TW200914124A - Plasma reactor - Google Patents

Plasma reactor Download PDF

Info

Publication number
TW200914124A
TW200914124A TW097127521A TW97127521A TW200914124A TW 200914124 A TW200914124 A TW 200914124A TW 097127521 A TW097127521 A TW 097127521A TW 97127521 A TW97127521 A TW 97127521A TW 200914124 A TW200914124 A TW 200914124A
Authority
TW
Taiwan
Prior art keywords
gas
plasma
reactor
inlet
reaction chamber
Prior art date
Application number
TW097127521A
Other languages
Chinese (zh)
Other versions
TWI433718B (en
Inventor
Gary Peter Knight
Andrew Chambers
Original Assignee
Edwards Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Ltd filed Critical Edwards Ltd
Publication of TW200914124A publication Critical patent/TW200914124A/en
Application granted granted Critical
Publication of TWI433718B publication Critical patent/TWI433718B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • H01J37/32844Treating effluent gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Plasma Technology (AREA)

Abstract

A plasma reactor comprises a reaction chamber and an inlet head connected to the reaction chamber. The inlet head comprises an open end connected to the reaction chamber, a plasma inlet located opposite to the open end, an inner surface tapering from the open end towards the plasma inlet, and first and second gas inlets each located between the plasma inlet and the open end. A plasma torch injects a plasma stream into the reaction chamber through the plasma inlet, which is shaped to cause the plasma stream to spread outwardly towards the first and second gas inlets. This shaping of the inlet head and the plasma inlet can enable the plasma stream to impinge upon gas streams as they exit from the gas inlets and thereby cause a significant proportion of at least one component of the gas streams to be reacted before the gas streams begin to mix within the chamber.

Description

200914124 九、發明說明: 【發明所屬之技術領域】 反應器。該設備尤其適用於用於 處理已從處理室排放的氣體流之電漿消減系統。 【先前技術】 • 半導體裝置製造中之-主要步驟係藉由蒸汽先驅物之化 _ 學反應在一半導體基板上形成一薄膜。用以在一基板上沉 積一薄膜之一已知技術係化學汽相沉積(CVD)。在此技術 (.、 巾,處理氣體係供應至—裝載該基板的處理室並反應以在 該基板之表面上形成一薄臈。向該處理室供應以形成一薄 膜的氣體之範例包括但不限於: •用於形成一氮化矽膜之矽烷及氨; •用於形成一 SiON膜之矽烷、氨及氧化氮; •用於形成一氧化矽膜之TE0S及氧與臭氧之一者;以及 •用於形成一氧化鋁臈之A1(CH3)3及水蒸汽。 一般還在該處理室内實行電漿蝕刻程序以蝕刻電路特 G 徵。蝕刻氣體一般係全氟化合物氣體,例如cf4、c2f6、 chf3、NF3及 sf6。 •還規則地清潔該處理室之内側表面以從該室移除不想要 2沉積材料。清潔該室之一方法係供應一全氟化合物清潔 氣體(例如,NF3或CJ6)以與不想要的沉積材料反應。 -處理工具一般具有複數個處理室,在一沉積、蝕刻或 /月潔釭序中每一處理室可處於個別不同階段。從一處理室 排放的氣體流之成分一般包括向該處理室供應的氣體之一 133069.doc -6- 200914124 殘餘量連同由該程序產生之副產物。因此,在處理期間由 從該等室排放的氣體之一組合形成之一廢屑流可具有各種 不同成分。 處理氣體(例如矽烷及TE0S)及清潔氣體(例如全氟化合 物)若排到大氣中會極危險,而因此在將該等排放氣體排 出到大氣中之前,將其輸送至消減設備。該消減設備將該 等排放氣體之較危險的成分轉換成易於藉由傳統的擦洗來 移除並可安全地排放到大氣中之物種。 目前的趨勢係向無燃料消減技術發展,而吾等習知可使 用一電漿消減裝置來高效率而以相對較低的成本移除來自 一蝕刻處理室之排放氣體中的不需要物種。在電漿消減程 序中,驅使該氣體流流入一高密度電漿中,而在密集狀態 下,该氣體流内的電漿物種經受與高能電子之撞擊而導致 解離成活性物種,該等活性物種可與氧或氫組合,以產生 相對較穩定的副產物。例如,可將轉換成c〇、c〇2及 HF,可在另一處理步驟中將後者移除。因此,需要擴展電 漿消減技術以致能使用一單一的無燃料消減裝置來處理來 自多種處理室之排放氣體。 但是,由在該等室中發生的程序決定,該等不同的排放 氣體可包含彼此不相容之化學品。例如,來自其中發生一 氧化矽沉積程序之一室的排放氣體可包含已在該室内產生 之TEOS、氧及Si〇2微粒。另一方面,來自其中發生一 NF3 清潔程序之一室的排放氣體可包含氟(F2)。TEOS及氟一旦 接觸便將自發燃燒,而可能導致在排放氣體管道内著火或 133069.doc 200914124 爆炸。儘管可使用個別的消減設備來分別處理此等氣體 流’但此舉使得與該消減系統相關聯的成本增加。 此外’為使得微波電漿消減裝置之破壞效率最佳化,該 氣體入口 一般係1 mm2之等級。因此,僅數微米直徑的微 粒在該排放氣體中之存在可能導致該電漿消減裝置的入口 之快速堵塞。 【發明内容】 本發明之至少較佳具體實施例之一目的係嘗試解決此等 及其他問題。 在一第一態樣中,本發明提供一種電漿反應器,其包 含: 一反應室, 一入口頭部,其具有:一開口端,其係連接至該反應 室;一電漿入口,其位置係與該開口端相對;一内部表 面,其係從該開口端朝該電漿入口逐漸變小;以及第一及 第二氣體入口’其皆係位於該電漿入口與該開口端之間; 以及 一電漿炬,其用以透過該電漿入口將一電漿流注入至該 反應室内; 其中忒電漿入口係成形為導致該電漿流朝該等氣體入口 向外擴展° 該入口頭部與該電漿入口之此成形可致能該電漿流在氣 體流從忒荨氣體入口退出時撞擊於其上。該電漿流可提供 一能量來源,從而可導致在該等氣體流開始在該室内混合 133069.doc 200914124 之前該等氣體流之至少一成分之一顯著比例發生反應。 例如’若該氣體流之成分之一具可燃性而係與一充足量 的氧化劑一同輸送至該反應器内,則該電漿流可提供用以 在該氣體流與另一氣體流混合於該反應器内之前引起該可 燃性成分的實質上完全且受控制的燃燒之點火能量。此可 抑制在該電漿反應器内於一氣體流之可燃性成分(例如 TEOS)與另一氣體流之一成分(例如氟)之間發生一不受控 制的反應。該另一氣體流之此成分可以係與單獨向該反應 室供應或先前以在該氣體流中攜帶之一反應物(例如,水 蒸汽)反應,而由該電漿流提供用以促進此反應之一能量 來源。 因此,可使用該電漿反應器來同時處理從兩個處理室排 放的氣體流而其功率消耗及成本與針對每一氣體流包含— 電漿反應器之一消減系統相比而減小。 為產生一其中處理粉末無法聚集之高溫反應器,該反應 室較佳的係包含—環形主體,與用以向該環形主體的内: 表面供應氣體以抑制積聚於其上之沉積物之構件 可以係提供於一 且古μ、+、λ 不具有上述入口頭部之反應室内,而因 此:在-第二態樣中,本發明提供一種電襞反應器,其包 含· 一反應室, 、至夕4體人π ’其用以向該反應室電漿供應—氣體; 以及 , -電紫炬’其用以將一電衆流注入至一反應室内; 133069.doc 200914124 :"反應室包含一環形主體與用以向該 J表面供應氣體以抑制積聚於其上之沉積 體的内 該環形主體可包含-多孔環形部件’而。 包含在該環形部件周圍延伸 八應構件 固粑呷用以接收該氣體之一 =來_氣室的…穿過該環形室而驅逐能 已在料形室的内部表面上積聚之任何沉積物。 可提供構件用以加熱向該環形主體的内部表面供200914124 IX. Description of the invention: [Technical field to which the invention pertains] Reactor. The apparatus is particularly suitable for use in a plasma abatement system for treating a flow of gas that has been discharged from a process chamber. [Prior Art] • The main step in the manufacture of semiconductor devices is to form a thin film on a semiconductor substrate by vaporization of a vapor precursor. One known technique for depositing a thin film on a substrate is chemical vapor deposition (CVD). In this technique (., towel, process gas system is supplied to the processing chamber where the substrate is loaded and reacted to form a thin crucible on the surface of the substrate. Examples of gases supplied to the processing chamber to form a thin film include but not Limited to: • decane and ammonia used to form a tantalum nitride film; • decane, ammonia, and nitrogen oxides used to form a SiON film; • TEOS and one of oxygen and ozone used to form a hafnium oxide film; • A1(CH3)3 and water vapor for forming an alumina crucible. Plasma etching procedures are also generally performed in the processing chamber to etch the circuit. The etching gas is generally a perfluorochemical gas such as cf4, c2f6, Chf3, NF3, and sf6. • Regularly clean the inside surface of the chamber to remove unwanted deposition material from the chamber. One way to clean the chamber is to supply a perfluorochemical cleaning gas (eg, NF3 or CJ6) Reacting with unwanted deposition materials. - Processing tools typically have a plurality of processing chambers, each of which can be at a different stage in a deposition, etching or rinsing process. The gas stream discharged from a processing chamber The fraction generally includes one of the gases supplied to the processing chamber 133069.doc -6- 200914124 residual amount along with the by-products produced by the process. Therefore, one of the gases discharged from the chambers is formed during processing. The chip flow can have a variety of different compositions. Process gases (such as decane and TEOS) and cleaning gases (such as perfluorinated compounds) can be extremely dangerous if discharged into the atmosphere, so before they are discharged into the atmosphere, they are Conveyed to abatement equipment that converts the more hazardous components of the exhaust gases into species that are easily removed by conventional scrubbing and can be safely released into the atmosphere. Current trends are toward the development of fuel-free technologies And we know that a plasma abatement device can be used to remove unwanted species from the exhaust gas from an etch process chamber at a relatively low cost with high efficiency. In the plasma reduction process, the gas flow is driven Flowing into a high-density plasma, and in a dense state, the plasma species in the gas stream undergoes impact with high-energy electrons, resulting in dissociation into active species, The active species can be combined with oxygen or hydrogen to produce relatively stable by-products. For example, it can be converted to c〇, c〇2, and HF, and the latter can be removed in another processing step. Expanding plasma reduction techniques to enable the use of a single fuel-free abatement device to treat exhaust gases from a variety of processing chambers. However, as determined by the procedures occurring in such chambers, the different exhaust gases may be incompatible with each other. For example, the exhaust gas from a chamber in which the niobium monoxide deposition procedure occurs may contain TEOS, oxygen, and Si〇2 particles that have been produced in the chamber. On the other hand, one of the NF3 cleaning procedures from which one occurs The exhaust gas from the chamber may contain fluorine (F2). TEOS and fluorine will spontaneously burn upon contact, which may cause fire in the exhaust gas pipeline or 133069.doc 200914124 explosion. Although individual abatement devices can be used to process these gas streams separately, this increases the cost associated with the abatement system. Further, in order to optimize the destruction efficiency of the microwave plasma abatement device, the gas inlet is generally on the order of 1 mm2. Therefore, the presence of only a few micrometers of diameter particles in the exhaust gas may cause rapid blockage of the inlet of the plasma abatement device. SUMMARY OF THE INVENTION One of the at least preferred embodiments of the present invention is directed to solving such and other problems. In a first aspect, the present invention provides a plasma reactor comprising: a reaction chamber, an inlet head having: an open end connected to the reaction chamber; a plasma inlet; Positioning opposite the open end; an interior surface that tapers from the open end toward the plasma inlet; and first and second gas inlets 'between the plasma inlet and the open end And a plasma torch for injecting a plasma stream into the reaction chamber through the plasma inlet; wherein the tantalum plasma inlet is shaped to cause the plasma flow to expand outwardly toward the gas inlets. This shaping of the head and the plasma inlet can cause the plasma stream to impinge upon the flow of gas as it exits the helium gas inlet. The plasma stream can provide a source of energy that can cause a significant proportion of at least one of the components of the gas stream to react before the gas stream begins to mix in the chamber 133069.doc 200914124. For example, if one of the components of the gas stream is flammable and is delivered to the reactor together with a sufficient amount of oxidant, the plasma stream can be provided for mixing the gas stream with another gas stream. The ignition energy of the substantially complete and controlled combustion of the flammable component is previously caused within the reactor. This inhibits an uncontrolled reaction between the flammable component of a gas stream (e.g., TEOS) and one component of another gas stream (e.g., fluorine) in the plasma reactor. The composition of the further gas stream may be supplied separately to the reaction chamber or previously reacted with a reactant (e.g., water vapor) carried in the gas stream, and provided by the plasma stream to promote the reaction. One source of energy. Thus, the plasma reactor can be used to simultaneously treat gas streams discharged from the two process chambers with reduced power consumption and cost as compared to one of the gas stream including one of the plasma reactor abatement systems. In order to produce a high temperature reactor in which the treated powder cannot aggregate, the reaction chamber preferably comprises an annular body and a member for supplying gas to the inner surface of the annular body to suppress accumulation of deposits thereon. Provided in a reaction chamber in which the ancient μ, +, λ do not have the above-described inlet head, and thus: in the second aspect, the present invention provides an electrothermal reactor comprising: a reaction chamber, to 44 body π ' it is used to supply plasma to the reaction chamber - gas; and, - electric purple torch 'is used to inject a current into a reaction chamber; 133069.doc 200914124 :" reaction chamber contains An annular body and the annular body for supplying gas to the J surface to inhibit accumulation thereon may include a porous ring member. Included around the annular member is an occupant member for receiving one of the gases. The venting chamber passes through the annular chamber to expel any deposit that has accumulated on the interior surface of the material chamber. A member may be provided for heating to the inner surface of the annular body

體。可藉由位於該充氣室中的電阻加熱器或者藉由圍繞該 充氣室之-加熱器來提供該構件。加熱向該反應室供應的 氣體可致能沿該反應室之長度保持一高溫度,從而增加將 該氣體流的成分曝露於在該室内產生的高溫條件之時間長 度而因此增強該反應器之消減效能。 該氣體可以係一惰性清洗氣體,例如氮或氬,且可包含 一反應物,例如水蒸汽、氧、氫或甲烷,以與透過該等氣 體入口之一入口進入該反應器之一氣體流之一成分反應。 此可提供用以將該反應物供應給該反應室之一方便的機body. The member may be provided by an electric resistance heater located in the plenum or by a heater surrounding the plenum. Heating the gas supplied to the reaction chamber can maintain a high temperature along the length of the reaction chamber, thereby increasing the length of time during which the components of the gas stream are exposed to high temperature conditions generated within the chamber, thereby enhancing the reduction of the reactor efficacy. The gas may be an inert purge gas, such as nitrogen or argon, and may comprise a reactant, such as water vapor, oxygen, hydrogen or methane, to enter a gas stream of the reactor through an inlet through one of the gas inlets. One component reaction. This can provide a convenient machine for supplying the reactants to the reaction chamber

構’因為不需要任何額外的氣體供應來將該反應物供應給 該反應室。 可將一冷卻柱體提供於該反應室下方且與該反應室形成 流體流通,連同用以保持沿該冷卻柱體的内部表面之一水 流的構件。此可致能冷卻離開該反應室之反應產物流而同 時致能藉由塗布該柱體的内部表面之水流將包含於該氣體 流内的酸性氣體(例如HF)取入溶液,且還致能藉由此水流 來捕獲固體微粒。該冷卻柱體亦可包含一熱交換器以回收 133069.doc -10- 200914124 熱量來提供給該反應器之其他部分。 第一氣體入口較佳的係在直徑上相對於第二氣體入口而 定位。該内部表面之形狀較佳的係選擇成使其與該電漿流 之形狀接近一致,從而使一氣體入口與該電漿流之間的氣 體路徑之長度最小化。舉例而言,該入口頭部之内部表面 實質上可為圓錐形或截頭圓錐體形,而該内部表面之錐角 、’、二選擇成與该電漿流從該電漿入口向外展開的角度接近匹 配。 母一氣體入口包含一噴嘴其用以接收在該反應室内之一 待處理氣體流,與一環形通道其在該噴嘴周圍延伸以接收 一清洗氣體。此清洗氣體可用來冷卻該入口頭部,而額外 的優點係藉由該清洗氣體將該清洗氣體正從該入口頭部引 出之熱罝重新引入回到該反應室内。該清洗氣體可包含一 相對惰性氣體,例如氮或氬,且亦可包括一反應物,例如 氣水蒸汽、氧或甲烧’以與藉由該氣體入口輸送至該反 應器内的氣體流之-成分反應。該噴嘴可終止於該氣體入 乂為°玄反應物在其離開該氣體入口之前與該氣體流 的此合提供機會。該入口亦可包含延伸至該噴嘴内之一反 應氣體人σ管’該噴嘴及環形通道以同心方式包圍該管。 傳遞至該反應氣體入口管之反應氣體可包含(例如)氫、水 3 a、甲烧或氧。傳遞至該反應氣體入口管之反應氣體可 為除了傳遞至该環形通道的任何反應物以外之額外或替代 氣體。 〆入口頭可包含位於該電漿入口與該反應室之間的構 133069.doc 200914124 件,用以朝該等第一及第二氣體入口引導該電漿流,以藉 此進一步縮短從該氣體入口至該電漿流延伸的氣體路徑。 舉例而言,一陶瓷主體可位於該入口頭部内,且係成形為 將該電漿流引導至位於該主體與該入口頭部的内部表面之 間的一圓錐形或截頭圓錐體形通道内。可提供構件用以在 該主體的外部表面上產生一氣體層。舉例而言,該陶瓷主 體可為多孔,及供應至該主體之一氣體流以在該主體之外 部表面上產生該氣體層。此氣體層可為該陶瓷主體提供一 保護性氣體邊界。該氣體亦可包含一反應物,以與透過該 等氣體入口之一入口進入該反應器之一氣體流的一成分反 應。若向該主體供應冷卻水,則此可提供用以與該氣體流 的成分反應之一水蒸汽來源。 【實施方式】 首先參考圖1,一電漿反應器之一第一具體實施例包含 一反應器室12。該反應器室丨2實質上係圓柱形,且受環形 主體1 6之内部表面i 4約束。在此範例中,該環形主體丨6係 藉由一多孔陶竟環形部件來提供,該環形部件受一充氣容 積18包圍,該充氣谷積18係形成於該環形主體的外部表面 與一圓柱形外殼20之間。如下面之更詳細說明,經由一或 多個入口噴嘴22將一氣體引入至該充氣容積“内,以使得 在使用期間氣體穿過該環形主體16進入至該反應室12内, 如圖1中的24所示。 該反應器室12之下部端(如圖所示)係開放以允許從該反 應器室12輸出反應產物。該反應器室12之上部端(如圖所 133069.doc •12- 200914124 不)係連接至一入口頭部30,用以向該反應器室12供應欲 處理氣體。該入口頭部30包含連接至該反應室12之一開放 的下部端32、與該開口端32相對而定位之一電漿入口 34, 而该入口碩部30之内部表面36係從該開口端32朝該電漿入 口 34逐漸變小。 一直流電漿炬38係相對於該入口頭部3〇位於外部,用以 透過該電漿入口 34注入一電漿流。該電漿流可以係由任何 可離子化的電漿源氣體(例如,氩或氮)產生。該電漿入口The structure is supplied to the reaction chamber because no additional gas supply is required. A cooling column can be provided below the reaction chamber and in fluid communication with the reaction chamber, along with means for maintaining a flow of water along one of the interior surfaces of the cooling cylinder. This can result in cooling of the reaction product stream exiting the reaction chamber while simultaneously enabling the acid gas (e.g., HF) contained in the gas stream to be taken into the solution by applying a water stream that coats the inner surface of the column, and is also enabled. The solid particles are captured by this water flow. The cooling column may also include a heat exchanger to recover 133069.doc -10-200914124 heat to provide to other portions of the reactor. The first gas inlet is preferably positioned diametrically relative to the second gas inlet. The shape of the inner surface is preferably selected to be nearly identical to the shape of the plasma stream to minimize the length of the gas path between a gas inlet and the plasma stream. For example, the inner surface of the inlet head may be substantially conical or frustoconical, and the taper angle of the inner surface, ', two is selected to expand outward from the plasma inlet with the plasma flow. The angle is close to match. The parent-gas inlet includes a nozzle for receiving a flow of gas to be treated in the reaction chamber, and an annular passage extending around the nozzle to receive a purge gas. This purge gas can be used to cool the inlet head, with the additional advantage of reintroducing the purge gas from which the purge gas is being withdrawn from the inlet head back into the reaction chamber by the purge gas. The purge gas may comprise a relatively inert gas, such as nitrogen or argon, and may also include a reactant such as steam, steam or oxygen to flow with the gas stream delivered to the reactor through the gas inlet. - Component reaction. The nozzle may terminate at a point where the gas inlet is a mixture of the gas stream and the gas stream before it exits the gas inlet. The inlet may also include a reaction gas σ tube that extends into the nozzle. The nozzle and the annular passage enclose the tube concentrically. The reaction gas delivered to the reaction gas inlet pipe may contain, for example, hydrogen, water 3 a, methane or oxygen. The reaction gas delivered to the reaction gas inlet pipe may be an additional or alternative gas other than any reactants delivered to the annular passage. The inlet head may include a member 133069.doc 200914124 between the plasma inlet and the reaction chamber for directing the plasma flow toward the first and second gas inlets to thereby further shorten the gas from the gas The gas path from the inlet to the extension of the plasma stream. For example, a ceramic body can be located within the inlet head and shaped to direct the flow of plasma into a conical or frustoconical passage between the body and the interior surface of the inlet head. . A member may be provided to create a gas layer on the outer surface of the body. For example, the ceramic body can be porous and a gas stream supplied to the body to create the gas layer on the outer surface of the body. This gas layer provides a protective gas boundary for the ceramic body. The gas may also comprise a reactant to react with a component of the gas stream entering one of the reactors through an inlet of the gas inlets. If cooling water is supplied to the body, this may provide a source of water vapor for reacting with the components of the gas stream. [Embodiment] Referring first to Figure 1, a first embodiment of a plasma reactor comprises a reactor chamber 12. The reactor chamber 2 is substantially cylindrical and is constrained by the inner surface i 4 of the annular body 16. In this example, the annular body 6 is provided by a porous ceramic ring member surrounded by a gas filled volume 18 formed on the outer surface of the annular body and a cylinder. Between the outer casings 20. As described in more detail below, a gas is introduced into the plenum volume via one or more inlet nozzles 22 such that gas passes through the annular body 16 into the reaction chamber 12 during use, as in FIG. The lower end of the reactor chamber 12 (as shown) is open to allow the reaction product to be output from the reactor chamber 12. The upper end of the reactor chamber 12 (Fig. 133069.doc • 12 - 200914124 is not connected to an inlet head 30 for supplying a gas to be treated to the reactor chamber 12. The inlet head 30 includes a lower end 32 connected to one of the reaction chambers 12, and the open end 32 oppositely positioned one of the plasma inlets 34, and the interior surface 36 of the inlet shunt 30 tapers from the open end 32 toward the plasma inlet 34. A DC torch 38 is associated with the inlet head 3 The crucible is externally located for injecting a plasma stream through the plasma inlet 34. The plasma stream can be produced by any ionizable plasma source gas (eg, argon or nitrogen).

3 4係成开^為導致該電漿流在其離開該電漿入口 3 4時向外擴 展。在此範例中,該電漿入口34具有一内壁,該内壁具有 與忒電漿炬3 8相鄰而定位之一漸縮區段,以及與該入口頭 =30的内部表面36相鄰而定位之一漸擴區段,以使得該電 水机以冑漿展開角度α從該電漿入口 3 4向外展開。該内 邛頭30之内部表面36係成形為與該電漿流之形狀接近— 致在此|已例中,該内部表面36實質上係截頭圓錐體形, 其具有與s亥電漿展開角度α接近匹配之一錐角ρ。 D亥入:頭邛30亦包含一第一氣體入口 與一第二氣體入 每入口係位於該電漿入口 34與該入口頭部30的開 口端3 2之間並沿實晳卜巫 — 貫質上千仃的方向延伸穿過該入口頭部 每氣體入口 40、42係連接至一個別的氣體供應導管 /亥導吕向其個別的氣體人口 4。、42供應欲在該電 水反應器内處理之—氣體。如^^ = 1 _ 亂體如圖1至3所示,入口 40、42可 經配置用以沿與該環开;{ Φ〗a & 形主體16的内部表面14平行之一向下 方向透過該電漿反席考夹征處# w 1§來仏應该欲處理氣體。該等入口 133069.doc -13- 200914124 40、42亦可經配置用以藉由將該等入口 40、芯以—角度引 導進°亥入口頊部30(未顯示)内來透過該電漿反應器沿一向 下的螺旋形方向供應該欲處理氣體,而因此增加該等氣體 在該反應器申的滯留時間。一喷嘴48係提供於每—氣體入 口 40、42内,用以接收來自該氣體供應導管44、46之氣體 並將該氣體注入至該反應室12内。每一噴嘴48受一環形氣 體通道50之包圍,該環形氣體通道50係界定於該噴嘴48的 外部表面與該氣體入口 40、42的内部表面之間,而且在該 電漿反應器使用期間向該環形氣體通道50供應一清洗氣體 以冷卻該入口頭部3 〇。 向一氣體入口 40、42供應之氣體可包含來自一半導體處 理室之一排放氣體,而每一氣體入口 4〇、42經配置用以接 收來自不同處理室之氣體。例如,向氣體導管44輸送的 氣體在一給定時間可以係來自其中發生一氧化矽沉積程序 之處理至的排放氣體,而向氣體導管46輸送的氣體可以 係來自其中發生一清潔程序之一不同處理室的排放氣體。 因此,向該反應器室供應的氣體可能不相容;在此範例 中,一氣體可包含1^〇8而另一氣體可包含氟。 忒入口頭部30之設計可致能該電漿流在此等氣體從該等 氣體入口40、42進入該電漿反應器時撞擊在其上。該内部 表面36之形狀思味著在每一氣體入口 、42與該電漿流之 間僅有一相對較短的氣體路徑,而因此該等氣體在受該電 衆机彳里擊之前混合的機會極少。該電漿流可提供一能量來 源’從而可導致在該等氣體開始在該反應室12内混合之前 133069.doc -14· 200914124 該等氣體之至少一成分之一顯著比例發生反應。例如,該 電漿流可提供用於消減一可燃性氣體(例如來自一沉積處 理室之排放氣體所包含之TEOS)之一點火源。TE〇s—般係 同一定量的氧化劑(例如氧或臭氧)一起從此一室排放,而 且係提供成使得在該氣體内有足夠的氧化劑,在該反應器 内可發生該可燃性氣體之實質上完全的燃燒。在該排放氣 • 體内含有不足以令該可燃性氣體完全燃燒的氧化劑之情況 下,可向供應給該環形通道50(其圍繞氣體入口 44之噴嘴 Ο 48)的清洗氣體供應額外的氧化劑。 如上所述,向氣體導管46輸送的氣體可以係來自其中發 生一清潔程序之一處理室的排放氣體,而因此可包含連同 在該清潔程序期間產生的說⑹及抓之清潔氣體(例如 NF3)。藉由該電漿流將該氣體加熱至一足夠的溫度以使& 與SiF4與水蒸汽快速而完全地反應,來實現此等物種之消 減。同樣,可將該水蒸汽供應給在該清洗氣體(其係供應 至圍繞該氣體入口 46之喷嘴之氣體通道5〇)内攜帶的反應 G 器,從而該等反應可在該入口頭部30内發生。或者,由於 在緊鄰該氣體入口 44之處已消減該可燃性氣體,因此,將 會有極少(即便有的話)的可燃性氣體存在於該反應室12 • β ’而因此可將該水蒸汽供應給在向該充氣室18供應的清 洗氣體内攜帶之反應室12,從而氟及SiFV與水蒸汽之反應 完全在該反應室12内發生。NF3及其他全氣化合物之消減 需要-升高的溫度及一較長的滯留時間,此係藉由加熱向 該充氣室18供應的(载水)清洗氣體來實現。可使用位於該 133069.doc •15- 200914124 充氣室18内的電阻加熱器,或藉由圍繞該充氣室“之一加 熱夾套來加熱該清洗氣體。 由於進入該電漿反應器的氣體之一可以係來自其中發生 一二氧化矽沉積的處理室之排放氣體,因此二氧化矽微粒 可進入該反應器。此係由於在該沉積程序中,緊接該基板 處的條件係最佳化以使得汽相反應最小化而使得用於在該 基板上形成一連續膜的表面反應最大化。但是,在該室中 其他地方的條件及從該室起的下游並非如此最佳化,而汽 相ΗΘ核生長可導致形成微粒。此等微粒一般係以多種尺寸 形成,從數微米直徑直至數十或數百微米直徑,而更精細 的微粒趨向於黏聚以形成較大的微粒。透過該環形主體Μ 之清洗氣體供應係用來從該環形主體16的内部表面14驅逐 任何此類微粒,從而致能在該反應器之使用期間將該反應 室12保持於一相對較清潔的狀況。 因此,從3亥反應室12之開放的底部端排放之氣體流將包 含由该反應器内發生的反應產生之副產物連同已穿過該反 應器之其他氣體(例如清洗氣體及未消耗的反應物)以及固 體微粒。該反應室之開放底部端係連接至一圓柱形後燃燒 至60,忒後燃燒室60包含用以接收從該反應室丨2流動氣體 流之水冷卻柱體62。透過一管(未顯示)將水供應至包圍該 冷卻柱體62之一環形槽64,從而使水從該槽以之頂部溢流 而沿該冷卻柱體62之内部表面下诱。水係用來冷卻該氣體 流而防止固體微粒沉積於該冷卻柱體62之表面上。此外, 可藉由水將該氣體流之任何酸性成分取入溶液。若需要任 133069.doc 16 200914124 何額外的淬火’則可將噴灑口定位於該室60之下部端以引 入一水霧。 可將透過該室60的出口排放的氣體流及水輸送至一分離 器(未顯示),用以將現在包含固體微粒與酸性物種的水與 該氣體流分離。接著可透過一濕式洗滌器來輸送氣體流, 以在將該氣體流排到大氣中之前從該氣體流移除酸性物 種。 丹菔貫苑例。該第 圖2解說一電漿反應器之一The 3 4 is opened to cause the flow of the plasma to expand outward as it leaves the plasma inlet 34. In this example, the plasma inlet 34 has an inner wall having a tapered section adjacent the tantalum plasma torch 38 and positioned adjacent the inner surface 36 of the inlet head = 30. One of the diverging sections is such that the water heater is deployed outwardly from the plasma inlet 34 at a pulping angle a. The inner surface 36 of the inner boring head 30 is shaped to approximate the shape of the plasma stream—in this case, the inner surface 36 is substantially frustoconical in shape and has an angle of expansion with the sigma plasma. α is close to matching one of the cone angles ρ. D: The head 邛 30 also includes a first gas inlet and a second gas inlet. Each inlet is located between the plasma inlet 34 and the open end 3 2 of the inlet head 30 and is tangible. The direction of the mass is extended through the inlet head. Each gas inlet 40, 42 is connected to a separate gas supply conduit/here to its individual gas population 4. 42 supplies the gas to be treated in the electro-hydraulic reactor. As shown in Figures 1 to 3, the inlets 40, 42 can be configured to pass in a downward direction with respect to the ring; { Φ a & one of the inner surfaces 14 of the body 16 The plasma anti-study folder # w 1§ 仏 仏 should be treated with gas. The inlets 133069.doc -13- 200914124 40, 42 may also be configured to transmit the plasma reaction by directing the inlets 40 and cores into the inlet port 30 (not shown) at an angle. The device supplies the gas to be treated in a downward spiral direction, thereby increasing the residence time of the gases in the reactor. A nozzle 48 is provided in each of the gas inlets 40, 42 for receiving gas from the gas supply conduits 44, 46 and injecting the gas into the reaction chamber 12. Each nozzle 48 is surrounded by an annular gas passage 50 defined between the outer surface of the nozzle 48 and the inner surface of the gas inlets 40, 42 and during use of the plasma reactor The annular gas passage 50 supplies a purge gas to cool the inlet head 3 〇. The gas supplied to a gas inlet 40, 42 may comprise exhaust gas from one of the semiconductor processing chambers, and each of the gas inlets 4, 42 is configured to receive gases from different processing chambers. For example, the gas delivered to the gas conduit 44 may be from an exhaust gas to which the treatment of the niobium monoxide deposition process takes place at a given time, and the gas delivered to the gas conduit 46 may be from a different one of the cleaning procedures in which the cleaning process occurs. The exhaust gas from the processing chamber. Therefore, the gas supplied to the reactor chamber may be incompatible; in this example, one gas may contain 1 〇 8 and the other gas may contain fluorine. The inlet head 30 is designed to enable the plasma stream to impinge upon the gas as it enters the plasma reactor from the gas inlets 40,42. The shape of the inner surface 36 contemplates that there is only a relatively short gas path between each gas inlet, 42 and the plasma flow, and thus the opportunity for the gases to mix before being hit by the electric machine. Very few. The plasma stream can provide an energy source' which can cause a significant proportion of at least one of the gases to react before the gases begin to mix in the reaction chamber 12 133069.doc -14· 200914124. For example, the plasma stream can provide an ignition source for reducing a combustible gas (e.g., TEOS contained in an exhaust gas from a deposition chamber). TE〇s are generally discharged from the chamber together with the same amount of oxidant (e.g., oxygen or ozone) and are provided such that there is sufficient oxidant in the gas, and the flammable gas can be substantially generated in the reactor. Complete combustion. In the case where the exhaust gas contains an oxidant insufficient for the complete combustion of the combustible gas, an additional oxidant may be supplied to the purge gas supplied to the annular passage 50 (which surrounds the nozzle Ο 48 of the gas inlet 44). As noted above, the gas delivered to the gas conduit 46 may be from the exhaust gas in which the processing chamber of one of the cleaning procedures occurs, and thus may include the cleaning gas (e.g., NF3) along with the said (6) generated during the cleaning procedure. . The reduction of such species is achieved by heating the gas to a sufficient temperature to rapidly & completely react SiF4 with water vapor. Likewise, the water vapor can be supplied to a reactor G carried in the purge gas, which is supplied to a gas passage 5A around the nozzle of the gas inlet 46, such that the reaction can be within the inlet head 30. occur. Alternatively, since the flammable gas has been reduced in close proximity to the gas inlet 44, there will be very little, if any, flammable gas present in the reaction chamber 12 • β 'and thus the water vapor The reaction chamber 12 carried in the cleaning gas supplied to the plenum 18 is supplied so that the reaction of fluorine and SiFV with water vapor completely takes place in the reaction chamber 12. The reduction of NF3 and other all-gas compounds requires - an elevated temperature and a longer residence time, which is achieved by heating the (water-carrying) purge gas supplied to the plenum 18. An electric resistance heater located in the plenum 18 of the 133069.doc •15-200914124 may be used, or the cleaning gas may be heated by heating the jacket around the plenum. One of the gases entering the plasma reactor It may be an exhaust gas from a processing chamber in which a cerium oxide deposition occurs, so that cerium oxide particles may enter the reactor. This is because in the deposition process, the conditions immediately adjacent to the substrate are optimized so that The vapor phase reaction is minimized to maximize surface reactions for forming a continuous film on the substrate. However, conditions elsewhere in the chamber and downstream from the chamber are not so optimized, and vapor phase enthalpy Nuclear growth can result in the formation of microparticles. These microparticles are typically formed in a variety of sizes, from a few micrometers in diameter up to tens or hundreds of micrometers in diameter, while finer microparticles tend to coagulate to form larger microparticles. The purge gas supply is used to evict any such particulates from the interior surface 14 of the annular body 16, thereby enabling the reaction chamber 12 to be maintained during use of the reactor. In a relatively clean condition, therefore, the gas stream discharged from the open bottom end of the 3H reaction chamber 12 will contain by-products from the reactions occurring within the reactor along with other gases that have passed through the reactor ( For example, cleaning gas and unconsumed reactants) and solid particles. The open bottom end of the reaction chamber is connected to a cylindrical post-combustion to 60, and the post-combustion chamber 60 is configured to receive a flow of gas from the reaction chamber 丨2. The water cools the column 62. Water is supplied through a tube (not shown) to an annular groove 64 surrounding the cooling column 62 such that water overflows from the groove at the top thereof along the interior of the cooling column 62 The water system is used to cool the gas stream to prevent solid particles from depositing on the surface of the cooling cylinder 62. Further, any acidic component of the gas stream can be taken into the solution by water. If necessary, 133069. Doc 16 200914124 What additional quenching can be used to position the spout at the lower end of the chamber 60 to introduce a mist. The gas stream and water discharged through the outlet of the chamber 60 can be sent to a separator (not shown). , Used to separate water now containing solid particles from acidic species from the gas stream. The gas stream can then be transported through a wet scrubber to remove acidic species from the gas stream prior to being vented to the atmosphere. Dan 菔 Guan Court Example. Figure 2 illustrates one of the plasma reactors.

體實施例包括該第—具體實施例之所有特徵且還包括位置 與該電漿人口 34相對用以將該電漿流引導進—圓錐形通道 72(其係位於該主體7G與該人口頭部3G之内部表面36之間) 内之-圓錐形陶瓷主體7〇。該主體7〇可以係連接至該入口 頭部30、至該環形主體16或至外殼2〇之底部。將該電漿流 引導進該圓錐形通道72内進一步縮短從每一氣體入口 4〇、 =向該«流延伸之氣體路徑,從而使得在已將該等氣體 處理成從該等氣體實質上移除至少_成分之前該等氣體更 難以在該反應器内混合。 :解說-電漿反應器之一第三具體實施例。該第三具 體實轭例包括該第一具體實施 λ Λ &列之所有特徵,且還包括位 頭㈣與該環形主體16之間的—第二㈣主體 ^的係’亦_由4^環形部件來提供該第二 衣形主體’該第二環形部件受— 邱矣而你 升夕成於該環形主體80的外 #表面與一圓柱形外殼84之間 . 充軋容積82包圍。對於該 …,經由-或多個入口噴嘴以將―氣體引入至該 133069.doc -17- 200914124 充氣容積82,從而,在使用期間,氣體穿過該第二環形主 體80進入該反應器室12内(如圖3中在88所示)以從該第二環 形主體80的内部表面9〇驅逐微粒。如同在該第一具體實施 例中’較佳的係在此氣體進入該反應室12之前加熱此氣 體。 除增加該反應室1 2之長度,以進而增加氣體在該電漿反 ' 應器内的滞留時間外,包括此第二環形主體80及相關聯的 充氣室82可致能沿該反應室12的長度使用不同的清洗氣體 (流速、清洗氣體成分及溫度’從而可使得該消減化學性質 為§亥反應器内之待處理氣體而最佳化。例如,用以消減氫 之一富含氧化劑的清洗氣體可供應至該充氣室82,而同時 可將一富含水蒸汽的清洗氣體供應至該充氣室丨8,以消減 一氧化劑(例如氟或NF3)。 圖4解說一電漿反應器之一第四具體實施例。該第四具 體實把例包括該第三具體實施例之所有特徵,且還包括反 應氣體入口管100,其位於該等噴嘴48及環形氣體通道50 ί ' * 的内側’且該等喷嘴48及環形氣體通道50以同心方式包圍 反應氣體入口管100。除經由氣體通道50供應的任何反應 ' 氣體外’還連同或替代地經由反應氣體入口管1 〇〇將反應 _ 氣體供應給欲處理的氣體。應瞭解’反應氣體入口管1〇〇 可以具有本文在圖i至3中說明的任何具體實施例,而不限 於圖4所示之具體實施例。此外,該反應氣體入口管相對 於該清洗氣體入口之配置並不限於圖4所示之配置。例 如’可將該反應氣體入口管100配置成使得所有氣體係在 133069.doc • 18- 200914124 進入至室1 2内之前彼此混合。 【圖式簡單說明】 已僅藉由範例而參考附圖說明本發明之動; 中: 权佳特徵,其 圖1係一電漿反應器之一第一具體實施例之一斷面圖·, • 圖2係一電漿反應器之—第二具體實施例之一斷面圖; . 以及 圖3係一電漿反應器之一第三具體實施例之一斷面圖;The body embodiment includes all of the features of the first embodiment and further includes a position opposite the plasma population 34 for directing the plasma flow into the conical passage 72 (which is located in the body 7G and the population head) Between the inner surfaces 36 of the 3G) - the conical ceramic body 7 〇. The body 7 can be attached to the inlet head 30, to the annular body 16 or to the bottom of the casing 2〇. Directing the plasma stream into the conical passage 72 further shortens the gas path extending from each gas inlet 4, = to the stream so that the gas has been processed to substantially move from the gas These gases are more difficult to mix in the reactor except at least the ingredients. : Description - A third embodiment of a plasma reactor. The third concrete yoke example includes all the features of the first embodiment λ Λ & column, and further includes a second (four) body ^ between the header (4) and the ring body 16 The annular member provides the second garment-shaped body. The second annular member is received between the outer surface of the annular body 80 and a cylindrical outer casing 84. The filling volume 82 is surrounded. For this, a gas is introduced into the 133069.doc -17-200914124 plenum volume 82 via - or a plurality of inlet nozzles such that during use, gas enters the reactor chamber 12 through the second annular body 80. The inner (as shown at 88 in Fig. 3) is used to expel the particles from the inner surface 9 of the second annular body 80. As in the first embodiment, it is preferred to heat the gas before it enters the reaction chamber 12. In addition to increasing the length of the reaction chamber 12 to further increase the residence time of the gas within the plasma counter, including the second annular body 80 and associated plenum 82 can be enabled along the reaction chamber 12 The length uses different cleaning gases (flow rate, purge gas composition and temperature' to optimize the depletion chemistry for the gas to be treated in the reactor. For example, one of the hydrogen-reducing oxidants is used to reduce hydrogen. A purge gas can be supplied to the plenum 82 while a water vapor-rich purge gas can be supplied to the plenum chamber 8 to reduce an oxidant (e.g., fluorine or NF3). Figure 4 illustrates a plasma reactor A fourth embodiment, the fourth embodiment includes all of the features of the third embodiment, and further includes a reactive gas inlet tube 100 located inside the nozzles 48 and the annular gas passage 50 ί ' * And the nozzles 48 and the annular gas passage 50 enclose the reaction gas inlet pipe 100 concentrically. In addition to any reaction 'gas outside' supplied via the gas passage 50, together with or instead via the reaction gas inlet pipe 1 The reaction gas is supplied to the gas to be treated. It should be understood that the 'reaction gas inlet pipe 1' may have any of the specific embodiments illustrated in Figures i to 3 herein, and is not limited to the specific embodiment shown in FIG. Further, the configuration of the reaction gas inlet pipe relative to the purge gas inlet is not limited to the configuration shown in Fig. 4. For example, the reaction gas inlet pipe 100 can be configured such that all gas systems are at 133069.doc • 18- 200914124 Mixing with each other before entering the chamber 12. [Simplified description of the drawings] The movement of the present invention has been described by way of example only with reference to the accompanying drawings; wherein: Figure 1 is a first of a plasma reactor BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a cross-sectional view of a second embodiment of a plasma reactor; and FIG. 3 is a third embodiment of a plasma reactor. a sectional view;

Ct 圖4係一電漿反應器之一第四具體實施例之一斷面圖。 【主要元件符號說明】 12 反應器室 14 環形主體16的内部表面 16 環形主體 18 充氣容積/充氣室 20 圓柱形外殼 22 入口喷嘴 30 入口頭部 32 開放的下部端 34 電漿入口 36 入口頭部30之内部表面 38 直流電漿炬 40 第一氣體入口 42 第二氣體入口 44 氣體供應導管/氣體入口 133069.doc • 19- 200914124 46 氣體供應導管/氣體入口 48 喷嘴 50 環形氣體通道 60 圓柱形後燃燒室 62 冷卻柱體 64 環形槽 70 主體 72 圓錐形通道 80 第二環形主體 82 充氣容積/充氣室 84 圓柱形外殼 86 入口喷嘴 90 第二環形主體80的内部表面 100 反應氣體入口管 133069.doc -20-Ct Figure 4 is a cross-sectional view of a fourth embodiment of a plasma reactor. [Main component symbol description] 12 Reactor chamber 14 Inner surface 16 of annular body 16 Annular body 18 Inflatable volume / plenum 20 Cylindrical housing 22 Inlet nozzle 30 Inlet head 32 Open lower end 34 Plasma inlet 36 Inlet head 30 internal surface 38 DC torch 40 first gas inlet 42 second gas inlet 44 gas supply conduit / gas inlet 133069.doc • 19- 200914124 46 gas supply conduit / gas inlet 48 nozzle 50 annular gas passage 60 cylindrical post combustion Chamber 62 Cooling Cylinder 64 Annular Groove 70 Main Body 72 Conical Channel 80 Second Annular Body 82 Inflator Volume/Puff Chamber 84 Cylindrical Housing 86 Inlet Nozzle 90 Internal Surface of Second Annular Body 80 Reaction Gas Inlet Tube 133069.doc - 20-

Claims (1)

200914124 十、申請專利範圍·· l -種電衆消減反應器,其包含: —反應室; …入口碩冑’其具有:-開口端,其係連接至該反應 至/ 電聚入口’其係相對於該開口端;一内部表面, 、,從°亥開口端朝該電漿入口逐漸變小;以及第一及第 一氣體入口,甘比及, 再白係位於該電漿入口與該開口端之間; 以及 電漿炬’其用以透過該電漿入口將一電漿流注入至 該反應室内; &中5亥電装·入口係成形為使該電漿流朝該等氣體入口 向外擴展。 2’如叫求項1之電漿消減反應器,其中該第一氣體入口係 在直把上相對於該第二氣體入口而定位。 3.如凊求項1或請求項2之電漿消減反應器,其中該入口頭 之该内部表面實質上為截頭圓錐體形。 4·如凊求項1之電漿消減反應器,其中該等氣體入口沿實 質上平行的方向延伸穿過該入口頭部。 女明求項1之電漿消減反應器,其中每一氣體入口包含 喷令以接收在該反應室内待處理之一氣體流,以及一 環形通道在該噴嘴周圍延伸以接收—清洗氣體。 6.如請求項丨之電漿消減反應器,其中該電漿入口具有一 内壁,該内壁具有相鄰於該電漿炬之—漸縮區段,以及 相鄰於該入口頭部的該内部表面之—漸擴區段。 133069.doc 200914124 7. 如請求们之電聚消減反應器,其包含相对 口以朝該等第一月笸一齑練 、乂電漿入 8. 如請求項7之雷靖%、出应施突 1机之構件。 之電漿消減反應器,其中該引導構件包含一 體,以將該電漿流引導進位於該主體盎 ★玄內邱主 、邊王骽與忒入口頭部的 α内#表面之間的一圓錐形通道内。 9·如請求項8之電聚消減反應器,其中該 料形成。 由w亢材200914124 X. Patent application scope · · l-type electric consumer reduction reactor, which comprises: - reaction chamber; ... entrance 胄 ' it has: - open end, which is connected to the reaction to / electropolymer inlet ' Relative to the open end; an inner surface, which gradually becomes smaller from the open end of the temperature to the plasma inlet; and the first and first gas inlets, the Ganbi and the white are located at the plasma inlet and the opening And between the ends; and a plasma torch' for injecting a plasma stream into the reaction chamber through the plasma inlet; & the 5H electrical installation and inlet system is shaped such that the plasma flow is directed toward the gas inlets External expansion. 2' The plasma reduction reactor of claim 1, wherein the first gas inlet is positioned on the straight stem relative to the second gas inlet. 3. The plasma abatement reactor of claim 1 or claim 2, wherein the inner surface of the inlet head is substantially frustoconical. 4. The plasma abatement reactor of claim 1, wherein the gas inlets extend through the inlet head in a substantially parallel direction. A plasma abatement reactor of the invention, wherein each gas inlet comprises a spray command to receive a gas stream to be treated in the reaction chamber, and an annular passage extends around the nozzle to receive a purge gas. 6. The plasma depletion reactor of claim 3, wherein the plasma inlet has an inner wall having a tapered section adjacent to the plasma torch and the interior adjacent to the inlet head Surface-swelling section. 133069.doc 200914124 7. If the requester's electro-convergence reduction reactor contains a relative port to the first month of the first month, the sputum is smashed into the sputum. The components of the 1 machine. a plasma abatement reactor, wherein the guiding member comprises an integral body to guide the plasma flow into a cone between the surface of the main body of the main body, the side of the king, and the surface of the inside of the head Inside the shaped channel. 9. The electropolymerization abatement reactor of claim 8 wherein the material is formed. By w coffin 10.如:青求項8之電漿消減反應器其包含用以在該主體的 外部表面上產生—氣體層之構件。 月长項ίο之電漿消減反應器,其中該氣體層包含一反 應物,其用以與透過該等氣體入口之一入口進入該反應 器之—氣體流之一成分反應。 … 12.如請求項8之電漿消減反應器,其包含用以冷卻該主體 的該外部表面之構件。 13. 如π求項丨2之電漿消減反應器其中該主體冷卻構件經 組態以供應水至該主體。 14. 如凊求項1之電漿消減反應器,其中該反應室包含一環 $主體’以及用以向該環形主體的該内部表面供應氣體 以抑制積聚於其上之沉積物的構件。 1 5.如叫求項1之電漿消減反應器,其包含用以加熱供應至 該主體的該内部表面之該氣體的構件。 16·如清求項1之電漿消減反應器,其中該氣體包含一反應 物以與進入該反應器之一氣體流之一成分反應。 17.如請求項1之電漿消減反應器,其中該反應室包含:一 133069.doc 200914124 第一 %开> 主體,其係位於該第一所述環形主體與該電漿 入口之間;以及第二氣體供應構件,其用以供應一第二 氣體至該第二環形主體之該内部表面,該第二氣體與供 應至該第—所述環形主體之該氣體不同,以抑制積聚於 其上之沉積物。 ' 18.如請求項17之電漿消減反應器,其中該第二環形主體包 ' 含一多孔環形部件,且該第二氣體供應構件包含在此環 形構件周圍延伸以接收該第二氣體之一充氣室。 〇 19·如請求項Η之電漿消減反應器,其包含用以加熱該第二 氣體之構件。 20. 如請求項17之電漿消減反應器,其中該第二氣體包含— 反應物以與進入該反應器之一氣體流之一成分反應。 21. 如請求項1之電蒙消減反應器,其包含在該反應室下方 且與該反應室形成流體流通之一冷卻柱體,以及用以保 持沿該冷卻柱體的該内部表面之一水流的構件。 (22· ^請求項5之電漿消減反應器,其進一步包含一氣體導 g以導入一反應氣體至在藉由該電漿處理之前之待 理的該氣體。 ' • 23. 一種電槳消減反應器,其包含: 一反應室; 至沙—氣體入口,以供應一氣體至該反應室電漿;以及 一電漿炬,其用以將一電漿流注入至該反應室内; ▲,中該反應室包含一環形主體,以及用以供應氣體至 忒%形主體的該内部表面以抑制積聚於其上之沉積物的 133069.doc 200914124 構件。 24.如請求項23之電漿消減反應器,其中該環形主體包含一 夕孔環形部件,且該氣體供應構件包含在該環形構件周 圍延伸以接收該氣體之一充氣室。 25·如請求項23之電漿消減反應器,其包含用以加熱供應至 ' 該主體的該内部表面的該氣體之構件。 26.如請求項23之電漿消減反應器,其中該氣體包含一反應 物,以與進入該反應器之一氣體流之一成分反應。 Γ 27.如請求項23之電漿消減反應器,其中該反應室包含:一 第一環形主體,其係位於該第一所述環形主體與該電漿 入口之間;以及第二氣體供應構件’其用以供應一第二 氣體至該第二環形主體之該内部表面,該第二氣體與供 應至該第一所述環形主體的該氣體不同,以抑制積聚於 其上之沉積物。 28. 如請求項27之電漿消減反應器,其中該第二環形主體包 含一多孔環形部件,且該第二氣體供應構件包含在此環 形部件周圍延伸以接收該第二氣體之一充氣室。 29. 如請求項27之電漿消減反應器,其包含用以加熱該第二 , 氣體之構件。 30. 如請求項27之電漿消減反應器,其中該第二氣體包含一 反應物以與進入該反應器之一氣體流之一成分反應。 3 1.如請求項23之電漿消減反應器,其包含在該反應室下方 且與該反應室形成流體流通之一冷卻柱體,以及用以保 持沿該冷卻柱體的該内部表面之一水流的構件。 133069.doc 200914124 32.如請求項23之電漿消減反應器,其進一步包含一氣體導 管,以導入一反應氣體至在藉由該電漿處理之前之待處 理的該氣體。 Γ C... 133069.doc10. A plasma reduction reactor according to claim 8, which comprises means for producing a gas layer on the outer surface of the body. A plasma depletion reactor of month length, wherein the gas layer comprises a reactant for reacting with a component of the gas stream that enters the reactor through an inlet of the gas inlets. 12. The plasma abatement reactor of claim 8 comprising means for cooling the outer surface of the body. 13. A plasma abatement reactor as claimed in π, wherein the body cooling member is configured to supply water to the body. 14. The plasma abatement reactor of claim 1, wherein the reaction chamber comprises a ring $body' and means for supplying gas to the inner surface of the annular body to inhibit deposits accumulated thereon. 1 5. The plasma abatement reactor of claim 1 comprising means for heating the gas supplied to the interior surface of the body. 16. The plasma depletion reactor of claim 1, wherein the gas comprises a reactant to react with a component of the gas stream entering one of the reactors. 17. The plasma abatement reactor of claim 1 wherein the reaction chamber comprises: a 133069.doc 200914124 first % open > body disposed between the first annular body and the plasma inlet; And a second gas supply member for supplying a second gas to the inner surface of the second annular body, the second gas being different from the gas supplied to the first to the annular body to inhibit accumulation thereof Sediment on it. 18. The plasma abatement reactor of claim 17, wherein the second annular body package comprises a porous annular member and the second gas supply member comprises a periphery extending around the annular member to receive the second gas. An inflatable room. 〇 19. The plasma depletion reactor of claim 1, comprising means for heating the second gas. 20. The plasma abatement reactor of claim 17, wherein the second gas comprises - a reactant to react with a component of the gas stream entering one of the reactors. 21. The electric energy reduction reactor of claim 1, comprising a cooling column below the reaction chamber and forming a fluid flow with the reaction chamber, and a water flow for maintaining one of the internal surfaces along the cooling cylinder Components. (22. The plasma reduction reactor of claim 5, further comprising a gas guide g for introducing a reaction gas to the gas to be treated before being treated by the plasma. ' • 23. An electric paddle reduction a reactor comprising: a reaction chamber; a sand-gas inlet for supplying a gas to the chamber plasma; and a plasma torch for injecting a plasma stream into the reaction chamber; ▲, The reaction chamber includes an annular body and a 133069.doc 200914124 member for supplying gas to the inner surface of the 形% shaped body to inhibit deposits accumulated thereon. 24. The plasma abatement reactor of claim 23. Wherein the annular body comprises an annular annular member, and the gas supply member comprises an plenum extending around the annular member to receive the gas. 25. The plasma abatement reactor of claim 23, comprising Heating the member of the gas supplied to the inner surface of the body. 26. The plasma abatement reactor of claim 23, wherein the gas comprises a reactant to enter a gas stream with the reactor The one-component reaction. The plasma-reducing reactor of claim 23, wherein the reaction chamber comprises: a first annular body located between the first annular body and the plasma inlet; a second gas supply member' for supplying a second gas to the inner surface of the second annular body, the second gas being different from the gas supplied to the first annular body to suppress accumulation thereon 28. The plasma abatement reactor of claim 27, wherein the second annular body comprises a porous annular member, and the second gas supply member comprises extending around the annular member to receive the second gas A plenum chamber as claimed in claim 27, comprising a means for heating the second, gas. 30. The plasma abatement reactor of claim 27, wherein the second gas comprises A reactant is reacted with a component of a gas stream entering one of the reactors. 3 1. A plasma abatement reactor according to claim 23, which is contained below the reaction chamber and forms a fluid flow with the reaction chamber. a column, and means for maintaining a flow of water along one of the interior surfaces of the cooling column. 133069.doc 200914124 32. The plasma abatement reactor of claim 23, further comprising a gas conduit for introducing a reaction The gas to the gas to be treated before being treated by the plasma. Γ C... 133069.doc
TW097127521A 2007-07-19 2008-07-18 Plasma reactor TWI433718B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0714025.4A GB0714025D0 (en) 2007-07-19 2007-07-19 Plasma reactor

Publications (2)

Publication Number Publication Date
TW200914124A true TW200914124A (en) 2009-04-01
TWI433718B TWI433718B (en) 2014-04-11

Family

ID=38476563

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097127521A TWI433718B (en) 2007-07-19 2008-07-18 Plasma reactor

Country Status (6)

Country Link
KR (1) KR101490540B1 (en)
CN (2) CN101755322B (en)
DE (1) DE112008001790T5 (en)
GB (1) GB0714025D0 (en)
TW (1) TWI433718B (en)
WO (1) WO2009010792A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806214B (en) * 2014-03-06 2023-06-21 美商應用材料股份有限公司 Abatement system, vacuum processing system, and method for cooling composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102125818B (en) * 2010-12-31 2013-12-11 武汉凯迪工程技术研究总院有限公司 Method and device for preparing high-temperature active particle-rich water vapor by plasma
GB2493752A (en) 2011-08-17 2013-02-20 Edwards Ltd Apparatus for treating a gas stream
GB2534890A (en) * 2015-02-03 2016-08-10 Edwards Ltd Thermal plasma torch
GB2536905B (en) 2015-03-30 2020-01-08 Edwards Ltd Radiant burner
CN113371679A (en) * 2021-05-27 2021-09-10 中国矿业大学 Carbon dioxide-methane plasma high-temperature reforming device and high-temperature reforming method
GB2625846A (en) * 2022-12-27 2024-07-03 Csk Inc Scrubber burner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846275A (en) * 1996-12-31 1998-12-08 Atmi Ecosys Corporation Clog-resistant entry structure for introducing a particulate solids-containing and/or solids-forming gas stream to a gas processing system
TW442842B (en) * 1996-12-31 2001-06-23 Atmi Ecosys Corp Effluent gas stream treatment system for oxidation treatment of semiconductor manufacturing effluent gases
US6617538B1 (en) * 2000-03-31 2003-09-09 Imad Mahawili Rotating arc plasma jet and method of use for chemical synthesis and chemical by-products abatements
JP2005205330A (en) * 2004-01-23 2005-08-04 Kanken Techno Co Ltd Plasma decomposition method of perfluoro compound exhaust gas, plasma decomposition apparatus using the method, and exhaust gas treating system mounted with the apparatus
GB0416385D0 (en) * 2004-07-22 2004-08-25 Boc Group Plc Gas abatement
GB0502495D0 (en) * 2005-02-07 2005-03-16 Boc Group Plc Ejector pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806214B (en) * 2014-03-06 2023-06-21 美商應用材料股份有限公司 Abatement system, vacuum processing system, and method for cooling composition

Also Published As

Publication number Publication date
CN101755322B (en) 2014-02-19
WO2009010792A3 (en) 2009-03-12
KR101490540B1 (en) 2015-02-05
CN101755322A (en) 2010-06-23
WO2009010792A2 (en) 2009-01-22
GB0714025D0 (en) 2007-08-29
CN103021779B (en) 2016-08-10
KR20100037609A (en) 2010-04-09
CN103021779A (en) 2013-04-03
DE112008001790T5 (en) 2010-04-29
TWI433718B (en) 2014-04-11

Similar Documents

Publication Publication Date Title
TW200914124A (en) Plasma reactor
TWI364316B (en) Gas abatement
US7394041B2 (en) Apparatus for treating a waste gas using plasma torch
KR101995211B1 (en) Exhaust gas processing device
JP2007300074A (en) Film-forming apparatus, exhaust structure thereof, and method for processing exhaust gas
JP2003530679A (en) Twin plasma torch device
WO2007007003A2 (en) Method for plasma treatment of gas effluents
JP2005057193A (en) Vaporizer
TW201343240A (en) Vortex plasma reactor for the abatement of PFCs emission
TWI230094B (en) Method for exhaust treatment of perfluoro compounds
WO2017132186A1 (en) Semiconductor processing system
KR20070046794A (en) Method for the preparation of a gas or mixture of gases containing molecular fluorine
TW201021902A (en) System for eliminating waste gases by making use of plasmas at low and atmospheric pressure
US20030161774A1 (en) Processes and apparatuses for treating halogen-containing gases
JP2004216246A (en) High-frequency plasma treatment apparatus and high-frequency plasma treatment method
TW200815621A (en) Method of treating a gas stream
JP2005205330A (en) Plasma decomposition method of perfluoro compound exhaust gas, plasma decomposition apparatus using the method, and exhaust gas treating system mounted with the apparatus
JP2008506516A (en) Atmospheric pressure plasma treatment of gas emissions
KR20170003513U (en) Thermal plasma torch
TW200952568A (en) Method of cooling a microwave plasma and system for selective destroying chemical molecules using this method
CN111149437B (en) Nozzle for delivering a plasma stream for plasma abatement and related methods
KR100743399B1 (en) An apparatus for treatment chlorine gas and perfluoro compounds from semiconductor manufacturing process
KR101542297B1 (en) Method and device for treating harmgas
JP2010142749A (en) Gas treatment apparatus
JP2006175317A (en) Treatment apparatus of exhaust gas from semiconductor manufacturing process

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees