EP1648598B1 - Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature - Google Patents

Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature Download PDF

Info

Publication number
EP1648598B1
EP1648598B1 EP04767305A EP04767305A EP1648598B1 EP 1648598 B1 EP1648598 B1 EP 1648598B1 EP 04767305 A EP04767305 A EP 04767305A EP 04767305 A EP04767305 A EP 04767305A EP 1648598 B1 EP1648598 B1 EP 1648598B1
Authority
EP
European Patent Office
Prior art keywords
fluid
tubular
mixing chamber
tubular pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04767305A
Other languages
German (de)
English (en)
Other versions
EP1648598A1 (fr
Inventor
Michel Lepine
Dominique Cucini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeumont SA
Original Assignee
Jeumont SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeumont SA filed Critical Jeumont SA
Publication of EP1648598A1 publication Critical patent/EP1648598A1/fr
Application granted granted Critical
Publication of EP1648598B1 publication Critical patent/EP1648598B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/04Other direct-contact heat-exchange apparatus the heat-exchange media both being liquids

Definitions

  • the invention relates to a device for mixing a first fluid at a first temperature and a second fluid at a second temperature.
  • a residual fluid consisting mainly of water at very high temperature (for example 550 ° C) and at very high pressure.
  • This fluid must be cooled and depressurized and optionally treated, for example by chemical neutralization to be rejected or possibly stored in containers or collection tanks.
  • the known hydrothermal oxidation process of organic effluents in supercritical water consists of bringing the effluents into contact with water at very high temperature and at very high pressure in the presence of oxygen, so as to destroy the organic molecules by means of generally exothermic reactions that raise the temperature and pressure of water to levels higher than those corresponding to the critical point of water (22.1 MPa and 374 ° C).
  • Water in supercritical condition is an extremely powerful solvent that destroys organic molecules in one second to one minute, depending on their thermal stability.
  • This process can in particular be used to treat chemical gases, weed killers, sewage sludge or chemical plant waste or nuclear waste.
  • molecules of effluents are converted into substances having no harmfulness to the environment, such as carbon dioxide CO 2, water and molecular nitrogen.
  • hydrochloric acid HCl is formed which can be neutralized by an injection of a sodium hydroxide solution into the residual fluid of the treatment, the sodium hydroxide neutralizing the hydrochloric acid in the form of the chloride of sodium NaCl.
  • the residual fluid substantially consisting of water may be at a temperature as high as 550 ° C and at a pressure substantially greater than the critical pressure of 22.1 MPa.
  • Such pressure and temperature conditions do not make it possible to use conventional heat exchangers operating a heat exchange between two fluids through a wall, to cool the residual fluid to ambient conditions.
  • DE-A-10 163 724 discloses a steam injection device having a similar structure.
  • the high temperature fluid is introduced and circulated within a conduit and the coolant and process fluid is injected into the high temperature fluid stream so that the fluid mixture is formed. by coaxial circulation of the fluid at high temperature and the cooling fluid and treatment, in the same direction of circulation.
  • the fluid mixture is recovered at the outlet of the conduit constituting a mixer chamber.
  • the cooling and treatment fluid is injected into the interior of the high temperature fluid circulation duct by a second coaxial duct passing through the wall of the high temperature fluid circulation duct.
  • the cooling fluid injection duct and certain parts of the high temperature fluid circulation duct undergo very high thermal gradients in their walls, so that it is very difficult to design structures resistant to these gradients.
  • the parts of the ducts in contact with the supercritical water undergo a very strong corrosion, so that it is necessary to use corrosion resistant materials such as titanium or nickel alloys to form these parts of the ducts.
  • the object of the invention is therefore to propose a device for mixing a first fluid at a first temperature and a second fluid at a second temperature, in the form of coaxial currents having the same direction of circulation, comprising an envelope. generally cylindrical tubular and having a substantially rectilinear axis, delimiting a cylindrical mixing chamber coaxial with the casing comprising, at a first axial end, a first connecting element to the first fluid supply means and, at a second axial end opposed to the first, a second connecting element to means for evacuating the mixture of the first and second fluids and at least one guide duct of at least one of the first and second fluids, substantially rectilinear and disposed in the cylindrical chamber in a coaxial arrangement, this device for performing the mixing of the fluids in good conditions, with limited thermal gradients in the various envelopes and tubular conduits of the device.
  • the device comprises a third connecting element of the mixing chamber with second fluid supply means, in an intermediate arrangement in the axial direction between the first and the second connecting elements and in a substantially transverse direction.
  • perpendicular to the axial direction and the guide duct extends axially in the mixer chamber between the first connecting element and a mixing zone of the mixing chamber downstream of the third connecting element in the direction from the first to the second connecting element and comprises a tubular wall having at least one annular inner space of coaxial insulation in communication with a zone of the mixing chamber, extending substantially over the entire length of the guide duct, the third connecting element opening into the cylindrical chamber facing an outer surface of the wall of the guide duct .
  • the device may be used in particular for mixing a first fluid consisting mainly of supercritical water used for the treatment of effluents by oxidation in supercritical water with a second fluid consisting mainly of cooling water at a substantially lower temperature. at the temperature of the second fluid.
  • the first fluid may be at a temperature of about 550 ° C and the second fluid at a temperature of about 20 ° C.
  • Figure 1 is a schematic axial sectional view of a mixer according to the invention and according to a first embodiment.
  • Figure 2 is a schematic axial sectional view of a mixer according to the invention and according to a second embodiment.
  • Figure 3 is an enlarged axial sectional view of a first tubular conduit of the mixer shown in Figure 2 for guiding the first fluid, consisting of ferrules threaded one on the other.
  • FIGS. 4A and 4B are diagrammatic sectional views of a tubular duct wall on which are represented the variations of the temperature in the wall of the tubular duct exposed on its external and internal surfaces to fluids at different temperatures.
  • Figure 4A relates to a solid wall.
  • Figure 4B relates to a wall according to the invention having annular internal spaces filled with fluid.
  • FIG. 1 diagrammatically shows a mixing device according to the invention generally designated by the reference numeral 1 comprising an outer casing 2 of generally cylindrical tubular shape delimiting an internal cylindrical mixer chamber 3, the casing 2 and the cylindrical chamber 3 having as a common axis the longitudinal axis 4 of the mixer.
  • the casing 2 comprises, at a first axial end, a first connecting and intake element 5 which may be constituted by an opening surrounded by a flange for connecting the mixer 1 to a first fluid supply means, by For example, an outlet pipe of a supercritical water effluent oxidation reactor 30 constituting the first fluid which is cooled by mixing inside the mixer 1.
  • the first fluid is largely constituted by supercritical water at a temperature of 550 ° C and a pressure of the order of 25 MPa.
  • the casing 2 of the mixer comprises, at a second axial end opposite the end 5, a second discharge and connection element 6 which may consist of an opening surrounded by a connection flange of the mixer to a duct. evacuation of the mixture, that is to say the cooled water, for example up to a temperature of 300 ° C.
  • the exhaust duct connected to the connecting element 6 can ensure the junction between the mixer and a heat exchanger 31 for cooling the fluid obtained by mixing at the outlet of the mixer, to ambient conditions.
  • the casing 2 further comprises a third connecting element 7 which can be constituted by a stitching and a flange for connecting the mixer to a cooling fluid supply means, for example to a reservoir and a pumping installation.
  • a third connecting element 7 which can be constituted by a stitching and a flange for connecting the mixer to a cooling fluid supply means, for example to a reservoir and a pumping installation.
  • a guide duct 8 Inside the cylindrical chamber 3 of the mixer, in a coaxial arrangement, is mounted a guide duct 8 whose tubular cylindrical wall comprises one or more coaxial internal annular spaces 9 extending substantially over the entire axial length of the duct. 8 and defined between thin coaxial tubular elements.
  • FIG 1 there is shown, to simplify the drawing, a guide duct 8 having a single annular space 9 between an outer wall member 8a and an inner wall member 8b.
  • the outer wall element 8a of the guide duct 8 is traversed by openings 10 of small dimensions (having for example a diameter of the order of one millimeter) distributed along the circumference of the tubular duct in two zones arranged in the vicinity of the axial ends. guide duct.
  • the openings 10 put in communication the internal annular space 9 of the wall 8 with the cylindrical chamber 3 of the mixer.
  • the inner annular space 9 of the wall of the tubular duct 8 is filled with water in the substantially stagnant state.
  • this annular space filled with water makes it possible to ensure a certain insulation and a limitation of the thermal gradient in the radial direction through the wall of the guide duct 8.
  • the guide duct 8 is connected, at one of its axial ends, to the casing of the mixer, at the level of the first connection element 5, so that the first fluid (as indicated by the arrow 11) flows. in the axial direction 4, inside the guide duct 8.
  • the duct 8 is fixed on the casing 2 of the mixer, via an annular piece 12.
  • the third connecting element 7 is arranged as far as possible from the first connecting element, so as to move the introduction zone of the first fluid at very high temperature and the zone of introduction of the second fluid away from one another. consisting of water at about 20 ° C in the envelope 2 of the mixer.
  • the distance between the first and the third connecting elements is in fact little less than the total length of the envelope 2 of the mixer in the axial direction 4 (for example a little less than one meter).
  • the third connecting element 7 is directed along an axis 13 substantially perpendicular to the longitudinal axis 4 of the mixer, the direction of the third connecting element along which the second fluid is introduced into the cylindrical chamber 3 (represented by the arrow 14) being lateral or radial, with respect to the envelope of the mixer.
  • the third connecting element connected to a supply duct 32 for cooling water is furthermore arranged so as to open into the cylindrical enclosure 3 opposite a portion of the outer surface of the guide duct 8 which extends in the axial direction 4 from the first connecting element 5 to a zone 15 of the cylindrical chamber 3 situated downstream of the third connecting element 7 (considering the circulation of the first fluid in the axial direction, as represented by the arrows 11).
  • the cooling water which is introduced into the cylindrical chamber 3, with a pressure slightly greater than the pressure of the first fluid comes into contact with the external surface of the tubular duct 8 and is distributed along the axial length around this duct 8, to the inside of the cylindrical chamber 3.
  • cooling water ensures a maintenance of the casing 2 in the zone of the third connecting element 7, at a temperature close to the temperature of the cooling water.
  • the cooling water flows towards the mixer outlet at the second connecting member 6, in a substantially axial direction, to meet the flow of first high temperature fluid flowing inside the conduit.
  • the cooling water mixes with the first fluid at a very high temperature, the cooled mixture being recovered at the outlet of the mixer, at the level of the second element of the connection 6.
  • the flow rate of cooling water introduced into the cylindrical envelope is adjusted so that the temperature of the mixture recovered at the outlet of the mixer is close to 300 ° C.
  • the first connecting element 5 is at the temperature of the first fluid, for example 550 ° C, while the third connecting element 7 is at a temperature of the order of 20 ° C.
  • the axial thermal gradient between the first and third connecting elements has a high value in a region of the casing 2 of cylindrical shape intermediate between the first and the third connecting elements.
  • the axial thermal gradient, high in this zone of the envelope does not affect the behavior of the envelope, the gradient applying in a fully axisymmetric zone.
  • the connecting elements are at perfectly homogeneous and constant temperatures which are the temperature of the first and second fluids.
  • the temperature gradient between the second connecting element 6, at the mixer outlet, and the third connecting element is in a cylindrical zone of the mixer casing, which does not require impact on its service performance.
  • the guide duct 8 is in contact, on its inner surface, with the first high temperature fluid and, on its outer surface, with the second cooling fluid inside the cylindrical chamber 3.
  • the thermal gradient in the radial direction, through the wall of the guide duct 8, is therefore high, at least in certain areas of the wall of the guide duct 8.
  • the presence of at least one annular space 9 filled with fluid, that is to say water, allows to limit to low values the gradient through the wall elements 8a and 8b of the guide duct 8, the insulating layer constituted by the water filling the space 9 absorbent most of the thermal gradient between the inner surface of the guide duct 8 in contact with the first fluid at 550 ° C and the external surface in contact with the cooling water at 20 ° C in the cylindrical chamber 3.
  • the first tubular duct constituting the first portion 18a of the guide duct is fixed inside the first connecting element 5 of the mixer, by an annular piece 12, in the same manner as the single duct 8 of the first embodiment.
  • the wall of the first tubular conduit 18a has at least one annular internal space 19a extending substantially over its entire axial length.
  • the second portion 18b of the guide duct is constituted by a second tubular duct whose inner diameter is greater than the outer diameter of the first tubular duct 18a and whose wall has at least one annular space 19b extending substantially along its entire length.
  • the second tubular duct 18b is engaged in the annular piece 12 at its upper part by means of a shell 20 and engaged by its lower part in a part 16, inside the second connecting element 6 of the mixer arranged according to its axial end of exit.
  • the free end of the first tubular duct 18a is engaged over a certain length in the free end of the second tubular duct 18b, the first and second ducts 18a, 18b having the shaft 4 as the common axis of the mixer casing.
  • the guide duct formed by the first duct portion 18a and the second duct portion 18b extends from the first connecting member 5 at an axial end of the blender envelope to an area 15 downstream of the blender. branching of the third connecting element which opens into the cylindrical chamber 3 of the mixer, vis-à-vis the outer surface of the second tubular conduit 18b.
  • the first high temperature fluid circulates (arrow 11) inside the first tubular duct 18a which opens inside the second tubular duct 18b. .
  • the flow of cooling water passing inside the ferrule 20 turns over to then flow downwardly and into the annular space between the first tubular conduit 18a and the second tubular conduit 18b.
  • the cooling water is mixed with the first fluid at high temperature in the mixing zone 17 at the outlet of the first tubular conduit 18a.
  • the mixture is recovered through the outlet opening of the mixer at the second connection element 6.
  • the part of the casing 2 of the mixer located between a shoulder 2a and the second connecting element 6 is substantially at the temperature of the cooling water (close to 20 ° C.).
  • the first connecting element 5 is at a temperature close to the temperature of the first fluid (550 ° C.).
  • the maximum temperature gradient in the axial direction is in a cylindrical zone 2b of the envelope between the first connecting element 5 and the shoulder 2a.
  • a strong thermal gradient in the cylindrical axisymmetric zone 2b of the envelope does not have any disadvantage for holding the envelope of the mixer in use.
  • the connecting elements 5, 6 and 7 are at uniform temperatures and the connecting elements 5 and 7 are spaced from each other by an axial distance little less than the total length of the casing 2 of the mixer.
  • the thermal gradients through the first tubular conduit 18a and through the second tubular conduit 18b are substantially absorbed by at least one insulating layer of standing water within the respective annular space 19a. or 19b of the tubular duct 18a or 18b.
  • the thermal gradient through the wall of the first tubular duct 18a whose inner surface is in contact with the first fluid at high temperature and the outer surface in contact with cooling water is substantially greater than the thermal gradient across the wall of the second tubular conduit 18b which is in contact by its inner surface with the fluid mixture at about 300 ° C and on its outer surface with cooling water at 20 ° C filling the outer annular portion of the cylindrical chamber 3 of the mixer.
  • the zone 15 situated downstream of the third connecting element, at the outlet of the guide duct, receives the fluid mixture, the mixing zone 17 then being located upstream, inside. the second guide duct 18b.
  • FIG. 3 shows a tubular duct (for example the duct 18a of the device represented in FIG. 2) comprising three annular isolation spaces 19 'a, 19 "a, 19" a extending along the entire axial length of the portion of the conduit 18a subjected to a high thermal gradient.
  • the coaxial annular spaces delimited by ferrules threaded on one another correspond to the single annular space 19a shown in a simplified manner in FIG. 2.
  • the first set of ferrules constituting the first tubular conduit 18a comprises an inner ferrule 21 and three outer ferrules 22a, 22b, 22c threaded one on the other and on the inner ferrule 21 in a coaxial arrangement.
  • Each of the ferrules 21, 22a and 22b has a portion extending over an axial length L in which the ferrule has a reduced thickness.
  • outer shells 22a, 22b and 22c are traversed throughout their thickness by small diameter openings (for example 2 mm) distributed along their circumference in two zones 23 and 23 'at the ends of the length zone L in which the rings 21, 22a and 22b have a reduced thickness, that is to say at the axial ends of the annular spaces 19'a, 19 "a and 19" a.
  • the ferrules 21, 22a, 22b, 22c which have at their upper ends threaded one on the other a diametrically widened portion come to rest in an annular groove of the sleeve 12, the length portions L of the ferrules between which are formed the annular spaces 19'a, 19 "a and 19"'to engage inside the inner shell 20 of the second tubular conduit 18b.
  • the openings arranged along the zones 23 and 23 'of the ferrules connect the annular spaces 19' a, 19 "a and 19"'with an annular zone of the mixer chamber inside the ferrule 20 of the second conduit. tubular 18b receiving the cooling water through the openings 20 '.
  • the annular spaces 19a, 19a and 19a are filled with substantially stagnant water entering the annular spaces through the openings of the zones 23 and 23 '.
  • the inner ferrule 21 completely isolates the inner portion of the first tubular conduit 18a receiving the first fluid at high temperature annular spaces 19'a, 19 "a and 19"'and the zone for receiving the cooling water at the same time. outside the first tubular duct 18.
  • the second conduit 18b is similar to the first conduit 18a and consists of ferrules threaded one on the other; the rings of the second conduit 18b have a portion of reduced thickness, in substance along their entire length which is subjected to a high thermal gradient and the inner ferrule 20 is extended at the upper end of the conduit 18b and has through openings 20 ' .
  • the thermal gradient can be represented by the slope of a line 26 which can be very strong in the case of a very large temperature difference between the two faces of the wall 18.
  • no Solid material such as metals or refractories
  • FIG. 4B shows a wall element 18 'consisting of a first wall element 18'a, a second wall element 18'b and a third wall element 18'c arranged parallel to one another by providing a first space 19'ab between the elements 18'a and 18'b and a second space 19'bc between the elements 18'b and 18'c, the spaces 19'ab and 19'bc being filled by a material insulating.
  • the thermal gradient is represented by the slopes of a broken line 26 'whose straight portions inside the solid wall elements 18'a, 18'b, 18'c have a slight slope and the parts straight inside spaces filled with insulating material, steep slope.
  • the thermal gradients inside the wall elements 18'a, 18'b and 18'c of the composite wall 18 ' are greatly reduced.
  • the wall 18 and the wall elements 18'a, 18'b and 18'c are in the form of coaxial tubular envelopes.
  • These tubular cylindrical walls when subjected to a large radial thermal gradient have radial and circumferential stresses that may exceed the rupture limit of the envelope and lead to degradation of the component wall.
  • These constraints are functions of the temperature gradient, the characteristics of the material (modulus of elasticity, Poisson's ratio and coefficient of expansion) and the dimensions of the tube (radius and thickness).
  • no massive material can be used without suffering damage.
  • a tubular envelope such as the envelope 18 can not be used in the case of high thermal gradients.
  • the wall elements 18'a, 18'b, 18'c which are only subjected to low thermal gradients can be designed to resist these gradients
  • the insulating layers in the spaces 19'ab and 19'bc can be subjected to very high thermal gradients, so that it can be difficult to find insulating materials resistant to the stresses due to these thermal gradients.
  • the two sides of the wall are in contact with fluids at different temperatures, it is possible to fill the isolation spaces 19 'ab and 19' bc of the wall 18 'with fluid at a lower temperature, by providing openings through the wall elements 18'b and 18'c for example.
  • the critical thicknesses of the spaces 19'ab and 19'bc are defined below which no natural convection can occur in the process fluid filling the spaces 19'ab and 19'bc. Only the thermal conductivity of the fluid then intervenes.
  • the thicknesses can be very small, for example, less than a millimeter.
  • Such walls as shown in FIG. 4B can be used as walls separating fluids at very different temperatures and in particular as walls of the guide ducts of a mixer according to the invention.
  • the invention therefore relates to a mixing device for efficiently mixing the fluids at very different temperatures while avoiding significant thermal gradient effects in the separator walls of the mixer.
  • the mixer according to the invention may comprise a casing of different shape from those described and one or more internal guide ducts to the mixer casing making it possible to ensure the circulation between the fluid streams at different temperatures.
  • the residual fluid can be both cooled and neutralized, for example by injection of cooling water containing soda.
  • the invention can be applied to the cooling of fluids different from residual fluids from an effluent oxidation operation in supercritical water.
  • the invention can also be applied in the case of fluid mixtures at very different temperatures in many industries and especially in the chemical industry.
  • the invention may have applications also in power generation facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

  • L'invention concerne un dispositif de mélange d'un premier fluide à une première température et d'un second fluide à une seconde température.
  • Dans le cas de certains processus industriels, il est nécessaire d'effectuer le mélange d'un premier et d'un second fluides dont les températures peuvent être extrêmement différentes l'une de l'autre.
  • Par exemple dans le cas du traitement d'effluents organiques par oxydation dans de l'eau en conditions supercritiques, on obtient, à l'issue du traitement, un fluide résiduel constitué principalement par de l'eau à très haute température (par exemple 550°C environ) et à très haute pression.
  • Ce fluide doit être refroidi et dépressurisé et éventuellement traité, par exemple par neutralisation chimique pour pouvoir être rejeté ou éventuellement stocké dans des récipients ou réservoirs de recueil.
  • Le procédé connu d'oxydation hydrothermale d'effluents organiques en eau supercritique consiste à mettre les effluents en contact avec de l'eau à très haute température et à très haute pression en présence d'oxygène, de manière à détruire les molécules organiques par des réactions généralement exothermiques qui élèvent la température et la pression de l'eau jusqu'à des niveaux supérieurs à ceux correspondants au point critique de l'eau (22,1 MPa et 374°C). L'eau en condition supercritique est un solvant extrêmement puissant qui permet de détruire les molécules organiques en une durée d'une seconde à une minute, suivant leur stabilité thermique.
  • On peut traiter par ce procédé en particulier des gaz chimiques, des désherbants, des boues de station d'épuration ou des rejets d'usine chimique ou des déchets nucléaires.
  • Dans tous les cas, les molécules d'effluents sont transformées en substances ne présentant pas de nocivité pour l'environnement, tel que le gaz carbonique CO2, l'eau et l'azote moléculaire.
  • Dans le cas de substances de type organochloré, il se forme de l'acide chlorhydrique HCl qui peut être neutralisé par une injection d'une solution de soude dans le fluide résiduel du traitement, la soude neutralisant l'acide chlorhydrique sous la forme du chlorure de sodium NaCl.
  • Dans le cas de procédés d'oxydation en eau supercritique qui ont été mis en oeuvre, le fluide résiduel constitué en grande partie d'eau peut être à une température aussi élevée que 550°C et à une pression sensiblement supérieure à la pression critique de 22,1 MPa.
  • De telles conditions de pression et de température ne permettent pas d'utiliser des échangeurs de chaleur de type classique opérant un échange de chaleur entre deux fluides à travers une paroi, pour refroidir le fluide résiduel jusqu'à des conditions ambiantes. On peut généralement utiliser, dans un processus industriel, des échangeurs de chaleur permettant d'abaisser la température de l'eau, depuis une température de l'ordre de 300°C, sensiblement inférieure à la température critique de l'eau, jusqu'à une température ambiante, par exemple 20°C.
  • Il reste nécessaire, dans le cas du traitement d'effluents organiques en eau supercritique, de disposer d'un procédé et de dispositifs permettant de refroidir l'eau entre sa température de départ de l'ordre de 550°C et une température de l'ordre de 300°C.
  • Pour cela, on a proposé d'utiliser des échangeurs de chaleur de type coaxial dans lesquels le courant de fluide à très haute température circule à l'intérieur d'un tube central entouré par une chambre de refroidissement coaxiale dans laquelle on fait circuler un débit d'eau à une température de l'ordre de 20°C. De tels échangeurs de chaleur doivent présenter une très grande longueur et nécessitent l'utilisation de matériaux réfractaires extrêmement coûteux, tels que le titane, pour constituer en particulier le tube de circulation du fluide résiduel à très haute température.
  • Le document DE-A-10 163 724 expose un dispositif d'injection de vapeur ayant une structure similaire.
  • On a proposé également de réaliser un mélange du fluide résiduel à très haute température avec un fluide à une température sensiblement inférieure pouvant renfermer différents réactifs. Le fluide à haute température est introduit et mis en circulation à l'intérieur d'un conduit et le fluide de refroidissement et de traitement est injecté à l'intérieur du courant de fluide à haute température, de manière que le mélange de fluides se fasse par circulation coaxiale du fluide à haute température et du fluide de refroidissement et de traitement, dans le même sens de circulation. Le mélange de fluides est récupéré à la sortie du conduit constituant une chambre de mélangeur. Le fluide de refroidissement et de traitement est injecté à l'intérieur du conduit de circulation du fluide à haute température par un second conduit coaxial traversant la paroi du conduit de circulation du fluide à haute température. Le conduit d'injection de fluide de refroidissement et certaines parties du conduit de circulation du fluide à haute température subissent de très forts gradients thermiques dans leurs parois, de telle sorte qu'il est très difficile de concevoir des structures résistant à ces gradients. En outre, dans le cas où l'on refroidit un fluide constitué principalement d'eau à l'état supercritique, les parties des conduits en contact avec l'eau supercritique subissent une très forte corrosion, de sorte qu'il est nécessaire d'utiliser des matériaux résistants à la corrosion tels que le titane ou les alliages de nickel pour constituer ces parties des conduits.
  • Le but de l'invention est donc de proposer un dispositif de mélange d'un premier fluide à une première température et d'un second fluide à une seconde température, sous la forme de courants coaxiaux ayant un même sens de circulation, comportant une enveloppe tubulaire généralement cylindrique et ayant un axe sensiblement rectiligne, délimitant une chambre de mélangeur cylindrique coaxiale à l'enveloppe comprenant, à une première extrémité axiale, un premier élément de raccordement à des moyens d'alimentation en premier fluide et, à une seconde extrémité axiale opposée à la première, un second élément de raccordement à des moyens d'évacuation du mélange du premier et du second fluides et au moins un conduit de guidage de l'un au moins du premier et du second fluides, sensiblement rectiligne et disposé dans la chambre cylindrique dans une disposition coaxiale, ce dispositif permettant de réaliser le mélange des fluides dans de bonnes conditions, avec des gradients thermiques limités dans les différentes enveloppes et conduits tubulaires du dispositif.
  • Dans ce but, le dispositif comporte un troisième élément de raccordement de la chambre de mélangeur à des moyens d'alimentation en second fluide, dans une disposition intermédiaire dans la direction axiale entre le premier et le second éléments de raccordement et dans une direction transversale sensiblement perpendiculaire à la direction axiale et le conduit de guidage s'étend axialement dans la chambre de mélangeur entre le premier élément de raccordement et une zone de mélange de la chambre de mélangeur en aval du troisième élément de raccordement dans le sens allant du premier vers le second élément de raccordement et comporte une paroi tubulaire ayant au moins un espace interne annulaire d'isolation coaxial en communication avec une zone de la chambre de mélangeur, s'étendant substantiellement sur toute la longueur du conduit de guidage, le troisième élément de raccordement débouchant dans la chambre cylindrique en vis-à-vis d'une surface externe de la paroi du conduit de guidage.
  • Le dispositif suivant l'invention peut présenter, isolément ou en combinaison, les caractéristiques suivantes :
    • le conduit de guidage comporte un premier conduit tubulaire s'étendant axialement dans la chambre de mélangeur depuis le premier élément de raccordement à une extrémité axiale de la chambre de mélangeur et un second conduit tubulaire ayant un diamètre intérieur supérieur au diamètre extérieur du premier conduit tubulaire disposé coaxialement au premier conduit tubulaire et à l'enveloppe du mélangeur comportant une première extrémité axiale à l'intérieur de la chambre cylindrique dans laquelle est engagée une partie d'extrémité du premier conduit tubulaire et une seconde extrémité axiale en aval du troisième élément de raccordement qui débouche dans la chambre de mélangeur en vis-à-vis de la surface externe de la paroi du second conduit tubulaire, de manière que le second fluide introduit dans la chambre de mélangeur par le troisième élément de raccordement circule dans une zone annulaire de la chambre de mélangeur fermée au niveau de la seconde extrémité axiale du second conduit tubulaire, dans la direction axiale et dans un premier sens vers la première extrémité du second conduit tubulaire puis, dans un second sens, à l'intérieur du second conduit tubulaire entre la première et la seconde extrémités axiales du second conduit tubulaire, le premier et le second fluides se mélangeant sous forme de courants coaxiaux circulant dans le même sens dans une zone de mélange à l'intérieur du second conduit tubulaire ;
    • le premier et le second conduit tubulaires sont constitués chacun par un ensemble de viroles coaxiales enfilées l'une sur l'autre comportant des parties d'épaisseur réduite de manière à ménager entre elles des espaces annulaires coaxiaux et traversées par des ouvertures mettant en communication les espaces annulaires coaxiaux avec un milieu extérieur au conduit tubulaire dans la chambre de mélangeur ;
    • le second conduit tubulaire comporte une virole interne en saillie à l'une de ses extrémités axiales par rapport à l'ensemble de viroles du second conduit tubulaire destinée à venir s'engager autour du premier conduit tubulaire avec un jeu radial et traversée par des ouvertures de passage de fluide dans un espace annulaire entre la surface externe du premier conduit tubulaire et la surface interne de la virole interne du second conduit tubulaire.
  • Le dispositif peut être utilisé en particulier pour mélanger un premier fluide constitué principalement par de l'eau supercritique utilisée pour le traitement d'effluents par oxydation en eau supercritique avec un second fluide constitué principalement par de l'eau de refroidissement à une température sensiblement inférieure à la température du second fluide.
  • Dans ce cas, le premier fluide peut être à une température de l'ordre de 550°C et le second fluide à une température de l'ordre de 20°C.
  • Afin de bien faire comprendre l'invention, on va décrire à titre d'exemple en se référant aux figures jointes en annexe, plusieurs modes de réalisation d'un dispositif de mélange suivant l'invention utilisé pour le refroidissement d'un fluide à très haute température et à très haute pression provenant d'un réacteur d'oxydation en eau supercritique.
  • La figure 1, est une vue schématique en coupe axiale d'un mélangeur suivant l'invention et suivant un premier mode de réalisation.
  • La figure 2 est une vue en coupe axiale schématique d'un mélangeur suivant l'invention et suivant un second mode de réalisation.
  • La figure 3 est une vue en coupe axiale agrandie d'un premier conduit tubulaire du mélangeur représenté sur la figure 2 pour le guidage du premier fluide, constitué par des viroles enfilées l'une sur l'autre.
  • Les figures 4A et 4B sont des vues en coupe schématique d'une paroi de conduit tubulaire sur laquelle sont représentées les variations de la température dans la paroi du conduit tubulaire exposée sur ses surfaces externe et interne à des fluides à des températures différentes.
  • La figure 4A est relative à une paroi pleine.
  • La figure 4B est relative à une paroi selon l'invention comportant des espaces internes annulaires remplis de fluide.
  • Sur la figure 1, on a représenté de manière schématique un dispositif de mélange suivant l'invention désigné de manière générale par le repère 1 comportant une enveloppe externe 2 de forme générale cylindrique tubulaire délimitant une chambre de mélangeur cylindrique interne 3, l'enveloppe 2 et la chambre cylindrique 3 ayant pour axe commun l'axe longitudinal 4 du mélangeur.
  • L'enveloppe 2 comporte, à une première extrémité axiale, un premier élément de raccordement et d'admission 5 qui peut être constitué par une ouverture entourée par une bride permettant le raccordement du mélangeur 1 à un moyen d'alimentation en premier fluide, par exemple un conduit de sortie d'un réacteur 30 d'oxydation d'effluents en eau supercritique constituant le premier fluide dont on réalise le refroidissement par mélange à l'intérieur du mélangeur 1. Dans ce cas, le premier fluide est constitué en grande partie d'eau supercritique à une température voisine de 550°C et à une pression de l'ordre de 25 MPa.
  • L'enveloppe 2 du mélangeur comporte, à une seconde extrémité axiale opposée à l'extrémité 5, un second élément d'évacuation et de raccordement 6 qui peut être constitué par une ouverture entourée par une bride de raccordement du mélangeur à un conduit d'évacuation du mélange, c'est-à-dire l'eau refroidie, par exemple jusqu'à une température de 300°C. Le conduit d'évacuation relié à l'élément de raccordement 6 peut assurer la jonction entre le mélangeur et un échangeur de chaleur 31 permettant de refroidir le fluide obtenu par mélange à la sortie du mélangeur, jusqu'à des conditions ambiantes.
  • L'enveloppe 2 comporte de plus un troisième élément de raccordement 7 qui peut être constitué par un piquage et une bride permettant de relier le mélangeur à un moyen d'alimentation en fluide de refroidissement, par exemple à un réservoir et une installation de pompage d'eau de refroidissement permettant d'injecter dans la chambre cylindrique 3 du mélangeur de l'eau à une température de l'ordre de 20°C et à une pression légèrement supérieure à la pression du premier fluide, c'est-à-dire légèrement supérieure à 25 MPa.
  • A l'intérieur de la chambre cylindrique 3 du mélangeur, dans une disposition coaxiale, est monté un conduit de guidage 8 dont la paroi cylindrique tubulaire comporte un ou plusieurs espaces annulaires internes coaxiaux 9 s'étendant sensiblement sur toute la longueur axiale du conduit de guidage 8 et délimités entre des éléments tubulaires coaxiaux de faible épaisseur.
  • Sur la figure 1, on a représenté, pour simplifier le dessin, un conduit de guidage 8 comportant un seul espace annulaire 9 entre un élément de paroi externe 8a et un élément de paroi interne 8b.
  • L'élément de paroi externe 8a du conduit de guidage 8 est traversé par des ouvertures 10 de petites dimensions (ayant par exemple un diamètre de l'ordre du millimètre) réparties suivant la circonférence du conduit tubulaire dans deux zones disposées au voisinage des extrémités axiales du conduit de guidage. Les ouvertures 10 mettent en communication l'espace annulaire interne 9 de la paroi 8 avec la chambre cylindrique 3 du mélangeur. De cette manière, pendant le fonctionnement du mélangeur, l'espace annulaire interne 9 de la paroi du conduit tubulaire 8 est rempli d'eau à l'état pratiquement stagnant. Comme il sera expliqué plus loin, cet espace annulaire rempli d'eau permet d'assurer une certaine isolation et une limitation du gradient thermique dans la direction radiale à travers la paroi du conduit de guidage 8.
  • Le conduit de guidage 8 est relié, à l'une de ses extrémités axiales, à l'enveloppe du mélangeur, au niveau du premier élément de raccordement 5, de manière que le premier fluide (comme indiqué par la flèche 11) s'écoule dans la direction axiale 4, à l'intérieur du conduit de guidage 8. De préférence, le conduit 8 est fixé sur l'enveloppe 2 du mélangeur, par l'intermédiaire d'une pièce annulaire 12.
  • Le troisième élément de raccordement 7 est disposé le plus loin possible du premier élément de raccordement, de manière à éloigner l'une de l'autre la zone d'introduction du premier fluide à très haute température et la zone d'introduction du second fluide constitué par de l'eau à 20°C environ dans l'enveloppe 2 du mélangeur. La distance entre le premier et le troisième éléments de raccordement est en fait peu inférieure à la longueur totale de l'enveloppe 2 du mélangeur dans la direction axiale 4 (par exemple un peu moins d'un mètre). Le troisième élément de raccordement 7 est dirigé suivant un axe 13 sensiblement perpendiculaire à l'axe longitudinal 4 du mélangeur, la direction du troisième élément de raccordement suivant laquelle le second fluide est introduit dans la chambre cylindrique 3 (représentée par la flèche 14) étant latérale ou radiale, par rapport à l'enveloppe du mélangeur.
  • Le troisième élément de raccordement relié à un conduit d'alimentation 32 en eau de refroidissement est de plus disposé de manière à déboucher dans l'enceinte cylindrique 3 en vis-à-vis d'une partie de la surface externe du conduit de guidage 8 qui s'étend dans la direction axiale 4 depuis le premier élément de raccordement 5 jusqu'à une zone 15 de la chambre cylindrique 3 située en aval du troisième élément de raccordement 7 (en considérant la circulation du premier fluide dans la direction axiale, comme représenté par les flèches 11). L'eau de refroidissement qui est introduite dans la chambre cylindrique 3, avec une pression légèrement supérieure à la pression du premier fluide vient en contact avec la surface externe du conduit tubulaire 8 et se répartit suivant la longueur axiale autour de ce conduit 8, à l'intérieur de la chambre cylindrique 3. L'introduction d'eau de refroidissement assure un maintien de l'enveloppe 2 dans la zone du troisième élément de raccordement 7, à une température proche de la température de l'eau de refroidissement. En outre, l'eau de refroidissement s'écoule en direction de la sortie du mélangeur au niveau du second élément de raccordement 6, dans une direction sensiblement axiale, pour rencontrer le flux de premier fluide à haute température circulant à l'intérieur du conduit de guidage 8. A la sortie du conduit de guidage 8, dans la zone 15, l'eau de refroidissement se mélange au premier fluide à très haute température, le mélange refroidi étant récupéré à la sortie du mélangeur, au niveau du deuxième élément de raccordement 6. Le débit d'eau de refroidissement introduit dans l'enveloppe cylindrique est réglé de manière que la température du mélange récupéré à la sortie du mélangeur soit voisine de 300°C.
  • Lors de la mise en oeuvre du mélangeur, le premier élément de raccordement 5 est à la température du premier fluide, par exemple 550°C, alors que le troisième élément de raccordement 7 est à une température de l'ordre de 20°C. Le gradient thermique axial entre le premier et le troisième éléments de raccordement a une valeur élevée dans une zone de l'enveloppe 2 de forme cylindrique intermédiaire entre le premier et le troisième éléments de raccordement. Le gradient thermique axial, élevé dans cette zone de l'enveloppe, n'a pas d'incidence sur la tenue de l'enveloppe, le gradient s'appliquant dans une zone entièrement axisymétrique. En outre, les éléments de raccordement sont à des températures parfaitement homogènes et constantes qui sont la température du premier et du second fluides. De même, le gradient de température entre le second élément de raccordement 6, au niveau de la sortie du mélangeur, et le troisième élément de raccordement se situe dans une zone cylindrique de l'enveloppe du mélangeur, ce qui n'a pas d'incidence sur sa tenue en service.
  • Le conduit de guidage 8 est en contact, sur sa surface intérieure, avec le premier fluide à haute température et, sur sa surface extérieure, avec le second fluide de refroidissement à l'intérieur de la chambre cylindrique 3.
  • Le gradient thermique dans la direction radiale, à travers la paroi du conduit de guidage 8, est donc élevé, au moins dans certaines zones de la paroi du conduit de guidage 8. La présence d'au moins un espace annulaire 9 rempli de fluide, c'est-à-dire de l'eau, permet de limiter à des valeurs faibles le gradient à travers les éléments de paroi 8a et 8b du conduit de guidage 8, la couche isolante constituée par l'eau remplissant l'espace 9 absorbant l'essentiel du gradient thermique entre la surface interne du conduit de guidage 8 en contact avec le premier fluide à 550°C et la surface externe en contact avec l'eau de refroidissement à 20°C dans la chambre cylindrique 3.
  • Sur la figure 2, on a représenté de manière schématique un second mode de réalisation d'un mélangeur suivant l'invention.
  • Les éléments correspondants sur les figures 1 et 2 sont désignés par les mêmes repères. Les différences essentielles entre le dispositif selon le second mode de réalisation et le premier mode de réalisation sont relatives à la forme de l'enveloppe 2 du mélangeur 1 et à l'utilisation d'un conduit de guidage en deux parties 18a, 18b constituées chacune par un conduit tubulaire disposé et fixé de manière coaxiale à l'intérieur de l'enveloppe 2 du mélangeur.
  • Le premier conduit tubulaire constituant la première partie 18a du conduit de guidage est fixé à l'intérieur du premier élément de raccordement 5 du mélangeur, par une pièce annulaire 12, de la même manière que le conduit unique 8 du premier mode de réalisation.
  • La paroi du premier conduit tubulaire 18a présente au moins un espace interne annulaire 19a s'étendant substantiellement sur toute sa longueur axiale.
  • La seconde partie 18b du conduit de guidage est constituée par un second conduit tubulaire dont le diamètre intérieur est supérieur au diamètre extérieur du premier conduit tubulaire 18a et dont la paroi comporte au moins un espace annulaire 19b s'étendant substantiellement suivant toute sa longueur. Le second conduit tubulaire 18b est engagé dans la pièce annulaire 12 à sa partie supérieure par l'intermédiaire d'une virole 20 et engagé par sa partie inférieure dans une pièce 16, à l'intérieur du second élément de raccordement 6 du mélangeur disposé suivant son extrémité axiale de sortie. L'extrémité libre du premier conduit tubulaire 18a est engagée sur une certaine longueur dans l'extrémité libre du second conduit tubulaire 18b, les premier et second conduits 18a, 18b ayant pour axe commun l'axe 4 de l'enveloppe du mélangeur.
  • Le conduit de guidage constitué par la première partie de conduit 18a et la seconde partie de conduit 18b s'étend depuis le premier élément de raccordement 5 à une extrémité axiale de l'enveloppe du mélangeur jusqu'à une zone 15 située en aval de l'embranchement du troisième élément de raccordement qui débouche à l'intérieur de la chambre cylindrique 3 du mélangeur, en vis-à-vis de la surface externe du second conduit tubulaire 18b.
  • Lorsqu'on alimente le mélangeur en premier fluide à 550°C à sa première extrémité axiale, le premier fluide à haute température circule (flèche 11) à l'intérieur du premier conduit tubulaire 18a qui débouche à l'intérieur du second conduit tubulaire 18b. L'eau de refroidissement introduite dans le troisième élément de raccordement 7 à disposition radiale ou latérale (flèche 14), remplit l'espace annulaire de la chambre cylindrique 3 entre le second conduit 18b et la surface interne de l'enveloppe 2 qui est fermé à sa partie inférieure par la pièce d'isolation 16 dans laquelle est engagée la partie inférieure du conduit 18b et circule vers le haut jusqu'à la partie supérieure de la virole 20 traversée par des ouvertures 20'. Le flux d'eau de refroidissement passant à l'intérieur de la virole 20 se retourne pour circuler ensuite vers le bas et pénétrer dans l'espace annulaire entre le premier conduit tubulaire 18a et le second conduit tubulaire 18b. L'eau de refroidissement se mélange au premier fluide à haute température dans la zone de mélange 17 à la sortie du premier conduit tubulaire 18a. Le mélange est récupéré par l'ouverture de sortie du mélangeur au niveau du second élément de raccordement 6.
  • Dans le second mode de réalisation, la partie de l'enveloppe 2 du mélangeur située entre un épaulement 2a et le second élément de raccordement 6 est sensiblement à la température de l'eau de refroidissement (voisine de 20°C).
  • Le premier élément de raccordement 5 est à une température voisine de la température du premier fluide (550°C). Le gradient de température maximal dans la direction axiale se situe dans une zone cylindrique 2b de l'enveloppe entre le premier élément de raccordement 5 et l'épaulement 2a. Un fort gradient thermique dans la zone cylindrique axisymétrique 2b de l'enveloppe ne présente pas d'inconvénient pour la tenue de l'enveloppe du mélangeur en service. Les éléments de raccordement 5, 6 et 7 sont à des températures homogènes et les éléments de raccordement 5 et 7 sont éloignés l'un de l'autre par une distance axiale peu inférieure à la longueur totale de l'enveloppe 2 du mélangeur.
  • En outre, comme précédemment, les gradients thermiques à travers le premier conduit tubulaire 18a et à travers le second conduit tubulaire 18b sont absorbés en grande partie par au moins une couche isolante d'eau stagnante à l'intérieur de l'espace annulaire respectif 19a ou 19b du conduit tubulaire 18a ou 18b.
  • Il est à noter que le gradient thermique à travers la paroi du premier conduit tubulaire 18a dont la surface intérieure est au contact du premier fluide à haute température et la surface extérieure au contact d'eau de refroidissement est sensiblement supérieur au gradient thermique à travers la paroi du second conduit tubulaire 18b qui est en contact par sa surface intérieure avec le mélange de fluide à 300°C environ et sur sa surface extérieure avec l'eau de refroidissement à 20°C remplissant la partie annulaire externe de la chambre cylindrique 3 du mélangeur.
  • Dans le cas du second mode de réalisation, la zone 15 située en aval du troisième élément de raccordement, à la sortie du conduit de guidage, reçoit le mélange de fluide, la zone de mélange 17 étant alors située en amont, à l'intérieur du second conduit de guidage 18b.
  • Sur la figure 3, on a représenté un conduit tubulaire (par exemple le conduit 18a du dispositif représenté sur la figure 2) comportant trois espaces annulaires d'isolation 19'a, 19"a, 19"'a s'étendant suivant toute la longueur axiale de la partie du conduit 18a soumise à un fort gradient thermique. Les espaces annulaires coaxiaux délimités par des viroles enfilées l'une sur l'autre correspondent à l'espace annulaire unique 19a représenté de manière simplifiée sur la figure 2.
  • Comme il est visible sur la figure 3, le premier ensemble de viroles constituant le premier conduit tubulaire 18a comporte une virole interne 21 et trois viroles externes 22a, 22b, 22c enfilées l'une sur l'autre et sur la virole interne 21 dans une disposition coaxiale.
  • Chacune des viroles 21, 22a et 22b comporte une partie s'étendant sur une longueur axiale L dans laquelle la virole présente une épaisseur réduite. Lorsque les viroles sont engagées l'une sur l'autre au montage du premier conduit tubulaire 18a, les espaces annulaires 19'a, 19"a et 19"'a sont ainsi ménagés respectivement entre les viroles 21 et 22a, 22a et 22b et 22b et 22c dans la partie du conduit soumise à un fort gradient thermique. En outre, les viroles externes 22a, 22b et 22c sont traversées suivant toute leur épaisseur par des ouvertures de petit diamètre (par exemple 2 mm) réparties suivant leur circonférence dans deux zones 23 et 23' aux extrémités de la zone de longueur L dans laquelle les viroles 21, 22a et 22b ont une épaisseur réduite, c'est-à-dire aux extrémités axiales des espaces annulaires 19'a, 19"a et 19"'a. Lors du montage du conduit tubulaire 18a sur le dispositif représenté sur la figure 2, les viroles 21, 22a, 22b, 22c qui comportent à leurs extrémités supérieures enfilées l'une sur l'autre une partie élargie diamétralement viennent reposer dans une gorge annulaire de la manchette 12, les parties de longueur L des viroles entre lesquelles sont ménagés les espaces annulaires 19'a, 19"a et 19"'a venant s'engager à l'intérieur de la virole interne 20 du second conduit tubulaire 18b. Les ouvertures disposées suivant les zones 23 et 23' des viroles mettent en communication les espaces annulaires 19'a, 19"a et 19"'a avec une zone annulaire de la chambre du mélangeur à l'intérieur de la virole 20 du second conduit tubulaire 18b recevant l'eau de refroidissement par l'intermédiaire des ouvertures 20'. Les espaces annulaires 19'a, 19"a et 19"'a sont remplis d'eau pratiquement stagnante pénétrant dans les espaces annulaires par les ouvertures des zones 23 et 23'. La virole interne 21 isole totalement la partie interne du premier conduit tubulaire 18a recevant le premier fluide à haute température des espaces annulaires 19'a, 19"a et 19"'a et de la zone de réception de l'eau de refroidissement à l'extérieur du premier conduit tubulaire 18.
  • Le second conduit 18b est analogue au premier conduit 18a et constitué par des viroles enfilées l'une sur l'autre ; les viroles du second conduit 18b présentent une partie d'épaisseur réduite, en substance suivant toute leur longueur qui est soumise à un fort gradient thermique et la virole interne 20 est prolongée à l'extrémité supérieure du conduit 18b et présente des ouvertures traversantes 20'.
  • Comme il est visible sur les figures 4A et 4B, dans le cas d'une paroi homogène 18 en un matériau quelconque soumise, sur une première face, à une première température et, sur une seconde face, à une seconde température inférieure à la première, le gradient thermique peut être représenté par la pente d'une droite 26 qui peut être très forte dans le cas d'une très grande différence de température entre les deux faces de la paroi 18. Dans le cas de gradients thermiques très élevés, aucun matériau massif (tels que métaux ou réfractaires) ne peut être utilisé sans subir des dégradations.
  • Sur la figure 4B, on a représenté un élément de paroi 18' constitué par un premier élément de paroi 18'a, un second élément de paroi 18'b et un troisième élément de paroi 18'c disposés parallèlement les uns aux autres en ménageant un premier espace 19'ab entre les éléments 18'a et 18'b et un second espace 19'bc entre les éléments 18'b et 18'c, les espaces 19'ab et 19'bc étant remplis par un matériau isolant. Dans ce cas, le gradient thermique est représenté par les pentes d'une ligne brisée 26' dont les parties droites à l'intérieur des éléments de paroi massifs 18'a, 18'b, 18'c ont une faible pente et les parties droites à l'intérieur des espaces remplis de matériau isolant, une forte pente. Dans ce cas, on réduit fortement les gradients thermiques à l'intérieur des éléments de paroi 18'a, 18'b et 18'c de la paroi composite 18'.
  • Dans le cas d'éléments cylindriques tubulaires, la paroi 18 et les éléments de paroi 18'a, 18'b et 18'c ont la forme d'enveloppes tubulaires coaxiales. Ces parois cylindriques tubulaires, lorsqu'elles sont soumises à un gradient thermique radial important présentent des contraintes radiales et circonférentielles qui peuvent excéder la limite de rupture de l'enveloppe et conduire à la dégradation de la paroi du composant. Ces contraintes sont fonctions du gradient de température, des caractéristiques du matériau (module d'élasticité, coefficient de Poisson et coefficient de dilatation) et des dimensions du tube (rayon et épaisseur). Dans le cas de très forts gradients thermiques, aucun matériau massif ne peut être utilisé sans subir des dégradations. Une enveloppe tubulaire telle que l'enveloppe 18 ne peut donc être utilisée dans le cas de forts gradients thermiques.
  • Dans le cas d'une enveloppe composite telle que représentée sur la figure 4B, les éléments de paroi 18'a, 18'b, 18'c qui ne sont soumis qu'à des gradients thermiques faibles peuvent être conçus pour résister à ces gradients thermiques mais les couches d'isolant dans les espaces 19'ab et 19'bc peuvent être soumises à des gradients thermiques très forts, de sorte qu'il peut être difficile de trouver des matériaux isolants résistants aux contraintes dues à ces gradients thermiques.
  • Lorsque les deux côtés de la paroi sont en contact avec des fluides à des températures différentes, on peut assurer le remplissage en fluide des espaces d'isolation 19'ab et 19'bc de la paroi 18' par le fluide à plus basse température, en prévoyant des ouvertures traversant les éléments de paroi 18'b et 18'c par exemple. On utilise alors l'un des fluides mis en oeuvre dans le procédé en tant qu'isolant thermique, en créant une lame fluide entre deux éléments de paroi. Pour obtenir une lame fluide de caractéristiques satisfaisantes, on définit les épaisseurs critiques des espaces 19'ab et 19'bc en-dessous desquelles aucune convection naturelle ne peut se produire dans le fluide du procédé remplissant les espaces 19'ab et 19'bc. Seule la conductivité thermique du fluide intervient alors. Selon la valeur du gradient thermique global mis en oeuvre dans le cadre du procédé et du nombre de couches isolantes (par exemple deux ou trois couches isolantes, comme dans le cas du mode de réalisation décrit plus haut), les épaisseurs peuvent être très faibles, par exemple inférieures au millimètre.
  • De telles parois telles que représentées sur la figure 4B peuvent être utilisées comme parois séparant des fluides à des températures très différentes et en particulier comme parois des conduits de guidage d'un mélangeur suivant l'invention.
  • L'invention est donc relative à un dispositif de mélange permettant de réaliser de manière efficace le mélange de fluides à des températures très différentes tout en évitant des effets de gradients thermiques importants dans les parois de séparation du mélangeur.
  • L'invention ne se limite pas au mode de réalisation qui a été décrit.
  • C'est ainsi que le mélangeur suivant l'invention peut comporter une enveloppe de forme différente de celles qui ont été décrites et un ou plusieurs conduits de guidage internes à l'enveloppe du mélangeur permettant d'assurer la circulation entre les courants de fluide à des températures différentes.
  • Dans le cas du refroidissement d'un fluide résiduel d'une opération de traitement par oxydation d'effluents dans de l'eau à l'état supercritique, le fluide résiduel peut être à la fois refroidi et neutralisé, par exemple par injection d'eau de refroidissement contenant de la soude.
  • L'invention peut s'appliquer au refroidissement de fluides différents de fluides résiduels d'une opération d'oxydation d'effluents en eau supercritique.
  • L'invention peut également s'appliquer dans le cas de mélanges de fluides à des températures très différentes dans de nombreuses industries et en particulier dans l'industrie chimique. L'invention peut avoir des applications également dans les installations de production d'énergie.

Claims (6)

  1. Dispositif de mélange d'un premier fluide à une première température et d'un second fluide à une seconde température sous la forme de courants coaxiaux ayant un même sens de circulation, comportant une enveloppe tubulaire (2) généralement cylindrique et ayant un axe (4) sensiblement rectiligne, délimitant une chambre de mélangeur cylindrique (3) coaxiale à l'enveloppe (2) comprenant, à une première extrémité axiale, un premier élément de raccordement (5) à des moyens d'alimentation en premier fluide et, à une seconde extrémité axiale opposée à la première, un second élément de raccordement (6) à des moyens d'évacuation du mélange du premier et du second fluides et au moins un conduit de guidage (8, 18) de l'un au moins du premier et du second fluides, sensiblement rectiligne et disposé dans la chambre de mélangeur (3) dans une disposition coaxiale, caractérisé par le fait qu'il comporte un troisième élément de raccordement (7) de la chambre de mélangeur (3) à des moyens d'alimentation en second fluide, dans une disposition intermédiaire dans la direction axiale entre le premier et le second éléments de raccordement (5, 6) et dans une direction transversale sensiblement perpendiculaire à la direction axiale et que le conduit de guidage (8, 18a, 18b) s'étend axialement dans la chambre de mélangeur (3) entre le premier élément de raccordement (5) et une zone (15) de la chambre de mélangeur (3) en aval du troisième élément de raccordement (7) dans le sens allant du premier vers le second élément de raccordement et comporte une paroi tubulaire ayant au moins un espace annulaire interne d'isolation (9, 19a, 19b, 19c, 19'a, 19'b, 19'c) coaxial en communication avec une zone de la chambre de mélangeur (3), s'étendant substantiellement sur toute la longueur du conduit de guidage (8, 18a, 18b), le troisième élément de raccordement (7) débouchant dans la chambre de mélangeur (3) en vis-à-vis d'une surface externe de la paroi du conduit de guidage (8, 18a, 18b).
  2. Dispositif suivant la revendication 1, caractérisé par le fait que le conduit de guidage comporte un premier conduit tubulaire (18a) s'étendant axialement dans la chambre de mélangeur (3) depuis le premier élément de raccordement (5) à une extrémité axiale de la chambre de mélangeur (3) et un second conduit tubulaire (18b) ayant un diamètre intérieur supérieur au diamètre extérieur du premier conduit tubulaire (18a) disposé coaxialement au premier conduit tubulaire (18a) et à l'enveloppe (2) du mélangeur comportant une première extrémité axiale à l'intérieur de la chambre cylindrique dans laquelle est engagée une partie d'extrémité du premier conduit tubulaire (18a) et une seconde extrémité axiale en aval du troisième élément de raccordement (7) qui débouche dans la chambre de mélangeur (3) en vis-à-vis de la surface externe de la paroi du second conduit tubulaire (18b), de manière que le second fluide introduit dans la chambre de mélangeur (3) par le troisième élément de raccordement circule dans une zone annulaire de la chambre de mélangeur (3) fermée au niveau de la seconde extrémité axiale du second conduit tubulaire, dans la direction axiale et dans un premier sens vers la première extrémité du second conduit tubulaire (19b) puis, dans un second sens, à l'intérieur du second conduit tubulaire (19b) entre la première et la seconde extrémités axiales du second conduit tubulaire, le premier et le second fluides se mélangeant sous forme de courants coaxiaux circulant dans le même sens dans une zone de mélange (17) à l'intérieur du second conduit tubulaire (19b).
  3. Dispositif suivant la revendication 2, caractérisé par le fait que le premier et le second conduit tubulaires (18a, 18b) sont constitués chacun par un ensemble de viroles coaxiales enfilées l'une sur l'autre comportant des parties d'épaisseur réduite de manière à ménager entre elles des espaces annulaires coaxiaux (19'a, 19"a, 19"'a) et traversées par des ouvertures mettant en communication les espaces annulaires coaxiaux (19a, 19b, 19'a, 19"a, 19"'a, 19'ab, 19'b0c) avec un milieu extérieur au conduit tubulaire (18a, 18b) dans la chambre de mélangeur (3).
  4. Dispositif suivant la revendication 3, caractérisé par le fait que le second conduit tubulaire (18b) comporte une virole interne (20) en saillie à l'une de ses extrémités axiales par rapport à l'ensemble de viroles du second conduit tubulaire (18b) destinée à venir s'engager autour du premier conduit tubulaire (18a) avec un jeu radial et traversée par des ouvertures (20') de passage de fluide dans un espace annulaire entre la surface externe du premier conduit tubulaire (18a) et la surface interne de la virole interne (20) du second conduit tubulaire (18b).
  5. Utilisation d'un dispositif de mélange suivant l'une quelconque des revendications 1 à 4, pour mélanger un premier fluide constitué principalement par de l'eau supercritique utilisée pour le traitement d'effluents par oxydation en eau supercritique avec un second fluide constitué principalement par de l'eau de refroidissement à une température sensiblement inférieure à la température du second fluide.
  6. Utilisation suivant la revendication 5, caractérisée par le fait que le premier fluide est à une température de l'ordre de 550°C et le second fluide à une température de l'ordre de 20°C.
EP04767305A 2003-07-29 2004-06-09 Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature Expired - Lifetime EP1648598B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309341A FR2858248B1 (fr) 2003-07-29 2003-07-29 Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature
PCT/FR2004/001439 WO2005021143A1 (fr) 2003-07-29 2004-06-09 Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature.

Publications (2)

Publication Number Publication Date
EP1648598A1 EP1648598A1 (fr) 2006-04-26
EP1648598B1 true EP1648598B1 (fr) 2007-01-24

Family

ID=34043652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767305A Expired - Lifetime EP1648598B1 (fr) 2003-07-29 2004-06-09 Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature

Country Status (7)

Country Link
US (1) US20060187751A1 (fr)
EP (1) EP1648598B1 (fr)
JP (1) JP2007500074A (fr)
AT (1) ATE352368T1 (fr)
DE (1) DE602004004540D1 (fr)
FR (1) FR2858248B1 (fr)
WO (1) WO2005021143A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CO6150041A1 (es) * 2008-12-19 2010-04-20 Univ Del Valle Proceso para la distribucion de residuos toxicos mediante oxidacion en presencia de agua y oxigeno y unidad continua para el tratamiento de compuestos peligrosos
CN102455137B (zh) * 2010-10-30 2013-08-07 贾海平 混水换热器
JP5719745B2 (ja) * 2011-10-11 2015-05-20 川崎重工業株式会社 流体混合器とこれを用いた熱交換システム
GB201320417D0 (en) * 2013-11-19 2014-01-01 Univ Nottingham Mixing reactors
US9829214B2 (en) * 2015-04-22 2017-11-28 Ronald Paul Taylor Cylindrical tubular heat exchanger type 1
US9835357B2 (en) * 2015-04-22 2017-12-05 Ronald Paul Taylor Cylindrical tubular heat exchanger type 2
CN113624602B (zh) * 2021-07-29 2022-07-15 中国科学院金属研究所 管材成形极限图右侧区域曲线的实验装置及构建方法
CN113600045A (zh) * 2021-08-23 2021-11-05 赤峰云铜有色金属有限公司 一种混酸系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1496345A (en) * 1923-09-28 1924-06-03 Frank E Lichtenthaeler Apparatus for mixing liquids
US2094664A (en) * 1934-08-31 1937-10-05 Enumclaw Co Operative Creamery Water heating system
US2747844A (en) * 1954-12-22 1956-05-29 Rudolf S Slayter Device for mixing fluids
US2816518A (en) * 1956-01-10 1957-12-17 Daggett Chocolate Company Ice cream blending apparatus
US3298669A (en) * 1964-09-23 1967-01-17 Dow Chemical Co Eductor mixing apparatus
US3332442A (en) * 1965-01-18 1967-07-25 Zink Co John Apparatus for mixing fluids
US3475508A (en) * 1967-12-14 1969-10-28 Badger Co Dehydrogenation of alkyl aromatic compounds in the presence of nickelbearing alloy steels
US3542342A (en) * 1968-09-06 1970-11-24 Byron Jackson Inc Apparatus for mixing pulverulent material with liquid
US3794299A (en) * 1971-09-23 1974-02-26 Chem Trol Pollution Services Centrifugal reactor
US3741533A (en) * 1971-10-14 1973-06-26 Dow Chemical Co Mixing apparatus
US3818938A (en) * 1972-10-16 1974-06-25 Universal Oil Prod Co Fluid mixing apparatus
US3926787A (en) * 1973-03-02 1975-12-16 C G Process Coal Company Method and apparatus for reducing sulphur and ash content of coal
DK135976B (da) * 1975-01-20 1977-07-25 Hotaco As Blanderedskab til opbygning af fiberforstærkede konstruktionsmaterialer in situ.
US4390284A (en) * 1980-01-25 1983-06-28 Neptune Microfloc, Inc. Method and apparatus for wetting powder
US4408890A (en) * 1981-03-11 1983-10-11 E. I. Du Pont De Nemours And Company Pigment pre-blending mixhead attachment
US4474477A (en) * 1983-06-24 1984-10-02 Barrett, Haentjens & Co. Mixing apparatus
US4538921A (en) * 1983-11-25 1985-09-03 Allied Corporation Apparatus and method for slurrying soda ash
US5383725A (en) * 1989-10-02 1995-01-24 Cmi Corporation Asphalt/dust/rubber processing equipment
US5492404A (en) * 1991-08-01 1996-02-20 Smith; William H. Mixing apparatus
FI98892C (fi) * 1994-11-15 1997-09-10 Turun Asennusteam Oy Polymeerien liuotusmenetelmä ja -laite
US5860451A (en) * 1996-03-12 1999-01-19 Teledyne Industries, Inc. Fluid admixture systems
GB9917733D0 (en) * 1999-07-28 1999-09-29 Kvaerner Earl & Wright Thermal insulated pipelines
US6796704B1 (en) * 2000-06-06 2004-09-28 W. Gerald Lott Apparatus and method for mixing components with a venturi arrangement
US6615872B2 (en) * 2001-07-03 2003-09-09 General Motors Corporation Flow translocator
US6749330B2 (en) * 2001-11-01 2004-06-15 Thomas E. Allen Cement mixing system for oil well cementing
DE10163724A1 (de) * 2001-12-21 2003-07-03 Stolco Stoltenberg Lerche Gmbh Dampfinjektor
US6767007B2 (en) * 2002-03-25 2004-07-27 Homer C. Luman Direct injection contact apparatus for severe services
US7380976B2 (en) * 2005-07-18 2008-06-03 Xerox Corporation Device and method with cooling jackets

Also Published As

Publication number Publication date
WO2005021143A1 (fr) 2005-03-10
US20060187751A1 (en) 2006-08-24
ATE352368T1 (de) 2007-02-15
JP2007500074A (ja) 2007-01-11
EP1648598A1 (fr) 2006-04-26
DE602004004540D1 (de) 2007-03-15
FR2858248B1 (fr) 2005-10-28
FR2858248A1 (fr) 2005-02-04

Similar Documents

Publication Publication Date Title
EP1337479B1 (fr) Procede et dispositif pour l'oxydation en eau supercritique de matieres
EP3538259B1 (fr) Réacteur pour le traitement par oxydation hydrothermale d'une matière organique dans un milieu réactionnel
EP1300058B1 (fr) Dispositif de spallation pour la production de neutrons
EP1648598B1 (fr) Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature
CA2692701C (fr) Reacteur echangeur a tube baionnette permettant de fonctionner avec des differences de pression de l'ordre de 100 bars entre le cote tube et le cote calandre
CA2624016C (fr) Reacteur et procede pour le traitement d'une matiere dans un milieu reactionnel fluide
FR2553886A1 (fr) Systeme autoporteur pour restreindre les effets de la rupture d'un tuyau et le fouettement de celui-ci
FR2585805A1 (fr) Appareillage de destruction de produits dangereux
FR2635371A1 (fr) Procede pour la destruction de dechets toxiques et reacteur plasma-chimique, pour la mise en oeuvre du procede
FR2858943A1 (fr) Appareil et procede de traitement de dechets organiques
WO2005075058A1 (fr) Procede de traitement des gaz par des decharges haute frequence
FR2924358A1 (fr) Nouveau reacteur permettant la mise en oeuvre de reactions a tres haute temperature et haute pression
EP3806995B1 (fr) Réacteur pour le traitement par oxydation hydrothermale d'une matière organique dans un milieu réactionnel
EP1014761B1 (fr) Elément de canalisation pour dispositif de traitement de gaz et dispositif incorporant un tel élément de canalisation
EP2179788B1 (fr) Appareillage à cuve d'agitation
FR2863696A1 (fr) Dispositif de melange de deux fluides a des temperatures differentes et utilisation dans un circuit de refroidissement d'un reacteur nucleaire.
EP0203861A1 (fr) Dispositif modulaire d'ultrafiltration du liquide de refroidissement d'un réacteur nucléaire
WO2001022427A1 (fr) Appareil de traitement d'un melange gazeux contenant de l'hydrogene et de la vapeur d'eau
FR2662538A1 (fr) Dispositif et procede de decontamination de la surface interieure de la paroi d'une cuve de reacteur nucleaire.
FR2705825A1 (fr) Dispositif de décontamination de la surface interne d'un tronçon d'extrémité d'une canalisation.
FR2873045A1 (fr) Traitement d'effluents gazeux par plasma a pression atmospherique
FR2701155A1 (fr) Procédé et installation de décontamination de couvercles usagés de cuves de réacteurs nucléaires à eau légère.
EP4249632A1 (fr) Dispositif de diffusion d'un précurseur à contenant ayant au moins un élément poreux permettant la génération d'un aérosol vers une surface de croissance
FR2830205A1 (fr) Enceinte reactionnelle comprenant une enveloppe contenant au moins un module relie par des moyens souples a l'enveloppe et contenant des moyens d'echange de chaleur
FR2706217A1 (fr) Procédé de remise en état d'un échangeur de chaleur de centrale nucléaire, notamment d'un échangeur de chaleur de circuit auxiliaire de refroidissement d'un réacteur nucléaire à l'arrêt.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004004540

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070124

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: JEUMONT S.A.

Effective date: 20070630

26N No opposition filed

Effective date: 20071025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725