TW200952568A - Method of cooling a microwave plasma and system for selective destroying chemical molecules using this method - Google Patents

Method of cooling a microwave plasma and system for selective destroying chemical molecules using this method Download PDF

Info

Publication number
TW200952568A
TW200952568A TW098117230A TW98117230A TW200952568A TW 200952568 A TW200952568 A TW 200952568A TW 098117230 A TW098117230 A TW 098117230A TW 98117230 A TW98117230 A TW 98117230A TW 200952568 A TW200952568 A TW 200952568A
Authority
TW
Taiwan
Prior art keywords
fluid
tube
mixture
gas
dielectric tube
Prior art date
Application number
TW098117230A
Other languages
Chinese (zh)
Inventor
Daniel Guerin
Christian Larquet
Jean-Christophe Rostaing
Michel Moisan
Pascal Moine
Bruno Depert
Valere Laurent
Original Assignee
Air Liquide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide filed Critical Air Liquide
Publication of TW200952568A publication Critical patent/TW200952568A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

Method of cooling a plasma treatment system for treating a fluid mixture, especially a gaseous fluid mixture, with a plasma, comprising means for coupling between a microwave power source and a fluid mixture, especially a gas mixture, flowing through a dielectric tube within the coupling means that allow part of the microwave energy to be transferred into the fluid mixture in order to create a plasma therein so as to rupture at least certain chemical bonds of the fluid molecules, said dielectric tube being at least partially cooled by circulation of a coolant fluid in thermal contact with the outer wall of the tube to be cooled. According to the invention, on the one hand, the circulation of the coolant fluid in thermal contact with the dielectric tube takes place cocurrently with the circulation of the fluid or fluid mixture in the dielectric tube and, on the other hand, the coolant fluid comprises at least one oil chosen from linear α-olefins having a carbon chain consisting of at least ten carbon atoms and/or perfluorocarbon liquids having a dielectric constant ε of less than 2.5, a microwave absorbance tanδ of between 10<SP>-2</SP> and 10<SP>-4</SP> and a specific heat Cp < 0.6 g.cal/g DEG C.

Description

200952568 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種冷卻電漿處理系統的方法,該電漿 處理系統係以電漿處理流體或流體混合物,特別是氣態流 體或流體混合物,其含有用於在微波動力源和流體混合物 (特別是氣體混合物)之間耦合的裝置,其中該流體混合 物係流經在耦合裝置中的介電管,此裝置可使一些微波能 量被轉移至流體混合物以在其中產生電聚來破裂至少流體 分子的某些化學鍵,該介電管係藉由以冷卻劑流體循環和 要被冷卻之管的外壁熱接觸來冷卻。 本發明也關於以此冷卻方法選擇性破壞化學分子的系 統0 【先前技術】 在積體電路的製造期間,許多生產半導體零件和其互 連的步驟會利關氣態的物質,其制於離子植人器或韻 刻反應器和物理或化學沉積(pvD或cvd)反應器。這些物 質〃中—為所明的&quot;溫室&quot;氣體,即,當它們存在大氣中 f _會幫助氣候的整體加熱,該些氣體例如特別是某些 化衍生物,特Jglj j p &amp; &amp; π 為PFC(全氟碳化物)氣體或HFC (氫 氟奴化物)氣體的氣體, 染氣體,其對特別是某些大氣污 是該些有毒性、腐m 即有危險的,以及更特別 一 易燃性、發火性、和/或爆炸性者。 一般說來,在半導魏 导體的製造中’所有所謂的沉積&quot;前驅 200952568 物&quot;氣體和所有㈣氣體、反應器清洗氣體等係在反應器的 出口以混合物的形式被重新取得,且該流出物須被處理。 在其他的應用中,例如電漿或LCD平面屏幕的製造, 或光伏打電池的製造,也會使用到氣體或某些氣體的前驅 物,或使用到初始在液體或固體態,但以氣態形式傳送的 氣體。 广在其他的應用中,例如空氣氣體的分離或像是氪或氙 之氣體純化’其係產生自空氣氣體分離工廠中氬氣管柱的 〇蒸顧殘餘物,或直接從由地下沉積產生的混合物中萃取的 空氣氣體分離,所獲得的氣體含有小量的氣化氣體,像是 例如CF4或C^6 ’從要被純化的氣體中盡可能地移除它們 係必須的。 為了破壞溫室氣體或來自這些積體電路製造反應器的 沉積前驅物氣體’例如從Ep_A_874 537已知可使用常壓電 漿,其係藉由耦合極高頻率(UHF)或微波(MW)電磁波以波 ❹導儘可能遠離波&quot;施用器&quot;系統傳送進入氣體混合物,能使氣 體電漿產生。因為使用電磁波係被高度管制的緣故(因為對 人民和軍事電信的潛在影響),只有报少的UHF或微波頻帶 為可用的且允許在ISM(工業、科學、和醫學)使用,且尤其 疋這些電浆的產生和特別是頻率為2 45 GHz、915 MHz和 434 MHz的情況。 氣體流出物,特別像是從蝕刻室流出的PFC或HFC流 出物’因為它們危險的本質,被有系統地在氮氣中被主要 真空果稀釋。因此,該氣體混合物進入上面提到類型的流 5 200952568 出物處理或破壞系統的該氣體混合物主要係由氮氣組成。 大氣壓之運送氣體(像是氮氣)的使用要求大量的能量 以離子化氣體並維持氮電漿。 此外,使用的管,特別是陶瓷管,在多種使用的材料 中造成溫度阻抗的問題。這是因為排出管藉由熱轉移液體 冷卻,該液體係從管尾端流至另一管,在一定義介於該管 和同轴的外部第二管之間用於偈限液體的空間中流動。當 使電漿源在高功率下於氮氣或空氣佔多數的氣體中操作— 段加長的時間,因為陶瓷完美的熱導電,與介電冷卻劑流 體的邊界層接觸之外表面的溫度可能超過該流體的物理-化 學穩定度限制。因Λ,可能在管壁上觀察到沉積的固體聚 合物,形成的沉積物一般會吸收微波,因此脫逃效應(因為 吸收一般隨溫度增加,所以管越熱,其傾向被加熱的越多 和某些非常過熱的區域都有逐步擴張的趨勢。在非常小厚 度中非常高的熱壓力係容易造成管爆裂或破裂。相對於形 成預期有毒性的分解產物,介電熱轉移流體也可經過—定 體積的轉變而變成混濁且惡臭的。在沒有損害流體之功: 性質(介電特性和熱轉移性質)的降解下,使用產物的毒性: 無法為工業環境所接受。因&amp;,例如,已放棄使用石夕膠汽 體’像是聚:甲基⑪氧烧(PDMS),因為考慮 物的毒性。 、、刀解產 【發明内容】 本發明的目的係利用冷卻產生大氣壓電漿之管(特別 200952568 是介電管)的系統來減緩上述之各種缺點,此系統係與先 前技術使用的系統不同。 根據本發明,在一方面,冷卻劑流體循環與介電管熱 接觸係和在介電管中的流體或流體混合物的循環同向發 生’以及,另一方面’冷卻劑流體含有至少一種選自線性α_ 烯烴的油’其具有由至少十個碳原子組成之碳鏈,和/或全 氟碳化物液體,其具有少於2.5的介電常數ε、介於10-2和 10之間的微波吸收度tanS,以其Cp &lt; 0.6 g.cal/g°C的比 ©熱。 在因為局部管的過熱造成許多介電管提早破裂之後, 發明人已成功證明某些部分的結果使其能夠實現本發明。 特別是,發明人已證明當在被加熱之流體混合物(向下注入) 和熱轉移冷卻劑流體(向上流動)之間有逆向流動時,在陶瓷 管之熱轉移液體中有氣泡的存在,一般當讓流體間有更好 的熱交換,此技術領域中具有通常知識者可識別出逆向流 ❹動。因此,因為這些氣泡,和管壁接觸之冷卻劑油膜是不 連續的’該些氣耗由溶解❹氣氣體和氣化的油所組 ^此現象可藉由觀察在㈣管中的折射率變化而確認。 預期到的是,將油流動的方向逆向(使其和流體混 二=二即在本例子中從上往下流),可在陶以油介 到較^部且避免在此介面形成氣化油之膜變成可能的。 也發現雖然線性心烯烴(特別是類型)已經比 熱轉移液體(特別像是水)得 仪1主的結果,但择田入 奴化物(PFC)液體得到更明顯 王 吾結果,特別是當這些流 7 200952568 體具有下列性質: 介電常數ε&lt;2.5,較佳ε&lt;2.0; 1〇'4 &lt; tan5 &lt; 10·2,較佳 &lt; ι〇-3 ; 比熱 Cp . Cp &lt;0.6,較佳 Cp S0.3。 此外,因為這些產品具有非常高的密度(幾乎比ci4 α_ 烯烴多三倍)’所以為了移除相同熱量而被循環的液體量會 明顯減少。此可導致熱轉移流體在流速上約3〇%的減少。 另外,這些全氟化產物係更佳熱穩定的,因此增加了 本發明系統的操作安全性。 較佳的是,使用至少一種線性α_烯烴,較佳為線性 α-烯烴或1-十四烯和/或具有介電常數ε&lt;2和/或吸收度 tan5&lt; 1〇·3和/或比熱Cp心心⑽代的全氟碳化物 流體。 根據-較佳具體實例,流體混合物注入管中係在大氣 壓下或在接近大氣麼的壓力下發生。 根據另-具體實例’流體混合物和/或惰性互補氣體係 以旋渦形式注入介電管中。 根據本發明的另一較佳具體實例,被處理的流體和冷 卻劑流體係從上到下流動。 本發明也關於一種電漿處理系統,其含有: -用來注入流體和/或氣體的裝置; -接收該流體和/或該氣體的介電管; •微波產生器; -用來將微波與流體和/或氣體耦合以在介電管中產生 200952568 電漿的裝置; -用來藉由冷卻劑流體裝置冷卻介電管之裝置,其係放 置在該管的外部; -線性α-烯烴和/或全氟碳化物流體的來源;該來源係 和用於冷卻管的裝置連在一起;以及 -用來使冷卻劑流體流動和被處理之流體或流體混合 物同向流動(較佳係從上往下)的裝置。 © 【實施方式】 在圖1中,處理氣體之電漿處理系統Α含有如 EP-A-874 537描述之波導型表面波等離子體發生器 (surfaguide)類型的射野施用器(field applicat〇r) 1,熱交換 器B和洗滌裝置C,接著是乾洗裝置d (或若希望的話,以 相反順序放置)。 透過閥Vd以電漿起始氣體和/或透過閥Vf以被處理的 氣體進料至系統A,且從CVD1、CVD2、CVD3、…CVDn 其中之一的反應器經由對應的閥VI、V2、V3、...Vn散發(這 些氣體可為從半導體製造反應器或平面屏幕或光纖或太陽 能電池製造工廠等散發)。 系統A也含有介電管16,其周圍環繞冷卻系統,該冷 卻系統含有夠低微波吸收的熱轉移流體19,以維持承受電 漿的可利用動力,該電漿係在被外部氧化矽管17和介電管 16包覆之空間18内循環。流體19的入口係位於系統α的 下面部分13 ’且在管16冷卻後之流體19的出口係位於上 9 200952568 面部分24。 射野施用器(field applicator)l之縮小的中間部分3(對 應於標準,小側的縮小,中空矩形波導部分的縮小)係被環 繞在空間1 8周圍而用於冷卻循環的介電管16和氧化石夕管 17橫越。由導電材料製造、作為電磁遮蔽物的套管7、8係 放置在上面提到之管的上面和下面部分。在套管7的下面 部分和介電管之間,提供最佳化的放射距離以獲得在波導 和管之間的最大化耦合’而沒有因套管存在使微波被干擾。 在套管8的上面部分和在施用器1下面部分的管之間 提供相同的最佳化放射距離。在它們的另一端,套管7、8 係分別與上面部分24和下面部分13鄰接。中空矩形波導 形式的射野施用器i具有中間部分3,相對於在此中間部分 3另一邊用於入口 /出口 2、4的標準部分,中間部分3有縮 】的邛刀。當系統在操作下’微波動力在側面部分2流動 月』往中間部分3 ’其中將微波集中使其在射野施用器的此中 間部分3的任一邊之管16放射,以在管16中產生電漿, 產生的能量遍及在管中的波傳播。此電漿係用電極23起 始β玄電極係與位於系統A上面部分9的支撐體1〇緊扣》 &quot;3係實質地維持在介電管16的軸上且與高電壓源或 起始線圈連接。 電聚起始系統係連接至閥Vn且實質上含有兩個分支: —、_ 重流速調節器和閥VAr連接至氬氣(Ar)源,和另 =由質量流速調節器和閥νΝ2連接至氮氣源。 交換器B用來冷卻系統A的電漿產生之熱氣體,且 200952568 將其在約15〇t:或更高的溫度下送至洗滌器c和乾洗器 D(或反之亦然)。 圖2顯示氣體注入系統(供起始氣體或被處理氣體使 用),其為旋渦形式。氣體和/或流體注入輸送管正切地進入 垂直輸送管54,該垂直輸送管係位於介電管16的延伸處以 在注入氣體和/或流體產生渦旋效果。 圖2a係電漿系統a的上面部分9、24的垂直截面圖。 四個氣體注入輸送管(57, 51)、(58, 62)、(59, 53)、和(6〇, 64)均可在® 2b(其係® 1的A-A截面圖)看到,其使此旋渴 在輸送管54產生。電極23的支撐體1〇係與上面部分9(24) 緊扣。四個注入輸送管較佳係以與另一個成9〇。排列(在水 平平面)且可水平或由頂向下排列(在垂直平面)。輸送管 (7〇,72)和⑺,73)(可見於圖2c,其係圖。之b_b的水平 截面)亦可正切地連接至中間輸送管54,且與另一個成18〇。 排列。當注入四個位於平面A_A之注入器的氣體流速足夠 ❹維持疑屬時,該些輸送管係用來注入額外的氣體(例如氮 氣)。(旋渦使減少在壁與介電管之間的熱交換成為可能的, 其避免了在電漿和此介電管的直接接觸,且因此避免太高 的溫度不利於介電管)。 圖3顯示用於注入在電漿中被處理之氣體的注入頭9 之具體實例的概要圖,其會產生有效的旋渦。和在其他圖 中一樣,相同的零件有相同的參考符號。此注入頭9具有 入口(11)用來導入要被處理的氣體,這些氣體接著透過和入 口 11同軸的溝渠80導入外圍的溝渠中’其之依序部分8卜 11 200952568 82、83和84已以截面顯示,此連續的溝渠環繞 呀•固體中間部 分85 (類似於在中間管柱85周圍的螺旋樓梯結構)。此 中間部分85較佳係由導電材料製造且在低圓錐 體 σ|刀86終 止,該低圓錐部分係作為點燃在介電管16中雷將^ 、 电眾的電極。 從轴85投射的固體部分87、88、89、90和91总上田 係螺旋環繞 轴85的固體部分,其中該軸85係定義了氣體的通過。在 中間部分85上方的上面部分92係建置在可移動部分μ 中’其係與此中間部分緊扣且藉由密封〇環94獎要吐/ 衣i ;保氣 ❹ 體緊密。較佳的是,如圖3所指出,溝渠81、82等將氣體 導入使得在管16中有旋渦效果,其具有以在25。和35。之 間角度傾向水平的軸,更佳為約3 0。。 實施例: 以描述於圖1的系統使用各種冷卻劑油(有和沒有如圖 2和3所描述的旋滿系統。證明了特別利用圖2或圖3的裝 置使注入氣體以旋渦形式被摧毀的情況下之冷卻係較佳 的)。下面的油用在冷卻介電管上係完全令人滿意的。 油的種類 C14 α-稀烴 FC 40* ~~FC^3* FC 70* 介電常數 2.3 1.87 ------- —1.9 1.98 Tan5 5χ10'3 7xl〇-4 7xl〇'4 7x 10·4 沸點(°C ) 250 155 ----- 174 215 臨界溫度 270 294 335 密度d (kg/m3) 0.771 1.87 1.88 1.94 比熱 Cp (g.cal/g°C) 0.5 0.26 0.26 0.26 ·* =來自3M公司的PFC油。 12 200952568 若使用FC 70油取代C!4油,乘積dxCp從值0.5到值 〇·38 ’對於相同的表現,有30%的流速減少。 在氣體,像是NF3 ’被轉換以產生氯氣/氮混合物的應 用中’使用PFC油來冷卻介電管會是較安全的。然而,一 個限制是氟聚合物或氟彈性體不能與這些pFC油結合使用。 【圖式簡單說明】 〇 可藉由非限制實施例方式提出的下面例示性具體實 例’與圖式一起來更佳地了解本發明,該些圖式顯示了: 圖1係根據本發明之系統的全部概要圖; 圖2a係使用旋渦且適合用在圖1之系統的流體注入頭 的垂直截面圖; 圖2b係顯示於圖!之α·Α觀測面的截面圖; 圖2c係圖2a之Β_Β的水平截面圖;以及 圖3係產生旋渦之注入頭的具體實例。 ❹ 【主要元件符號說明】 A 電漿處理系統 B 熱交換器 C 洗滌裝置 D 乾洗裝置 1 射野施用器 2 襟準部分 3 中間部分 13 200952568 4 標準部分 7 套管 8 套管 9 上面部分 10 支撐體 11 入口 13 下面部分 16 介電管 17 氧化石夕管 18 空間 19 熱轉移流體 23 電極 24 上面部分 51 氣體注入輸送管 53 氣體注入輸送管 54 垂直輸送管 57 氣體注入輸送管 58 氣體注入輸送管 59 氣體注入輸送管 60 氣體注入輸送管 62 氣體注入輸送管 64 氣體注入輸送管 70 輸送管 71 輸送管200952568 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a method of cooling a plasma processing system that treats a fluid or a fluid mixture, in particular a gaseous fluid or a fluid mixture, with a plasma. Containing means for coupling between a microwave power source and a fluid mixture, in particular a gas mixture, wherein the fluid mixture flows through a dielectric tube in the coupling device, which allows some microwave energy to be transferred to the fluid mixture Electrochemical polymerization is used to rupture at least some of the chemical bonds of the fluid molecules that are cooled by thermal contact between the coolant fluid circulation and the outer wall of the tube to be cooled. The present invention also relates to a system for selectively destroying chemical molecules by this cooling method. [Prior Art] During the manufacture of an integrated circuit, many steps of producing semiconductor parts and interconnecting them will facilitate gaseous substances, which are fabricated by ion implantation. An artificial or rhyme reactor and a physical or chemical deposition (pvD or cvd) reactor. These substances are known as "greenhouses", that is, when they are present in the atmosphere, f _ will help the overall heating of the climate, such as in particular certain derivatives, Jglj jp &amp;&amp; π is a gas of PFC (perfluorocarbon) gas or HFC (hydrofluorinated) gas, which is toxic to some atmospheric pollutants, which is dangerous, and more special. A flammable, pyrophoric, and/or explosive person. In general, in the manufacture of semiconducting Wei conductors, 'all so-called deposits' "precursor 200952568" gas and all (four) gases, reactor purge gases, etc. are reclaimed in the form of a mixture at the outlet of the reactor, And the effluent has to be treated. In other applications, such as the manufacture of plasma or LCD flat screens, or the manufacture of photovoltaic cells, precursors for gases or certain gases are also used, either initially or in a liquid or solid state, but in gaseous form. The gas delivered. Widely used in other applications, such as the separation of air gases or the purification of gases such as helium or neon, which are generated from the argon column of an argon column in an air gas separation plant, or directly from a mixture produced by subsurface deposition. The extracted air gas is separated, and the obtained gas contains a small amount of gasification gas, such as, for example, CF4 or C^6', which is necessary to remove as much as possible from the gas to be purified. In order to destroy greenhouse gases or deposit precursor gases from these integrated circuit fabrication reactors, it is known from Ep_A_874 537 to use a normal piezoelectric slurry by coupling extremely high frequency (UHF) or microwave (MW) electromagnetic waves. The wave guide is as far as possible away from the wave &quot;applicator&quot; system to transport the gas mixture into the gas mixture. Because the use of electromagnetic waves is highly regulated (due to the potential impact on people and military telecommunications), only the UHF or microwave bands that are reported are available and are allowed to be used in ISM (industrial, scientific, and medical), and especially Plasma generation and especially at frequencies of 2 45 GHz, 915 MHz and 434 MHz. The gaseous effluent, particularly like the PFC or HFC effluent flowing out of the etch chamber, is systematically diluted by the primary vacuum in nitrogen due to their dangerous nature. Thus, the gas mixture enters a stream of the type mentioned above. 5 200952568 The gas mixture of the material handling or destruction system consists essentially of nitrogen. The use of atmospheric transport gases such as nitrogen requires a large amount of energy to ionize the gas and maintain the nitrogen plasma. In addition, the tubes used, particularly ceramic tubes, cause temperature resistance problems in a variety of materials used. This is because the discharge pipe is cooled by a heat transfer liquid that flows from the pipe end to the other pipe, flowing in a space defined between the pipe and the coaxial outer second pipe for limiting the liquid. . When the plasma source is operated at high power in a gas with a majority of nitrogen or air - the length of time is extended, because the ceramic is perfectly thermally conductive, the temperature of the surface may exceed the temperature of the boundary layer of the dielectric coolant fluid. Physical-chemical stability limitations of fluids. Because of the enthalpy, the deposited solid polymer may be observed on the pipe wall, and the formed deposit generally absorbs the microwave, so the escape effect (because the absorption generally increases with temperature, the hotter the pipe, the more it tends to be heated and some Some very hot areas have a tendency to gradually expand. Very high thermal stress in very small thicknesses can easily cause tube bursting or cracking. The dielectric heat transfer fluid can also pass through a defined volume relative to the formation of the expected toxic decomposition products. The transition becomes turbid and foul-smelling. The toxicity of the product used without degradation of the work of the fluid: degradation of properties (dielectric properties and heat transfer properties): not acceptable for industrial environments. Because & The use of Shixi gum vapours is like poly: methyl 11 oxy-sinter (PDMS), because of the toxicity of the substance. The object of the present invention is to use a tube for generating atmospheric piezoelectric slurry by cooling (special 200952568 is a system of dielectric tubes) to alleviate the various shortcomings described above, which system is different from the system used in the prior art. According to the invention, on one side , the coolant fluid circulation and the dielectric tube thermal contact system and the circulation of the fluid or fluid mixture in the dielectric tube occur in the same direction 'and, on the other hand, the coolant fluid contains at least one oil selected from linear alpha olefins' a carbon chain composed of at least ten carbon atoms, and/or a perfluorocarbon liquid having a dielectric constant ε of less than 2.5, a microwave absorbance tanS between 10-2 and 10, and a Cp thereof &lt; 0.6 g. cal/g ° C ratio © heat. After many dielectric tubes were prematurely broken due to overheating of the local tube, the inventors have successfully demonstrated that some of the results have enabled it to carry out the invention. The inventors have demonstrated that when there is a reverse flow between the heated fluid mixture (downward injection) and the heat transfer coolant fluid (upward flow), there is a bubble in the thermal transfer liquid of the ceramic tube, generally when the fluid is allowed to There is better heat exchange between them, and those skilled in the art can recognize the reverse flow turbulence. Therefore, because of these bubbles, the coolant oil film in contact with the tube wall is discontinuous 'the gas consumption is dissolved by ❹ The phenomenon of gas and vaporized oil can be confirmed by observing the change in refractive index in the (iv) tube. It is expected that the direction of oil flow is reversed (to make it mixed with the fluid = 2 in this example) From top to bottom, it is possible to form a film of gasified oil in the oil and avoid forming a film of vaporized oil at this interface. It has also been found that although linear olefins (especially types) have been more than heat transfer liquids (especially like Water) obtained the result of the main method, but the selection of the slain (PFC) liquid gave more obvious results, especially when these streams 7 200952568 have the following properties: dielectric constant ε &lt; 2.5, preferably ε &lt; 2.0 1〇'4 &lt; tan5 &lt; 10·2, preferably &lt;ι〇-3; specific heat Cp . Cp &lt; 0.6, preferably Cp S0.3. In addition, because these products have very high densities (almost three times more than ci4 alpha olefins), the amount of liquid that is circulated to remove the same heat is significantly reduced. This can result in a reduction of about 3% in flow rate of the heat transfer fluid. Additionally, these perfluorinated products are more thermally stable, thus increasing the operational safety of the system of the present invention. Preferably, at least one linear alpha olefin, preferably a linear alpha olefin or 1-tetradecene, and/or having a dielectric constant ε &lt; 2 and/or absorbance tan 5 &lt; 1 〇 3 and/or Specific heat Cp core (10) generation of perfluorocarbon fluid. According to a preferred embodiment, the fluid mixture is injected into the tube at atmospheric pressure or at a pressure close to the atmosphere. The dielectric tube is vortexed into the dielectric tube according to another embodiment - a fluid mixture and/or an inert complementary gas system. According to another preferred embodiment of the invention, the fluid and coolant flow system being treated flows from top to bottom. The invention also relates to a plasma processing system comprising: - means for injecting a fluid and/or gas; - a dielectric tube receiving the fluid and/or the gas; - a microwave generator; - for using microwaves a device in which fluid and/or gas are coupled to produce 200952568 plasma in a dielectric tube; - means for cooling the dielectric tube by means of a coolant fluid device, which is placed outside the tube; - linear alpha olefins and a source of perfluorocarbon fluid; the source is associated with a means for cooling the tube; and - for flowing the coolant fluid and the fluid or fluid mixture being treated in the same direction (preferably from above) Down) device. © [Embodiment] In Fig. 1, a plasma treatment system for treating a gas contains a field type applicator (field applicat〇r) of a waveguide type surface wave plasma generator (surfaguide) as described in EP-A-874 537. 1, heat exchanger B and washing device C, followed by dry cleaning device d (or, if desired, placed in reverse order). The gas to be treated is supplied to the system A through the valve Vd as a plasma starting gas and/or through the valve Vf, and the reactor from one of the CVD 1, CVD 2, CVD 3, ... CVDn via the corresponding valves VI, V2 V3, ... Vn are emitted (these gases may be emitted from semiconductor manufacturing reactors or flat screens or fiber optic or solar cell manufacturing plants, etc.). System A also includes a dielectric tube 16 surrounding a cooling system that contains a heat transfer fluid 19 that is low in microwave absorption to maintain the available power to withstand the plasma, which is externally oxidized by the manifold 17 And circulating in the space 18 covered by the dielectric tube 16. The inlet of the fluid 19 is located in the lower portion 13' of the system a and the outlet of the fluid 19 after the cooling of the tube 16 is located on the upper portion 9 200952568. The reduced intermediate portion 3 of the field applicator 1 (corresponding to the standard, the reduction of the small side, the reduction of the hollow rectangular waveguide portion) is a dielectric tube 16 surrounded by the space 18 for the cooling cycle. And the oxidized stone tube 17 traverses. The sleeves 7, 8 made of a conductive material as electromagnetic shields are placed on the upper and lower portions of the tube mentioned above. Between the lower portion of the sleeve 7 and the dielectric tube, an optimized radiation distance is provided to obtain maximum coupling between the waveguide and the tube without interference of the microwave due to the presence of the sleeve. The same optimized radiation distance is provided between the upper portion of the sleeve 8 and the tube at the lower portion of the applicator 1. At their other ends, the sleeves 7, 8 are contiguous with the upper portion 24 and the lower portion 13, respectively. The field applicator i in the form of a hollow rectangular waveguide has an intermediate portion 3 with respect to the standard portion for the inlet/outlet 2, 4 on the other side of the intermediate portion 3, the intermediate portion 3 having a constricted file. When the system is in operation, 'microwave power flows in the side portion 2 to the middle portion 3', wherein the microwave is concentrated to cause it to be radiated in the tube 16 on either side of the intermediate portion 3 of the field applicator to be produced in the tube 16. Plasma, the energy produced propagates throughout the waves in the tube. The plasma system electrode 23 starts the β-mynoid electrode system and the support body 1 located on the upper portion 9 of the system A is tightly held on the shaft of the dielectric tube 16 and is associated with a high voltage source. The starting coil is connected. The electropolymerization initiation system is connected to valve Vn and essentially contains two branches: -, _ heavy flow rate regulator and valve VAr are connected to an argon (Ar) source, and further = connected by mass flow rate regulator and valve ν Ν 2 Nitrogen source. Exchanger B is used to cool the hot gases produced by the plasma of System A, and 200952568 sends it to scrubber c and dry cleaner D (or vice versa) at a temperature of about 15 Torr: or higher. Figure 2 shows a gas injection system (for use with starting gas or treated gas) in the form of a vortex. The gas and/or fluid injection conduit tangentially enters a vertical delivery tube 54, which is located at the extension of the dielectric tube 16 to create a swirling effect on the injected gas and/or fluid. Figure 2a is a vertical cross-sectional view of the upper portion 9, 24 of the plasma system a. The four gas injection ducts (57, 51), (58, 62), (59, 53), and (6〇, 64) can be seen in the ® 2b (the AA cross-section of the system 1), which This thirst is generated in the delivery tube 54. The support 1 of the electrode 23 is fastened to the upper portion 9 (24). The four injection ducts are preferably 9 turns in tandem with the other. Arrange (in a horizontal plane) and can be arranged horizontally or top to bottom (in a vertical plane). Ducts (7, 72) and (7), 73) (visible in Figure 2c, which is a horizontal section of b_b) can also be tangentially connected to the intermediate transfer tube 54 and 18 与 to the other. arrangement. These conduits are used to inject additional gas (e.g., nitrogen) when the gas flow rate of the four injectors located in plane A_A is sufficient to maintain the suspect. (The vortex makes it possible to reduce the heat exchange between the wall and the dielectric tube, which avoids direct contact between the plasma and the dielectric tube, and thus avoids too high temperatures which are detrimental to the dielectric tube). Figure 3 shows an overview of a specific example of an injection head 9 for injecting a gas to be treated in a plasma, which produces an effective vortex. As in the other figures, the same parts have the same reference symbols. The injection head 9 has an inlet (11) for introducing the gas to be treated, and the gas is then introduced into the peripheral trench through a trench 80 coaxial with the inlet 11 'the sequential portion 8b 11 200952568 82, 83 and 84 Shown in cross section, this continuous trench surrounds the solid intermediate portion 85 (similar to the spiral staircase structure around the middle column 85). The intermediate portion 85 is preferably made of a conductive material and terminates at a low cone σ|knife 86 that acts as an electrode that ignites the lightning conductors in the dielectric tube 16. The solid portions 87, 88, 89, 90 and 91 projected from the shaft 85 generally circumscribe the solid portion of the shaft around the shaft 85, wherein the shaft 85 defines the passage of gas. The upper portion 92 above the intermediate portion 85 is built in the movable portion μ's which is fastened to the intermediate portion and is sealed by the sealing ring 94; the gas-tight body is tight. Preferably, as indicated in Fig. 3, the ditches 81, 82 and the like introduce gas into the vortex effect in the tube 16, which has a vortex of 25. And 35. The axis whose angle tends to be horizontal is more preferably about 30. . EXAMPLES: Various coolant oils were used with the system described in Figure 1 (with and without a cyclone system as described in Figures 2 and 3). It was demonstrated that the injection gas was destroyed in the form of a vortex by using the apparatus of Figure 2 or Figure 3 in particular. The cooling in the case is preferred). The following oils are completely satisfactory for use on cooling dielectric tubes. Type of oil C14 α-lean hydrocarbon FC 40* ~~FC^3* FC 70* Dielectric constant 2.3 1.87 ------- —1.9 1.98 Tan5 5χ10'3 7xl〇-4 7xl〇'4 7x 10· 4 Boiling point (°C) 250 155 ----- 174 215 Critical temperature 270 294 335 Density d (kg/m3) 0.771 1.87 1.88 1.94 Specific heat Cp (g.cal/g°C) 0.5 0.26 0.26 0.26 ·* = from 3M company's PFC oil. 12 200952568 If FC 70 oil is used instead of C!4 oil, the product dxCp is from value 0.5 to value 〇·38 ’ for the same performance, there is a 30% flow rate reduction. In applications where gas, such as NF3' is converted to produce a chlorine/nitrogen mixture, it may be safer to use PFC oil to cool the dielectric tube. However, one limitation is that fluoropolymers or fluoroelastomers cannot be used in combination with these pFC oils. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be better understood by the following exemplary embodiments, which are presented by way of non-limiting example, in which: FIG. Figure 2a is a vertical cross-sectional view of a fluid injection head using a vortex and suitable for use in the system of Figure 1; Figure 2b is shown in the figure! A cross-sectional view of the α·Α observation surface; Fig. 2c is a horizontal sectional view of Fig. 2a; and Fig. 3 is a specific example of an injection head for generating a vortex. ❹ [Main component symbol description] A Plasma processing system B Heat exchanger C Washing device D Dry cleaning device 1 Field applicator 2 襟 part 3 Intermediate part 13 200952568 4 Standard part 7 Casing 8 Casing 9 Upper part 10 Support Body 11 inlet 13 lower portion 16 dielectric tube 17 oxidized stone tube 18 space 19 heat transfer fluid 23 electrode 24 upper portion 51 gas injection delivery tube 53 gas injection delivery tube 54 vertical delivery tube 57 gas injection delivery tube 58 gas injection delivery tube 59 gas injection conveying pipe 60 gas injection conveying pipe 62 gas injection conveying pipe 64 gas injection conveying pipe 70 conveying pipe 71 conveying pipe

14 200952568 72 輸送管 73 輸送管 81 依序部分 82 依序部分 83 依序部分 84 依序部分 85 中間部分/中間管柱 86 圓錐部分 87 固體部分 88 固體部分 89 固體部分 90 固體部分 91 固體部分 94 密封 1514 200952568 72 Conveying pipe 73 Conveying pipe 81 Sequential part 82 Sequential part 83 Sequential part 84 Sequential part 85 Intermediate part / Intermediate pipe column 86 Conical part 87 Solid part 88 Solid part 89 Solid part 90 Solid part 91 Solid part 94 Seal 15

Claims (1)

200952568 七、申請專利範圍: 1. 一種冷卻電漿處理系統(A)的方法,該電漿處理系統 係以電漿處理流體或流體混合物,特別是氣態流體或流體 混合物;其含有用於在微波動力源和流體混合物(特別 是氣體混合物)之間耦合的裝置(7,8),該流體混合物係流 經在耦合裝置中的介電管(16),該裝置可使一些微波能量被 轉移至流體混合物以在其中產生電漿來破裂至少流體分子 的某些化學鍵,該介電管(16)係藉由以冷卻劑流體循環和要 被冷卻之管的外壁熱接觸來至少部分冷卻,其特徵在於,⑩ 一方面冷卻劑流體循環與介電管熱接觸係和在介電管中的 流體或流體混合物的循環同向發生,以及,另一方面冷卻 劑流體含有至少一種選自線性心烯烴的油,其具有由至少十 個碳原子組成之碳鏈,和/或具有少於2 5的介電常數ε、介 於10和10之間的微波吸收度tanS、以及Cp &lt; 〇 6 g C的比熱的全氟碳化物液體,其。 2. 根據申請專利範圍帛i項之方法,其特徵在於使用至 少一種線性α-烯烴,較佳為c&quot;線性α烯烴或卜十四稀和/❹ 或具有介電常數ε&lt;2和/或吸收度tan5 &lt; 1〇-3和/或比熱 Cp幺0_3 g.cal/g C的全氟碳化物(pFC)流體。 3. 根據中料㈣圍第丨或2項之方法,其特徵在於被 處理U體或流體混合物的注入係在大氣麼下或在接近大 氣壓下發生。 4·根據中請專利範圍第1或2項之方法,其特徵在於流 體混合物和/或惰性互補氣體係以旋渦形式注入。 16 200952568 5. 根據申請專利範圍第3項之方法,其特徵在於,流體 混合物和/或惰性互補氣體係以旋渦形式注入。 6. 根據申請專利範圍第1或2項之方法,其特徵在於被 處理的流體和冷卻劑流體係從上到丁流動。 7. 根據申請專利範圍第3項之方法,其特徵在於被處理 的流體和冷卻劑流體係從上到下流動。 8. 根據申請專利範圍第4項之方法,其特徵在於被處理 的流體和冷卻劑流體係從上到下流動。 〇 9.根據申請專利範圍第5項之方法,其特徵在於被處理 的流體和冷卻劑流體係從上到下流動。 10.—種電漿處理系統(A),其含有: (a) 用來注入流體(19)和/或氣體的裝置; (b) 接收該流體和/或該氣體的介電管(16); (Ο微波產生器(1); (d) 用來將微波與流體和/或氣體耗合以在介電管(〗6)中 產生電漿的裝置(7,8); 〇 (e) 藉由冷卻劑流體(19)來冷卻介電管之裝置,其係放置 在該管(18)的外部; (f) 線性α-烯烴和/或全氟碳化物流體的來源;該來源係 和用於冷卻管的裝置連在一起;以及 (g) 用來使該冷卻劑流體流動和被處理之流體或流體混 合物同向流動的裝置,該流動較佳係從上往了。 17200952568 VII. Patent application scope: 1. A method for cooling a plasma processing system (A), which is a plasma treatment fluid or a fluid mixture, in particular a gaseous fluid or a fluid mixture; a means (7, 8) for coupling between a power source and a fluid mixture, in particular a gas mixture, which fluid mixture flows through a dielectric tube (16) in the coupling device, which allows some microwave energy to be transferred to The fluid mixture ruptures at least some of the chemical bonds of the fluid molecules by generating a plasma therein, the dielectric tube (16) being at least partially cooled by thermal contact between the coolant fluid and the outer wall of the tube to be cooled, characteristic In one aspect, 10 the coolant fluid circulation occurs in the same direction as the circulation of the dielectric tube and the fluid or fluid mixture in the dielectric tube, and, on the other hand, the coolant fluid contains at least one selected from the group consisting of linear olefins. An oil having a carbon chain composed of at least ten carbon atoms, and/or having a dielectric constant ε of less than 25, a microwave absorbance between 10 and 10 tanS And Cp &lt; 6 g C square of the specific heat of liquid perfluorocarbons which. 2. Process according to the scope of claim ,i, characterized in that at least one linear alpha olefin, preferably c&quot; linear alpha olefin or blush and/or or having a dielectric constant ε &lt; 2 and/or Absorbance tan5 &lt; 1 〇 -3 and / or specific heat Cp 幺 0_3 g.cal / g C of perfluorocarbon (pFC) fluid. 3. According to the method of Distillation No. 2 or Item 2 of the middle material (4), it is characterized in that the injection of the treated U body or fluid mixture occurs under the atmosphere or at near atmospheric pressure. 4. The method according to claim 1 or 2, wherein the fluid mixture and/or the inert complementary gas system are injected in a vortex form. The method according to claim 3, characterized in that the fluid mixture and/or the inert complementary gas system are injected in the form of a vortex. 6. The method according to claim 1 or 2, wherein the fluid to be treated and the coolant flow system flow from top to bottom. 7. The method of claim 3, wherein the fluid and coolant flow system to be treated flows from top to bottom. 8. The method according to item 4 of the patent application, characterized in that the fluid to be treated and the coolant flow system flow from top to bottom. 〇 9. The method of claim 5, wherein the fluid and coolant flow system to be treated flows from top to bottom. 10. A plasma processing system (A) comprising: (a) means for injecting a fluid (19) and/or gas; (b) a dielectric tube (16) for receiving the fluid and/or the gas (ΟMicrowave generator (1); (d) means (7, 8) for consuming microwaves with fluids and/or gases to produce plasma in the dielectric tube (〖6); 〇(e) a device for cooling a dielectric tube by a coolant fluid (19) placed outside the tube (18); (f) a source of linear alpha-olefin and/or perfluorocarbon fluid; The means for cooling the tubes are joined together; and (g) means for flowing the coolant fluid and the fluid or fluid mixture being treated in the same direction, preferably from the top.
TW098117230A 2008-05-28 2009-05-25 Method of cooling a microwave plasma and system for selective destroying chemical molecules using this method TW200952568A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08305206A EP2131633A1 (en) 2008-05-28 2008-05-28 Method of cooling a microwave plasma and system for selective destruction of chemical molecules using this method

Publications (1)

Publication Number Publication Date
TW200952568A true TW200952568A (en) 2009-12-16

Family

ID=39811616

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098117230A TW200952568A (en) 2008-05-28 2009-05-25 Method of cooling a microwave plasma and system for selective destroying chemical molecules using this method

Country Status (6)

Country Link
US (1) US20110073282A1 (en)
EP (2) EP2131633A1 (en)
JP (1) JP2011522691A (en)
KR (1) KR20110021816A (en)
TW (1) TW200952568A (en)
WO (1) WO2009144110A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720987B1 (en) 2015-04-28 2017-04-10 주식회사 글로벌스탠다드테크놀로지 Treating apparatus and method of non-degradable gas
EP3309815B1 (en) * 2016-10-12 2019-03-20 Meyer Burger (Germany) AG Plasma treatment device with two microwave plasma sources coupled together and method for operating such a plasma treatment device
GB201811003D0 (en) 2018-07-04 2018-08-15 Bp Plc Multiple cooling circuit systems and methods for using them

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE434676B (en) * 1981-10-22 1984-08-06 Skf Steel Eng Ab SET AND DEVICE FOR HEATING OF INDUSTRIAL ENDAL PROCESS AIR
US4828703A (en) * 1983-12-28 1989-05-09 Union Carbide Corporation Method for replacing PCB-containing coolants in electrical induction apparatus with substantially PCB-free dielectric coolants
CA1261735A (en) * 1984-04-20 1989-09-26 William J. Klaila Method and apparatus for recovering fractions from hydrocarbon materials, facilitating the removal and cleansing of hydrocarbon fluids, insulating storage vessels, and cleaningstorage vessels and pipelines
JPH0693397B2 (en) * 1987-12-29 1994-11-16 日本高周波株式会社 Thermal plasma generator
JPH03214600A (en) * 1990-01-17 1991-09-19 Nippon Koshuha Kk Microwave heated plasma reaction device
JPH0562793A (en) * 1991-08-30 1993-03-12 Hitachi Ltd Plasma heater
US5159527A (en) * 1991-12-05 1992-10-27 Minnesota Mining And Manufacturing Company Dielectric liquids
JP3390788B2 (en) * 1993-09-13 2003-03-31 独立行政法人産業技術総合研究所 Method of generating high-frequency induction thermal plasma and method of decomposing organic halogen compound
FR2751565B1 (en) * 1996-07-26 1998-09-04 Air Liquide PROCESS AND PLANT FOR THE TREATMENT OF PERFLUOROUS AND HYDROFLUOROCARBON GASES FOR THEIR DESTRUCTION
ATE298728T1 (en) * 1996-11-04 2005-07-15 Materials Modification Inc MICROWAVE PLASMA CHEMICAL SYNTHESIS OF ULTRAFINE POWDERS
FR2762748B1 (en) * 1997-04-25 1999-06-11 Air Liquide SURFACE WAVE PLASMA GAS EXCITATION DEVICE
JP2000119671A (en) * 1998-10-20 2000-04-25 Matsushita Refrig Co Ltd Refrigerating system
FR2787677B1 (en) * 1998-12-22 2001-01-19 Air Liquide PIPING ELEMENT FOR GAS TREATMENT DEVICE AND DEVICE INCORPORATING SUCH A PIPING ELEMENT
JP4035916B2 (en) * 1999-03-30 2008-01-23 松下電工株式会社 Plasma processing apparatus and plasma processing method
JP2001025658A (en) * 1999-07-15 2001-01-30 Mitsubishi Heavy Ind Ltd Plasma ignition method and decomposition method of organic halogen compound
JP4075237B2 (en) * 1999-08-17 2008-04-16 松下電工株式会社 Plasma processing system and plasma processing method
EP1535303A1 (en) * 2002-08-30 2005-06-01 Axcelis Technologies Inc. Gas tube end cap for a microwave plasma generator
JP2004313998A (en) * 2003-04-18 2004-11-11 Ebara Corp Halide decomposing apparatus
JP3621946B1 (en) * 2004-02-27 2005-02-23 三菱重工業株式会社 Organohalogen compound discharge decomposition apparatus and method
EP1768776A2 (en) * 2004-07-13 2007-04-04 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et L'Exploitation des Procédés Georges Claude Atmospheric-pressure plasma treatment of gaseous effluents
JP2006102717A (en) * 2004-10-08 2006-04-20 Taiyo Nippon Sanso Corp Treatment method and treatment apparatus for harmful component-containing gas

Also Published As

Publication number Publication date
KR20110021816A (en) 2011-03-04
EP2286641A1 (en) 2011-02-23
JP2011522691A (en) 2011-08-04
WO2009144110A1 (en) 2009-12-03
US20110073282A1 (en) 2011-03-31
EP2131633A1 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP5944487B2 (en) Method for treating gas and apparatus for carrying out the method
KR101139318B1 (en) Method of and apparatus for manufacturing semiconductor device
EP0946414B1 (en) Microwave plasma chemical synthesis of ultrafine powders
JP5891341B2 (en) Plasma generating apparatus and method
CN103708599B (en) Supercritical water oxidation apparatus and method
WO2015189643A1 (en) Apparatus and method for plasma synthesis of graphitic products including graphene
WO2006037991A2 (en) Microwave plasma apparatus with vorticular gas flow
JPH0219471A (en) Method for forming membrane
JP2001521293A (en) New deposition systems and processes for transport polymerization and chemical vapor deposition.
TWI356728B (en) Plasma reactor for eliminating waste gases and gas
TW200952568A (en) Method of cooling a microwave plasma and system for selective destroying chemical molecules using this method
CN102388432A (en) Methods and apparatus for treating effluent
WO1996019910A1 (en) High frequency induction plasma method and apparatus
TW200914124A (en) Plasma reactor
Wang et al. Uniform deposition of silicon oxide film on cylindrical substrate by radially arranged plasma jet array
KR20060128905A (en) Method for the treatment of gases using high-frequency discharges
JP2008506516A (en) Atmospheric pressure plasma treatment of gas emissions
KR20230136665A (en) Plasma chamber with auxiliary reaction chamber
RU2278076C2 (en) Device for hydrogenation of silicon tetrachloride
JP2009291784A (en) Method of initiating microwave plasma and system for selectively decomposing chemical molecule using the method
RU2779737C1 (en) Device and method for processing fractionated material with medium-temperature plasma
KR100457451B1 (en) preventive treatment apparatus of vapour source
Koparkar Plasma polymerized thin film sensor: Synthesis and application
KR20020079343A (en) Method of Treating Perfluoro-Carbon Compound Gas And Apparatus For Treating Thereof
CH622964A5 (en) Process for starting or maintaining a chemical reaction which takes place on heating and reactor for its use