EP2178621A2 - Procede de purification d'un gaz contenant du co2 par integration d'unite de purification par adsorption - Google Patents

Procede de purification d'un gaz contenant du co2 par integration d'unite de purification par adsorption

Info

Publication number
EP2178621A2
EP2178621A2 EP08826430A EP08826430A EP2178621A2 EP 2178621 A2 EP2178621 A2 EP 2178621A2 EP 08826430 A EP08826430 A EP 08826430A EP 08826430 A EP08826430 A EP 08826430A EP 2178621 A2 EP2178621 A2 EP 2178621A2
Authority
EP
European Patent Office
Prior art keywords
nox
sox
bed
purification step
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08826430A
Other languages
German (de)
English (en)
Inventor
Bruno Alban
Christophe Claeys
Philippe Court
Arthur Darde
Guillaume De Smedt
Bao Ha
Vladimir Hasanov
Simon Jallais
Christian Monereau
Serge Moreau
Elise Renou
Ivan Sanchez-Molinero
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2178621A2 publication Critical patent/EP2178621A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/80Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a method for purifying a flow of feed gas containing CO2 and water, and at least one impurity selected from NOx and SOx, characterized by the integration of a step of purification allowing the preferential elimination of water. It is more precisely a question of developing a complete process for treating CO 2 originating from an oxy-combustion (combustion with pure oxygen or with a gas that is less nitrogen-rich than air) of an industrial nature, allowing it to be condition for transportation and storage for different uses.
  • oxy-combustion combustion with pure oxygen or with a gas that is less nitrogen-rich than air
  • the combustion gases of fossil fuels and / or biomass or incineration of waste or gases from glass furnaces mainly contain heavy metals such as mercury arsenic, iron, nickel ..., organic pollutants and SOx or NOx compounds.
  • EP-A-1332786 discloses a method for purifying a gas stream by removing NOx, SOx, Hg and HgO by oxidation with ozone.
  • a problem is to provide an improved method for purifying a CO2-containing gas stream, i.e. a process which ensures a thorough removal of treated pollutants, in particular a thorough elimination of the water.
  • the solution of the invention is then a process for purifying a flow of feed gas containing CO2 and at least one impurity selected from water, SOx and NOx, comprising the following successive steps: a) step for pretreating the feed gas stream to at least partially eliminate one of the impurities selected from nitrogen, oxygen, argon, noble gases,
  • Adsorption properties of an adsorbent for the preferential removal of a constituent are understood to mean that the adsorbent has an equilibrium adsorption capacity and an adsorption kinetics such that it is possible to remove most of this component of a gas stream and thereby at least partially purify said gas stream in this component.
  • NOx and SOx-neutral adsorbent is understood to mean an adsorbent resistant to acids derived from NOx and / or SOx or which does not adsorb NOx and / or SOx.
  • adsorbent does not adsorb NOx and SOx, an adsorbent whose pore diameter is such that it does not allow the diffusion of said molecules to the active sites of the adsorbent, that is to say given the characteristics of the molecules in question, having pores of diameter less than 0.4 nm. Since these adsorbents must have adsorption properties vis-à-vis water, the diameter of these pores must also be greater than 0.28 nm.
  • the high performance adsorbents consist of an active material having a very large internal porosity, generally greater than 50 m 2 / g and even often greater than 200 m 2 / g.
  • the access of the adsorbable molecules to this porosity is possible thanks to the porous structure which must be sufficiently wide to allow the penetration of the molecules.
  • the type 3 A zeolite with a pore opening of about 3, practically only accepts the water molecules, which adsorb very strongly.
  • Other methods are also possible, such as the chemical deposition of a layer of surface to reduce the opening of the porosity without significantly altering the total volume.
  • the determination of the minimum pore size to prevent a molecule from penetrating the porosity depends significantly on its shape.
  • the kinetic diameter of the molecule is always the good criterion, because by adsorbing the molecule can be oriented with respect to the pores, for example in length and, in this case, it will pass better than allowed suppose its kinetic diameter, or in width, and it is then the opposite.
  • the orientation will depend on the forces responsible for the adsorption, which will depend on the molecular properties such as polarity, polarizability, molecular mass.
  • One of the ways of testing the accessibility or not of a molecule to the active sites of an adsorbent is to proceed experimentally.
  • a breakthrough curve type test that is easy to implement and interpret can be retained.
  • the adsorbent is placed in a column having a length to diameter ratio of between 10 and 15, and a diameter of between 10 and 20 times the largest dimension of the particles if they are not beads, or the average diameter in this case. last case.
  • the filling is done in rain, to obtain a maximum and reproducible density.
  • inert material therefore non-adsorbent in nature, of the same particle size, such as for example glass, non-porous ceramic, etc.
  • inert material is therefore meant a material that does not adsorb the impurity that is being studied, typically non-porous glass beads.
  • a mixture consisting of helium containing 1% by volume of the gaseous compound to be studied is passed from bottom to top.
  • the temperature is 20 0 C, the total pressure of 1 bar abs.
  • the concentration at the outlet of the gaseous compound is measured as a function of time, the so-called breakthrough curve.
  • the acid-resistant adsorbents are such that a chemical reaction of the framework is not possible. Framing is the continuous solid matrix of which the material is made. This matrix, in the case of adsorbents, is porous, and it is in these pores, or on their surface, that the adsorption takes place.
  • the majority of the zeolites, which are aluminosilicates, and the activated aluminas are not resistant to acids because alumina forms stable salts, for example aluminum nitrate: Al 2 O 3 + 6 HNO 3 - » 2 A1 (NO 3 ) 2 + 3H 2 O
  • Silica gel is acid-resistant because silica is a compound itself acid, and it forms silicates, for example sodium: SiO 2 + 2 NaOH -> Na 2 SiO 3 + H 2 O but never salts of silicon.
  • the reaction of the silica with hydrogen fluoride does not form a salt itself, because the compound obtained SiF 4 is not ionic as evidenced by its molecular form found in the solid form and its high volatility.
  • Some compounds are amphoteric, such as alumina, which can react with acids to form aluminum salts, and with bases to form aluminates. This is not the case for silica and other acid-resistant adsorbents.
  • the usable adsorbents are reduced to a few families: the macro and microporous silica gels, possibly containing a few% of alumina; activated carbons, for the non-oxidizing acids under the conditions of use, that is to say preferably non-concentrated and / or at low temperature; decationated zeolites with a high Si / Al ratio such as mordenite, chabazite, clinoptilolite, ferririte, offretite, USY ... These zeolites may have undergone a additional dealumination treatment to bring the Si / Al ratio above 5, preferably above 20 or even above 50; porous glasses; activated clays with a high Si / Al ratio.
  • the method according to the invention may have one of the following characteristics:
  • the gas flow is in the liquid state and stored, or in the supercritical state and transported and / or stored, or in the gaseous state and transported;
  • the NOx and / or SOx-neutral adsorbents are resistant to acids derived from NOx and / or SOx or do not adsorb NOx and / or SOx;
  • the NOx and / or SOx-neutral adsorbent bed consists of silica gel, porous glass or zeolite with Si / Al ratio> 5 and / or zeolite 3A;
  • the zeolite is chosen from mordenite, chabazite, clinoptilolite, ferrierite, offereite, or USY, these zeolites possibly being partially de-aluminized or not; the zeolite is characterized by a Si / Al ratio> 20, preferentially> 50;
  • the second adsorbent bed consists of silica gel and / or zeolite 3A;
  • a third adsorbent bed consisting of zeolite 3A;
  • three adsorbent beds of increasing effectiveness are used to stop the water, preferably a first bed of porous glass or of silica gel, a second bed of silica gel and a third bed of silica gel; zeolite bed 3 A;
  • a first bed of acid-resistant adsorbents derived from NOx and / or SOx is used so as to at least partially eliminate said NOx and / or SOx and at least partially water;
  • said first bed of adsorbents resistant to acids derived from NOx and / or SOx is followed by a bed of adsorbents chosen from activated aluminas, impregnated activated aluminas, zeolites A or X, to eliminate at least partially the water ;
  • a bed of adsorbents is used downstream of the first adsorbent bed, allowing the preferential elimination of compounds derived from mercury, arsenic, selenium, cadmium, iron and nickel;
  • an at least partial elimination step is carried out at a temperature ⁇ 5 ° C of at least one impurity present in the compressed gas stream, selected from nitrogen, oxygen and argon and rare gases using exchangers combined with separators;
  • step a) the purification step is carried out between step a) and step b);
  • the purification step is carried out after step b);
  • the compression step b) comprises successive compression phases and the purification step is carried out between two successive compression phases of said compression step b);
  • the purification step is carried out at a pressure ⁇ 20 bar, preferably ⁇ 10 bar, more preferably ⁇ 6 bar and the compression stages downstream of the purification stage are carried out in carbon steel compressors;
  • the purification unit used in the purification step is of the TSA or VSA or PSA type or a combination, preferably of the TSA type;
  • the porous glass or the silica gel used in the first bed is regenerated by washing with water or steam followed by heating under a gas flush at a temperature of between 80 and 200 0 C, preferably between 100 and 180 0 C;
  • the flow of feed gas corresponds to oxy-combustion fumes
  • the pretreatment step comprises at least one of the following treatments: catalysis, filtration, washing and desulphurization, with the washing being able to be coupled with a cooling of the feed gas flow.
  • an adsorbent for stopping water, its adsorption kinetics and / or its adsorption capacity of water.
  • the adsorbent of a second bed is more effective than the adsorbent used in a first bed, if placing in the second part of the adsorber a second adsorbent different from that used in the first part of the adsorber can improve the separation, that is to say if under the same operating conditions, the water breakthrough is later.
  • oxygen is understood to mean combustion during which the coal is burned in a fluid that is low in nitrogen, which may range from pure oxygen (> 95%) to a fluid containing the same quantity of oxygen as air (about 21%) obtained by mixing pure oxygen (> 95%) with recycled fumes rich in CO 2 .
  • Porous glass is a chemically inert material, particularly resistant to bases and acids, and has good physical characteristics (crushing, attrition).
  • SiO 2 is essentially composed of SiO 2 , generally> 90% by weight, preferably> 95%, and may contain B2O3, Na 2 O, Al 2 O 3, ZrO 2 and / or other metal oxides in a minority manner.
  • This porous glass has the peculiarity as the name suggests to have a significant internal vacuum, generally greater than 25% by volume, in the form of pores of varying dimensions depending on the products, which allows it to develop internal surfaces several hundred meters per gram.
  • VYCOR Brand Porous Glass 7930 from Corning
  • the products of this type behave as adsorbents with respect to water in particular and have isotherms similar to those which can be obtained with activated aluminas with generally capillary type condensation in the mesopores from relative humidity of the order of 80%.
  • FIG. 1 represents a device making it possible to carry out a method according to the present invention characterized by the location of the purification step at the end of the compression cycle, that is to say between steps (b) and (c) .
  • the first step (a) of the present invention aims at treating the fumes using known methods forming part of the state of the art. We often find washing, which uses different liquids (or solvents) such as water, alcohols (methanol for example), amine solutions, basic solutions ... these are the most classic but there are there are many others, either desulphurisation units or filtration units.
  • the gas resulting from stage (a) may contain in general: a large majority of CO2 (generally greater than 80%); nitrogen oxides, called NOx, such as NO, NO2, N2O4 ...; sulfur oxides, called SOx, such as SO2, SO3, H2SO4 ...; - water at saturation (at the conditions of temperature and pressure of the flow).
  • the treatment processes in the first stage almost all require the contact of the gas with an aqueous solution; oxygen up to a few percent (derived from the excess compared to the stoichiometry necessary to ensure a good efficiency of oxy-combustion); - CO (unburnt combustion); incondensables vis-à-vis CO2: nitrogen, argon, oxygen and rare gases, mainly from the air inlets on the oxy-combustion boiler and the purity of oxygen; compounds derived from heavy metals: AsCl 3 , AsO, AsH 3 , AsN; B (OH) 3 , HBO2, BH 3 ; BaCl 2 , BaO; Be (OH) 2 ; CdO, CdS, CdSO 4 , CdCl 2 ; CoCl 2 , CoO,
  • Co 2 [(CO) 4 ] 2 CuCl 2 , CuCl, CuO, CuH; HgO, HgCl 2 , CH 3 HgCl, HgH, HgS, HgSe;
  • the volatile organic compounds are preferably chosen from formaldehyde, acetaldehyde, formic acid, acrolein and acetic acid.
  • the gas flow is compressed to a sufficient pressure level to be able firstly to separate a part of the undesirable compounds (separators generally located immediately after each compression step). followed by a heat exchange to cool the gas flow to eliminate the condensables that appeared during this cooling: water for example) and on the other hand to bring the gas under the right conditions (temperature and pressure) to prepare removing other impurities in the following steps.
  • a heat exchange to cool the gas flow to eliminate the condensables that appeared during this cooling: water for example
  • this third step can be optimized if it is carried out at low temperature, that is to say at a temperature ⁇ 5 ° C, preferably at a negative temperature, more preferably between -20 0 C and -60 0 C using exchangers combined with separators in a cold cycle .
  • the fourth step (c) then aims to recover a stream of purified gas, enriched in CO2.
  • the water present in the gas flow must be stopped until a content such that its presence does not pose a problem of clogging either in the case of a low temperature treatment ⁇ 0 ° C ( case for example of the possible penultimate step), either during transport or storage of CO2.
  • This water content may be lower than the ppm but also reach a few tens of ppm depending on the conditions of treatment, storage or transport.
  • the NOx and SOx present in the gas to be treated may or may not be acceptable depending on the one hand their content, and secondly the standards for the CO 2 product or processes envisaged for the treatment of CO2.
  • the NOx and SOx are acceptable, they can be adsorbed and / or dissolve in the aqueous phase during the purification step and subsequently cause deterioration of the adsorbents.
  • This purification step may be placed throughout the second step b) which aims to gradually compress the gases from around atmospheric pressure to the pressure required for the separation of the inerts.
  • the choice of the location of the purification step will be a function of a number of criteria such as the investment, the type of materials in the second step b), the nature and the concentration of the impurities.
  • the first possibility is to place the purification step at the beginning of step b), that is to say to carry out the purification at low pressure.
  • this position has two disadvantages, namely:
  • the position of the purification stage upstream of the compressor train constituting the second step b) makes it possible to envisage removing impurities that are detrimental to the rest of the process: ie water, and possibly NOx , volatile organic compounds, compounds based on metals ... also, it may result in a certain advantage as to the nature of the materials to be used in the following, particularly in the compression steps.
  • combustion fumes are loaded with CO2 and other acid gases and of course wet.
  • the present invention proposes for example to dry the gas at the beginning of compression or at a pressure of about 4 bar and to implement downstream of the carbon steel compressor compressors.
  • a low pressure ⁇ 6 bar can lead to advantageously implement radial beds capable of treating large gas flow rates for drying instead of horizontal beds.
  • the second possibility is to place the purification step between two compression stages of the second step b).
  • This second possibility makes it possible to dispose of the gas at an intermediate pressure between that which is close to the atmospheric (beginning of the second step b) and that which is required in the third step of the process. This necessarily results in a significant reduction in the installed volume and therefore the cost of the unit. This is all the more true that we move the purification step towards the end of the second step. Indeed, water is likely to be the key element in the design of the purification unit implemented in the purification step (in the case of cyclic adsorption for example). On the one hand, all the compression steps upstream of the purification step make it possible to liquefy a good portion of the water contained in the starting gas. On the other hand, the increase in pressure is accompanied by a reduction in the volume installed to purify the gas.
  • the third possibility is to place the purification step at the end of the second step b).
  • the volume of the purification unit will be minimal but the whole of the second compression step b) will be performed with the flow of unpurified gas.
  • the purification is carried out by adsorption. It will be noted that the choice of adsorbents is fundamental since it involves performing a thorough polishing treatment of the gas flow during step b) of the process according to the invention.
  • the acids and their derivatives being very polar, will dissolve in the aqueous phase, the water even making it possible to convert the precursors into true acids.
  • oxygenated acids the additional presence of oxygen can also lead to the oxidation of the present acids up to their forms of maximum degree of oxidation, which are, in general, the strongest.
  • Nitric and sulfuric acids have a sufficiently low vapor pressure to adsorb very efficiently.
  • the ideal adsorbent must be able to adsorb all undesirable constituents, especially water to form an aqueous phase, and withstand the oxidizing and acidic conditions encountered. It must also be able to regenerate easily and adsorb little carbon dioxide.
  • silica gel can adsorb up to 40% of its weight in water, and withstand very good at acids and oxidants. It can be regenerated at a temperature of between 100 and 180 ° C., preferably between 125 ° C. and 150 ° C.
  • the silica gel is produced by polymerization of the Si (OH) 4 monomer obtained by neutralization of a sodium silicate by an acid such as, for example, sulfuric acid, or by hydrolysis of a compound of the kind silicon alkoxide such as Si (EtO) 4 , so as to obtain a liquid aqueous phase called silica sol which then gels. It can also be from a commercial silica sol which is made to gel by modifying the pH or by adding an electrolyte.
  • silica gel There are two forms of silica gel, the microporous and the macroporous, which differ in density and pore size; their mass area is between 200 m / g and 850 m / g.
  • Silica gel consists of a porous siliceous porous matrix (Si-OH) on the surface of the pores.
  • silica gels containing alumina which have the advantage of being resistant (without fracturing) in contact with liquid water.
  • Silica gel adsorbs compounds through the hydrogen bonds it forms with them.
  • the highly polar OH bond of sulfuric and nitric acids is therefore very favorable for their adsorption fixation.
  • the regeneration of the silica gel saturated with acids may be carried out by washing with water or with steam followed by heating under gas flushing at about 150 ° C. The acids thus recovered are in the concentrated state and, therefore, easier to treat.
  • the highly acidic and oxidizing medium thus produced in the adsorbent may serve to remove other impurities, such as organic compounds of mercury or arsenic, by mineralizing them.
  • the silica gel can be loaded with a compound such as sodium which will fix the acids in the form of fixed ionic salts, according to the following reaction: Na 2 CO 3 + H 2 SO 4 ⁇ Na 2 SO 4 + CO 2 + H 2 O
  • porous glasses and certain zeolites, optionally de-aluminated, having an Si / Al ratio greater than 5, preferably greater than 20, and even more preferably greater than 50.
  • the different beds used in the purification step will be dimensioned so as to prevent the target species from being transmitted to the next adsorbent. Also, their sizing will depend on the amount of gas flow to be treated and the content of impurities.
  • an adsorbent resistant to NOx and SOx may be advantageous to use to eliminate them, possibly together with a portion of the water, to complete the drying with a conventional adsorbent having no particular resistance vis-à-vis NOx and / or SOx, for example impregnated activated aluminas, adsorbent X or A zeolites conventionally used for the industrial drying of CO2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Drying Of Gases (AREA)

Abstract

Procédé de purification d'un flux de gaz d'alimentation contenant du CO2 et au moins une impureté choisie parmi l'eau, les SOx et les NOx, comprenant les étapes successives suivantes : a) étape de prétraitement; b) étape de compression; c) étape de récupération d'un flux de gaz purifié, enrichi en CO2, à l'état liquide, gazeuse ou supercritique; caractérisé en ce qu'entre les étapes a) et c) on réalise une étape de purification dans lequel on met en oevre au moins un premier lit d'adsorbants neutres vis-à-vis des NOx et/ou des SOx et ayant des propriétés d'adsorption permettant l'élimination au moins partielle de l'eau

Description

Procédé de purification d'un gaz contenant du CO2 par intégration d'unité de purification par adsorption
L'invention porte sur un procédé de purification d'un flux de gaz d'alimentation contenant du CO2 et de l'eau, et au moins une impureté choisie parmi les NOx et les SOx, caractérisé par l'intégration d'une étape de purification permettant l'élimination préférentielle de l'eau. II s'agit plus précisément de développer un procédé complet de traitement du CO2 provenant d'une oxy-combustion (combustion à l'oxygène pur ou avec un gaz plus pauvre en azote que l'air) à caractère industriel, permettant de le conditionner pour son transport et son stockage pour des différentes utilisations.
En effet, les gaz de combustion de combustibles fossiles et/ou de biomasse ou d'incinération de déchets ou les gaz issus de fours verriers contiennent majoritairement des métaux lourds tels que mercure arsenic, fer, nickel..., des polluants organiques et des composés type SOx ou NOx.
Des solutions existent pour le traitement à la pression atmosphérique de polluants sur lesquels les rejets atmosphériques sont réglementés (SO2, NOx, Hg et CO par exemple). Par exemple, le document EP-A-1332786 décrit un procédé pour purifier un flux gazeux en éliminant NOx, SOx, Hg et HgO par oxydation avec de l'ozone.
Par ailleurs, il est connu du document EP-A-1308198 d'éliminer le mercure par contact gaz-liquide en présence de H2S. Un flash de la phase liquide fourni un gaz enrichi en mercure, qui est piégé par adsorption sur AI2O3, TiÛ2, SiÛ2, charbon actif ou zéolite, dopés en composés soufrés.
Cependant, ces procédés ne garantissent pas une élimination poussée des polluants traités, mais visent une teneur limite de rejet à l'atmosphère, tel qu'exigé par les normes anti-pollution mises en place.
D'autre part, ils traitent des fumées de combustion à l'air, moins concentrées car contenant majoritairement de l'azote. En effet, si l'on considère la stœchiométrie des réactions de combustion, la quantité d'oxygène (comburant) à apporter est conditionnée à la quantité de carburant. Aussi, si l'on utilise de l'air et pas de l'oxygène pur, étant donné qu'il n'y a que 21% d'oxygène dans cet air, il est nécessaire d'entrer un débit bien supérieur pour garantir une concentration identique en oxygène afin d'effectuer cette combustion dans de bonnes conditions. Ainsi, les flux sont plus dilués et on trouve donc l'azote en grande quantité dans les fumées puisqu'il est le composé majoritaire de l'air
(-78%).
Or, l'application capture et stockage du CO2 issu d'une oxy-combustion crée des besoins supplémentaires de purification d'autres composés et/ou de ces mêmes composés dans des proportions différentes. En effet, cette application capture et stockage du CO2 issu d'une oxy-combustion nécessite non un traitement pour enlever des grandes quantités de composants non minoritaires mais un traitement de purification approfondie (polissage) du produit qui vise à éliminer les impuretés préjudiciables à l'ensemble du procédé ainsi qu'au stockage de ce
CO2 dans les couches géologiques appropriées. En particulier, l'eau doit être arrêtée jusqu'à une teneur telle que sa présence ne pose pas de problème de bouchage soit dans le cas d'un traitement à basse température <
00C, soit lors du transport ou du stockage du CO2.
Partant de là, un problème qui se pose est de fournir un procédé amélioré de purification d'un flux de gaz contenant du CO2, c'est-à-dire un procédé garantissant une élimination poussée des polluants traités, en particulier une élimination poussée de l'eau.
La solution de l'invention est alors un procédé de purification d'un flux de gaz d'alimentation contenant du CO2 et au moins une impureté choisie parmi l'eau, les SOx et les NOx, comprenant les étapes successives suivantes : a) étape de prétraitement du flux de gaz d'alimentation visant à éliminer au moins partiellement une des impuretés choisies parmi l'azote, l'oxygène, l'argon, les gaz rares, les
SOx, CS2 H2S, NOx, HCN, HCl, CHCI3, HF, les composés organiques volatils, les métaux suivants : le mercure, l'arsenic, le sélénium, le cadmium, le fer et le nickel, et les composés issus de ces métaux; b) étape de compression du flux de gaz prétraité à une pression comprise entre 10 et 50 bars ; c) étape de récupération d'un flux de gaz purifié, enrichi en CO2, à l'état liquide, gazeuse ou supercritique; caractérisé en ce qu'entre les étapes a) et c) on réalise une étape de purification dans laquelle on met en œuvre au moins un lit d'adsorbants neutres vis-à-vis des NOx et/ou des SOx et ayant des propriétés d'adsorption permettant l'élimination au moins partielle de l'eau en présence de NOx et/ou SOx.
On entend par propriétés d'adsorption d'un adsorbant permettant l'élimination préférentielle d'un constituant le fait que l'adsorbant présente une capacité d'adsorption à l'équilibre et une cinétique d'adsorption telle qu'il est possible de retirer l'essentiel de ce constituant d'un flux gazeux et de ce fait d'épurer au moins partiellement ledit flux gazeux en ce constituant.
Ainsi, le séchage d'un flux de CO2 pourrait de ce point de vue s'effectuer sur alumine activée, charbon actif, gel de silice, sur la grande majorité des zéolites industrielles de type A, X, Y..., sur les CMS (Carbon molecular sieve = tamis moléculaire carboné). On entend par adsorbant neutre vis-à-vis des NOx et des SOx un adsorbant résistant aux acides issus des NOx et/ou des SOx ou qui n'adsorbe pas les NOx et/ou les SOx.
On entend par adsorbant n' adsorbant pas les NOx et les SOx, un adsorbant dont le diamètre des pores est tel qu'il ne permet pas la diffusion des dites molécules vers les sites actifs de l'adsorbant, c'est-à-dire compte tenu des caractéristiques des molécules en question, ayant des pores de diamètre inférieur à 0,4 nm. Compte tenu que ces adsorbants doivent présenter des propriétés d'adsorption vis-à-vis de l'eau, le diamètre de ces pores doit être également supérieur à 0,28 nm.
Généralement, les adsorbants performants sont constitués d'un matériau actif possédant une porosité interne très importante, en général supérieure à 50 m2/g et même, souvent, supérieurs à 200 m2/g. L'accès des molécules adsorbables à cette porosité est possible grâce à la structure poreuse qui doit être suffisamment large pour permettre la pénétration des molécules. Pour empêcher des molécules de s'adsorber, il suffit donc de disposer d'une structure poreuse suffisamment fermée pour que les dites molécules ne puissent pas y pénétrer. Ainsi, la zéolithe de type 3 A, avec une ouverture de pore d'environ 3Â n'accepte pratiquement que les molécules d'eau, qui s'y adsorbent très fortement. D'autres méthodes sont aussi possibles, telles que le dépôt chimique d'une couche de surface en vue de réduire l'ouverture de la porosité sans en modifier notablement le volume total.
La détermination de la taille de pore minimale pour empêcher une molécule de pénétrer dans la porosité dépend notablement de sa forme. Ainsi, le diamètre cinétique de la molécule n'est par toujours le bon critère, car en s'adsorbant la molécule peut s'orienter par rapport aux pores, par exemple en longueur et, dans ce cas, elle passera mieux que ne le laisse supposer son diamètre cinétique, ou bien en largeur, et c'est alors le contraire.
L'orientation dépendra des forces responsables de l'adsorption, qui dépendront des propriétés moléculaires telles que polarité, polarisabilité, masse moléculaire. Un des moyens de tester l'accessibilité ou pas d'une molécule aux sites actifs d'un adsorbant est de procéder expérimentalement.
De nombreuses méthodes existent qui sont décrites dans les ouvrages ou articles relatifs à ce sujet. Par exemple, on peut retenir un test de type courbe de percée facile à mettre en œuvre et à interpréter. On place l' adsorbant dans une colonne ayant un rapport longueur sur diamètre compris entre 10 et 15, et un diamètre compris entre 10 et 20 fois la plus grande dimension des particules si ce ne sont pas des billes, ou bien le diamètre moyen dans ce dernier cas. Le remplissage est effectué en pluie, pour obtenir une densité maximale et reproductible.
On reproduit la manipulation avec une colonne identique remplie d'un matériau inerte non poreux, donc non adsorbant par nature, de même granulométrie, comme par exemple du verre, de la céramique non poreuse, etc. Par matériau inerte, on entend donc un matériau qui n'adsorbe pas l'impureté que l'on étudie, typiquement des billes de verre non poreuses.
On fait passer de bas en haut un mélange constitué d'hélium contenant 1% en volume du composé gazeux à étudier. La température est de 200C, la pression totale de 1 bar abs. On mesure la concentration en sortie du composé gazeux en fonction du temps, ce que l'on appelle la courbe de percée.
On commence par la colonne remplie d'inerte. On adapte le débit gazeux de telle sorte que le front de percée à 50% de la concentration initiale soit de l'ordre de la minute. On mesure dans les mêmes conditions la courbe de percée avec l' adsorbant d'intérêt. L'adsorbant est considéré comme n'adsorbant pas si le temps correspondant à la sortie de la concentration à 50% de l'entrée est inférieur à 1,5 fois celui obtenu avec le matériau inerte.
Les adsorbants résistants aux acides sont tels qu'une réaction chimique de la charpente ne soit pas possible. Par charpente, on entend la matrice solide continue dont est constitué le matériau. Cette matrice, dans le cas des adsorbants, est poreuse, et c'est dans ces pores, ou à leur surface, que se fait l'adsorption.
Par exemple, la majorité des zéolites, qui sont des aluminosilicates, et les alumines activées ne sont pas résistantes aux acides car l'alumine forme des sels stables, par exemple le nitrate d'aluminium: Al2O3 + 6 HNO3 -» 2 A1(NO3)2 + 3 H2O
Le gel de silice est résistant aux acides, car la silice est un composé lui-même acide, et il forme des silicates, par exemple de sodium : SiO2 + 2 NaOH -> Na2SiO3 + H2O mais jamais de sels de silicium. La réaction de la silice avec le fluorure d'hydrogène ne forme pas un sel à proprement parler, car le composé obtenu SiF4 n'est pas ionique comme le prouve sa forme moléculaire rencontrée dans la forme solide et sa forte volatilité.
De manière générale, nous nous intéressons seulement l'acidité de Brôsntedt, où un acide est un composé donneur de H+, et une base un receveur. Les composés obtenus par ces réactions acide -base forment des cristaux ioniques.
Certains composés sont amphotères, comme par exemple l'alumine, qui peut réagir avec des acides pour former des sels d'aluminium, et avec des bases pour former des aluminates. Ceci n'est pas le cas pour la silice et autres adsorbant résistants aux acides.
En pratique, les adsorbants utilisables sont réduits à quelques familles : - les gels de silice macro et microporeux, contenant éventuellement quelques % d'alumine ; les charbons actifs, pour les acides non oxydants dans les conditions d'utilisation, c'est-à-dire de préférence non-concentré et/ou en basse température ; les zéolithes décationées à haut rapport Si/Ai telles que mordénite, chabazite, clinoptilolite, ferrièrite, offretite, USY... Ces zéolites peuvent avoir subi un traitement de déalumination supplémentaire pour amener le rapport Si/Ai au dessus de 5, de préférence au-dessus de 20 ou même au dessus de 50 ; les verres poreux ; des argiles activées à haut rapport Si/Ai. Selon le cas, le procédé selon l'invention peut présenter l'une des caractéristiques suivantes :
- après l'étape c), le flux de gaz est à l'état liquide et stocké, ou à l'état supercritique et transporté et/ou stocké, ou à l'état gazeux et transporté ;
- les adsorbants neutres vis-à-vis des NOx et/ou des SOx sont résistants aux acides issus des NOx et/ou des SOx ou n'adsorbent pas les NOx et/ou les SOx ;
- le lit d'adsorbants neutres vis-à-vis des NOx et/ou des SOx est constitué de gel de silice, de verre poreux ou de zéolite à rapport Si/Ai > 5 et/ou de zéolite 3 A ;
- la zéolite est choisie parmi la mordénite, la chabazite, la clinoptilolite, la ferrierite, l'offrerite, ou l'USY, ces zéolites pouvant être partiellement dé-aluminées ou non ; - la zéolite est caractérisée par un rapport Si/ Al > 20, préférentiellement > 50 ;
- à l'étape de purification on met en œuvre un deuxième lit d'adsorbants d'efficacité plus grande pour arrêter l'eau que les adsorbants du premier lit ;
- le deuxième lit d'adsorbants est constitué de gel de silice et/ou de zéolite 3 A ;
- à l'étape de purification on met en œuvre un troisième lit d'adsorbants constitué de zéolite 3A ;
- à l'étape de purification on met en œuvre trois lits d'adsorbants d'efficacité croissante pour arrêter l'eau, de préférence un premier lit de verre poreux ou de gel de silice, un second lit de gel de silice et un troisième lit de zéolite 3 A ;
- à l'étape de purification on met en œuvre un premier lit d'adsorbants résistants aux acides issus des NOx et/ou des SOx de manière à éliminer au moins partiellement les dits NOx et/ou SOx et au moins partiellement l'eau ;
- le dit premier lit d'adsorbants résistants aux acides issus des NOx et/ou des SOx est suivi d'un lit d'adsorbants choisis parmi les alumines activées, les alumines activées imprégnées, les zéolites A ou X, pour éliminer au moins partiellement l'eau ; - à l'étape de purification on met en œuvre en aval du premier lit d'adsorbants un lit d'adsorbants permettant l'élimination préférentielle des composés issus du mercure, de l'arsenic, du sélénium, du cadmium, du fer et du nickel ;
- entre les étapes b) et c) on réalise une étape d'élimination au moins partielle à une température < 5°C d'au moins une impureté, présente dans le flux gaz comprimé, choisie parmi l'azote, l'oxygène l'argon et les gaz rares à l'aide d'échangeurs combinés à des séparateurs ;
- l'étape de purification est réalisée entre l'étape a) et l'étape b) ;
- l'étape de purification est réalisée après l'étape b) ; - l'étape de compression b) comprend des phases de compression successives et l'étape de purification est réalisée entre deux phases de compressions successives de ladite étape de compression b) ;
- l'étape de purification est réalisée à une pression < 20 bars, de préférence <10 bars, de préférence encore < 6 bars et les phases de compressions en aval de l'étape de purification sont réalisées dans des compresseurs en acier carbone ;
- l'unité de purification mise en œuvre à l'étape de purification est de type TSA ou VSA ou PSA ou une combinaison, préférentiellement de type TSA ;
- après l'étape de purification le verre poreux ou le gel de silice mis en œuvre dans le premier lit est régénéré par lavage à l'eau ou à la vapeur d'eau suivi d'un chauffage sous balayage de gaz à une température comprise entre 80 et 2000C, préférentiellement entre 100 et 1800C ;
- le flux de gaz d'alimentation correspond à des fumées d'oxy-combustion ;
- l'étape de prétraitement comprend au moins l'un des traitements suivants : catalyse, filtration, lavage et désulfuration, avec le lavage pouvant être couplé avec un refroidissement du flux de gaz d'alimentation.
On entend par efficacité d'un adsorbant pour arrêter l'eau, sa cinétique d'adsorption et/ou sa capacité d'adsorption de l'eau. En pratique, on dira que l'adsorbant d'un deuxième lit est plus efficace que l'adsorbant utilisé dans un premier lit, si le fait de placer dans la deuxième partie de l'adsorbeur un deuxième adsorbant différent de celui utilisé dans la première partie de l'adsorbeur permet d'améliorer la séparation, c'est-à-dire si dans les mêmes conditions opératoires, la percée d'eau se fait ultérieurement. On entend par le terme « oxycombustion » une combustion au cours de laquelle le charbon est brûlé dans un fluide pauvre en azote pouvant aller de l'oxygène pur (> 95 %) à un fluide contenant la même quantité d'oxygène que l'air (environ 21%) obtenu par mélange d'oxygène pur (>95%) avec des fumées recyclées riches en CO2. Le verre poreux est un matériel chimiquement inerte, résistant bien en particulier aux bases et aux acides et présentant de bonnes caractéristiques physiques ( écrasement, attrition ).
Il est composé essentiellement de SiO2, généralement >90% poids, pref > 95% et peut contenir de façon minoritaire B2O3, Na2O, AI2O3, ZrO2 et/ou d'autres oxydes métalliques.
Ce verre poreux a la particularité comme son nom l'indique d'avoir un taux de vide interne important, généralement supérieur à 25% en volume, sous forme de pores de dimensions variables suivant les produits, ce qui lui permet de développer des surfaces internes de plusieurs centaines de m au gramme. A titre d'exemple, on peut citer VYCOR Brand Porous Glass 7930 de Corning
Incorporated qui présente 28% de volume poreux, 250 m2/gramme de surface interne pour un diamètre moyen de pore de 40 A ( 4 nanomètres).
Les produits de ce type se comportent comme des adsorbants vis-à-vis de l'eau en particulier et présentent des isothermes similaires à celles que l'on peut obtenir avec des alumines activées avec généralement une condensation de type capillaire dans les mésopores à partir d'humidité relative de l'ordre de 80%.
L'invention va à présent être décrite plus en détail.
La figure 1 représente un dispositif permettant d'effectuer un procédé selon la présente invention caractérisé par la localisation de l'étape de purification en fin du cycle de compression, c'est-à-dire entre les étapes (b) et (c).
La première étape (a) de la présente invention vise à traiter les fumées en utilisant des procédés connus faisant partie de l'état de la technique. On trouve couramment des lavages, qui mettent en œuvre différents liquides (ou solvants) tels que l'eau, les alcools (méthanol par exemple), les solutions d'aminés, les solutions basiques... ce sont les plus classiques mais il y en a bien d'autres, ou bien des unités de désulfuration, ou encore des unités de filtration. Le gaz issu de l'étape (a) peut contenir en général : une grande majorité de CO2 (en général supérieur à 80%) ; des oxydes d'azote, appelés NOx, tels que NO, NO2, N2O4... ; des oxydes de soufre, appelés SOx, tels que SO2, SO3, H2SO4... ; - de l'eau à la saturation (aux conditions de température et de pression du flux). En effet, les procédés de traitement en première étape imposent presque tous la mise en contact du gaz avec une solution aqueuse ; de l'oxygène à hauteur de quelques pourcents (issu de l'excès par rapport à la stœchiométrie nécessaire à assurer une bonne efficacité d'oxy-combustion) ; - du CO (imbrulés de combustion) ; des incondensables vis-à-vis du CO2 : azote, argon, oxygène et gaz rares provenant majoritairement des entrées d'air sur la chaudière d'oxy-combustion et de la pureté de l'oxygène; les composés issus de métaux lourds : AsCl3, AsO, AsH3, AsN ; B(OH)3, HBO2, BH3 ; BaCl2, BaO ; Be(OH)2 ; CdO, CdS, CdSO4, CdCl2 ; CoCl2, CoO,
Co2[(CO)4]2 ; CuCl2, CuCl, CuO, CuH ; HgO, HgCl2, CH3HgCl, HgH, HgS, HgSe ;
MoO, MoO2, MoO3, MoCl2, Mo(CO)6 ; NiO, NiCl2, Ni(CO)4 ; P2O5, PO2, PCl3,
P4O6 ; PbCl2, PbO, PbS, PbCl ; Sb2O3, SbCl, SbH3, H3SbO4, HSbO3 ; SeO, SeO2,
SeO3, H2Se, COSe ; SnO, SnS, SnH ; SrCl2 ; V2O5, V(CO)4 ; ZnCl2, ZnS - les composés organiques volatils (COV), et les hydrocarbures imbrulés. les composés organiques volatils sont de préférence choisis parmi le formaldéhyde, l'acétaldéhyde, l'acide formique, l'acroléine, et l'acide acétique.
Ensuite, lors de la seconde étape (b), le flux de gaz est comprimé jusqu'à un niveau de pression suffisante pour pouvoir d'une part séparer une partie des composés indésirables ce faisant (séparateurs en général situés immédiatement après chaque étape de compression suivie d'un échange de chaleur pour refroidir le flux de gaz pour éliminer les condensables apparus lors de ce refroidissement : eau par exemple) et d'autre part pour amener le gaz dans les bonnes conditions (de température et de pression) afin de préparer l'élimination des autres impuretés au cours des étapes suivantes. Une éventuelle avant dernière étape verra l'élimination des incondensables. H est connu que cette troisième étape peut être optimisée si elle est réalisée à basse température, c'est-à-dire à une température < 5°C, de préférence à une température négative, de préférence encore entre -200C et -600C à l'aide d'échangeurs combinés à des séparateurs dans un cycle froid.
La quatrième étape (c) vise alors à récupérer un flux de gaz purifié, enrichi en CO2. Ainsi, l'eau présente dans le flux de gaz doit être arrêtée jusqu'à ce qu'à une teneur telle que sa présence ne pose pas de problème de bouchage soit dans le cas d'un traitement à basse température < 00C (cas par exemple de l'éventuelle avant-dernière étape), soit lors du transport ou du stockage du CO2.
Cette teneur en eau peut-être inférieure au ppm mais aussi bien atteindre quelques dizaines de ppm suivant les conditions de traitement, de stockage ou de transport.
Les NOx et les SOx présents dans le gaz à traiter peuvent ou non être acceptables suivant d'une part leur teneur, et d'autre part les normes concernant le CO2 produit ou les procédés envisagés pour le traitement du CO2.
Cependant, même si les NOx et les SOx sont acceptables, ils peuvent être adsorbés et/ou se dissoudre dans la phase aqueuse lors de l'étape de purification et entraîner par la suite la détérioration des adsorbants.
Ainsi, il apparaît que l'étape de purification au moyen d'adsorbants neutres vis-à- vis des SOx et des NOx est indispensable.
Cette étape de purification peut être placée tout au long de la seconde étape b) qui vise à comprimer progressivement les gaz des alentours de la pression atmosphérique à la pression requise pour la séparation des inertes.
De là, le choix de la localisation de l'étape de purification va être fonction d'un certain nombre de critères tels que l'investissement, le type de matériaux dans la seconde étape b), la nature et la concentration des impuretés... La première possibilité est de placer l'étape de purification au début de l'étape b), c'est-à-dire de réaliser la purification à basse pression. Cependant, cette position entraîne deux inconvénients, à savoir :
- d'une part une purification, non optimale, car plus la pression opératoire est faible et plus la quantité d'impuretés fixées est faible; et - d'autre part la non utilisation des séparations liquide/gaz qui seront systématiquement disposés derrière chaque étage de compression composant le train de compression (2eme étape b)). En effet, ces séparations peuvent permettre de récupérer une bonne quantité de molécules condensables qui ont été condensées pendant la compression, telles que par exemple le reste d'eau et de composés organiques volatils. Ce faisant, la quantité d'impuretés à éliminer à la suite de b) sera bien plus faible. Il en résultera forcément des avantages non négligeables en termes d'investissement sur cette étape de purification.
En revanche, la position de l'étape de purification en amont du train de compresseur constituant la seconde étape b) permet d'envisager d'enlever les impuretés préjudiciables au reste du procédé : c'est dire l'eau, et éventuellement les NOx, les composés organiques volatils, les composés à base de métaux... aussi, il peut en résulter un avantage certain quant à la nature des matériaux à utiliser dans la suite, en particulier dans les étapes de compressions.
En effet, les fumées de combustion sont chargées en CO2 et autres gaz acides et bien sûr humides.
Cela implique l'utilisation d'acier inoxydable pour tous les matériaux métalliques en contact avec ces gaz.
C'est notamment le cas lorsqu'on comprime ces fumées. Le surcoût pour le compresseur est très important.
Ainsi, la présente invention propose par exemple de sécher le gaz en début de compression soit à une pression d'environ 4 bars et de mettre en œuvre en aval du séchage des compresseurs en acier carbone.
De plus, une basse pression < 6 bars peut conduire à mettre avantageusement en œuvre des lits radiaux capables de traiter de gros débits de gaz pour le séchage au lieu des lits horizontaux.
La deuxième possibilité est de placer l'étape de purification entre deux étages de compression de la seconde étape b).
Cette deuxième possibilité permet en effet de disposer du gaz à une pression intermédiaire entre celle qui est proche de l'atmosphérique (début de la deuxième étape b)) et celle maximale qui est requise dans la troisième étape du procédé. Il en résulte forcément une réduction importante du volume installé et donc du coût de l'unité. Ceci est d'autant plus vrai que l'on déplace l'étape de purification vers la fin de la deuxième étape. En effet, l'eau risque de constituer l'élément clef du dimensionnement de l'unité de purification mise en œuvre à l'étape de purification (dans le cas de l'adsorption cyclique par exemple). D'une part, toutes les étapes de compression en amont de l'étape de purification permettent de liquéfier une bonne partie de l'eau contenue dans le gaz de départ. D'autre part, l'augmentation de la pression s'accompagne d'une réduction du volume installé pour purifier le gaz.
En revanche, l'inconvénient majeur viendra de la quantité d'impuretés qui sera contenue dans les étages de compression en amont de l'étape c). Il est probable donc qu'il faille adapter les compresseurs aux types d'impuretés.
Enfin, la troisième possibilité est de placer l'étape de purification à la fin de la seconde étape b).
Ainsi, dans ce cas présent, le volume de l'unité de purification sera minimale mais l'ensemble de la seconde étape b) de compression sera réalisé avec le flux de gaz non purifié.
Le choix de la localisation de l'étape de purification sera alors réalisé en tenant compte des impuretés (liée en grande partie à la matière première engagée à dans l'oxy combustion, à savoir la nature du charbon donc), de leur impact possible sur l'étape 2 du procédé (compression) et du volume du procédé à installer.
La purification est réalisée par adsorption. On notera que le choix des adsorbants est fondamental puisqu'il s'agit de réaliser un traitement de polissage approfondi du flux de gaz au cours de l'étape b) du procédé selon l'invention.
Or, de nombreux critères interviennent alors dans le choix de la succession des adsorbants à utiliser telles que :
- la concentration des molécules à éliminer
- le niveau d'adsorption des différentes molécules : faible pour NO alors qu'elle est importante pour le NO2... ;
- la réactivité des différentes impuretés SOx et NOx ont souvent tendance, en présence d'eau, à se stabiliser sous forme d'acides particulièrement forts tels que HNO3 et H2SO4 ;
- les NOx s'adsorbent fortement en général sur des matrices carbonées ce qui peut conduire à des mélanges explosifs (carburant et comburant concentrés au sein d'un réseau poreux) ; - les métaux ou leurs dérivés sont connus pour s'adsorber correctement sur des matériaux carbonés. De plus, dans le cas de la présente invention, on veut éliminer l'eau et éventuellement les NOx et SOx sans que l'adsorbant choisi subisse une dégradation importante des propriétés d'adsorption.
En effet, les acides et leurs dérivés, étant très polaires, vont se dissoudre dans la phase aqueuse, l'eau permettant même de convertir les précurseurs en acides véritables.
Dans le cas des acides dits oxygénés, la présence supplémentaire d'oxygène peut aussi conduire à l'oxydation des acides présents jusqu'à leurs formes de degré d'oxydation maximal, qui sont, en général, les plus forts.
Il est bien connu que les différentes espèces peuvent réagir suivant les réactions suivantes : SO2 + V2 O2 → SO3 SO3 + H2O → H2SO4 SO2 + H2O → H2SO3 H2SO3 + 1A O2 → H2SO4 2 NO2 + H2O → HNO2 + HNO3 3 NO2 + H2O → 2.HNO3 + NO HNO2 + 1A O2 → HNO3 HNO3 + H2SO3 → H2SO4 + HNO2 NO2 + SO2 <→ NO + SO3 NO2 + SO2 + H2O <→ H2SO4 + NO Ces réactions sont d'autant plus lentes que les composés sont dilués, particulièrement en phase gazeuse.
Dans l'invention, nous utilisons la réactivité chimique des différents composants pour les éliminer.
Les acides nitrique et sulfurique ont une pression de vapeur suffisamment faible pour s'adsorber très efficacement.
L'adsorbant idéal doit pouvoir adsorber tous les constituants indésirables, notamment l'eau pour former une phase aqueuse, et résister aux conditions oxydantes et acides rencontrées. Il doit pouvoir aussi être régénérable facilement et adsorber peu de dioxyde de carbone. Parmi les adsorbants idéaux dans le cadre de la présente invention se trouve le gel de silice. En effet, le gel de silice peut adsorber jusqu'à 40% de son poids en eau, et résister très bien aux acides et aux oxydants. Il peut être régénéré à une température comprise entre 100 et 180 0C, de préférence entre 125 0C et 150 0C. Le gel de silice est febriqué par polymérisation du monomère Si(OH)4 obtenu par neutralisation d'un silicate de sodium par un acide comme, par exemple l'acide sulfurique, ou bien par hydrolyse d'un composé du genre alcoxyde de silicium tel que Si(EtO)4 , de manière à obtenir une phase aqueuse liquide appelée sol de silice qui gélifie ensuite. On peut aussi partir d'un sol de silice du commerce que l'on fait gélifier en en modifiant le pH ou en ajoutant un électrolyte. Il existe deux formes de gel de silice, la microporeuse et la macroporeuse, qui diffèrent par la densité et la taille des pores ; leur aire massique est comprise entre 200 m /g et 850 m /g. Le gel de silice est constitué d'une matrice siliceuse poreuse hydroxylée (Si-OH) en surface des pores. Il existe des gels de silice contenant de l'alumine qui ont l'avantage de bien résister (sans se fracturer) au contact avec l'eau liquide. Le gel de silice adsorbe les composés grâce aux liaisons hydrogène qu'il forme avec eux. La liaison O-H très polaire des acides sulfurique et nitrique est donc très favorable à leur fixation par adsorption. La régénération du gel de silice saturé en acides peut être effectuée par lavage à l'eau ou à la vapeur d'eau suivi d'un chauffage sous balayage de gaz à 1500C environ. Les acides ainsi récupérés sont à l'état concentré et, donc, plus faciles à traiter.
Eventuellement, le milieu très acide et oxydant ainsi réalisé dans l'adsorbant peut servir à éliminer d'autres impuretés, telles les composés organiques du mercure ou de l'arsenic, en les minéralisant.
Dans le cas où le flux gazeux ne contient que des traces de composés acides que l'on veut éliminer jusqu'à un niveau très élevé de pureté sur le gaz, on peut charger le gel de silice d'un composé tel que le carbonate de sodium qui fixera les acides sous forme de sels ioniques fixes, suivant la réaction suivante : Na2CO3 + H2SO4 → Na2SO4 + CO2 + H2O
D'autres candidats susceptibles d'être utilisés sont les verres poreux, et certaines zéolithes, éventuellement dé-aluminées, présentant un rapport Si/Ai supérieur à 5, préférentiellement supérieur à 20, encore préférentiellement supérieure à 50.
Les différents lits mis en œuvre dans l'étape de purification seront dimensionnés de manière à éviter aux espèces visées de se transmettre à l'adsorbant suivant. Aussi, leur dimensionnement dépendra de la quantité de flux gazeux à traiter et de la teneur en impuretés.
Il pourra être intéressant d'utiliser un adsorbant résistant aux NOx et au SOx pour les éliminer, éventuellement conjointement avec une partie de l'eau, pour terminer le séchage avec un adsorbant classique ne présentant pas de résistance particulière vis-à-vis des NOx et/ou SOx, par exemple des alumines activées imprégnées, des zéolites X ou A adsorbants classiquement utilisés pour le séchage industriel du CO2.

Claims

Revendications
1. Procédé de purification d'un flux de gaz d'alimentation contenant du CO2, de l'eau et au moins une impureté choisie parmi les SOx et les NOx, comprenant les étapes successives suivantes : a) étape de prétraitement du flux de gaz d'alimentation visant à éliminer au moins partiellement une des impuretés choisies parmi l'azote, l'oxygène, l'argon, les gaz rares, les SOx, CS2 H2S, NOx, HCN, HCl, CHCI3, HF, les composés organiques volatils, les métaux suivants : le mercure, l'arsenic, le sélénium, le cadmium, le fer et le nickel, et les composés issus de ces métaux; b) étape de compression du flux de gaz prétraité à une pression comprise entre 10 et 50 bars ; c) étape de récupération d'un flux de gaz purifié, enrichi en CO2, à l'état liquide, gazeuse ou supercritique; caractérisé en ce qu'entre les étapes a) et c) on réalise une étape de purification dans laquelle on met en œuvre au moins un premier lit d'adsorbants neutres vis-à-vis des NOx et/ou des SOx et ayant des propriétés d'adsorption permettant l'élimination au moins partielle de l'eau en présence de NOx et/ou SOx.
2. Procédé selon la revendication 1, caractérisé en ce qu'après l'étape c), le flux de gaz est :
- à l'état liquide et stocké ; ou
- à l'état supercritique et transporté et/ou stocké ; ou
- à l'état gazeux et transporté.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que les adsorbants neutres vis-à-vis des NOx et/ou des SOx sont résistants aux acides issus des NOx et/ou des SOx ou n'adsorbent pas les NOx et/ou les SOx.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le lit d'adsorbants neutres vis-à-vis des NOx et/ou des SOx est constitué de gel de silice, de verre poreux ou de zéolite à rapport Si/ Al > 5 et/ou de zéolite 3 A.
5. Procédé selon la revendication 4, caractérisé en ce que la zéolite est choisie parmi la mordénite, la chabazite, la clinoptilolite, la ferrierite, l'offrerite, ou l'USY, ces zéolites pouvant être partiellement dé-aluminées ou non.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que la zéolite est caractérisée par un rapport Si/Ai > 20, préférentiellement > 50.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape de purification on met en œuvre un deuxième lit d'adsorbants d'efficacité plus grande pour arrêter l'eau que les adsorbants du premier lit.
8. Procédé selon la revendication 7, caractérisé en ce que le deuxième lit d'adsorbants est constitué de gel de silice et/ou de zéolite 3A.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape de purification on met en œuvre un troisième lit d'adsorbants constitué de zéolite 3A.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape de purification on met en œuvre trois lits d'adsorbants d'efficacité croissante pour arrêter l'eau, de préférence un premier lit de verre poreux ou de gel de silice, un second lit de gel de silice et un troisième lit de zéolite 3A.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape de purification on met en œuvre un premier lit d'adsorbants résistants aux acides issus des NOx et/ou des SOx de manière à éliminer au moins partiellement les dits NOx et/ou SOx et au moins partiellement l'eau.
12. Procédé selon la revendication 11, caractérisé en ce que le dit premier lit d'adsorbants résistants aux acides issus des NOx et/ou des SOx est suivi d'un lit d'adsorbants choisis parmi les alumines activées, les alumines activées imprégnées, les zéolites A ou X, pour éliminer au moins partiellement l'eau.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape de purification on met en œuvre en aval du premier lit d'adsorbants un lit d'adsorbants permettant l'élimination préférentielle des composés issus du mercure, de l'arsenic, du sélénium, du cadmium, du fer et du nickel.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'entre les étapes b) et c) on réalise une étape d'élimination au moins partielle à une température < 5°C d'au moins une impureté, présente dans le flux gaz comprimé, choisie parmi l'azote, l'oxygène l'argon et les gaz rares à l'aide d'échangeurs combinés à des séparateurs.
15. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de purification est réalisée entre l'étape a) et l'étape b).
16. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que l'étape de purification est réalisée après l'étape b).
17. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que l'étape de compression b) comprend des phases de compression successives et en ce que l'étape de purification est réalisée entre deux phases de compressions successives de ladite étape de compression b).
18. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de purification est réalisée à une pression < 20 bars, de préférence <10 bars, de préférence encore < 6 bars et en ce que les phases de compressions en aval de l'étape de purification sont réalisées dans des compresseurs en acier carbone.
19. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'unité de purification mise en œuvre à l'étape de purification est de type TSA ou VSA ou PSA ou une combinaison, préférentiellement de type TSA.
20. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'après l'étape de purification le verre poreux ou le gel de silice mis en œuvre dans le premier lit est régénéré par lavage à l'eau ou à la vapeur d'eau suivi d'un chauffage sous balayage de gaz a une température comprise entre 80 et 2000C, préférentiellement entre 100 et 1800C.
21. Procédé selon l'une des revendications précédentes, caractérisé en ce que le flux de gaz d'alimentation correspond à des fumées d'oxy-combustion.
22. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de prétraitement comprend au moins l'un des traitements suivants : catalyse, filtration, lavage et désulfuration, avec le lavage pouvant être couplé avec un refroidissement du flux de gaz d'alimentation.
EP08826430A 2007-07-13 2008-07-08 Procede de purification d'un gaz contenant du co2 par integration d'unite de purification par adsorption Ceased EP2178621A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756492A FR2918579B1 (fr) 2007-07-13 2007-07-13 Procede de purification d'un gaz contenant du co2 par integration d'unite de purification par adsorption
PCT/FR2008/051274 WO2009010691A2 (fr) 2007-07-13 2008-07-08 Procede de purification d'un gaz contenant du co2 par integration d'unite de purification par adsorption

Publications (1)

Publication Number Publication Date
EP2178621A2 true EP2178621A2 (fr) 2010-04-28

Family

ID=38983955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08826430A Ceased EP2178621A2 (fr) 2007-07-13 2008-07-08 Procede de purification d'un gaz contenant du co2 par integration d'unite de purification par adsorption

Country Status (9)

Country Link
US (1) US8409329B2 (fr)
EP (1) EP2178621A2 (fr)
JP (1) JP5350376B2 (fr)
CN (1) CN101842143B (fr)
AU (1) AU2008277536B2 (fr)
CA (1) CA2693034C (fr)
FR (1) FR2918579B1 (fr)
WO (1) WO2009010691A2 (fr)
ZA (1) ZA200908818B (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049169A (zh) * 2009-10-27 2011-05-11 琳德股份公司 除去气流中杂质的方法
EP2365265B1 (fr) * 2010-03-03 2018-10-31 General Electric Technology GmbH Procédé et installation pour séparer du dioxyde de carbone d'un effluent gazeux provenant des installations de combustion
ES2624271T3 (es) * 2010-04-21 2017-07-13 General Electric Technology Gmbh Método para separar dióxido de carbono de gas de humo de plantas de combustión
FR2961270B1 (fr) * 2010-06-11 2017-07-28 Air Liquide Procede et appareil de sechage et de compression d'un flux riche en co2
US8012446B1 (en) 2010-07-08 2011-09-06 Air Products And Chemicals, Inc. Recycle TSA regen gas to boiler for oxyfuel operations
US9657937B2 (en) 2010-08-23 2017-05-23 Saudi Arabian Oil Company Steam generation system having multiple combustion chambers and dry flue gas cleaning
FR2965312B1 (fr) 2010-09-23 2016-12-23 Air Liquide Procede de compression de plusieurs flux gazeux sur un unique compresseur
CN102080920B (zh) * 2010-12-27 2013-03-13 南京大学 低温冷箱分离工业废气中氮氧化物的方法
JP5804747B2 (ja) 2011-03-31 2015-11-04 独立行政法人石油天然ガス・金属鉱物資源機構 合成ガス製造装置への金属混入抑制方法
DE102011102169A1 (de) * 2011-05-20 2013-05-16 Linde Aktiengesellschaft Verdichten von Medien
EP2540377A1 (fr) * 2011-06-29 2013-01-02 Alstom Technology Ltd Procédé de nettoyage de gaz combustible riche en dioxyde de carbone
FR2993350B1 (fr) * 2012-07-13 2018-06-15 Air Liquide Procede et appareil de refroidissement d'un debit contenant au moins 35% de dioxyde de carbone et du mercure
PL2688338T3 (pl) * 2012-07-17 2015-08-31 Alcatel Lucent Urządzenia, sposoby i programy komputerowe dla przenośnego przekaźnika i przekaźnika stacji bazowej
EP2724770A1 (fr) 2012-10-26 2014-04-30 Alstom Technology Ltd Unité d'absorption de séchage de gaz de combustion
JP6107443B2 (ja) * 2013-06-10 2017-04-05 株式会社Ihi 不純物除去システム
EP2868363A1 (fr) 2013-10-29 2015-05-06 Alstom Technology Ltd Système et procédé de traitement d'un flux gazeux
WO2015173934A1 (fr) * 2014-05-15 2015-11-19 Ykk株式会社 Procédé et dispositif pour séparer et récupérer un fluide supercritique
CN104841428B (zh) * 2015-02-05 2018-05-25 昆明理工大学 一种同时脱除一氧化氮二氧化硫汞催化剂的制备方法
JP6743433B2 (ja) 2016-03-16 2020-08-19 株式会社Ihi 二酸化炭素の回収方法及び回収装置
JP6790403B2 (ja) 2016-03-25 2020-11-25 株式会社Ihi 二酸化炭素の回収方法及び回収装置
CN109963637A (zh) * 2016-11-16 2019-07-02 沙特基础全球技术有限公司 纯化co2料流以避免盐酸腐蚀的方法
CN106582233B (zh) * 2017-02-15 2023-10-03 福建龙净环保股份有限公司 一种催化裂化再生烟气的干式脱硫脱硝除尘系统
JP7128808B2 (ja) * 2017-04-27 2022-08-31 住友化学株式会社 回収二酸化炭素の精製方法、および回収二酸化炭素の精製工程を包含するメチオニンの製造方法
CN107917578B (zh) * 2017-11-13 2019-10-25 益通天然气股份有限公司 一种混合制冷剂循环液化天然气自净化系统
US20190168175A1 (en) * 2017-12-06 2019-06-06 Larry Baxter Solids-Producing Siphoning Exchanger
AU2019253967B2 (en) * 2018-04-20 2025-02-13 Roam Technologies Pty Ltd Systems and methods for providing concentrated oxygen to a user
CN110332558B (zh) * 2019-08-20 2021-01-19 华中科技大学 一种增压富氧烟气脱硫脱硝脱汞系统
CN112607707B (zh) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 一种工业级高浓度HF精制为电子级的FTrPSA分离与提纯方法
CN115388616B (zh) * 2022-08-25 2023-06-16 北京航天试验技术研究所 采用增压液化的火星表面二氧化碳连续捕集系统及其方法
CN115554822A (zh) * 2022-09-26 2023-01-03 东莞海瑞斯新材料科技有限公司 一种超临界二氧化碳造粒增压生产工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070031302A1 (en) 2005-08-08 2007-02-08 Carsten Wittrup Method and apparatus for purifying a gas

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687941B2 (ja) * 1983-05-04 1994-11-09 旭硝子株式会社 吸湿剤
GB8508002D0 (en) * 1985-03-27 1985-05-01 Costain Petrocarbon Recovering carbon dioxide
US5100635A (en) * 1990-07-31 1992-03-31 The Boc Group, Inc. Carbon dioxide production from combustion exhaust gases with nitrogen and argon by-product recovery
GB9105478D0 (en) * 1991-03-15 1991-05-01 Air Prod & Chem Carbon dioxide and acid gas removal and recovery process for fossil fuel fired power plants
US5233837A (en) * 1992-09-03 1993-08-10 Enerfex, Inc. Process and apparatus for producing liquid carbon dioxide
JP2895325B2 (ja) * 1992-09-16 1999-05-24 関西電力株式会社 燃焼排ガス中の二酸化炭素を除去する方法
JPH0699034A (ja) * 1992-09-21 1994-04-12 Chubu Electric Power Co Inc 燃焼排ガスからの二酸化炭素の液化分離回収法
FR2790823B1 (fr) * 1999-03-12 2001-06-15 Air Liquide Procede et installation de purification et de separation d'air par voie cryogenique sans pre-refroidissement
JP3872677B2 (ja) 2001-10-31 2007-01-24 三菱重工業株式会社 水銀除去方法およびそのシステム
US6761863B2 (en) 2002-01-29 2004-07-13 The Boc Group, Inc. Process for the removal of impurities from gas streams
JP2003286008A (ja) * 2002-03-28 2003-10-07 Ngk Spark Plug Co Ltd 酸素濃縮器
US20030221555A1 (en) * 2002-05-31 2003-12-04 Golden Timothy Christopher Purification of gas streams using composite adsorbent
JP3874187B2 (ja) * 2003-01-07 2007-01-31 東洋紡績株式会社 除湿エレメントおよび除湿装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070031302A1 (en) 2005-08-08 2007-02-08 Carsten Wittrup Method and apparatus for purifying a gas

Also Published As

Publication number Publication date
US8409329B2 (en) 2013-04-02
CN101842143A (zh) 2010-09-22
CA2693034A1 (fr) 2009-01-22
CN101842143B (zh) 2013-04-17
US20100206165A1 (en) 2010-08-19
AU2008277536B2 (en) 2012-08-16
FR2918579A1 (fr) 2009-01-16
WO2009010691A3 (fr) 2009-03-19
AU2008277536A1 (en) 2009-01-22
JP2010533063A (ja) 2010-10-21
WO2009010691A2 (fr) 2009-01-22
FR2918579B1 (fr) 2010-01-01
CA2693034C (fr) 2015-04-07
ZA200908818B (en) 2011-02-23
JP5350376B2 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
CA2693034C (fr) Procede de purification d&#39;un gaz contenant du co2 par integration d&#39;unite de purification par adsorption
WO2009010690A2 (fr) Procede de purification d&#39;un gaz contenant du co2
CA3009566C (fr) Procede de production de biomethane par epuration de biogaz issu d&#39;installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en oeuvre du procede
EP1476244A1 (fr) Procede de traitement d&#39;un melange gazeux comprenant de l&#39;hydrogene et du sulfure d&#39;hydrogene
FR2832141A1 (fr) Procede de purification de gaz de synthese
CN1520333A (zh) 从可燃物氧化产生的废气或烟中分离和回收二氧化碳的方法
FR2882941A1 (fr) Procede de purification d&#39;un gaz naturel par adsorption des mercaptans
CA2729366C (fr) Traitement de gaz humide contenant des poussieres
FR3097450A1 (fr) Traitement d’un flux de méthane comprenant des COV et du dioxyde de carbone par combinaison d’une unité d’adsorption et d’une unité de séparation par membrane
CA2693038A1 (fr) Procede pour eliminer le mercure d&#39;un gaz contenant du co2 et de l&#39;oxygene
FR2999448A1 (fr) Procede de captage du co2 par adsorption
EP2593216A1 (fr) Adsorbeur avec revêtement interne
EP3768410A1 (fr) Procédé de décarbonatation de flux gazeux
WO2023134998A1 (fr) Installation de récupération de co2 contenu dans un flux gazeux d&#39;alimentation
FR2837722A1 (fr) Procede psa de purification par adsorption d&#39;un gaz pauvre en hydrogene
L'Exploitation lI9) United States
FR2784604A1 (fr) Procede de regeneration incomplete de particules d&#39;adsorbant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TRANIER, JEAN-PIERRE

Inventor name: SANCHEZ-MOLINERO, IVAN

Inventor name: RENOU, ELISE

Inventor name: MOREAU, SERGE

Inventor name: MONEREAU, CHRISTIAN

Inventor name: JALLAIS, SIMON

Inventor name: HASANOV, VLADIMIR

Inventor name: HA, BAO

Inventor name: DE SMEDT, GUILLAUME

Inventor name: DARDE, ARTHUR

Inventor name: COURT, PHILIPPE

Inventor name: CLAEYS, CHRISTOPHE

Inventor name: ALBAN, BRUNO

17Q First examination report despatched

Effective date: 20120112

DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150227