WO2023134998A1 - Installation de récupération de co2 contenu dans un flux gazeux d'alimentation - Google Patents

Installation de récupération de co2 contenu dans un flux gazeux d'alimentation Download PDF

Info

Publication number
WO2023134998A1
WO2023134998A1 PCT/EP2022/087418 EP2022087418W WO2023134998A1 WO 2023134998 A1 WO2023134998 A1 WO 2023134998A1 EP 2022087418 W EP2022087418 W EP 2022087418W WO 2023134998 A1 WO2023134998 A1 WO 2023134998A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
gas stream
adsorbent
treatment unit
stream
Prior art date
Application number
PCT/EP2022/087418
Other languages
English (en)
Inventor
Richard Dubettier
Martin Raventos
Guillaume Rodrigues
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2023134998A1 publication Critical patent/WO2023134998A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4143Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged as a mixture

Definitions

  • the present invention relates to an installation and a process for recovering CO2 (carbon dioxide) contained in a gaseous feed stream.
  • NOX nitrogen oxides
  • NO nitrogen monoxide
  • NO2 nitrogen dioxide
  • NOX dioxide nitrogen dioxide
  • SCR selective catalytic reduction
  • the invention aims in particular to propose a significant reduction of NOX simultaneously with a capture of CO2 in the combustion gases.
  • the invention is not limited to a combustion gas and can be applied to any type of gaseous supply stream whatever its origin, this gaseous stream comprising CO2, NOx and potentially at least one less adsorbable gas than CO2 such as N2, O2, Ar, He, H2...
  • the subject of the invention is thus an installation for recovering CO2 contained in a gaseous feed stream comprising at least 10 ppm of NOX, between 10% and 50% by volume of CO2, N2, water and 'O2 with a minimum concentration of 0.1% molar, preferably with a concentration greater than or equal to 1% molar, in particular with a concentration between 2% and 5% or with a concentration greater than 10%, the NOX comprising NO and NO2, the installation comprising:
  • a compression assembly arranged to compress the gaseous supply stream, the compression assembly comprising in particular a plurality of compression stages and a plurality of heat exchangers arranged to cool the gaseous stream compressed by the compression stages, this compression assembly being arranged to compress the gas flow to a pressure greater than 1.5 bar abs, in particular to a pressure between 3 and 15 bar abs, or even to a pressure between 4 and 12 bar abs (the abbreviation "bar abs means absolute bar),
  • a drying space preferably placed downstream of the compression assembly, for drying the feed gas stream having passed through the compression assembly, so as to obtain a dried gas stream
  • the feed gas stream may contain, in addition to the compounds mentioned above, other minor constituents such as argon and various impurities depending on the upstream units from which the gas stream originates.
  • part of the NOX can be found in the form of N2O4 (dinitrogen tetraoxide, which is assimilated to 2 NO2 in the balance sheets).
  • the gaseous feed stream is filtered before being introduced into the compression assembly in order to be freed from possible particles or dust that it could contain.
  • the gaseous feed stream may, before filtration, contain too many particles or dust. This filtration, if necessary, is done up to a threshold chosen so that the gas flow thus treated by filtration is compatible with the downstream unit(s).
  • the chosen thresholds may correspond to particles with a dimension of less than 40 microns, possibly less than 5 microns, and/or to a concentration of solid particles less than 1 mg/m3, optionally less than 0.01 mg/m3.
  • the dryer may include a temperature modulation adsorption device called TSA (Temperature Swing Adsorption).
  • TSA Temperature Swing Adsorption
  • TSA refers to all gas separation units by adsorption following adsorption/regeneration cycles such that the regeneration gas is used at least temporarily (heating step) at a temperature above the adsorption temperature.
  • the pressure of the regeneration gas is arbitrary: higher, equal or preferably lower than the adsorption pressure.
  • This dryer is then an additional device, for example a TSA with only two drying adsorbers and four valves per adsorber.
  • This embodiment of the invention has the advantages which are the absence of corrosion problem on the PSA and the fact that the gases from the PSA are dry.
  • the dryer can be placed on the gas leaving any compression stage, after refrigeration, if this is of economic interest.
  • the dryer comprises a TEG (TriEthylene Glycol) unit for drying the gas stream.
  • TEG TriEthylene Glycol
  • drying space is part of the treatment unit and includes a drying adsorbent, there is no additional device to the PSA, but measures must be taken against corrosion due to the possible presence of nitric acid. For example, it is then desirable to use corrosion-resistant materials such as stainless steel.
  • the dried gas stream comprises less than 500 ppm of H2O, in particular less than 10 ppm, for example less than 1 ppm.
  • the NOX notably comprises substantially 90% NO and 10% by volume of NO2, before passing through the compression assembly. These ratios may be different, in particular depending on the source of the feed gas stream and the treatments it may have undergone.
  • the presence of a dryer before the treatment unit is particularly advantageous to prevent the formation of nitric acid in this treatment unit or downstream thereof. This prevents damage to equipment such as PSA valves.
  • the invention makes it possible to limit both the quantity of NO in the CO2-enriched stream from the adsorption treatment unit, for example PSA, and the quantity of NO present in the nitrogen-enriched stream at the PSA outlet. .
  • the invention uses the catalytic effect of certain adsorbents which promotes the reaction of NO to NO2, in the presence of oxygen.
  • the invention makes it possible to establish favorable conditions for these adsorbents to be fully active over a satisfactory period.
  • the invention makes it possible, thanks to the drying space, to ensure the absence of H2O. Indeed, the H2O could be adsorbed at least partially, which would decrease the activity of the adsorbent.
  • nitric acid which, depending on the type of adsorbents on the one hand can be adsorbed and significantly reduce the desired catalytic activity, on the other hand for certain other types of adsorbents, can accelerate their destruction.
  • nitric acid also allows the use of conventional materials and prevents damage to sensitive equipment such as valves.
  • the invention thus allows a significant reduction in NO while allowing capture of CO2 from gaseous feed streams.
  • the pressure provided by the compression assembly favors the conversion of NO into NO2.
  • the adsorbent is chosen from: a silica gel, a zeolite, activated carbon, an alumina or a combination of these elements.
  • the adsorbent chosen to promote the oxidation of NO to NO2 comprises a mixture of at least two different silica gels, and/or of at least two different zeolites, and/ or at least two different activated carbons.
  • Two adsorbents can be different, in a non-exhaustive way, by their porosity, by the nature of the active sites (in particular for zeolites), by the binder (in kind or quantity), by any impurities present (binder, activated carbon, etc.). ), by post-treatments (ion exchanges, impregnation, washing, etc.).
  • two adsorbents of the same type can have very significantly different adsorption or catalysis characteristics. This is all the more the case when two parameters differ, such as composition and porosity.
  • the adsorbent is chosen so as not to be substantially degraded by chemical reaction with NOX.
  • the lifetime of the adsorbent is greater than 1 year, preferably greater than 2 years, or even 3 years of operation.
  • the adsorbent of the treatment unit adsorbs CO2 preferentially and N2 is not adsorbed preferentially by this adsorbent, so that most of the nitrogen is extracted at the high pressure of the cycle, in a gas stream depleted in CO2, and to obtain one or more gas streams enriched in CO2 during the regeneration of the absorbent mass.
  • the NO2 is also preferentially adsorbed and the NO is not preferentially adsorbed so that the majority of the NO2 leaving the unit ends up in the CO2-enriched stream. and that the majority of the NO leaving the unit ends up in an N2-rich gas stream.
  • the adsorbent of the treatment unit chosen is a silica gel or an alumina, or a combination of these two elements.
  • the processing unit comprises at least one additional adsorbent, in addition to the adsorbent which promotes the oxidation of NO to NO2 described so far.
  • This additional adsorbent which does not have the function of promoting the oxidation of NO to NO2, is for example an adsorbent capable of adsorbing CO2 and/or NO2.
  • At least one condensate separation device can be provided, in particular after cooling at the outlet of a compression stage.
  • the processing unit comprises a pressure modulation adsorption device called PSA (Pressure Swing Adsorption, in English).
  • PSA Pressure Swing Adsorption
  • the regeneration gas of the TSA type dryer is generally a gas rich in N2, preferentially extracted from the gaseous feed stream, that is to say either a fraction of the stream depleted in CO2 directly from the PSA, or a purge from a unit located downstream of the PSA, for example a cryogenic unit treating the flow enriched in CO2, which still contains a certain quantity of N2, for additional enrichment in CO2.
  • the residual N2 fraction will then generally be extracted at the top of a denitrogenation column and can be sent back to the CO2 recovery installation that is the subject of the invention.
  • the processing unit comprises a VPSA adsorption device in which the adsorption is carried out at a high pressure greater than atmospheric pressure, in particular between 1.5 and 6 bar abs, and desorption at a low pressure below atmospheric pressure, in particular below 600 mbar.
  • This pressure is in particular between 200 and 600 mbar abs, or can reach, where appropriate, substantially 50 mbar abs in the case, for example, of a vacuum pump comprising several pumping stages.
  • the flow entering the dryer has been cooled, preferably between 3 and 20° C., with adequate cooling water such as than cold water or ice water, which promotes adsorption.
  • the flow entering the processing unit has been cooled, preferably between 3 and 20° C., with adequate cooling water such as cold water or ice water.
  • the invention makes it possible to obtain an overall rate of conversion of NO to NO2 by the oxidation of NO which is greater than 20%, in particular greater than 30% or 50%, or even 75%.
  • the output balance must be done at least over a complete cycle of the PSA.
  • the CO2 is present in the gaseous feed stream at a rate of more than 10% by volume, in particular more than 15% or 20% by volume, on a dry basis.
  • composition on a dry basis is that defined when the water is removed from the gas. For example, if there is 15% mole of water in the gas stream, all the other compositions in the presence of water must be divided by 0.85 to make 100% without taking H2O into account.
  • the NOX is contained in the gaseous feed stream at the rate of less than 1000 ppmv, in particular less than 500 ppmv or 100 ppmv.
  • the ratio, in molar ppm, NO2/(NO+NO2) in the gaseous supply stream to be treated is less than 50%, in particular less than 20% or 10% or even 5 % or 1%.
  • the CO2-enriched gas stream from the adsorption treatment unit for example PSA or VPSA
  • the CO2 composition of the CO2-enriched stream from the adsorption treatment unit for example PSA or VPSA, can be between 45 and 90% depending on the application.
  • the gaseous combustion stream is a smoke resulting from the combustion of hydrocarbons.
  • fumes come, for example, from a cement kiln or an SMR (“Steam Methane Reforming”) kiln.
  • a fraction of the CO2 contained in the combustion gas can come from the raw material introduced into the furnace to be transformed there, for example the CO2 which can come from CaCO3.
  • the feed gas stream FG is formed, for example, by fumes from a cement kiln or an SMR (Steam Methane Reforming) kiln.
  • the feed gas stream may contain, in addition to the compounds mentioned above, other minor constituents such as argon and various impurities depending on the upstream units from which the gas stream originates.
  • part of the NOX can be in the form of N2O4 (dinitrogen tetraoxide).
  • the dried gas stream FGS comprises less than 500 ppm of H2O, in particular less than 10 ppm, for example less than 1 ppm.
  • the NOX notably comprises substantially 90% NO and 10% by volume of NO2, before passing through the compression assembly.
  • the presence of the dryer before the treatment unit is particularly advantageous to prevent the formation of nitric acid in this treatment unit or downstream thereof.
  • the invention thus allows a significant reduction in NO while allowing capture of CO2 from gaseous feed streams.
  • Adsorbent 9 is selected from: silica gel, zeolite, activated carbon, alumina or a combination thereof.
  • the adsorbent 9 chosen to promote the oxidation of NO to NO2 comprises a mixture of at least two different silica gels, and/or of at least two different zeolites, and/or of at least two carbons different assets.
  • Adsorbent 9 is chosen so as not to be substantially degraded by chemical reaction with NOX. Thus the lifetime of the adsorbent is greater than 1 year, preferably greater than 2 years, or even 3 years of operation.
  • the adsorbent 9 of the processing unit 4 adsorbs the CO2 in a privileged manner, and the N2 is not adsorbed in a privileged manner by this adsorbent, so that the bulk of the nitrogen is extracted at the high pressure from the cycle, in a gas stream F2 depleted in CO2, and to obtain one or more gas streams F1 enriched in CO2 during the regeneration of the absorbent mass.
  • the NO2 is also adsorbed in a privileged way and the NO is not adsorbed in a privileged way so that the majority of the NO2 leaving the treatment unit 4 is found in the flow enriched in CO2 and that the majority of the NO leaving the unit is found in the gas stream enriched in N2.
  • processing unit 4 includes a pressure swing adsorption device called PSA (Pressure Swing Adsorption).
  • PSA Pressure Swing Adsorption
  • the processing unit 4 comprises a VPSA adsorption device in which the adsorption is carried out at a high pressure greater than atmospheric pressure, in particular between 1.5 and 6 bar abs, and the desorption at a lower low pressure. at atmospheric pressure, in particular between 200 and 600 mbar abs, or even being able to go down to 50 mbar abs.
  • Dryer 3 includes a temperature modulation adsorption device called TSA (Temperature Swing Adsorption).
  • TSA Temperature Swing Adsorption
  • the flow entering dryer 3 has been cooled, preferably between 3 and 20°C, with adequate cooling water such as cold water or ice water, which promotes adsorption.
  • the flow entering the processing unit 4 has been cooled, preferably between 3 and 20° C., with adequate cooling water such as cold water or ice water.
  • the invention makes it possible to obtain an overall rate of conversion of NO to NO2 by the oxidation of NO which is greater than 20%, in particular greater than 30% or 50%, or even 75%.
  • CO2 is present in the feed gas stream at more than 10% by volume, especially more than 15% or 20% by volume, on a dry basis.
  • NOX is contained in the FG feed gas stream at less than 1000 ppmv, especially less than 500 ppmv or 100 ppmv.
  • the ratio, in molar ppm, NO2/(NO+NO2) in the gaseous feed stream FG to be treated is less than 50%, in particular less than 20% or 10% or even 5% or 1%.
  • the gas stream F1 enriched in CO2 from the adsorption treatment unit 4, for example PSA or VPSA, can be treated in a downstream unit for additional enrichment and the gas depleted in CO2 from this downstream unit can be recycled to upstream of or directly in the treatment unit 4 by adsorption, for example PSA or VPSA, in order to increase the CO2 extraction yield.
  • adsorption for example PSA or VPSA
  • the CO2 composition of the CO2-enriched stream from the adsorption treatment unit for example PSA or VPSA, can be between 45 and 90% depending on the application.
  • contact time we mean here the time it takes for the gas to pass through the useful zone of the tube (the one that will be filled with particles) when it is empty of any material. This precisely sets the gas flow rate to be used when testing. Under these conditions, a contact time of 5 seconds corresponds to an actual residence time of the gas during a test of approximately 3 seconds.
  • the conversion rate in the chemical reaction of oxidation of NO to NO2 is defined as follows. If at the input, there is a quantity of N moles of NO (per unit time) and M moles at the output, with M ⁇ N, the conversion rate is (N-M)/N, that is to tell the number of moles transformed into NO2 on the number of moles in input.
  • the gas flow can be considered constant between the inlet and the outlet and one can directly compare the ppm of NO between the inlet and the outlet.
  • the curve referenced 11 corresponds to glass beads or to an adsorbent having no particular catalytic effect.
  • the NO that does not adsorb comes out very quickly and then remains almost stable.
  • the output content is, for this type of product, no or very little catalyst for the oxidation reaction, in the range of 47 to 49.5 ppm for example.
  • the NO2 content not shown, allows the assessment to be completed within measurement uncertainties. Conversion rates are in the range of 1% to 6%.
  • Curves 12 and 13 correspond to breakthroughs respectively in NO and NO2 on an adsorbent according to the invention.
  • NO reacts strongly with oxygen to give NO2 and this adsorbs
  • a stabilized system is obtained when the adsorbent is saturated at the referenced time (ts).
  • the rate of conversion of NO to NO2, after saturation of the adsorbent is in this case 60%. It can be considered that an adsorbent has a significant effect on the conversion when the rate thus determined is greater than 20%, i.e. about fifteen points above a practically inert material.
  • Curve 12 also shows that the adsorption of the NO2 formed, before saturation, allows a higher NO conversion rate than that obtained subsequently. It can be concluded that, on the one hand, an oversizing of the layer corresponding to the adsorbent favoring the conversion reaction will increase the average conversion rate and, on the other hand, that said adsorbent mass could advantageously comprise a material favoring the reaction and a material with high NO2 adsorption capacity.
  • These two materials can be in the form of particles intimately mixed in the optimum ratio determined by tests. If necessary, these two materials can be mixed in the powder state and shaped to give a particle comprising both a catalysis function and a NO2 adsorption function. The catalysis function can be ensured for example by the binder. The mixture of the two materials is then called “adsorbent”.
  • the processing unit uses an adsorbent whose rate of conversion of NO to NO2, as defined above, is greater than or equal to 20 %.
  • the processing unit uses an adsorbent whose conversion rate of NO to NO2, as defined above, is greater than or equal to 30%, preferably greater than or equal to 50 %.
  • a CO2 recovery installation 10 which differs from the installation of the example of the in that the drying space 80 is part of the processing unit 40, here of the PSA type.
  • This drying space 80 comprises a drying adsorbent chosen to adsorb H2O and placed in the treatment unit 40, upstream of the adsorbent 9 chosen to promote the oxidation of NO to NO2.
  • the processing unit 40 is arranged to process the gas stream previously dried in the drying space 80, with a view to producing a gas stream enriched in CO2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

L'invention concerne une installation (1) de récupération de CO2 contenu dans un flux gazeux d'alimentation (FG) comprenant au moins 10 ppm de NOX, entre 10% et 50% en volume de CO2, du N2, de l'eau et de l'O2 avec une concentration minimale de 0.1 % molaire, le NOX comprenant du NO et du NO2, l'installation comprenant : - un ensemble de compression (2) agencé pour comprimer le flux gazeux d'alimentation, - un espace de séchage (8), placé de préférence en aval de l'ensemble de compression, pour sécher le flux gazeux d'alimentation ayant traversé l'ensemble de compression, de manière à obtenir un flux gazeux séché (FGS), - une unité de traitement par adsorption (4) comportant au moins un adsorbant (9) choisi pour favoriser l'oxydation du NO en NO2, l'espace de séchage (8) appartenant à un sécheur (3) placé en amont de l'unité de traitement (4), l'unité de traitement (4) étant agencée pour traiter le flux gazeux séché venant du sécheur, en vue de produire un flux gazeux enrichi en CO2.

Description

Installation de récupération de CO2 contenu dans un flux gazeux d'alimentation
La présente invention porte sur une installation et un procédé de récupération de CO2 (dioxyde carbone) contenu dans un flux gazeux d'alimentation.
Les NOX (oxydes d'azote) sont présents dans les gaz de combustion sous forme de NO (monoxyde d'azote) et de NO2 (dioxyde d'azote), dans un rapport typique de 90% NO et 10% NO2. La plupart des centrales électriques sont équipées d'unités de réduction catalytique sélective (SCR) dans lesquelles le NH3 (ammoniac) réagit avec le NO et le NO2 pour former du N2 (diazote) et de l'eau (H2O), réduisant ainsi les émissions de NOX en dessous de centaines de ppm. Ces unités doivent traiter d'importantes quantités de gaz de combustion.
Dans les industries, toutes les usines ne sont pas équipées de SCR. Par exemple, une usine de craquage catalytique des fluides ou une usine de ciment émet environ 200 ppm de Nox. Les unités SMRs (« Steam Methane Reforming » en anglais ou reformage de méthane à la vapeur d’eau) émettent moins de 100 ppm Nox. Dans le contexte de la capture du carbone, la solution évidente pour l'homme de l'art serait d'avoir une réduction en série des NOx par une SCR et ensuite un post-traitement CCUS (désignant en anglais « Carbon dioxide Utilization Capture and Storage ») utilisant par exemple de l’amine, pour capturer le CO2, cette technologie étant, d’une part, sensible aux NOx (dégradation du solvent et création de sous-produits extrêmement toxiques) et, d’autre part, susceptible de concentrer les NOx émis à l’atmosphère après capture du CO2.
L’invention vise en particulier à proposer une réduction significative des NOX simultanément à un captage du CO2 dans les gaz de combustion. L’invention n’est pas limitée à un gaz de combustion et peut s’appliquer à tout type de flux gazeux d’alimentation quel que soit son origine, ce flux gazeux comprenant du CO2, des NOx et potentiellement au moins un gaz moins adsorbable que le CO2 tel que N2, O2, Ar, He, H2…
L’invention a ainsi pour objet une installation de récupération de CO2 contenu dans un flux gazeux d'alimentation comprenant au moins 10 ppm de NOX, entre 10% et 50% en volume de CO2, du N2, de l’eau et de l’O2 avec une concentration minimale de 0.1 % molaire, de préférence de concentration supérieure ou égale à 1% molaire, notamment de concentration comprise entre 2% et 5% ou de concentration supérieure à 10%, le NOX comprenant du NO et du NO2, l’installation comprenant :
- un ensemble de compression agencé pour comprimer le flux gazeux d’alimentation, l’ensemble de compression comprenant notamment une pluralité d’étages de compression et une pluralité d’échangeurs de chaleur agencés pour refroidir le flux gazeux comprimé par les étages de compression, cet ensemble de compression étant agencé pour comprimer le flux gazeux à une pression supérieure à 1.5 bar abs, notamment à une pression comprise entre 3 et 15 bars abs, voire à une pression comprise entre 4 et 12 bars abs (l’abréviation « bar abs » signifie bar absolu),
- un espace de séchage, placé de préférence en aval de l’ensemble de compression, pour sécher le flux gazeux d’alimentation ayant traversé l’ensemble de compression, de manière à obtenir un flux gazeux séché,
- une unité de traitement par adsorption comportant au moins un adsorbant choisi pour favoriser l’oxydation du NO en NO2 et agencée pour :
  • a. l’espace de séchage appartenant à un sécheur placé en amont de l’unité de traitement, traiter le flux gazeux séché venant du sécheur, en vue de produire un flux gazeux enrichi en CO2, ou
  • b. l’espace de séchage faisant partie de l’unité de traitement et comportant un adsorbant de séchage choisi pour adsorber du H2O et placé dans l’unité de traitement en amont de l’adsorbant choisi pour favoriser l’oxydation du NO en NO2, traiter le flux gazeux préalablement séché par l’adsorbant de séchage, en vue de produire un flux gazeux enrichi en CO2.
Le flux gazeux d'alimentation peut contenir, en plus des composés cités plus haut, d’autres constituants minoritaires comme l’argon et diverses impuretés en fonction des unités amont d’où provient le flux gazeux. En outre, une partie des NOX peut se trouver sous la forme de N2O4 (tétraoxyde de diazote, qu’on assimile à 2 NO2 dans les bilans).
Selon l’un des aspects de l’invention, le flux gazeux d’alimentation est filtré avant d’être introduit dans l’ensemble de compression afin d’être débarrassé de possibles particules ou poussières qu’il pourrait contenir. En effet, le flux gazeux d’alimentation peut, avant filtration, contenir une trop grande quantité de particules ou de poussières. Cette filtration, si elle est nécessaire, se fait jusqu’à un seuil choisi pour que le flux gazeux ainsi traité par filtration soit compatible avec le ou les unités aval.
Par « compatible avec les unités aval », on entend que les particules résiduelles ne causent pas de bouchage, de dépôt ou de mauvaise distribution pouvant nuire au bon fonctionnement de l’unité. Suivant les cas, les seuils choisis peuvent correspondre à des particules de dimension inférieure à 40 microns, éventuellement inférieure à 5 microns, et/ou à une concentration en particules solides inférieure à 1mg/m3, éventuellement inférieure à 0, 01 mg/m3.
Dans le cas où l’espace de séchage appartient à un sécheur en amont de l’unité de traitement, le sécheur peut comporter un dispositif d’adsorption par modulation de température appelé TSA (Température Swing Adsorption, en anglais).
On appelle ici TSA, toutes les unités de séparation de gaz par adsorption suivant des cycles adsorption/ régénération telles que le gaz de régénération est utilisé au moins temporairement (étape de chauffage) à une température supérieure à la température d’adsorption. La pression du gaz de régénération est quelconque : supérieure, égale ou préférentiellement inférieure à la pression d’adsorption.
Ce sécheur est alors un dispositif supplémentaire, par exemple un TSA avec seulement deux adsorbeurs de séchage et quatre vannes par adsorbeur. Ce mode de réalisation de l’invention présente les avantages qui sont l’absence de problème de corrosion sur le PSA et le fait que les gaz issus du PSA sont secs.
On notera que le sécheur peut être placé sur le gaz sortant d’un quelconque étage de compression, après réfrigération, si cela présente un intérêt économique.
Selon l’un des aspects de l’invention, le sécheur comporte une unité TEG (TriEthylène Glycol) pour sécher le flux gazeux.
Dans le cas où l’espace de séchage fait partie de l’unité de traitement et comporte un adsorbant de séchage, il n’y a pas de dispositif supplémentaire au PSA, mais il faut prévoir des mesures contre une corrosion due à la présence possible d’acide nitrique. Par exemple, il est alors souhaitable d’utiliser des matériaux résistants à la corrosion comme l’acier inoxydable.
Selon l’un des aspects de l’invention, le flux gazeux séché comporte moins de 500 ppm d’H2O, notamment moins de 10 ppm, par exemple moins de 1 ppm.
Le NOX comprend notamment sensiblement 90% de NO et 10% en volume de NO2, avant de traverser l’ensemble de compression. Ces ratios peuvent être différents, en particulier suivant la source du flux gazeux d’alimentation et les traitements qu’il a pu subir.
Dans la présente invention, la présence d’un sécheur avant l’unité de traitement est particulièrement avantageuse pour éviter la formation d’acide nitrique dans cette unité de traitement ou en aval de celle-ci. Ceci permet d’éviter d’endommager des équipements tels que des vannes du PSA.
L’invention permet de limiter à la fois la quantité de NO dans le flux enrichi en CO2 issu de l’unité de traitement par adsorption, par exemple le PSA, et la quantité de NO présente dans le flux enrichi en azote en sortie su PSA. Pour ce faire, l’invention utilise l'effet catalyseur de certains adsorbants qui favorise la réaction de NO en NO2, en présence d’oxygène. L’invention permet d’instaurer des conditions favorables pour que ces adsorbants soient pleinement actifs sur une durée satisfaisante. Pour cela, l’invention permet, grâce à l’espace de séchage, de s’assurer de l'absence d'H2O. En effet, le H2O pourrait s’adsorber au moins partiellement, ce qui diminuerait l’activité de l’adsorbant. De plus, la présence de NO2 en présence de H2O peut conduire à la formation d'acide nitrique qui, suivant le type d’adsorbants d'une part peut s'adsorber et diminuer notablement l'activité catalytique recherchée, d'autre part pour certains autres types d’adsorbants, peut accélérer leur destruction. L'absence d'acide nitrique permet en outre d'utiliser des matériaux classiques et évite d'endommager des équipements sensibles tels que les vannes.
L’invention permet ainsi un abattement significatif du NO tout en permettant une capture du CO2 issu de flux gazeux d’alimentation.
La pression apportée par l’ensemble de compression favorise la conversion de NO en NO2. 
Selon l’un des aspects de l’invention, l’adsorbant est choisi parmi : un gel de silice, une zéolite, du charbon actif, une alumine ou une combinaison de ces éléments.
Selon l’un des aspects de l’invention, l’adsorbant choisi pour favoriser l’oxydation du NO en NO2 comporte un mélange d’au moins deux gels de silice différents, et/ou d’au moins deux zéolites différentes, et/ou d’au moins deux charbons actifs différents.
Deux adsorbants peuvent être différents, de façon non exhaustive, par leur porosité, par la nature des sites actifs (en particulier pour les zéolites), par le liant (en nature ou quantité), par les éventuelles impuretés présentes (liant, charbon actif…), par des post-traitements (échanges d’ions, imprégnation, lavages…). En fonction de ces différences, deux adsorbants de même type peuvent avoir des caractéristiques d’adsorption ou de catalyse très sensiblement différentes. C’est d’autant plus le cas lorsque deux paramètres diffèrent comme par exemple la composition et la porosité.
L’adsorbant est choisi de sorte à ne pas être dégradé substantiellement par réaction chimique avec des NOX. Ainsi la durée de vie de l’adsorbant est supérieure à 1 an, de préférence supérieure à 2 ans, voire 3 ans d’opération.
L’adsorbant de l’unité de traitement adsorbe de manière privilégiée le CO2 et le N2 n’est pas adsorbé de manière privilégiée par cet adsorbant, de sorte que l'essentiel de l'azote soit extrait à la haute pression du cycle, dans un flux gazeux appauvri en CO2, et à obtenir un ou plusieurs flux gazeux enrichi en CO2 lors de la régénération de la masse absorbante.
Selon l’un des aspects de l’invention, le NO2 est également adsorbé de manière privilégiée et le NO n’est pas adsorbé de manière privilégiée de sorte que la majorité du NO2 sortant de l’unité se retrouve dans le flux enrichi en CO2 et que la majorité du NO sortant de l’unité se retrouve dans un flux gazeux riche en N2.
Selon l’un des aspects de l’invention, l’adsorbant de l’unité de traitement choisi est un gel de silice ou une alumine, ou une combinaison de ces deux éléments.
Selon l’un des aspects de l’invention, l’unité de traitement comporte au moins un adsorbant supplémentaire, en plus de l’adsorbant qui favorise l’oxydation du NO en NO2 décrit jusqu’ici. Cet adsorbant supplémentaire, qui n’a pas cette fonction de favoriser l’oxydation du NO en NO2, est par exemple un adsorbant susceptible d’adsorber du CO2 et/ou du NO2.
Selon l’un des aspects de l’invention, au moins un équipement de séparation des condensats peut être prévu, en particulier après refroidissement en sortie d’un étage de compression.
Selon l’un des aspects de l’invention, l’unité de traitement comporte un dispositif d’adsorption à modulation de pression appelé PSA (Pressure Swing Adsorption, en anglais).
Le gaz de régénération du sécheur de type TSA est généralement un gaz riche en N2, préférentiellement extrait du flux gazeux d’alimentation, c’est-à-dire soit une fraction du flux appauvri en CO2 directement issu du PSA, soit un gaz de purge issu d'une unité située à l’aval du PSA, par exemple une unité cryogénique traitant le flux enrichi en CO2, qui contient encore une certaine quantité de N2, pour un enrichissement complémentaire en CO2. La fraction N2 résiduelle sera alors extraite généralement en tête d’une colonne de déazotation et peut être renvoyée vers l’installation de récupération de CO2 faisant l’objet de l’invention.
Selon l’un des aspects de l’invention, l’unité de traitement comporte un dispositif d’adsorption VPSA dans lequel l’adsorption s’effectue à une pression haute supérieure à la pression atmosphérique, notamment entre 1.5 et 6 bar abs, et la désorption à une pression basse inférieure à la pression atmosphérique, notamment inférieure à 600 mbar. Cette pression est notamment comprise entre 200 et 600 mbar abs, ou peut atteindre, le cas échéant, sensiblement 50 mbar abs dans le cas, par exemple, de pompe à vide comportant plusieurs étages de pompage.
Selon l’un des aspects de l’invention, lorsque l’espace de séchage appartient à un sécheur, le flux entrant dans le sécheur a été refroidi, de préférence entre 3 et 20°C, avec de l'eau de réfrigération adéquate telle que de l’eau froide ou de l’eau glacée, ce qui favorise l’adsorption.
Selon l’un des aspects de l’invention, notamment lorsque l’espace de séchage est dans l’unité de traitement, le flux entrant dans l’unité de traitement a été refroidi, de préférence entre 3 et 20°C, avec de l'eau de réfrigération adéquate telle que de l’eau froide ou de l’eau glacée.
L’invention a encore pour objet un procédé de récupération de CO2 contenu dans un flux gazeux d'alimentation comprenant au moins 10 ppm de NOX, entre 10% et 50% en volume de CO2, du N2, de l’eau, et de l’O2 avec une concentration minimale de 0.1 % molaire, de préférence de concentration supérieure ou égale à 1% molaire, notamment de concentration comprise entre 2% et 5% ou de concentration supérieure à 10%, le NOX comprenant du NO et du NO2, le procédé comportant les étapes suivantes :
  • comprimer, à l’aide d’un ensemble de compression, le flux gazeux d’alimentation,
  • puis sécher, à travers un espace de séchage, le flux gazeux d’alimentation comprimé, de manière à obtenir un flux gazeux séché, notamment comportant moins de 500 ppm d’H2O, notamment moins de 10 ppm d’H2O, par exemple moins de 1 ppm d’H2O,
  • à l’aide d’une unité de traitement par adsorption comportant au moins un adsorbant choisi pour favoriser l’oxydation du NO en NO2,
  • a. l’espace de séchage appartenant à un sécheur placé en amont de l’unité de traitement, traiter le flux gazeux séché venant du sécheur, en vue de produire un flux gazeux enrichi en CO2, ou
  • b. l’espace de séchage faisant partie de l’unité de traitement et comportant un adsorbant de séchage choisi pour adsorber du H2O et placé dans l’unité de traitement en amont de l’adsorbant choisi pour favoriser l’oxydation du NO en NO2, traiter le flux gazeux préalablement séché par l’adsorbant de séchage, en vue de produire un flux gazeux enrichi en CO2.
L’invention permet d’obtenir un taux global de conversion de NO en NO2 par l’oxydation du NO qui est supérieur à 20%, notamment supérieur à 30% ou 50%, voire 75%.
Par taux global, on entend que le bilan est effectué entre la quantité de NO entrant mesurée dans le gaz d’alimentation à l’admission de l’ensemble de compression (augmentée éventuellement de la quantité de NO contenue dans un recyclage venue d’une unité autre que l’unité de récupération de CO2 de l’installation de l’invention) , et les quantités sortant de l’unité de traitement par adsorption.
On notera que le bilan en sortie doit se faire au minimum sur un cycle complet du PSA.
Selon l’un des aspects de l’invention, le CO2 est présent dans le flux gazeux d’alimentation à raison de plus de 10% en volume, notamment de plus de 15% ou 20% en volume, sur une base sèche.
La composition en base sèche est celle définie quand l'eau est retirée du gaz. Par exemple s'il y a 15% mole d'eau dans le flux gazeux, toutes les autres compositions en présence d'eau sont à diviser par 0.85 pour faire en définitive 100% sans prendre en compte H2O.
Selon l’un des aspects de l’invention, le NOX est contenu dans le flux gazeux d’alimentation à raison de moins de 1000 ppmv, notamment moins de 500 ppmv ou 100 ppmv.
Selon l’un des aspects de l’invention, le rapport, en ppm molaire, NO2/(NO+NO2) dans le flux gazeux d’alimentation à traiter est inférieur à 50%, notamment inférieur à 20% ou 10% voire 5% or 1%.
Le flux gazeux enrichi en CO2 issu de l'unité de traitement par adsorption, par exemple le PSA ou VPSA, peut être traité dans une unité aval pour un enrichissement supplémentaire en CO2 et le gaz appauvri en CO2 de cette unité aval peut être recyclé à l'amont de ou directement dans l'unité de traitement par adsorption, par exemple le PSA ou VPSA, afin d'augmenter le rendement d'extraction en CO2.
La composition en CO2 du flux enrichi en CO2 de l'unité de traitement par adsorption, par exemple le PSA ou VPSA, peut être comprise entre 45 et 90% en fonction de l'application.
Selon l’un des aspects de l’invention, le flux gazeux de combustion est une fumée issue d’une combustion d’hydrocarbures.
Ces fumées proviennent par exemple d’un four de cimenterie ou d’un four SMR (« Steam Methane Reforming » en anglais ou reformage de méthane à la vapeur d’eau).
Selon l’un des aspects de l’invention, une fraction du CO2 contenue dans le gaz de combustion peut venir de la matière première introduite dans le four pour y être transformée, par exemple le CO2 pouvant provenir du CaCO3.
L’invention sera mieux comprise à la lecture de la description qui suit et à l’examen de la figure qui l’accompagne. Cette figure n’est donnée qu’à titre illustratif mais nullement limitatif de l’invention.
La est un schéma bloc illustrant une installation selon un exemple de mise en œuvre de l’invention ;
La représente des courbes schématiques illustrant les résultats de test pour mesurer le taux de conversion de NO en NO2,
La est un schéma bloc illustrant une installation selon un autre exemple de mise en œuvre de l’invention.
On a représenté sur la une installation 1 de récupération de CO2 contenu dans un flux gazeux d'alimentation FG comprenant au moins 10 ppm de NOX, entre 10% et 50% en volume de CO2, du N2, de l’eau et de l’O2 avec une concentration minimale de 0.1 % molaire, de préférence de concentration supérieure ou égale à 1% molaire, le NOX comprenant du NO et du NO2, l’installation comprenant :
  • un ensemble de compression 2 agencé pour comprimer le flux gazeux FG d’alimentation, l’ensemble de compression comprenant notamment une pluralité d’étages de compression et une pluralité d’échangeurs de chaleur agencés pour refroidir le flux gazeux comprimé par les étages de compression, éventuellement une pluralité d’équipements pour éliminer les condensats, cet ensemble de compression 2 étant agencé pour comprimer le flux gazeux à une pression supérieure à 1.5 bar abs, notamment à une pression comprise entre 3 et 15 bars abs, voire à une pression comprise entre 4 et 12 bars abs,
  • un sécheur 3 placé en aval de l’ensemble de compression 2, pour sécher le flux gazeux d’alimentation ayant traversé l’ensemble de compression, de manière à obtenir un flux gazeux séché FGS, ce sécheur 3 formant un espace de séchage 8 au sens de l’invention,
  • une unité de traitement par adsorption 4 agencée pour traiter le flux gazeux séché FGS en vue de produire un flux gazeux F1 enrichi en CO2, l’unité de traitement 4 étant montée en aval du sécheur 3 et comportant au moins un adsorbant 9 choisi pour favoriser l’oxydation du NO en NO2.
Le flux gazeux d’alimentation FG est formé par exemple par des fumées provenant d’un four de cimenterie ou d’un four SMR (« Steam Methane Reforming » en anglais ou reformage de méthane à la vapeur d’eau).
Le flux gazeux d'alimentation peut contenir, en plus des composés cités plus haut, d’autres constituants minoritaires comme l’argon et diverses impuretés en fonction des unités amont d’où provient le flux gazeux. En outre, une partie des NOX peut se trouver sous la forme de N2O4 (tétraoxyde de diazote).
Le flux gazeux séché FGS comporte moins de 500 ppm d’H2O, notamment moins de 10 ppm, par exemple moins de 1 ppm.
Le NOX comprend notamment sensiblement 90% de NO et 10% en volume de NO2, avant de traverser l’ensemble de compression.
Dans la présente invention, la présence du sécheur avant l’unité de traitement est particulièrement avantageuse pour éviter la formation d’acide nitrique dans cette unité de traitement ou en aval de celle-ci.
L’invention permet ainsi un abattement significatif du NO tout en permettant une capture du CO2 issu de flux gazeux d’alimentation.
L’adsorbant 9 est choisi parmi : un gel de silice, une zéolite, du charbon actif, une alumine ou une combinaison de ces éléments.
Par exemple, l’adsorbant 9 choisi pour favoriser l’oxydation du NO en NO2 comporte un mélange d’au moins deux gels de silice différents, et/ou d’au moins deux zéolites différentes, et/ou d’au moins deux charbons actifs différents.
L’adsorbant 9 est choisi de sorte à ne pas être dégradé substantiellement par réaction chimique avec des NOX. Ainsi la durée de vie de l’adsorbant est supérieure à 1 an, de préférence supérieure à 2 ans, voire 3 ans d’opération.
L’adsorbant 9 de l’unité de traitement 4 adsorbe de manière privilégiée le CO2, et le N2 n’est pas adsorbé de manière privilégiée par cet adsorbant, de sorte que l'essentiel de l'azote soit extrait à la haute pression du cycle, dans un flux gazeux F2 appauvri en CO2, et à obtenir un ou plusieurs flux gazeux F1 enrichi en CO2 lors de la régénération de la masse absorbante.
Le NO2 est également adsorbé de manière privilégiée et le NO n’est pas adsorbé de manière privilégiée de sorte que la majorité du NO2 sortant de l’unité de traitement 4 se retrouve dans le flux enrichi en CO2 et que la majorité du NO sortant de l’unité se retrouve dans le flux gazeux enrichi en N2.
Par exemple, l’unité de traitement 4 comporte un dispositif d’adsorption à modulation de pression appelé PSA (Pressure Swing Adsorption, en anglais).
En variante, l’unité de traitement 4 comporte un dispositif d’adsorption VPSA dans lequel l’adsorption s’effectue à une pression haute supérieure à la pression atmosphérique, notamment entre 1.5 et 6 bar abs, et la désorption à une pression basse inférieure à la pression atmosphérique, notamment comprise entre 200 et 600 mbar abs, voire pouvant descendre jusqu’à 50 mbar abs.
Le sécheur 3 comporte un dispositif d’adsorption par modulation de température appelé TSA (Température Swing Adsorption, en anglais).
Le flux entrant dans le sécheur 3 a été refroidi, de préférence entre 3 et 20°C, avec de l'eau de réfrigération adéquate telle que de l’eau froide ou de l’eau glacée, ce qui favorise l’adsorption.
Le flux entrant dans l’unité de traitement 4 a été refroidi, de préférence entre 3 et 20°C, avec de l'eau de réfrigération adéquate telle que de l’eau froide ou de l’eau glacée.
L’installation 1 permet la mise en œuvre des étapes suivantes :
  • comprimer, à l’aide d’un ensemble de compression 2, le flux gazeux d’alimentation,
  • puis sécher, à l’aide d’un sécheur 3, le flux gazeux d’alimentation comprimé, de manière à obtenir un flux gazeux séché, notamment le sécheur étant agencé de sorte qu’il produire un flux gazeux séché comportant moins de 500 ppm d’H2O, notamment moins de 10 ppm, par exemple moins de 1 ppm,
  • traiter, à l’aide d’une unité de traitement par adsorption 4, le flux gazeux séché en vue de produire un flux gazeux enrichi en CO2, l’unité de traitement étant montée en aval du sécheur et comportant au moins un adsorbant 9 choisi pour favoriser l’oxydation du NO en NO2.
L’invention permet d’obtenir un taux global de conversion de NO en NO2 par l’oxydation du NO qui est supérieur à 20%, notamment supérieur à 30% ou 50%, voire 75%.
On rappelle que par taux global, on entend que le bilan est effectué entre la quantité de NO entrant mesurée à l’admission de l’ensemble de compression et les quantités sortant de l’unité de traitement par adsorption.
Le CO2 est présent dans le flux gazeux d’alimentation à raison de plus de 10% en volume, notamment de plus de 15% ou 20% en volume, sur une base sèche.
Le NOX est contenu dans le flux gazeux d’alimentation FG à raison de moins de 1000 ppmv, notamment moins de 500 ppmv ou 100 ppmv.
Le rapport, en ppm molaire, NO2/(NO+NO2) dans le flux gazeux d’alimentation FG à traiter est inférieur à 50%, notamment inférieur à 20% ou 10% voire 5% or 1%.
Le flux gazeux F1 enrichi en CO2 issu de l'unité de traitement par adsorption 4, par exemple le PSA ou VPSA, peut être traité dans une unité aval pour un enrichissement supplémentaire et le gaz appauvri en CO2 de cette unité aval peut être recyclé à l'amont de ou directement dans l'unité de traitement 4 par adsorption, par exemple le PSA ou VPSA, afin d'augmenter le rendement d'extraction en CO2.
La composition en CO2 du flux enrichi en CO2 de l'unité de traitement par adsorption, par exemple le PSA ou VPSA, peut être comprise entre 45 et 90% en fonction de l'application.
Il est possible de s’assurer qu’un adsorbant est apte à favoriser l’oxydation du NO en NO2 par exemple grâce à un test qui comprend les étapes suivantes :
  • régénérer les particules par balayage à l’azote sec ( à 1 ppm maximum d’eau) à 250°C (ou à la température maximum recommandée la cas échéant) ;
  • faire passer un flux d'azote sec contenant 1ppm maximum d’eau, 50 ppm de NO et 2% mole d’O2 ,à température et pression représentatives du procédé selon l’invention, par exemple à 20°C et 8 bar abs pour un PSA fonctionnant à 8 bar abs de pression haute du cycle et à température ambiante, à travers un tube rempli de billes de verre, le débit de N2 et les dimensions de l’adsorbeur permettant un temps de contact du gaz (le temps de contact étant défini ci-dessous) avec les billes de verre d’environ 5 secondes ;
  • continuer le balayage jusqu’à obtenir une teneur stable du NO en sortie ;
  • calculer le taux de conversion du NO en NO2 ;
  • implémenter ces étapes avec le même tube rempli du même volume de l’adsorbant à tester ;
  • mesurer la teneur en NO en sortie lorsque cette teneur est stabilisée ;
  • calculer le taux de conversion,
  • conclure que l’adsorbant est apte à favoriser l'oxydation du NO en NO2 si le taux de conversion avec le tube rempli d'adsorbant est supérieur au taux de conversion avec le tube rempli de billes de verre et retenir préférentiellement des adsorbants pour lequel le taux de conversion est supérieur d’au moins 10 points à celui obtenu au moyen de billes de verre.
Par « temps de contact », on entend ici le temps que met le gaz à traverser la zone utile du tube (celle qui sera remplie de particules) quand elle est vide de tout matériau. Cela fixe avec précision le débit de gaz à utiliser lors des tests. Dans ces conditions, un temps de contact de 5 secondes correspond à un temps de séjour réel du gaz lors d’un essai d’environ 3 secondes.
Le taux de conversion dans la réaction chimique d’oxydation de NO en NO2 est défini de la manière suivante. Si en entrée, on est en présence d'une quantité de N moles de NO (par unité de temps) et M moles en sortie, avec M<N, le taux de conversion est de (N-M)/N, c'est à dire le nombre de moles transformées en NO2 sur le nombre de moles en entrée.
Dans le cas du test défini ci-dessus, le débit de gaz peut être considéré comme constant entre l’entrée et la sortie et on peut comparer directement les ppm de NO entre l’entrée et la sortie.
La montre un résultat de test effectué dans les conditions ci-dessus. Les teneurs en sortie du tube (NO et éventuellement NO2) figurent en ordonnée avec le temps en abscisse.
La courbe référencée 11 correspond à des billes de verre ou à un adsorbant n’ayant aucun effet catalyseur particulier. Le NO ne s’adsorbant pas sort très rapidement et reste ensuite quasiment stable. La teneur en sortie est, pour ce type de produit, pas ou très peu catalyseur de la réaction d’oxydation, dans la fourchette allant de 47 à 49.5 ppm par exemple. La teneur en NO2, non représentée, permet de boucler le bilan aux incertitudes de mesure près. Les taux de conversion sont dans la fourchette allant de 1% à 6%.
Les courbes 12 et 13 correspondent aux percées respectivement en NO et NO2 sur un adsorbant selon l’invention. Le NO réagissant fortement avec l’oxygène pour donner du NO2 et celui-ci s’adsorbant, on obtient un système stabilisé lorsque l’adsorbant est saturé au temps référencé (ts). Le taux de conversion du NO en NO2, après saturation de l’adsorbant, est dans ce cas de 60%. On peut considérer qu’un adsorbant à un effet sensible sur la conversion quand le taux ainsi déterminé est égal supérieur à 20%, soit une quinzaine de points au-dessus d’un matériau pratiquement inerte.
La courbe 12 montre également que l’adsorption du NO2 formé, avant saturation, permet un taux de conversion du NO supérieur à celui obtenu par la suite. On peut en conclure que, d’une part, un surdimensionnement de la couche correspondant à l’adsorbant favorisant la réaction de conversion va augmenter le taux de conversion moyen et, d’autre part, que ladite masse adsorbante pourrait avantageusement comprendre un matériau favorisant la réaction et un matériau à forte capacité d’adsorption du NO2. Ces deux matériaux peuvent se trouver sous forme de particules intimement mélangées dans le rapport optimal déterminé par des tests. Le cas échéant, ces deux matériaux peuvent être mélangés à l’état de poudre et mis en forme pour donner une particule comportant à la fois une fonction de catalyse et une fonction d’adsorption du NO2. La fonction catalyse peut être assurée par exemple par le liant. On appelle alors « adsorbant » le mélange des deux matériaux.
D’une manière générale, selon l’un des aspects de l’invention, l’unité de traitement met en œuvre un adsorbant dont le taux de conversion de NO en NO2, tel que défini ci-dessus, est supérieur ou égal à 20%.
Selon un autre aspect de l’invention, l’unité de traitement met en œuvre un adsorbant dont le taux de conversion de NO en NO2, tel que défini ci-dessus, est supérieur ou égal à 30%, préférentiellement supérieur ou égal à 50%.
On a représenté sur la , une installation 10 de récupération de CO2 selon un autre exemple de réalisation de l’invention, qui diffère de l’installation de l’exemple de la en ce que l’espace de séchage 80 fait partie de l’unité de traitement 40, ici de type PSA. Cet espace de séchage 80 comporte un adsorbant de séchage choisi pour adsorber du H2O et placé dans l’unité de traitement 40, en amont de l’adsorbant 9 choisi pour favoriser l’oxydation du NO en NO2. L’unité de traitement 40 est agencé pour traiter le flux gazeux préalablement séché dans l’espace de séchage 80, en vue de produire un flux gazeux enrichi en CO2.

Claims (9)

  1. Installation (1) de récupération de CO2 contenu dans un flux gazeux d'alimentation comprenant au moins 10 ppm de NOX, entre 10% et 50% en volume de CO2, du N2, de l’eau et de l’O2 avec une concentration minimale de 0.1 % molaire, de préférence de concentration supérieure ou égale à 1% molaire, notamment de concentration comprise entre 2% et 5% ou de concentration supérieure à 10%, le NOX comprenant du NO et du NO2, l’installation comprenant :
    • un ensemble de compression (2) agencé pour comprimer le flux gazeux d’alimentation, l’ensemble de compression comprenant notamment une pluralité d’étages de compression et une pluralité d’échangeurs de chaleur agencés pour refroidir le flux gazeux comprimé par les étages de compression, cet ensemble de compression étant agencé pour comprimer le flux gazeux à une pression supérieure à 1.5 bar abs, notamment à une pression comprise entre 3 et 15 bars abs, voire à une pression comprise entre 4 et 12 bars abs,
    • un espace de séchage (8 ; 80), placé de préférence en aval de l’ensemble de compression, pour sécher le flux gazeux d’alimentation ayant traversé l’ensemble de compression, de manière à obtenir un flux gazeux séché (FGS),
    • une unité de traitement par adsorption (4 ; 40) comportant au moins un adsorbant (9) choisi pour favoriser l’oxydation du NO en NO2, l’espace de séchage (8) appartenant à un sécheur (3) placé en amont de l’unité de traitement (4), l’unité de traitement (4 ; 40) étant agencée pour traiter le flux gazeux séché venant du sécheur, en vue de produire un flux gazeux enrichi en CO2.
  2. Installation selon la revendication précédente, dans laquelle le flux gazeux séché (FGS) comporte moins de 500 ppm d’H2O, notamment moins de 10 ppm, par exemple moins de 1 ppm.
  3. Installation selon l’une des revendications précédentes, dans laquelle l’adsorbant (9) choisi pour favoriser l’oxydation du NO en NO2 est choisi parmi : un gel de silice, une zéolite, du charbon actif, une alumine ou une combinaison de ces éléments.
  4. Installation selon la revendication précédente, dans laquelle l’adsorbant choisi pour favoriser l’oxydation du NO en NO2 comporte un mélange d’au moins deux gels de silice différents, et/ou d’au moins deux zéolites différentes, et/ou d’au moins deux charbons actifs différents.
  5. Installation selon l’une des revendications précédentes, dans laquelle l’unité de traitement comporte un dispositif d’adsorption à modulation de pression.
  6. Installation selon l’une des revendications 1 à 4, dans laquelle l’unité de traitement comporte un dispositif d’adsorption VPSA dans lequel l’adsorption s’effectue à une pression haute supérieure à la pression atmosphérique, notamment entre 1.5 et 6 bar abs, et la désorption à une pression basse inférieure à la pression atmosphérique.
  7. Installation selon l’une des revendications précédentes, dans laquelle le sécheur (3) comporte un dispositif d’adsorption par modulation de température appelé TSA.
  8. Procédé de récupération de CO2 contenu dans un flux gazeux d'alimentation comprenant au moins 10 ppm de NOX, entre 10% et 50% en volume de CO2, du N2, de l’eau, et de l’O2 avec une concentration minimale de 0.1 % molaire, de préférence de concentration supérieure ou égale à 1% molaire, notamment de concentration comprise entre 2% et 5% ou de concentration supérieure à 10%, le NOX comprenant du NO et du NO2, le procédé comportant les étapes suivantes :
    • comprimer, à l’aide d’un ensemble de compression, le flux gazeux d’alimentation,
    • puis sécher, à travers un espace de séchage (8 ; 80), le flux gazeux d’alimentation comprimé, de manière à obtenir un flux gazeux séché (FGS), notamment comportant moins de 500 ppm d’H2O, notamment moins de 10 ppm d’H2O, par exemple moins de 1 ppm d’H2O,
    • à l’aide d’une unité de traitement par adsorption (4 ; 40) comportant au moins un adsorbant (9) choisi pour favoriser l’oxydation du NO en NO2, l’espace de séchage (8 ; 80) appartenant à un sécheur (3) placé en amont de l’unité de traitement (4), traiter le flux gazeux séché venant du sécheur (3), en vue de produire un flux gazeux enrichi en CO2.
  9. Procédé selon la revendication précédente, dans lequel le taux global de conversion de NO en NO2 par l’oxydation du NO est supérieur à 20%, notamment supérieur à 30% ou 50%, voire 75%.
PCT/EP2022/087418 2022-01-14 2022-12-22 Installation de récupération de co2 contenu dans un flux gazeux d'alimentation WO2023134998A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2200315A FR3131856A1 (fr) 2022-01-14 2022-01-14 Installation de récupération de CO2 contenu dans un flux gazeux d'alimentation
FRFR2200315 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023134998A1 true WO2023134998A1 (fr) 2023-07-20

Family

ID=80999895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/087418 WO2023134998A1 (fr) 2022-01-14 2022-12-22 Installation de récupération de co2 contenu dans un flux gazeux d'alimentation

Country Status (2)

Country Link
FR (1) FR3131856A1 (fr)
WO (1) WO2023134998A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950925A1 (fr) * 2010-04-20 2011-04-08 Air Liquide Procede et appareil d'extraction de produits petroliferes
EP2404658A2 (fr) * 2010-07-08 2012-01-11 Air Products And Chemicals, Inc. Eloigner NO2 par adsorption sélective de gaz d'échappement d'un procédé oxy-gaz
EP2623178A1 (fr) * 2012-02-03 2013-08-07 Alstom Technology Ltd Unité de traitement de gaz comportant un dispositif de suppression d'oxydes de nitrogène
US20130319040A1 (en) * 2011-02-08 2013-12-05 Ihi Corporation Exhaust gas treatment system for oxyfuel combustion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950925A1 (fr) * 2010-04-20 2011-04-08 Air Liquide Procede et appareil d'extraction de produits petroliferes
EP2404658A2 (fr) * 2010-07-08 2012-01-11 Air Products And Chemicals, Inc. Eloigner NO2 par adsorption sélective de gaz d'échappement d'un procédé oxy-gaz
US20130319040A1 (en) * 2011-02-08 2013-12-05 Ihi Corporation Exhaust gas treatment system for oxyfuel combustion device
EP2623178A1 (fr) * 2012-02-03 2013-08-07 Alstom Technology Ltd Unité de traitement de gaz comportant un dispositif de suppression d'oxydes de nitrogène

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HU MING-MING ET AL: "Porous materials for steady-state NO conversion: Comparisons of activated carbon fiber cloths, zeolites and metal-organic frameworks", CHEMICAL ENGENEERING JOURNAL, vol. 360, 1 March 2019 (2019-03-01), AMSTERDAM, NL, pages 89 - 96, XP055952876, ISSN: 1385-8947, DOI: 10.1016/j.cej.2018.11.102 *
LI HUI ET AL: "Adsorption of NO and O2 on MnO2 and (MnO2)3/Al2O3", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 569, 28 August 2021 (2021-08-28), XP086809356, ISSN: 0169-4332, [retrieved on 20210828], DOI: 10.1016/J.APSUSC.2021.150994 *
LIU YUANYUAN ET AL: "Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: a review on catalysts and mechanisms", vol. 28, no. 3, 1 January 2021 (2021-01-01), Berlin/Heidelberg, pages 2549 - 2571, XP055952872, ISSN: 0944-1344, Retrieved from the Internet <URL:https://link.springer.com/content/pdf/10.1007/s11356-020-11253-6.pdf> DOI: 10.1007/s11356-020-11253-6 *
MOCHIDA ISAO ET AL: "Oxidation of NO into NO2 over Active Carbon Fibers", ENERGY & FUELS, vol. 8, no. 6, 1 November 1994 (1994-11-01), WASHINGTON, DC, US., pages 1341 - 1344, XP055952894, ISSN: 0887-0624, DOI: 10.1021/ef00048a024 *
PORTA ALESSANDRO ET AL: "Low Temperature NOxAdsorption Study on Pd-Promoted Zeolites", TOPICS IN CATALYSIS, BALTZER SCIENCE PUBLISHERS, BUSSUM, NL, vol. 61, no. 18, 27 August 2018 (2018-08-27), pages 2021 - 2034, XP036631971, ISSN: 1022-5528, [retrieved on 20180827], DOI: 10.1007/S11244-018-1045-8 *

Also Published As

Publication number Publication date
FR3131856A1 (fr) 2023-07-21

Similar Documents

Publication Publication Date Title
EP2253915B1 (fr) Procédé et appareil pour la séparation de gaz de haut fourneau
CA2411144C (fr) Procede de purification de gaz de synthese
JP5350376B2 (ja) 吸着精製ユニットを用いるco2を含むガスの精製方法
EP1869385B1 (fr) Procede et installation integres d&#39;adsorption et de separation cryogenique pour la production de co2
FR2938451B1 (fr) Adsorbeurs radiaux monolits en serie
WO2009010690A2 (fr) Procede de purification d&#39;un gaz contenant du co2
FR2531097A1 (fr) Procede d&#39;enlevement d&#39;azote gazeux d&#39;un melange comprenant n2 et co ou n2, co2 et co
CA2729366C (fr) Traitement de gaz humide contenant des poussieres
WO2023134998A1 (fr) Installation de récupération de co2 contenu dans un flux gazeux d&#39;alimentation
EP2477720B1 (fr) Procede de purification d&#39;un flux gazeux comprenant du mercure
EP2435163B1 (fr) Epuration d&#39;un gaz contenant des oxydes d&#39;azote
FR2962663A1 (fr) Adsorbeur avec revetement interne
FR3110722A3 (fr) Procédé de gestion d’une unité de traitement d’un gaz par adsorption à modulation de pression
FR2766735A1 (fr) Procede et dispositif pour la production de gaz inerte ultra-pur
CA3159990A1 (fr) Procede et un dispositif de purification de gaz
FR2837722A1 (fr) Procede psa de purification par adsorption d&#39;un gaz pauvre en hydrogene
FR3120546A3 (fr) Procédé de traitement d’un gaz par adsorption à modulation de pression à faible ratio d’élution
FR3135212A1 (fr) Procédé et appareil de purification d’un flux gazeux contenant au moins un oxyde d’azote
FR2977506A1 (fr) Procede de purification d&#39;un flux gazeux avec controle de la purete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844063

Country of ref document: EP

Kind code of ref document: A1