EP1648598B1 - Vorrichtung zum mischen von zwei fluiden und verwendung davon zum kühlen eines fluids auf sehr hoher temperatur - Google Patents

Vorrichtung zum mischen von zwei fluiden und verwendung davon zum kühlen eines fluids auf sehr hoher temperatur Download PDF

Info

Publication number
EP1648598B1
EP1648598B1 EP04767305A EP04767305A EP1648598B1 EP 1648598 B1 EP1648598 B1 EP 1648598B1 EP 04767305 A EP04767305 A EP 04767305A EP 04767305 A EP04767305 A EP 04767305A EP 1648598 B1 EP1648598 B1 EP 1648598B1
Authority
EP
European Patent Office
Prior art keywords
fluid
tubular
mixing chamber
tubular pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04767305A
Other languages
English (en)
French (fr)
Other versions
EP1648598A1 (de
Inventor
Michel Lepine
Dominique Cucini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeumont SA
Original Assignee
Jeumont SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeumont SA filed Critical Jeumont SA
Publication of EP1648598A1 publication Critical patent/EP1648598A1/de
Application granted granted Critical
Publication of EP1648598B1 publication Critical patent/EP1648598B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/04Other direct-contact heat-exchange apparatus the heat-exchange media both being liquids

Definitions

  • the invention relates to a device for mixing a first fluid at a first temperature and a second fluid at a second temperature.
  • a residual fluid consisting mainly of water at very high temperature (for example 550 ° C) and at very high pressure.
  • This fluid must be cooled and depressurized and optionally treated, for example by chemical neutralization to be rejected or possibly stored in containers or collection tanks.
  • the known hydrothermal oxidation process of organic effluents in supercritical water consists of bringing the effluents into contact with water at very high temperature and at very high pressure in the presence of oxygen, so as to destroy the organic molecules by means of generally exothermic reactions that raise the temperature and pressure of water to levels higher than those corresponding to the critical point of water (22.1 MPa and 374 ° C).
  • Water in supercritical condition is an extremely powerful solvent that destroys organic molecules in one second to one minute, depending on their thermal stability.
  • This process can in particular be used to treat chemical gases, weed killers, sewage sludge or chemical plant waste or nuclear waste.
  • molecules of effluents are converted into substances having no harmfulness to the environment, such as carbon dioxide CO 2, water and molecular nitrogen.
  • hydrochloric acid HCl is formed which can be neutralized by an injection of a sodium hydroxide solution into the residual fluid of the treatment, the sodium hydroxide neutralizing the hydrochloric acid in the form of the chloride of sodium NaCl.
  • the residual fluid substantially consisting of water may be at a temperature as high as 550 ° C and at a pressure substantially greater than the critical pressure of 22.1 MPa.
  • Such pressure and temperature conditions do not make it possible to use conventional heat exchangers operating a heat exchange between two fluids through a wall, to cool the residual fluid to ambient conditions.
  • DE-A-10 163 724 discloses a steam injection device having a similar structure.
  • the high temperature fluid is introduced and circulated within a conduit and the coolant and process fluid is injected into the high temperature fluid stream so that the fluid mixture is formed. by coaxial circulation of the fluid at high temperature and the cooling fluid and treatment, in the same direction of circulation.
  • the fluid mixture is recovered at the outlet of the conduit constituting a mixer chamber.
  • the cooling and treatment fluid is injected into the interior of the high temperature fluid circulation duct by a second coaxial duct passing through the wall of the high temperature fluid circulation duct.
  • the cooling fluid injection duct and certain parts of the high temperature fluid circulation duct undergo very high thermal gradients in their walls, so that it is very difficult to design structures resistant to these gradients.
  • the parts of the ducts in contact with the supercritical water undergo a very strong corrosion, so that it is necessary to use corrosion resistant materials such as titanium or nickel alloys to form these parts of the ducts.
  • the object of the invention is therefore to propose a device for mixing a first fluid at a first temperature and a second fluid at a second temperature, in the form of coaxial currents having the same direction of circulation, comprising an envelope. generally cylindrical tubular and having a substantially rectilinear axis, delimiting a cylindrical mixing chamber coaxial with the casing comprising, at a first axial end, a first connecting element to the first fluid supply means and, at a second axial end opposed to the first, a second connecting element to means for evacuating the mixture of the first and second fluids and at least one guide duct of at least one of the first and second fluids, substantially rectilinear and disposed in the cylindrical chamber in a coaxial arrangement, this device for performing the mixing of the fluids in good conditions, with limited thermal gradients in the various envelopes and tubular conduits of the device.
  • the device comprises a third connecting element of the mixing chamber with second fluid supply means, in an intermediate arrangement in the axial direction between the first and the second connecting elements and in a substantially transverse direction.
  • perpendicular to the axial direction and the guide duct extends axially in the mixer chamber between the first connecting element and a mixing zone of the mixing chamber downstream of the third connecting element in the direction from the first to the second connecting element and comprises a tubular wall having at least one annular inner space of coaxial insulation in communication with a zone of the mixing chamber, extending substantially over the entire length of the guide duct, the third connecting element opening into the cylindrical chamber facing an outer surface of the wall of the guide duct .
  • the device may be used in particular for mixing a first fluid consisting mainly of supercritical water used for the treatment of effluents by oxidation in supercritical water with a second fluid consisting mainly of cooling water at a substantially lower temperature. at the temperature of the second fluid.
  • the first fluid may be at a temperature of about 550 ° C and the second fluid at a temperature of about 20 ° C.
  • Figure 1 is a schematic axial sectional view of a mixer according to the invention and according to a first embodiment.
  • Figure 2 is a schematic axial sectional view of a mixer according to the invention and according to a second embodiment.
  • Figure 3 is an enlarged axial sectional view of a first tubular conduit of the mixer shown in Figure 2 for guiding the first fluid, consisting of ferrules threaded one on the other.
  • FIGS. 4A and 4B are diagrammatic sectional views of a tubular duct wall on which are represented the variations of the temperature in the wall of the tubular duct exposed on its external and internal surfaces to fluids at different temperatures.
  • Figure 4A relates to a solid wall.
  • Figure 4B relates to a wall according to the invention having annular internal spaces filled with fluid.
  • FIG. 1 diagrammatically shows a mixing device according to the invention generally designated by the reference numeral 1 comprising an outer casing 2 of generally cylindrical tubular shape delimiting an internal cylindrical mixer chamber 3, the casing 2 and the cylindrical chamber 3 having as a common axis the longitudinal axis 4 of the mixer.
  • the casing 2 comprises, at a first axial end, a first connecting and intake element 5 which may be constituted by an opening surrounded by a flange for connecting the mixer 1 to a first fluid supply means, by For example, an outlet pipe of a supercritical water effluent oxidation reactor 30 constituting the first fluid which is cooled by mixing inside the mixer 1.
  • the first fluid is largely constituted by supercritical water at a temperature of 550 ° C and a pressure of the order of 25 MPa.
  • the casing 2 of the mixer comprises, at a second axial end opposite the end 5, a second discharge and connection element 6 which may consist of an opening surrounded by a connection flange of the mixer to a duct. evacuation of the mixture, that is to say the cooled water, for example up to a temperature of 300 ° C.
  • the exhaust duct connected to the connecting element 6 can ensure the junction between the mixer and a heat exchanger 31 for cooling the fluid obtained by mixing at the outlet of the mixer, to ambient conditions.
  • the casing 2 further comprises a third connecting element 7 which can be constituted by a stitching and a flange for connecting the mixer to a cooling fluid supply means, for example to a reservoir and a pumping installation.
  • a third connecting element 7 which can be constituted by a stitching and a flange for connecting the mixer to a cooling fluid supply means, for example to a reservoir and a pumping installation.
  • a guide duct 8 Inside the cylindrical chamber 3 of the mixer, in a coaxial arrangement, is mounted a guide duct 8 whose tubular cylindrical wall comprises one or more coaxial internal annular spaces 9 extending substantially over the entire axial length of the duct. 8 and defined between thin coaxial tubular elements.
  • FIG 1 there is shown, to simplify the drawing, a guide duct 8 having a single annular space 9 between an outer wall member 8a and an inner wall member 8b.
  • the outer wall element 8a of the guide duct 8 is traversed by openings 10 of small dimensions (having for example a diameter of the order of one millimeter) distributed along the circumference of the tubular duct in two zones arranged in the vicinity of the axial ends. guide duct.
  • the openings 10 put in communication the internal annular space 9 of the wall 8 with the cylindrical chamber 3 of the mixer.
  • the inner annular space 9 of the wall of the tubular duct 8 is filled with water in the substantially stagnant state.
  • this annular space filled with water makes it possible to ensure a certain insulation and a limitation of the thermal gradient in the radial direction through the wall of the guide duct 8.
  • the guide duct 8 is connected, at one of its axial ends, to the casing of the mixer, at the level of the first connection element 5, so that the first fluid (as indicated by the arrow 11) flows. in the axial direction 4, inside the guide duct 8.
  • the duct 8 is fixed on the casing 2 of the mixer, via an annular piece 12.
  • the third connecting element 7 is arranged as far as possible from the first connecting element, so as to move the introduction zone of the first fluid at very high temperature and the zone of introduction of the second fluid away from one another. consisting of water at about 20 ° C in the envelope 2 of the mixer.
  • the distance between the first and the third connecting elements is in fact little less than the total length of the envelope 2 of the mixer in the axial direction 4 (for example a little less than one meter).
  • the third connecting element 7 is directed along an axis 13 substantially perpendicular to the longitudinal axis 4 of the mixer, the direction of the third connecting element along which the second fluid is introduced into the cylindrical chamber 3 (represented by the arrow 14) being lateral or radial, with respect to the envelope of the mixer.
  • the third connecting element connected to a supply duct 32 for cooling water is furthermore arranged so as to open into the cylindrical enclosure 3 opposite a portion of the outer surface of the guide duct 8 which extends in the axial direction 4 from the first connecting element 5 to a zone 15 of the cylindrical chamber 3 situated downstream of the third connecting element 7 (considering the circulation of the first fluid in the axial direction, as represented by the arrows 11).
  • the cooling water which is introduced into the cylindrical chamber 3, with a pressure slightly greater than the pressure of the first fluid comes into contact with the external surface of the tubular duct 8 and is distributed along the axial length around this duct 8, to the inside of the cylindrical chamber 3.
  • cooling water ensures a maintenance of the casing 2 in the zone of the third connecting element 7, at a temperature close to the temperature of the cooling water.
  • the cooling water flows towards the mixer outlet at the second connecting member 6, in a substantially axial direction, to meet the flow of first high temperature fluid flowing inside the conduit.
  • the cooling water mixes with the first fluid at a very high temperature, the cooled mixture being recovered at the outlet of the mixer, at the level of the second element of the connection 6.
  • the flow rate of cooling water introduced into the cylindrical envelope is adjusted so that the temperature of the mixture recovered at the outlet of the mixer is close to 300 ° C.
  • the first connecting element 5 is at the temperature of the first fluid, for example 550 ° C, while the third connecting element 7 is at a temperature of the order of 20 ° C.
  • the axial thermal gradient between the first and third connecting elements has a high value in a region of the casing 2 of cylindrical shape intermediate between the first and the third connecting elements.
  • the axial thermal gradient, high in this zone of the envelope does not affect the behavior of the envelope, the gradient applying in a fully axisymmetric zone.
  • the connecting elements are at perfectly homogeneous and constant temperatures which are the temperature of the first and second fluids.
  • the temperature gradient between the second connecting element 6, at the mixer outlet, and the third connecting element is in a cylindrical zone of the mixer casing, which does not require impact on its service performance.
  • the guide duct 8 is in contact, on its inner surface, with the first high temperature fluid and, on its outer surface, with the second cooling fluid inside the cylindrical chamber 3.
  • the thermal gradient in the radial direction, through the wall of the guide duct 8, is therefore high, at least in certain areas of the wall of the guide duct 8.
  • the presence of at least one annular space 9 filled with fluid, that is to say water, allows to limit to low values the gradient through the wall elements 8a and 8b of the guide duct 8, the insulating layer constituted by the water filling the space 9 absorbent most of the thermal gradient between the inner surface of the guide duct 8 in contact with the first fluid at 550 ° C and the external surface in contact with the cooling water at 20 ° C in the cylindrical chamber 3.
  • the first tubular duct constituting the first portion 18a of the guide duct is fixed inside the first connecting element 5 of the mixer, by an annular piece 12, in the same manner as the single duct 8 of the first embodiment.
  • the wall of the first tubular conduit 18a has at least one annular internal space 19a extending substantially over its entire axial length.
  • the second portion 18b of the guide duct is constituted by a second tubular duct whose inner diameter is greater than the outer diameter of the first tubular duct 18a and whose wall has at least one annular space 19b extending substantially along its entire length.
  • the second tubular duct 18b is engaged in the annular piece 12 at its upper part by means of a shell 20 and engaged by its lower part in a part 16, inside the second connecting element 6 of the mixer arranged according to its axial end of exit.
  • the free end of the first tubular duct 18a is engaged over a certain length in the free end of the second tubular duct 18b, the first and second ducts 18a, 18b having the shaft 4 as the common axis of the mixer casing.
  • the guide duct formed by the first duct portion 18a and the second duct portion 18b extends from the first connecting member 5 at an axial end of the blender envelope to an area 15 downstream of the blender. branching of the third connecting element which opens into the cylindrical chamber 3 of the mixer, vis-à-vis the outer surface of the second tubular conduit 18b.
  • the first high temperature fluid circulates (arrow 11) inside the first tubular duct 18a which opens inside the second tubular duct 18b. .
  • the flow of cooling water passing inside the ferrule 20 turns over to then flow downwardly and into the annular space between the first tubular conduit 18a and the second tubular conduit 18b.
  • the cooling water is mixed with the first fluid at high temperature in the mixing zone 17 at the outlet of the first tubular conduit 18a.
  • the mixture is recovered through the outlet opening of the mixer at the second connection element 6.
  • the part of the casing 2 of the mixer located between a shoulder 2a and the second connecting element 6 is substantially at the temperature of the cooling water (close to 20 ° C.).
  • the first connecting element 5 is at a temperature close to the temperature of the first fluid (550 ° C.).
  • the maximum temperature gradient in the axial direction is in a cylindrical zone 2b of the envelope between the first connecting element 5 and the shoulder 2a.
  • a strong thermal gradient in the cylindrical axisymmetric zone 2b of the envelope does not have any disadvantage for holding the envelope of the mixer in use.
  • the connecting elements 5, 6 and 7 are at uniform temperatures and the connecting elements 5 and 7 are spaced from each other by an axial distance little less than the total length of the casing 2 of the mixer.
  • the thermal gradients through the first tubular conduit 18a and through the second tubular conduit 18b are substantially absorbed by at least one insulating layer of standing water within the respective annular space 19a. or 19b of the tubular duct 18a or 18b.
  • the thermal gradient through the wall of the first tubular duct 18a whose inner surface is in contact with the first fluid at high temperature and the outer surface in contact with cooling water is substantially greater than the thermal gradient across the wall of the second tubular conduit 18b which is in contact by its inner surface with the fluid mixture at about 300 ° C and on its outer surface with cooling water at 20 ° C filling the outer annular portion of the cylindrical chamber 3 of the mixer.
  • the zone 15 situated downstream of the third connecting element, at the outlet of the guide duct, receives the fluid mixture, the mixing zone 17 then being located upstream, inside. the second guide duct 18b.
  • FIG. 3 shows a tubular duct (for example the duct 18a of the device represented in FIG. 2) comprising three annular isolation spaces 19 'a, 19 "a, 19" a extending along the entire axial length of the portion of the conduit 18a subjected to a high thermal gradient.
  • the coaxial annular spaces delimited by ferrules threaded on one another correspond to the single annular space 19a shown in a simplified manner in FIG. 2.
  • the first set of ferrules constituting the first tubular conduit 18a comprises an inner ferrule 21 and three outer ferrules 22a, 22b, 22c threaded one on the other and on the inner ferrule 21 in a coaxial arrangement.
  • Each of the ferrules 21, 22a and 22b has a portion extending over an axial length L in which the ferrule has a reduced thickness.
  • outer shells 22a, 22b and 22c are traversed throughout their thickness by small diameter openings (for example 2 mm) distributed along their circumference in two zones 23 and 23 'at the ends of the length zone L in which the rings 21, 22a and 22b have a reduced thickness, that is to say at the axial ends of the annular spaces 19'a, 19 "a and 19" a.
  • the ferrules 21, 22a, 22b, 22c which have at their upper ends threaded one on the other a diametrically widened portion come to rest in an annular groove of the sleeve 12, the length portions L of the ferrules between which are formed the annular spaces 19'a, 19 "a and 19"'to engage inside the inner shell 20 of the second tubular conduit 18b.
  • the openings arranged along the zones 23 and 23 'of the ferrules connect the annular spaces 19' a, 19 "a and 19"'with an annular zone of the mixer chamber inside the ferrule 20 of the second conduit. tubular 18b receiving the cooling water through the openings 20 '.
  • the annular spaces 19a, 19a and 19a are filled with substantially stagnant water entering the annular spaces through the openings of the zones 23 and 23 '.
  • the inner ferrule 21 completely isolates the inner portion of the first tubular conduit 18a receiving the first fluid at high temperature annular spaces 19'a, 19 "a and 19"'and the zone for receiving the cooling water at the same time. outside the first tubular duct 18.
  • the second conduit 18b is similar to the first conduit 18a and consists of ferrules threaded one on the other; the rings of the second conduit 18b have a portion of reduced thickness, in substance along their entire length which is subjected to a high thermal gradient and the inner ferrule 20 is extended at the upper end of the conduit 18b and has through openings 20 ' .
  • the thermal gradient can be represented by the slope of a line 26 which can be very strong in the case of a very large temperature difference between the two faces of the wall 18.
  • no Solid material such as metals or refractories
  • FIG. 4B shows a wall element 18 'consisting of a first wall element 18'a, a second wall element 18'b and a third wall element 18'c arranged parallel to one another by providing a first space 19'ab between the elements 18'a and 18'b and a second space 19'bc between the elements 18'b and 18'c, the spaces 19'ab and 19'bc being filled by a material insulating.
  • the thermal gradient is represented by the slopes of a broken line 26 'whose straight portions inside the solid wall elements 18'a, 18'b, 18'c have a slight slope and the parts straight inside spaces filled with insulating material, steep slope.
  • the thermal gradients inside the wall elements 18'a, 18'b and 18'c of the composite wall 18 ' are greatly reduced.
  • the wall 18 and the wall elements 18'a, 18'b and 18'c are in the form of coaxial tubular envelopes.
  • These tubular cylindrical walls when subjected to a large radial thermal gradient have radial and circumferential stresses that may exceed the rupture limit of the envelope and lead to degradation of the component wall.
  • These constraints are functions of the temperature gradient, the characteristics of the material (modulus of elasticity, Poisson's ratio and coefficient of expansion) and the dimensions of the tube (radius and thickness).
  • no massive material can be used without suffering damage.
  • a tubular envelope such as the envelope 18 can not be used in the case of high thermal gradients.
  • the wall elements 18'a, 18'b, 18'c which are only subjected to low thermal gradients can be designed to resist these gradients
  • the insulating layers in the spaces 19'ab and 19'bc can be subjected to very high thermal gradients, so that it can be difficult to find insulating materials resistant to the stresses due to these thermal gradients.
  • the two sides of the wall are in contact with fluids at different temperatures, it is possible to fill the isolation spaces 19 'ab and 19' bc of the wall 18 'with fluid at a lower temperature, by providing openings through the wall elements 18'b and 18'c for example.
  • the critical thicknesses of the spaces 19'ab and 19'bc are defined below which no natural convection can occur in the process fluid filling the spaces 19'ab and 19'bc. Only the thermal conductivity of the fluid then intervenes.
  • the thicknesses can be very small, for example, less than a millimeter.
  • Such walls as shown in FIG. 4B can be used as walls separating fluids at very different temperatures and in particular as walls of the guide ducts of a mixer according to the invention.
  • the invention therefore relates to a mixing device for efficiently mixing the fluids at very different temperatures while avoiding significant thermal gradient effects in the separator walls of the mixer.
  • the mixer according to the invention may comprise a casing of different shape from those described and one or more internal guide ducts to the mixer casing making it possible to ensure the circulation between the fluid streams at different temperatures.
  • the residual fluid can be both cooled and neutralized, for example by injection of cooling water containing soda.
  • the invention can be applied to the cooling of fluids different from residual fluids from an effluent oxidation operation in supercritical water.
  • the invention can also be applied in the case of fluid mixtures at very different temperatures in many industries and especially in the chemical industry.
  • the invention may have applications also in power generation facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Claims (6)

  1. Vorrichtung zum Mischen eines ersten Fluids mit einer ersten Temperatur und eines zweiten Fluids mit einer zweiten Temperatur in Form von koaxialen Strömen mit derselben Fließrichtung, gebildet durch
    eine generell zylindrische rohrförmige Umhüllung (2) mit einer im Wesentlichen geradlinigen Achse (4), die eine zu der Umhüllung (2) koaxiale zylindrische Mischkammer (3) abgrenzt, die an einem ersten axialen Ende ein erstes Element (5) für den Anschluss an Einrichtungen zur Versorgung mit dem ersten Fluid umfasst und an einem dem ersten entgegengesetzten zweiten axialen Ende ein zweites Anschlusselement (6) für den Anschluss an Abfließeinrichtungen des ersten und des zweiten Fluids,
    und durch einen Kanal (8, 18) zum Leiten von wenigstens einem der Fluids, dem ersten und/oder zweiten, der im Wesentlichen geradlinig ist und in der Mischkammer (3) koaxial angeordnet ist,
    dadurch gekennzeichnet, dass sie ein drittes Element (7) für den Anschluss der Mischkammer (3) an Einrichtungen zur Versorgung mit dem zweiten Fluid umfasst, das in axialer Richtung zwischen dem ersten und dem zweiten Anschlusselement (5, 6) angeordnet ist und in einer transversalen Richtung im Wesentlichen senkrecht ist zu der axialen Richtung, und dass der Leitkanal (8, 18a, 18b) sich in der Mischkammer (3) axial zwischen dem ersten Anschlusselement (5) und einer Zone (15) der Mischkammer (3) erstreckt, die sich entsprechend der Richtung vom ersten zum zweiten Anschlusselement unterhalb des Anschlusselements (7) befindet, und eine rohrförmige Wand mit wenigstens einem koaxialen ringförmigen Isolationsinnenraum (9, 19a, 19b, 19c, 19'a, 19'b, 19'c) umfasst, der mit einer Zone der Mischkammer (3) verbunden ist, die sich im Wesentlichen über die gesamte Länge des Leitkanals (8, 18a, 18b) erstreckt, wobei das dritte Anschlusselement einer Außenfläche der Wand des Leitkanals (8, 18a, 18b) gegenüber in die Mischkammer (3) mündet.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Leitkanal einen ersten rohrförmigen Kanal (18a) umfasst, der sich in der Mischkammer (3) ab dem ersten Element (5) für den Anschluss an ein axiales Ende der Mischkammer (3) erstreckt, sowie einen zweiten rohrförmigen Kanal (18b) mit einem Innendurchmesser, der größer ist als der Außendurchmesser des ersten rohrförmigen Kanals (18a), der koaxial zum ersten rohrförmigen Kanal (18a) und zu der Umhüllung (2) des Mischers angeordnet ist und ein erstes axiales Ende im Innern der zylindrischen Kammer umfasst, in das ein Endstück des ersten rohrförmigen Kanals (18a) hineinragt, sowie ein zweites axiales Ende unterhalb des dritten Anschlusselements (7), das der Außenfläche der Wand des zweiten Kanals (18b) gegenüber in die Mischkammer (3) mündet, so dass das durch das dritte Anschlusselement in die Mischkammer (3) eingeleitete zweite Fluid in einer ringförmigen Zone der Mischkammer (3), die auf Höhe des zweiten axialen Endes des zweiten rohrförmigen Kanals abgeschlossen ist, in axialer Richtung zuerst in Richtung des ersten Endes des rohrförmigen Kanals (19b) fließt, und dann, entsprechend einer zweiten Richtung, ins Innere des zweiten Kanals (19b), zwischen dem ersten und dem zweiten axialen Ende des zweiten rohrförmigen Kanals, wobei sich das erste und das zweite Fluid in Form von koaxialen, in derselben Richtung in eine Mischzone (17) fließenden Strömen im Innem des zweiten rohrförmigen Kanals (19b) vermischen.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der erste und der zweite rohrförmige Kanal (18a, 18b) jeweils durch einen Satz koaxialer Rohrstücke gebildet werden, die ineinander stecken und Abschnitte von geringerer Dicke aufweisen, so dass es zwischen ihnen koaxiale ringförmige Räume (19'a, 19"a, 19'''a) gibt, in denen Öffnungen vorgesehen sind, welche die koaxialen ringförmigen Räume (19a, 19b, 19'a, 19"a, 19"'a, 19'ab, 19'b0c) mit einer Umgebung bzw. einem Medium in der Mischkammer (3) außerhalb des rohrförmigen Kanals (18a, 18b) verbinden.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der zweite rohrförmige Kanal (18b) ein Innenrohrstück (20) umfasst, das mit einem seiner axialen Enden aus dem zweiten rohrförmigen Kanals (18b) hervorsteht, dabei den ersten rohrförmigen Kanal (18a) mit einem Radialspiel umgibt und Öffnungen (20') aufweist, durch die hindurch das Fluid in einen ringförmigen Raum zwischen der Außenoberfläche des ersten rohrförmigen Kanals (18a) und der Innenoberfläche des Innenrohrstücks (20) des zweiten rohrförmigen Kanals (18b) strömen kann.
  5. Nutzanwendung einer Mischvorrichtung nach einem der Ansprüche 1 bis 4, um ein erstes Fluid, hauptsächlich gebildet durch superkritisches Wasser, benutzt zur Behandlung von Abwässern durch Oxidation in superkritischem Wasser, zu vermischen mit einem zweiten Fluid, hauptsächlich gebildet durch Kühlwasser mit einer Temperatur, die deutlich niedriger ist als die Temperatur des ersten Fluids.
  6. Nutzanwendung einer Mischvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das erste Fluid eine Temperatur von ungefähr 550°C hat und das zweite Fluid eine Temperatur von ungefähr 20°C.
EP04767305A 2003-07-29 2004-06-09 Vorrichtung zum mischen von zwei fluiden und verwendung davon zum kühlen eines fluids auf sehr hoher temperatur Expired - Lifetime EP1648598B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309341A FR2858248B1 (fr) 2003-07-29 2003-07-29 Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature
PCT/FR2004/001439 WO2005021143A1 (fr) 2003-07-29 2004-06-09 Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature.

Publications (2)

Publication Number Publication Date
EP1648598A1 EP1648598A1 (de) 2006-04-26
EP1648598B1 true EP1648598B1 (de) 2007-01-24

Family

ID=34043652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767305A Expired - Lifetime EP1648598B1 (de) 2003-07-29 2004-06-09 Vorrichtung zum mischen von zwei fluiden und verwendung davon zum kühlen eines fluids auf sehr hoher temperatur

Country Status (7)

Country Link
US (1) US20060187751A1 (de)
EP (1) EP1648598B1 (de)
JP (1) JP2007500074A (de)
AT (1) ATE352368T1 (de)
DE (1) DE602004004540D1 (de)
FR (1) FR2858248B1 (de)
WO (1) WO2005021143A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CO6150041A1 (es) * 2008-12-19 2010-04-20 Univ Del Valle Proceso para la distribucion de residuos toxicos mediante oxidacion en presencia de agua y oxigeno y unidad continua para el tratamiento de compuestos peligrosos
CN102455137B (zh) * 2010-10-30 2013-08-07 贾海平 混水换热器
JP5719745B2 (ja) * 2011-10-11 2015-05-20 川崎重工業株式会社 流体混合器とこれを用いた熱交換システム
GB201320417D0 (en) * 2013-11-19 2014-01-01 Univ Nottingham Mixing reactors
US9829214B2 (en) * 2015-04-22 2017-11-28 Ronald Paul Taylor Cylindrical tubular heat exchanger type 1
US9835357B2 (en) * 2015-04-22 2017-12-05 Ronald Paul Taylor Cylindrical tubular heat exchanger type 2
CN113624602B (zh) * 2021-07-29 2022-07-15 中国科学院金属研究所 管材成形极限图右侧区域曲线的实验装置及构建方法
CN113600045A (zh) * 2021-08-23 2021-11-05 赤峰云铜有色金属有限公司 一种混酸系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1496345A (en) * 1923-09-28 1924-06-03 Frank E Lichtenthaeler Apparatus for mixing liquids
US2094664A (en) * 1934-08-31 1937-10-05 Enumclaw Co Operative Creamery Water heating system
US2747844A (en) * 1954-12-22 1956-05-29 Rudolf S Slayter Device for mixing fluids
US2816518A (en) * 1956-01-10 1957-12-17 Daggett Chocolate Company Ice cream blending apparatus
US3298669A (en) * 1964-09-23 1967-01-17 Dow Chemical Co Eductor mixing apparatus
US3332442A (en) * 1965-01-18 1967-07-25 Zink Co John Apparatus for mixing fluids
US3475508A (en) * 1967-12-14 1969-10-28 Badger Co Dehydrogenation of alkyl aromatic compounds in the presence of nickelbearing alloy steels
US3542342A (en) * 1968-09-06 1970-11-24 Byron Jackson Inc Apparatus for mixing pulverulent material with liquid
US3794299A (en) * 1971-09-23 1974-02-26 Chem Trol Pollution Services Centrifugal reactor
US3741533A (en) * 1971-10-14 1973-06-26 Dow Chemical Co Mixing apparatus
US3818938A (en) * 1972-10-16 1974-06-25 Universal Oil Prod Co Fluid mixing apparatus
US3926787A (en) * 1973-03-02 1975-12-16 C G Process Coal Company Method and apparatus for reducing sulphur and ash content of coal
DK135976B (da) * 1975-01-20 1977-07-25 Hotaco As Blanderedskab til opbygning af fiberforstærkede konstruktionsmaterialer in situ.
US4390284A (en) * 1980-01-25 1983-06-28 Neptune Microfloc, Inc. Method and apparatus for wetting powder
US4408890A (en) * 1981-03-11 1983-10-11 E. I. Du Pont De Nemours And Company Pigment pre-blending mixhead attachment
US4474477A (en) * 1983-06-24 1984-10-02 Barrett, Haentjens & Co. Mixing apparatus
US4538921A (en) * 1983-11-25 1985-09-03 Allied Corporation Apparatus and method for slurrying soda ash
US5383725A (en) * 1989-10-02 1995-01-24 Cmi Corporation Asphalt/dust/rubber processing equipment
US5492404A (en) * 1991-08-01 1996-02-20 Smith; William H. Mixing apparatus
FI98892C (fi) * 1994-11-15 1997-09-10 Turun Asennusteam Oy Polymeerien liuotusmenetelmä ja -laite
US5860451A (en) * 1996-03-12 1999-01-19 Teledyne Industries, Inc. Fluid admixture systems
GB9917733D0 (en) * 1999-07-28 1999-09-29 Kvaerner Earl & Wright Thermal insulated pipelines
US6796704B1 (en) * 2000-06-06 2004-09-28 W. Gerald Lott Apparatus and method for mixing components with a venturi arrangement
US6615872B2 (en) * 2001-07-03 2003-09-09 General Motors Corporation Flow translocator
US6749330B2 (en) * 2001-11-01 2004-06-15 Thomas E. Allen Cement mixing system for oil well cementing
DE10163724A1 (de) * 2001-12-21 2003-07-03 Stolco Stoltenberg Lerche Gmbh Dampfinjektor
US6767007B2 (en) * 2002-03-25 2004-07-27 Homer C. Luman Direct injection contact apparatus for severe services
US7380976B2 (en) * 2005-07-18 2008-06-03 Xerox Corporation Device and method with cooling jackets

Also Published As

Publication number Publication date
WO2005021143A1 (fr) 2005-03-10
US20060187751A1 (en) 2006-08-24
ATE352368T1 (de) 2007-02-15
JP2007500074A (ja) 2007-01-11
EP1648598A1 (de) 2006-04-26
DE602004004540D1 (de) 2007-03-15
FR2858248B1 (fr) 2005-10-28
FR2858248A1 (fr) 2005-02-04

Similar Documents

Publication Publication Date Title
EP1337479B1 (de) Verfahren und vorrichtung zur überkritischen nassoxidation von stoffen
EP3538259B1 (de) Reaktor zur hydrothermalen oxidationsbehandlung eines organischen stoffes in einem reaktionsmedium
EP1300058B1 (de) Spallationsvorrichtung zur neutronenerzeugung
EP1648598B1 (de) Vorrichtung zum mischen von zwei fluiden und verwendung davon zum kühlen eines fluids auf sehr hoher temperatur
CA2692701C (fr) Reacteur echangeur a tube baionnette permettant de fonctionner avec des differences de pression de l'ordre de 100 bars entre le cote tube et le cote calandre
CA2624016C (fr) Reacteur et procede pour le traitement d'une matiere dans un milieu reactionnel fluide
FR2553886A1 (fr) Systeme autoporteur pour restreindre les effets de la rupture d'un tuyau et le fouettement de celui-ci
FR2585805A1 (fr) Appareillage de destruction de produits dangereux
FR2635371A1 (fr) Procede pour la destruction de dechets toxiques et reacteur plasma-chimique, pour la mise en oeuvre du procede
FR2858943A1 (fr) Appareil et procede de traitement de dechets organiques
WO2005075058A1 (fr) Procede de traitement des gaz par des decharges haute frequence
FR2924358A1 (fr) Nouveau reacteur permettant la mise en oeuvre de reactions a tres haute temperature et haute pression
EP3806995B1 (de) Reaktor zur hydrothermalen oxidationsbehandlung eines organischen stoffes in einem reaktionsmedium
EP1014761B1 (de) Kanalelement für Gasbehandlungsvorrichtung und Vorrichtung die ein solches Kanalelement enthält
EP2179788B1 (de) Gerät mit Rührbottich
FR2863696A1 (fr) Dispositif de melange de deux fluides a des temperatures differentes et utilisation dans un circuit de refroidissement d'un reacteur nucleaire.
EP0203861A1 (de) Modulare Ultrafiltrationsvorrichtung für die Kühlflüssigkeit eines Kernreaktors
WO2001022427A1 (fr) Appareil de traitement d'un melange gazeux contenant de l'hydrogene et de la vapeur d'eau
FR2662538A1 (fr) Dispositif et procede de decontamination de la surface interieure de la paroi d'une cuve de reacteur nucleaire.
FR2705825A1 (fr) Dispositif de décontamination de la surface interne d'un tronçon d'extrémité d'une canalisation.
FR2873045A1 (fr) Traitement d'effluents gazeux par plasma a pression atmospherique
FR2701155A1 (fr) Procédé et installation de décontamination de couvercles usagés de cuves de réacteurs nucléaires à eau légère.
EP4249632A1 (de) Vorrichtung zur diffusion eines behältervorläufers mit mindestens einem porösen element zur erzeugung eines aerosols auf eine wachstumsfläche
FR2830205A1 (fr) Enceinte reactionnelle comprenant une enveloppe contenant au moins un module relie par des moyens souples a l'enveloppe et contenant des moyens d'echange de chaleur
FR2706217A1 (fr) Procédé de remise en état d'un échangeur de chaleur de centrale nucléaire, notamment d'un échangeur de chaleur de circuit auxiliaire de refroidissement d'un réacteur nucléaire à l'arrêt.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004004540

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070124

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: JEUMONT S.A.

Effective date: 20070630

26N No opposition filed

Effective date: 20071025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725