EP2131633A1 - Kühlverfahren von Mikrowellenplasma und selektives Zerstörungssystem von chemischen Molekülen, bei dem dieses Verfahren verwendet wird - Google Patents

Kühlverfahren von Mikrowellenplasma und selektives Zerstörungssystem von chemischen Molekülen, bei dem dieses Verfahren verwendet wird Download PDF

Info

Publication number
EP2131633A1
EP2131633A1 EP08305206A EP08305206A EP2131633A1 EP 2131633 A1 EP2131633 A1 EP 2131633A1 EP 08305206 A EP08305206 A EP 08305206A EP 08305206 A EP08305206 A EP 08305206A EP 2131633 A1 EP2131633 A1 EP 2131633A1
Authority
EP
European Patent Office
Prior art keywords
fluid
tube
cooling
mixture
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08305206A
Other languages
English (en)
French (fr)
Inventor
Jean-Christophe Rostaing
Daniel Guerin
Christian Larquet
Pascal Moine
Bruno Depert
Valère Laurent
Michel Moisan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to EP08305206A priority Critical patent/EP2131633A1/de
Priority to EP09753765A priority patent/EP2286641A1/de
Priority to JP2011510926A priority patent/JP2011522691A/ja
Priority to PCT/EP2009/055264 priority patent/WO2009144110A1/fr
Priority to KR1020107026506A priority patent/KR20110021816A/ko
Priority to US12/994,695 priority patent/US20110073282A1/en
Priority to TW098117230A priority patent/TW200952568A/zh
Publication of EP2131633A1 publication Critical patent/EP2131633A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators

Definitions

  • the invention relates to a method for cooling a plasma treatment system of a fluid or a mixture of fluids, especially gaseous fluids, comprising means for coupling between a microwave power source and a mixture of particularly gaseous fluids circulating in a tube. dielectric at the level of the coupling means for transferring a portion of the microwave energy to the fluid mixture to create a plasma therein to cause the breaking of at least some of the chemical bonds of the fluid molecules, said tube dielectric being cooled by a circulation of a cooling fluid in thermal contact with the outer wall of the tube to be cooled.
  • the invention also relates to a system for the selective destruction of chemical molecules using this cooling method.
  • the multiple steps of making the semiconductor elements and their interconnections use gaseous substances used in ionic implants or etching and physical or chemical deposition reactors ( "PVD” or “CVD”).
  • Some of these substances may be so-called greenhouse gases, that is to say, contributing to the global warming of the climate when they are present in the atmosphere, such as in particular certain fluorinated derivatives, in particular gases. known as "PFC” (perfluorinated gas) or “HFC” (hydrofluorocarbon gas) or certain fluids and in particular certain atmospheric pollutants immediately dangerous for life or health, and more particularly those that are toxic, corrosive, flammable, pyrophoric and / or explosive.
  • PFC perfluorinated gas
  • HFC hydrofluorocarbon gas
  • gases and a certain number of gaseous precursors or delivered in the form of vapors when they are initially used are also used. liquid or solid state.
  • the gas obtained comprises a small amount of fluorinated gases such as for example CF4 or C2F6 that it is necessary to best remove the gas to be purified.
  • the gaseous effluents such as in particular the PFC or HFC type effluents emanating from the etching chambers are systematically diluted in nitrogen at the level of the primary vacuum pumps because of their dangerousness.
  • the gas mixture entering an effluent treatment or destruction system of the above-mentioned type is therefore mainly composed of nitrogen.
  • the use at atmospheric pressure of a carrier gas such as nitrogen requires a large amount of energy to ionize the gas and to maintain a nitrogen plasma.
  • a carrier gas such as nitrogen
  • tubes including ceramic causes problems of temperature resistance of the different materials used.
  • the discharge tube is in fact cooled by a coolant circulating from one of its ends to the other, in a determined space between said tube and a second outer coaxial tube for confinement to the liquid.
  • the deposit formed generally absorbing the microwaves, resulting in a self-runaway effect (because the absorption generally increases with temperature, so that the higher the tube is hot, the more it tends to heat up even more) and the creation of very highly superheated areas tending to spread gradually.
  • These very high thermal stresses in a very small thickness are likely to lead to cracking or rupture of the tube.
  • the dielectric fluid heat transfer can also undergo a transformation in volume and become cloudy and smelly, corresponding to the formation of decomposition products suspected of being harmful. Without prejudging the degradation of the functional properties of the fluid (character dielectric and property of heat transfer), the harmfulness of the used product is unacceptable in an industrial environment.
  • DMPS dimethylpolysiloxane
  • the invention aims to overcome the various disadvantages mentioned above by using a cooling system of the tube, in particular dielectric, in which is generated the plasma at atmospheric pressure, different from the systems used in the prior art.
  • the circulation of the cooling fluid in thermal contact with the dielectric tube is carried out co-currently with the circulation of the fluid or mixture of fluids in the dielectric tube and on the other hand the fluid of cooling comprises at least one oil chosen from linear alpha olefins having a carbon chain of at least ten carbon atoms and / or perfluorocarbon liquids having a dielectric constant ⁇ of less than 2.5, a micron absorbance tan ⁇ included between 10 -2 and 10 -4 and a specific heat C p ⁇ 0.6 g.cal/g.°C.
  • these products having a very high density (almost three times higher than a C-14 alpha-olefin) the amount of liquid to circulate to evacuate the same number of calories is significantly lower, which translates by reducing the flow rate of the heat transfer fluid of the order of 30%.
  • these perfluorinated products are much more thermally stable, which increases the operational safety of the system of the invention.
  • at least one linear alpha olefin preferably a linear olefin C-14 or tetradecene-1 and / or a perfluorocarbon fluid (PFC) having a dielectric constant ⁇ ⁇ 2 and / or an absorbance tan ⁇ ⁇ 10, will be used.
  • PFC perfluorocarbon fluid
  • the injection of the fluid mixture into the tube is carried out at atmospheric pressure or at a pressure close to atmospheric pressure.
  • the injection of the fluid mixture and / or an inert complementary gas in the form of a vortex into the dielectric tube will be carried out.
  • the fluid to be treated and the cooling fluid flow from top to bottom.
  • the plasma gas treatment system A comprises a field applicator 1 of the surfaguide type as described in FIG. EP-A-874537 , a heat exchanger B and washing means C, then dry cleaning means D (or arranged in the reverse order if desired).
  • the system A is supplied via the plasma start gas valve Vd and / or via the valve Vf to the gas to be treated and comes from one of the reactors CVD1, CVD2, CVD3,. .. CVDn, via the respective valves V1, V2, V3, .. Vn (these gases can be gases from semiconductor manufacturing reactors or flat screens or optical fibers or solar cells, etc. ..).
  • the system A also comprises a dielectric tube 16 surrounded by a cooling system comprising a coolant 19 sufficiently weakly absorbing the microwaves in order to keep the power available to maintain the plasma, circulating in the space 18 delimited by the outer tube.
  • the fluid inlet 19 is located in the lower part 13 of the system A and the outlet 20 of the fluid 19 after cooling the tube 16 is located in the upper part 24.
  • the field applicator 1 in its central reduced portion 3 (reduction of the small side of the hollow rectangular waveguide section relative to the standard) is traversed by the dielectric tube 16, the silica tube 17 surrounding the space 18 circulation of the cooling fluid.
  • Sleeves of electrically conductive material 7, 8 acting as electromagnetic screens are arranged respectively around the top and bottom of the aforementioned tubes.
  • the field applicator 1 hollow rectangular waveguide comprises a central portion 3 of reduced section relative to the standard section used at the inlet / outlet 2, 4 located on either side of this central portion 3.
  • the microwave power when the system is in operation, flows from the side part 2 to the central part 3, at which the microwaves are concentrated to be thrown along the tube 16 of the part and the other of this central portion 3 of the field applicator, so as to create a plasma in the tube 16 by yielding energy throughout the propagation of the wave along the tube.
  • This plasma is started using the electrode 23 which is integral with the support 10 situated above the upper part 9 of the system A.
  • the electrode 23 is maintained substantially along the axis of the dielectric tube 16 and is connected to a high voltage source or starter coil.
  • the plasma starting system is connected to the valve Vn and comprises essentially two branches: one connected to a source of argon Ar via a mass flow controller and a valve VAr, the other to a nitrogen source via a mass flow controller and a VN 2 valve.
  • the heat exchanger B is used to cool the hot gases from the plasma of the system A and send them to about 150 ° C at the most to the scrubber C and the dry cleaner D (or vice versa).
  • FIG. 2 On the figure 2 is shown a gas injection system (starting or treat) in the form of a vortex.
  • the gas injection ducts and / or fluid arrive tangentially in the vertical duct 54, located in the extension of the tube dielectric 16, to create a rotational effect of the gases and / or fluids injected.
  • the figure 2a is a vertical sectional view of the upper part 9, 24 of the plasma system A.
  • Four gas injection pipes (57, 51), (58, 62), (59, 53), and (60, 64) all visible on the figure 2b (which is a sectional view according to AA of the figure 1 ) make it possible to create this vortex in the conduit 54.
  • the support 10 of the electrode 23 is integral with the upper part 9 (24).
  • the four injection lines are preferably oriented (in the horizontal plane) at 90 ° from each other and can be oriented (in the vertical plane) either horizontally or from top to bottom.
  • the ducts (70, 72) and (71, 73) are also connected tangentially to the central duct 54 and oriented at 180 ° relative to each other. They allow the injection of an additional gas (for example nitrogen) when the flow of gas injected into the four injectors located in the plane AA is insufficient to maintain a vortex. (Such a vortex makes it possible to reduce the heat exchanges with the wall of the dielectric tube, to avoid the direct contact of the plasma with this same dielectric tube and thus to avoid a temperature too high detrimental to the dielectric tube).
  • an additional gas for example nitrogen
  • the figure 3 is a schematic view of an alternative embodiment of a gas injection head 9 to be treated in the plasma, with which an effective vortex is produced.
  • This injection head 9 has an inlet (11) for introducing the gases to be treated which are then conducted via the channel 80 which is coaxial with the inlet 11 to the peripheral channel, the successive portions of which are shown in section 81, 82, 83 and 84, this continuous channel, surrounding the solid central portion 85 (similar structure to that of a spiral staircase around a central column 85).
  • This solid central portion 85 is preferably made of conductive material and ends with a portion lower conical 86 serving as ignition electrode of the plasma which is created in the dielectric tube 16.
  • the solid parts 87, 88, 89, 90 and 91 projecting from the axis 85 are the solid parts arranged in a spiral around of the axis 85 delimiting the passage of the gas.
  • the upper portion 92 above the central portion 85 is housed in a movable part 93 ensuring the attachment of this central portion and the gas tightness by the O-ring 94.
  • the channel 81, 82, ... leading the gas to give it a vortex effect in the tube 16 will have an axis inclined relative to the horizontal between about 25 ° and 35 °, more preferably from order of 30 °.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
EP08305206A 2008-05-28 2008-05-28 Kühlverfahren von Mikrowellenplasma und selektives Zerstörungssystem von chemischen Molekülen, bei dem dieses Verfahren verwendet wird Withdrawn EP2131633A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP08305206A EP2131633A1 (de) 2008-05-28 2008-05-28 Kühlverfahren von Mikrowellenplasma und selektives Zerstörungssystem von chemischen Molekülen, bei dem dieses Verfahren verwendet wird
EP09753765A EP2286641A1 (de) 2008-05-28 2009-04-30 Verfahren zur kühlung von mikrowellenplasma und system zur selektiven zersetzung chemischer moleküle mithilfe besagten verfahrens
JP2011510926A JP2011522691A (ja) 2008-05-28 2009-04-30 マイクロ波プラズマの冷却方法およびそれを用いる化学分子の選択的破壊のためのプラズマ処理システム
PCT/EP2009/055264 WO2009144110A1 (fr) 2008-05-28 2009-04-30 Procede de refroidissement d'un plasma micro-onde et systeme de destruction selective de molecules chimiques utilisant ce procede
KR1020107026506A KR20110021816A (ko) 2008-05-28 2009-04-30 마이크로파 플라즈마 냉각 방법 및 상기 방법을 이용한 화학 분자의 선택적 파괴 시스템
US12/994,695 US20110073282A1 (en) 2008-05-28 2009-04-30 Method for cooling microwave plasma and system for the selective destruction of chemical molecules using said method
TW098117230A TW200952568A (en) 2008-05-28 2009-05-25 Method of cooling a microwave plasma and system for selective destroying chemical molecules using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08305206A EP2131633A1 (de) 2008-05-28 2008-05-28 Kühlverfahren von Mikrowellenplasma und selektives Zerstörungssystem von chemischen Molekülen, bei dem dieses Verfahren verwendet wird

Publications (1)

Publication Number Publication Date
EP2131633A1 true EP2131633A1 (de) 2009-12-09

Family

ID=39811616

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08305206A Withdrawn EP2131633A1 (de) 2008-05-28 2008-05-28 Kühlverfahren von Mikrowellenplasma und selektives Zerstörungssystem von chemischen Molekülen, bei dem dieses Verfahren verwendet wird
EP09753765A Withdrawn EP2286641A1 (de) 2008-05-28 2009-04-30 Verfahren zur kühlung von mikrowellenplasma und system zur selektiven zersetzung chemischer moleküle mithilfe besagten verfahrens

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09753765A Withdrawn EP2286641A1 (de) 2008-05-28 2009-04-30 Verfahren zur kühlung von mikrowellenplasma und system zur selektiven zersetzung chemischer moleküle mithilfe besagten verfahrens

Country Status (6)

Country Link
US (1) US20110073282A1 (de)
EP (2) EP2131633A1 (de)
JP (1) JP2011522691A (de)
KR (1) KR20110021816A (de)
TW (1) TW200952568A (de)
WO (1) WO2009144110A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720987B1 (ko) 2015-04-28 2017-04-10 주식회사 글로벌스탠다드테크놀로지 난분해성 유해가스의 처리장치 및 방법
EP3309815B1 (de) * 2016-10-12 2019-03-20 Meyer Burger (Germany) AG Plasmabehandlungsvorrichtung mit zwei, miteinander gekoppelten mikrowellenplasmaquellen sowie verfahren zum betreiben einer solchen plasmabehandlungsvorrichtung
GB201811003D0 (en) 2018-07-04 2018-08-15 Bp Plc Multiple cooling circuit systems and methods for using them

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828703A (en) * 1983-12-28 1989-05-09 Union Carbide Corporation Method for replacing PCB-containing coolants in electrical induction apparatus with substantially PCB-free dielectric coolants
US5159527A (en) * 1991-12-05 1992-10-27 Minnesota Mining And Manufacturing Company Dielectric liquids
US6541917B1 (en) 1998-12-22 2003-04-01 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Section of pipe for a gas treatment device and device incorporating such a section of pipe
WO2004021392A1 (en) * 2002-08-30 2004-03-11 Axcelis Technologies, Inc. Gas tube end cap for a microwave plasma generator
WO2006008421A2 (fr) * 2004-07-13 2006-01-26 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Traitement d'effluents gazeux par plasma a pression atmospherique

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE434676B (sv) * 1981-10-22 1984-08-06 Skf Steel Eng Ab Sett och anordning for uppvermning av for industriella endamal avsedd processluft
CA1261735A (en) * 1984-04-20 1989-09-26 William J. Klaila Method and apparatus for recovering fractions from hydrocarbon materials, facilitating the removal and cleansing of hydrocarbon fluids, insulating storage vessels, and cleaningstorage vessels and pipelines
JPH0693397B2 (ja) * 1987-12-29 1994-11-16 日本高周波株式会社 熱プラズマ発生装置
JPH03214600A (ja) * 1990-01-17 1991-09-19 Nippon Koshuha Kk マイクロ波熱プラズマ反応装置
JPH0562793A (ja) * 1991-08-30 1993-03-12 Hitachi Ltd プラズマヒータ
JP3390788B2 (ja) * 1993-09-13 2003-03-31 独立行政法人産業技術総合研究所 高周波誘導熱プラズマ発生方法および有機ハロゲン化合物の分解方法
FR2751565B1 (fr) * 1996-07-26 1998-09-04 Air Liquide Procede et installation de traitement de gaz perfluores et hydrofluorocarbones en vue de leur destruction
DE69733660T2 (de) * 1996-11-04 2006-05-18 Materials Modification, Inc. Mikrowellenplasma chemischen synthese von ultrafeinen pulvern
FR2762748B1 (fr) * 1997-04-25 1999-06-11 Air Liquide Dispositif d'excitation d'un gaz par plasma d'onde de surface
JP2000119671A (ja) * 1998-10-20 2000-04-25 Matsushita Refrig Co Ltd 冷凍システム
JP4035916B2 (ja) * 1999-03-30 2008-01-23 松下電工株式会社 プラズマ処理装置及びプラズマ処理方法
JP2001025658A (ja) * 1999-07-15 2001-01-30 Mitsubishi Heavy Ind Ltd プラズマ着火方法及び有機ハロゲン化合物の分解方法
JP4075237B2 (ja) * 1999-08-17 2008-04-16 松下電工株式会社 プラズマ処理システム及びプラズマ処理方法
JP2004313998A (ja) * 2003-04-18 2004-11-11 Ebara Corp ハロゲン化物の分解装置
JP3621946B1 (ja) * 2004-02-27 2005-02-23 三菱重工業株式会社 有機ハロゲン化合物放電分解装置およびその方法
JP2006102717A (ja) * 2004-10-08 2006-04-20 Taiyo Nippon Sanso Corp 有害成分含有ガスの処理方法および処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828703A (en) * 1983-12-28 1989-05-09 Union Carbide Corporation Method for replacing PCB-containing coolants in electrical induction apparatus with substantially PCB-free dielectric coolants
US5159527A (en) * 1991-12-05 1992-10-27 Minnesota Mining And Manufacturing Company Dielectric liquids
US6541917B1 (en) 1998-12-22 2003-04-01 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Section of pipe for a gas treatment device and device incorporating such a section of pipe
WO2004021392A1 (en) * 2002-08-30 2004-03-11 Axcelis Technologies, Inc. Gas tube end cap for a microwave plasma generator
WO2006008421A2 (fr) * 2004-07-13 2006-01-26 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Traitement d'effluents gazeux par plasma a pression atmospherique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "*M Fluorinert Electronic Liquid FC-72 - Product Information", May 2000, 3M, SPECIALTY MATERIALS, ST. PAUL, MN, USA, XP002500154 *
MUÑOZ ET AL.: "Preliminary results in atmospheric pressure Ar-He microwave sustaineddischarges", pages 847 - 850, Retrieved from the Internet <URL:ftp://77.47.129.53/pub/konfer/2007/XVIII_ICPIG/ICPIG2007/pdf/3P10-07.pdf> [retrieved on 20141015] *

Also Published As

Publication number Publication date
KR20110021816A (ko) 2011-03-04
US20110073282A1 (en) 2011-03-31
WO2009144110A1 (fr) 2009-12-03
EP2286641A1 (de) 2011-02-23
JP2011522691A (ja) 2011-08-04
TW200952568A (en) 2009-12-16

Similar Documents

Publication Publication Date Title
EP1397529B1 (de) Verwendung von unter atmosphärischem druck erzeugten dichten plasmen zur behandlung von abgasen
KR100286192B1 (ko) 반도체 웨이퍼의 처리방법
EP0575260B1 (de) Vorrichtung zur Bildung von angeregten oder instabilen gasförmigen Molekülen und Benutzung dieser Vorrichtung
US20060105566A1 (en) Ultraviolet assisted pore sealing of porous low k dielectric films
CN101208770B (zh) 用于处理介电材料的设备和方法
WO2005075058A1 (fr) Procede de traitement des gaz par des decharges haute frequence
EP1424120A1 (de) Verfahren und Anlage zur Behandlung von perfluorierten und hydrofluorkohlenwasserstoffhaltigen Gasen zu ihrer Vernichtung
EP0847794A1 (de) Verfahren und Vorrichtung zur Gasreinigung
EP2131633A1 (de) Kühlverfahren von Mikrowellenplasma und selektives Zerstörungssystem von chemischen Molekülen, bei dem dieses Verfahren verwendet wird
EP0614852B1 (de) Verfahren zur Herstellung von Disilan aus Monosilan durch elektrische Entladung und Benützung einer Kühlfalle, sowie Reaktor zu seiner Durchführung
EP1048747B1 (de) Verfahren und Vorrichtung zur Behandlung eines Werkstoffes mit elektromagnetischer Strahlung in einer kontrollierten Atmosphäre
WO2006010857A1 (fr) Procede de preparation d&#39;un gaz ou melange de gaz contenant du fluor moleculaire
EP1768776A2 (de) Atmosphärendruckplasmabehandlung von gasförmigen austragsströmen
EP1014761B1 (de) Kanalelement für Gasbehandlungsvorrichtung und Vorrichtung die ein solches Kanalelement enthält
WO2005044441A1 (fr) Methode de melange et de distribution d&#39;une phase liquide et d&#39;une phase gazeuse
EP1648598B1 (de) Vorrichtung zum mischen von zwei fluiden und verwendung davon zum kühlen eines fluids auf sehr hoher temperatur
FR2932058A1 (fr) Procede de demarrage d&#39;un plasma micro-onde et systeme de destruction selective de molecules chimiques utilisant ce procede
KR20070035565A (ko) 가스상 유해 방출물의 대기압 플라즈마 처리
FR2873045A1 (fr) Traitement d&#39;effluents gazeux par plasma a pression atmospherique
FR2886866A1 (fr) Procede et dispositif de traitement d&#39;effluents gazeux de procedes industriels
WO2006103369A2 (fr) Dispositif a chambre de reaction dans laquelle sont introduits des fluides reactifs prechauffes pour realiser une reaction a temperature elevee
EP1513603A1 (de) Integrierte photochemische behandlung von gasen
FR2888130A1 (fr) Traitement d&#39;effluents gazeux par plasma a pression atmospherique
FR2872506A1 (fr) Procede de preparation d&#39;un gaz ou melange de gaz contenant du fluor moleculaire
FR2872505A1 (fr) Generateur de gaz fluore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141202