärtet sind.
3. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der nichtrostende martensitische Stahl folgende Zusammensetzung aufweist: < 0,1, vorzugsweise" 0 , 01 Gewichts-% C; von 0,03 bis 0,3, vorzugsweise 0,1 Gewichts-% N; von 0,01 bis 1,0, vorzugsweise 0,06 Gewichts-% Si; von 10,0 bis 20,0, vorzugsweise 13,7 Gewichts-% Cr; < 5,0, vorzugsweise 1,5 Gewichts-% Mo; < 0,5, vorzugsweise 0 Gewichts-% Nb; < 0,5, vorzugsweise 0,1 Gewichts-% V und Legierungszusatze zur Unterdrückung von δ -Ferrit.
Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß dem Stahl Legierungszusätze zur Unterdrückung von δ -Ferrit folgender Zusammensetzung: von 0,01 bis 1,0, vorzugsweise 0,03 Gewichts-% Mn; < 5,0, vorzugsweise 2,2 Gewichts-% Ni ; < 5,0, vorzugsweise 2,7 Gewichts-% Co zugesetzt sind.
Kraftstoffeinspritzventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Düsenkörper (10) durch Einsatzhärten bei einer Temperatur von 1050 bis 1200 °C, vorzugsweise bei 1100 °C, bei einem Druck von 0,5 bis 10 bar, vorzugsweise bei 3 bar und über einen Zeitraum von 1 bis 30 h, vorzugsweise 4 h gehärtet ist.
PCT/DE1998/000620 1997-07-31 1998-03-04 Kraftstoffeinspritzdüse WO1999006692A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/269,667 US6168095B1 (en) 1997-07-31 1998-03-04 Fuel injector for an internal combustion engine
JP51033199A JP2001504192A (ja) 1997-07-31 1998-03-04 燃料噴射ノズル
DE59807000T DE59807000D1 (de) 1997-07-31 1998-03-04 Kraftstoffeinspritzdüse
EP98916834A EP0929742B1 (de) 1997-07-31 1998-03-04 Kraftstoffeinspritzdüse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29713628U DE29713628U1 (de) 1997-07-31 1997-07-31 Kraftstoffeinspritzdüse
DE29713628.3 1997-07-31

Publications (1)

Publication Number Publication Date
WO1999006692A1 true WO1999006692A1 (de) 1999-02-11

Family

ID=8043949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000620 WO1999006692A1 (de) 1997-07-31 1998-03-04 Kraftstoffeinspritzdüse

Country Status (5)

Country Link
US (1) US6168095B1 (de)
EP (1) EP0929742B1 (de)
JP (1) JP2001504192A (de)
DE (2) DE29713628U1 (de)
WO (1) WO1999006692A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302657A1 (de) * 2001-10-16 2003-04-16 Hitachi, Ltd. Kaftstoffeinspritzventil, Düsenkörper und Verfahren zur Herstellung einer zylindrischen fluidführenden Leitung
EP1659284A1 (de) 2004-11-17 2006-05-24 Denso Corporation Kraftstoffeinspritzdüse und Herstellungsverfahren
WO2018091183A1 (de) * 2016-11-21 2018-05-24 Robert Bosch Gmbh Komponente, die zum führen und/oder speichern von zumindest einem fluid und insbesondere für eine brennstoffeinspritzanlage dient, brennstoffeinspritzanlage und verfahren zur herstellung einer komponente
CN113446141A (zh) * 2020-03-27 2021-09-28 日立安斯泰莫株式会社 直喷式燃料喷射阀

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630076B2 (ja) * 2000-05-30 2005-03-16 株式会社デンソー 弁装置
JP3908491B2 (ja) * 2001-08-03 2007-04-25 株式会社日立製作所 電子燃料噴射弁
DE10147205C1 (de) * 2001-09-25 2003-05-08 Bosch Gmbh Robert Verfahren zur Wärmebehandlung von Werkstücken aus temperaturbeständigen Stählen
DE10261175A1 (de) * 2002-12-20 2004-07-08 Daimlerchrysler Ag Schieberventil
WO2004070200A1 (ja) * 2003-02-04 2004-08-19 Mitsubishi Denki Kabushiki Kaisha 燃料噴射弁
DE102004039926B4 (de) * 2004-08-18 2016-09-22 Robert Bosch Gmbh Verfahren zur Herstellung eines temperatur- und korrosionsbeständigen Kraftstoffinjektorkörpers
US7198207B2 (en) * 2004-11-05 2007-04-03 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7137577B2 (en) * 2004-11-05 2006-11-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7104475B2 (en) * 2004-11-05 2006-09-12 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7168637B2 (en) * 2004-11-05 2007-01-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7051957B1 (en) * 2004-11-05 2006-05-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7438241B2 (en) * 2004-11-05 2008-10-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7124963B2 (en) * 2004-11-05 2006-10-24 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7185831B2 (en) * 2004-11-05 2007-03-06 Ford Motor Company Low pressure fuel injector nozzle
US8029627B2 (en) * 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
US20070176025A1 (en) * 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
FR2908838A1 (fr) 2006-11-20 2008-05-23 Peugeot Citroen Automobiles Sa Injecteur de carburant muni d'une aiguille creuse
JP4948295B2 (ja) * 2007-07-06 2012-06-06 愛三工業株式会社 燃料噴射弁
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US20100025500A1 (en) 2008-07-31 2010-02-04 Caterpillar Inc. Materials for fuel injector components
AT511880B1 (de) * 2011-09-06 2013-12-15 Bosch Gmbh Robert Verschleissoptimierte herstellung von konischen spritzlöchern
CN109082608A (zh) * 2018-10-26 2018-12-25 成都先进金属材料产业技术研究院有限公司 控制低铬不锈钢中δ铁素体含量的方法
DE112020007531T5 (de) 2020-10-15 2023-06-22 Cummins Inc. Kraftstoffsystemkomponenten
CA3235020A1 (en) * 2021-10-14 2023-04-20 Icom North America Llc High flow inline air/fuel vortex injection system for internal combustion engines

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0233190A1 (de) 1985-08-10 1987-08-26 Bosch Gmbh Robert Kraftstoff-einspritzdüse für brennkraftmaschinen.
DE4033706A1 (de) * 1990-10-24 1991-02-21 Hans Prof Dr Ing Berns Einsatzhaerten mit stickstoff zur verbesserung des korrosionswiderstandes martensitischer nichtrostender staehle
US5239751A (en) * 1990-11-24 1993-08-31 Hitachi, Ltd. Method of producing nozzle for solenoid valve
JPH0658218A (ja) * 1992-08-10 1994-03-01 Hitachi Ltd 高耐食燃料噴射装置
DE4413564A1 (de) * 1993-04-19 1994-10-20 Hitachi Metals Ltd Hochfester nichtrostender Stahl zur Verwendung als Material von Kraftstoffeinspritzdüse oder -nadel für Brennkraftmaschine, aus dem nichtrostenden Stahl hergestellte Kraftstoffeinspritzdüse und Verfahren zur Herstellung der Kraftstoffeinspritzdüse
JPH0754736A (ja) * 1993-05-11 1995-02-28 Honda Motor Co Ltd 燃料噴射弁の弁体または弁座

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713100B1 (fr) * 1993-11-30 1996-01-05 Rossignol Sa Ski.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0233190A1 (de) 1985-08-10 1987-08-26 Bosch Gmbh Robert Kraftstoff-einspritzdüse für brennkraftmaschinen.
EP0233190B1 (de) * 1985-08-10 1989-12-20 Robert Bosch Gmbh Kraftstoff-einspritzdüse für brennkraftmaschinen
DE4033706A1 (de) * 1990-10-24 1991-02-21 Hans Prof Dr Ing Berns Einsatzhaerten mit stickstoff zur verbesserung des korrosionswiderstandes martensitischer nichtrostender staehle
US5239751A (en) * 1990-11-24 1993-08-31 Hitachi, Ltd. Method of producing nozzle for solenoid valve
JPH0658218A (ja) * 1992-08-10 1994-03-01 Hitachi Ltd 高耐食燃料噴射装置
DE4413564A1 (de) * 1993-04-19 1994-10-20 Hitachi Metals Ltd Hochfester nichtrostender Stahl zur Verwendung als Material von Kraftstoffeinspritzdüse oder -nadel für Brennkraftmaschine, aus dem nichtrostenden Stahl hergestellte Kraftstoffeinspritzdüse und Verfahren zur Herstellung der Kraftstoffeinspritzdüse
JPH0754736A (ja) * 1993-05-11 1995-02-28 Honda Motor Co Ltd 燃料噴射弁の弁体または弁座

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 297 (M - 1617) 7 June 1994 (1994-06-07) *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 005 30 June 1995 (1995-06-30) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302657A1 (de) * 2001-10-16 2003-04-16 Hitachi, Ltd. Kaftstoffeinspritzventil, Düsenkörper und Verfahren zur Herstellung einer zylindrischen fluidführenden Leitung
US6976381B2 (en) 2001-10-16 2005-12-20 Hitachi, Ltd. Fuel injector, nozzle body, and manufacturing method of cylindrical part equipped with fluid passage
EP1659284A1 (de) 2004-11-17 2006-05-24 Denso Corporation Kraftstoffeinspritzdüse und Herstellungsverfahren
WO2018091183A1 (de) * 2016-11-21 2018-05-24 Robert Bosch Gmbh Komponente, die zum führen und/oder speichern von zumindest einem fluid und insbesondere für eine brennstoffeinspritzanlage dient, brennstoffeinspritzanlage und verfahren zur herstellung einer komponente
CN113446141A (zh) * 2020-03-27 2021-09-28 日立安斯泰莫株式会社 直喷式燃料喷射阀

Also Published As

Publication number Publication date
DE59807000D1 (de) 2003-02-27
US6168095B1 (en) 2001-01-02
EP0929742B1 (de) 2003-01-22
EP0929742A1 (de) 1999-07-21
DE29713628U1 (de) 1998-11-26
JP2001504192A (ja) 2001-03-27

Similar Documents

Publication Publication Date Title
WO1999006692A1 (de) Kraftstoffeinspritzdüse
EP0233190B1 (de) Kraftstoff-einspritzdüse für brennkraftmaschinen
EP0982493B1 (de) Verfahren zum Herstellen einer Brennstoffeinspritzdüse und Brennstoffeinspritzdüse
DE102010039052A1 (de) Eisddruckfeste Einspritzvorrichtung
EP1848890A1 (de) Einspritzventil zum einspritzen von kraftstoff und zylinderkopf
WO1991002898A1 (de) Kraftstoffeinspritzventil
EP2082127A1 (de) Injektor zur einspritzung von kraftstoff in brennräume von brennkraftmaschinen
WO2005103481A1 (de) Kraftstoffeinspritzdüse für diesel-brennkraftmaschinen
EP1408231B1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
EP2228462B1 (de) Verfahren zum Aufbringen einer Beschichtung auf eine Sitzfläche eines Werkstücks
EP2904259A1 (de) Düsenbaugruppe für einen fluidinjektor und fluidinjektor
DE112007002463T5 (de) Kraftstoffinjektor
DE102018206101A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
WO2011006692A1 (de) Antriebsaggregat
DE102014217367B4 (de) Ventilanordnung für ein Kraftstoffeinspritzventil, Kraftstoffeinspritzventil, Verbrennungsmotor und Verfahren zum Herstellen einens Ventilsitzkörpers
EP0730089A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102017216872A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
DE10008445B4 (de) Kraftstoffeinspritzdüse für eine direkt einspritzende Brennkraftmaschine
DE10002366A1 (de) Warmfeste Kraftstoffeinspritzdüse
DE102019204718A1 (de) Verfahren zur Herstellung eines Bauteils sowie ein nach dem Verfahren hergestelltes Bauteil
DE102011089130A1 (de) Kraftstoffeinspritzventil
DE102016218339A1 (de) Verfahren zum Herstellen einer Komponente für einen Fluidinjektor und Wellrohr für einen Fluidinjektor
EP1815129A1 (de) Kraftstoffeinspritzdüse
WO2003038271A1 (de) Brennstoffeinspritzventil
WO1997022800A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998916834

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 510331

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09269667

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998916834

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998916834

Country of ref document: EP