EP2122143B1 - Indizieranordnung und verfahren zur bestimmung eines motorkennwertes - Google Patents
Indizieranordnung und verfahren zur bestimmung eines motorkennwertes Download PDFInfo
- Publication number
- EP2122143B1 EP2122143B1 EP08708613A EP08708613A EP2122143B1 EP 2122143 B1 EP2122143 B1 EP 2122143B1 EP 08708613 A EP08708613 A EP 08708613A EP 08708613 A EP08708613 A EP 08708613A EP 2122143 B1 EP2122143 B1 EP 2122143B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- engine
- indicating arrangement
- crank angle
- parameter
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/009—Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D2041/227—Limping Home, i.e. taking specific engine control measures at abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
- F02D41/28—Interface circuits
- F02D2041/281—Interface circuits between sensors and control unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/222—Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
Definitions
- the subject invention relates to an indexing device for determining at least one of the knowledge of a crank angle information assuming engine characteristic of the performance of an internal combustion engine, with a sensor unit that receives a measured variable with a crank angle-dependent portion, and with a computing unit, which is connected via an input to the sensor unit, and an associated method for determining such a characteristic value and an application in a motor control.
- the indexing arrangement generally also includes a signal amplifier, which further processes a sensor signal for further use, eg amplifies, conditions, filters and / or digitizes.
- a charge amplifier is generally used as signal amplifier.
- strain gauges piezoresisitive pressure sensors, structure-borne knock sensors, sensors for sonic and ultrasonic emission analysis, ion current probes, flame light sensors, sensors for needle lift, valve lift or piston stroke, etc.
- the required engine parameters from the measured variables, such as cylinder pressure, crank angle, etc. calculated, or measured variables, such as the cylinder pressure, on a time basis or based on the measured crank angle to determine the engine characteristics are evaluated , where the calculations and evaluations on-line, ie during engine operation, or off-line, so in hindsight, can be performed.
- the processing units consequently require a separate input for a crank angle signal, eg from an angle transmitter. Nevertheless, some parameters can be determined without the crank angle information. For example, characteristic values such as, for example, peak pressure, combustion noise, knock intensity, frequency components, time differences between significant signal characteristics, etc., can be determined from the measured time curve of the cylinder pressure even without crank angle information.
- crank angle information such as a Speed, the duration of one revolution of the crankshaft, the instantaneous angular velocity, the duration of a work cycle, the duration of a work cycle divided by the number of cylinders or an instantaneous rotation angle in any angular resolution.
- the measurement of the crank angle information naturally increases the effort for the sensors.
- a substantially periodic measurement signal such. B. from a Zylinderdruckaufsacrificing to derive a crank angle information.
- AT 388 830 B it is described that the drift compensation device of a charge amplifier circuit is triggered in accordance with the period of a measurement signal.
- the periodic trigger signals for the tripping device can be obtained internally from the measuring signal or externally from a connected signal generator on a crankshaft.
- crank angle information is calculated, and engine control (in particular, control of ignition and injection timings) is performed on the basis of this calculated crank angle information.
- engine control in particular, control of ignition and injection timings
- the engine can be operated even if the crank angle sensor fails.
- Charge boosters with integrated peak value determination from the measurement signal have already become known. However, such charge amplifiers can only be used to a limited extent since only a single motor characteristic value can be determined and no flexibility is available. For a sensible application but usually different engine characteristics are needed.
- an indexing which is particularly simple and compact, low, easy to install and put into operation is and still can determine essential engine characteristics, and to provide an associated method.
- This object is achieved for the indexing and the associated method according to the invention that is calculated with the calculation unit for determining the engine characteristic as an input exclusively from the recorded with the sensor unit measured value, a crank angle information and determined exclusively from the measured variable and the calculated crank angle information at least one engine characteristic and is output as an output signal at an output.
- the expense and the costs for the indexing technique desirably be rather low. This can not be achieved with a conventional indexing arrangement or sensor system for the reasons mentioned above.
- an indexing device in that the required characteristic values without additional crank angle input (which would mean additional expensive sensor technology and additionally required signal inputs) are integrated in the indexing device, since it has been recognized that the accuracy thus achieved is determined in the determination of the characteristic values is sufficient for use in the field of vehicle onboard metrology or in the low end indexing market, but also in other applications that require less accuracy.
- low investment costs, a simpler installation, are achieved with an indexing arrangement according to the invention in the vehicle, a simpler parameter setting, a time advantage during commissioning and measurement, the possibility of transmitting to third-party systems and an increase in quality while at the same time saving time (by avoiding iteration loops) in engine development.
- a signal amplifier in particular a charge amplifier, is provided in the indexing arrangement between the sensor unit and the calculation unit, which conditionally processes the sensor signal, e.g. amplified, conditioned, filtered and / or digitized.
- an evaluation unit can be equipped with a plurality of inputs for different measurement channels and for each measurement channel or group of measurement channels having at least one measurement channel a separate calculation unit to be provided. It can be provided that these multiple calculation units also communicate with each other and so can exchange data with each other. Advantageously, however, this can also be a single calculation unit for all measurement channels.
- crank angle information When indexing on a multi-cylinder engine of great importance: Each cylinder is equipped with its own cylinder pressure sensor and the multiple cylinder pressure curves are to be evaluated based on the common for all valid crank angle information. In this case, it is of course particularly advantageous for the determination of the crank angle information that not only one but several signals with crank angle-dependent signal component are present, in addition usually a-priori knowledge of the geometry of the engine and thus the between the individual signals existing time or crank angle offset can be used.
- a further integration stage can be achieved if an engine control unit is integrated into the indexing arrangement, whereby the outlay for the necessary hardware can be further reduced.
- Such an indexing arrangement can now be integrated particularly advantageously in a motor control, since the motor control can already be supplied with the required characteristic values directly, which reduces the effort in the motor control and, on the other hand, the outlay for the sensors for the motor control can be reduced.
- FIG. 1 is a detail of a cylinder 1 of an internal combustion engine shown.
- a piston 2 is moved and the cylinder 1 are arranged in a known manner valves 4 and in the case of a gasoline engine, a spark plug 5, the invention is of course applicable to internal combustion engines with other combustion process.
- an indexing arrangement 6 consisting of a sensor unit 10 and an evaluation unit 8 is arranged on the cylinder 1, which in this case, for example, measures and evaluates the cylinder pressure.
- An indexing arrangement is generally understood in a known manner to be an arrangement which measures and / or evaluates engine measured variables, in particular but not exclusively combustion, during operation, for example during a work cycle, with high resolution of the dependence on time or crank angle.
- the indexing arrangement 6 or the evaluation unit 8 of the indexing arrangement 6 can, as in this example, be connected to an engine control unit 7 of a motor control or to another processing unit.
- the indexing arrangement 6 comprises - as shown in detail in FIG Fig. 2a a sensor unit 10 for detecting a measured variable, for example a piezoelectric pressure transducer, a strain gauge, piezoresisitive pressure transducer, structure-borne knock sensors, sensors for sonic and ultrasonic emission analysis, ion current probes, flame light sensors, sensors for Nadelhub, valve lift or piston stroke, etc., and a Evaluation unit 8.
- the sensor unit 10 and the evaluation unit 8 are connected to one another via a suitable line and the signal of the sensor unit 10 is supplied to the evaluation unit 8 via an input 14.
- a calculation unit 12 such as a microprocessor or a DSP (Digital Signal Processor), arranged by means of the measured variable, here, for example, the pressure in the cylinder 1, is further processed to a motor characteristic.
- the possibly required analog-to-digital conversion of the measurement signal can be done directly in the calculation unit 12 or even before.
- the signal processed by the calculation unit 12 of the evaluation unit 8 becomes analog at an output 13 or digitally output.
- the evaluation unit 8 and the calculation unit 12 can also be designed as a single unit.
- a display device 15 may be arranged at the evaluation unit 8, at which a calculated engine characteristic value can be displayed.
- a signal amplifier in particular a charge amplifier 11 for a piezoelectric sensor, may be arranged in a known manner, as in FIG Fig. 2b shown.
- the various known signal amplifier circuits can be used.
- the principle of the charge amplifier in the narrower sense
- electrometer amplifiers and transimpedance amplifiers eg voltage-current or charge-current converter
- charge amplifiers in the narrower sense various circuits have become known.
- the calculation unit 12 calculates from the measured measured value a crank angle information, such as a rotational speed, the duration of a revolution of the crankshaft, the instantaneous angular velocity, the duration of a working cycle, the duration of a working cycle divided by the number of cylinders or a current angle of rotation at arbitrary angular resolution, and determined from the measured measured variable and the calculated crank angle information, an engine characteristic or an indexing characteristic, such as the indicated mean pressure, mass conversion points, combustion curve, center of gravity of combustion, components of the order analysis, ignition delay in degrees crank angle, etc ..
- the indexing 6 and the evaluation unit 8 thus requires No separate crank angle input, which is why the requirements for the required sensors are very low.
- the thus determined and output at the output 13 engine characteristic can, for. B. as in Fig. 1 indicated to be fed via a suitable line to an engine control unit 7 or other processing unit for further processing.
- the output signal can be output by the evaluation unit 8 both analog and digital.
- the calculation unit 12 can also be programmed as desired, so that the user can enable any evaluations of the measured variable. This includes both the manner of determining the crank angle information and also determining which engine characteristic value (s) is (are) determined. Of course, several different crank angle informations can also be derived from one measured variable, for example in different approximate accuracies, which can be evaluated together with the measured variable to different engine characteristics.
- any variable which contains a crank angle-dependent component that is to say a variable which depends on the time or on the crank angle and from which, as a result, crank angle information can be derived, is considered as the measured variable.
- variables which have a periodicity in the cycle period in the 4-stroke 720 °, in the 2-stroke 360 °
- Other signal components in particular those resulting from transient operating conditions of the engine or from outside influences, are unsuitable for the determination of the crank angle information.
- cylinder pressure cylinder pressure
- flame light in the cylinder ion current in the cylinder
- ignition voltage ignition current
- injection pressure mechanical vibrations
- structure-borne noise airborne sound eg on the cylinder head or near the fire deck
- pressure pulsations of intake air or exhaust gas there are known sensors. These quantities are essentially periodic signals in stationary operation of the engine. In actual operation of an engine, the operating states of the engine change by accelerating or decelerating but continuously.
- An engine characteristic value determined in this way can be stored in a downstream processing unit as an indexing variable, which may be e.g. the subsequent evaluation of the recorded measurement data and parameters of the engine operation allows.
- an engine characteristic value can also be used for vehicle onboard measurement technology and engine control.
- the engine rating could be used to control the engine or certain aspects of the engine (e.g., combustion) or make adaptations to the engine control (e.g., stored maps) due to changing engine conditions.
- a problem in the engine could be detected and displayed.
- any other engine characteristic values can be determined which manage without crank angle information and can be derived directly from the measured quantity measured. Such engine characteristic values can in turn be transferred via the output 13 to an engine control unit 7 or to another processing device.
- the engine control unit 7 in the indexing 6.
- the evaluation of the sensor signals from the evaluation unit 8, which can also take over tasks of the engine control, or the evaluation of these signals could directly from the engine control unit 7, which is usually a calculation unit, such as. a microprocessor, done, whereby an additional evaluation unit 8 in the indexing 6 could also be omitted.
- a separate input 14 can be arranged at the evaluation unit 8 for each measuring channel. It is thus possible with an indexing arrangement 6 or with the evaluation unit 8 to process and evaluate the measured variables of a plurality of sensor units 10.
- different sensor units 10 can be arranged at different locations of the engine or, for example, a pressure sensor for measuring the cylinder pressure can be arranged on each cylinder.
- These further measured quantities can in turn be evaluated on the basis of crank angles in the indexing arrangement 6, the required crank angle information in turn being derived from at least one measured variable, or without crank angle information.
- a separate calculation unit 12 can be provided in the evaluation unit 8 for each measurement channel, as in FIG Fig. 3 illustrated, or it can also be provided for one or a group of measuring channels, consisting of at least one measuring channel, only a single calculation unit, such as in Fig. 4 shown.
- a possibly required charge amplifier 11 may also be arranged directly in the sensor unit 10.
- the individual components of the indexing arrangement 6 can also be arranged in a common housing 9 - as in FIG Fig. 2, c ) - and form an "intelligent sensor" that can be handled very easily as a compact device.
- a closed housing 9 also eliminates the need for external cabling between the sensor 10 and the calculation unit 12.
- the indexing arrangement 6 then already contains all the units that are required to evaluate the measurement signal.
- the parameterization of the indexing arrangement 6 or the evaluation unit 8 or the calculation unit 12, e.g. the sensitivity or resolution of the sensor unit 10 may, as is well known, be done in advance by associated software. However, it would also be conceivable to provide an independent parameterization in which the indexing arrangement 6 or parts thereof are parameterized during a learning process itself.
- An indexing arrangement as described above may be used with internal combustion engines in virtually any configuration and environment, particularly any test rigs, such as those described in U.S. Pat. on the R & D test bench or on the production test bench, on the internal combustion engine alone, e.g. as a drive, as an auxiliary drive or as a generator, or in conjunction with other components, e.g. with components of the powertrain, with the entire powertrain or in the vehicle. But of course it is also the use in the serial application (on the road or on the water, etc.) or in the workshop, in the dock, etc. conceivable.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0009707U AT9242U3 (de) | 2007-02-15 | 2007-02-15 | Indizieranordnung und verfahren zur bestimmung eines motorkennwertes |
PCT/EP2008/051309 WO2008098852A1 (de) | 2007-02-15 | 2008-02-04 | Indizieranordnung und verfahren zur bestimmung eines motorkennwertes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2122143A1 EP2122143A1 (de) | 2009-11-25 |
EP2122143B1 true EP2122143B1 (de) | 2012-05-02 |
Family
ID=37943731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08708613A Not-in-force EP2122143B1 (de) | 2007-02-15 | 2008-02-04 | Indizieranordnung und verfahren zur bestimmung eines motorkennwertes |
Country Status (7)
Country | Link |
---|---|
US (1) | US8170777B2 (ko) |
EP (1) | EP2122143B1 (ko) |
JP (1) | JP4927177B2 (ko) |
KR (1) | KR20090125070A (ko) |
CN (1) | CN101652550B (ko) |
AT (2) | AT9242U3 (ko) |
WO (1) | WO2008098852A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021102260A1 (de) | 2021-02-01 | 2022-08-04 | Bayerische Motoren Werke Aktiengesellschaft | Bestimmung eines Klopfbetriebs in einem Zylinder eines Verbrennungsmotors |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT9862U3 (de) | 2007-12-19 | 2009-01-15 | Avl List Gmbh | Verfahren und vorrichtung zur beurteilung der restlebensdauer einer sensoreinheit |
US8482415B2 (en) * | 2009-12-04 | 2013-07-09 | Covidien Lp | Interactive multilevel alarm |
CN101963545A (zh) * | 2010-09-07 | 2011-02-02 | 浙江大学 | 一种联合收割机发动机性能监测方法 |
US9279406B2 (en) | 2012-06-22 | 2016-03-08 | Illinois Tool Works, Inc. | System and method for analyzing carbon build up in an engine |
JP6331750B2 (ja) * | 2014-06-23 | 2018-05-30 | 三菱自動車工業株式会社 | エンジンの制御装置 |
DE102014213716A1 (de) * | 2014-07-15 | 2016-01-21 | Robert Bosch Gmbh | Verfahren und Anordnung zur Analyse und Diagnose eines Steuergeräts eines Antriebssystems |
DE102015106881B4 (de) * | 2015-05-04 | 2016-12-29 | Rofa Laboratory & Process Analyzers | Verfahren zur Bestimmung einer die Klopffestigkeit charakterisierenden Kenngröße eines Kraftstoffs sowie entsprechende Prüfanordnung |
CN107631825A (zh) * | 2017-10-31 | 2018-01-26 | 集美大学 | 基于arm便携式船舶电子示功器的控制系统及其控制方法 |
CN115478948B (zh) * | 2022-08-31 | 2023-10-17 | 吉林大学 | 基于无模型强化学习的内燃机起动控制策略、控制系统及汽车 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT1519B (ko) | 1899-05-02 | 1900-06-11 | Birney Clark Batcheller | |
US4502446A (en) * | 1981-12-10 | 1985-03-05 | Nissan Motor Company, Limited | Fail-safe system for automotive engine control system for fail-safe operation as crank angle sensor fails operation thereof and fail-safe method therefor, and detection of fault in crank angle sensor |
JPS60148909U (ja) * | 1984-03-14 | 1985-10-03 | 日産自動車株式会社 | クランク角検出装置 |
JPH06100153B2 (ja) * | 1986-04-10 | 1994-12-12 | 日産自動車株式会社 | 内燃機関の燃焼状態検出装置 |
JPS639679A (ja) * | 1986-06-28 | 1988-01-16 | Honda Motor Co Ltd | 内燃機関の点火時期制御方法 |
AT388830B (de) | 1988-01-25 | 1989-09-11 | Avl Verbrennungskraft Messtech | Ladungsverstaerkerschaltung |
JP2508180B2 (ja) * | 1988-03-23 | 1996-06-19 | 三菱電機株式会社 | 燃料制御装置 |
JP2648928B2 (ja) * | 1988-04-28 | 1997-09-03 | 富士重工業株式会社 | 自動車用エンジンの気筒判別装置および気筒別制御方法 |
JP2648929B2 (ja) * | 1988-04-30 | 1997-09-03 | 富士重工業株式会社 | エンジンの気筒判別装置 |
JPH024975U (ko) * | 1988-06-22 | 1990-01-12 | ||
US5402675A (en) * | 1990-01-26 | 1995-04-04 | Robert Bosch Gmbh | Method for recognizing the power stroke of a four-stroke engine |
KR940005456B1 (ko) * | 1990-11-27 | 1994-06-18 | 미쓰비시덴키 가부시키가이샤 | 크랭크각센서내장배전기 |
DE4323012C2 (de) * | 1992-07-10 | 1996-08-29 | Mitsubishi Electric Corp | Vorrichtung für eine Brennkraftmaschine zur Erfassung des Kurbelwellenwinkels |
DE4406962A1 (de) | 1993-03-17 | 1994-09-22 | Environmental Syst Prod | Motordrehzahl-Meßsystem |
DE19632490C2 (de) | 1995-08-29 | 1998-12-17 | Rolf Kistner | Drehzahlmessung durch Ultraschallerfassung |
DE19713182A1 (de) | 1997-03-27 | 1998-10-01 | Siemens Ag | Verfahren und Vorrichtung zur Bestimmung der Motordrehzahl eines Kraftfahrzeuges |
JP3597718B2 (ja) * | 1999-01-26 | 2004-12-08 | 三菱電機株式会社 | 内燃機関の気筒識別装置 |
JP3856604B2 (ja) * | 1999-09-02 | 2006-12-13 | アルパイン株式会社 | ディスク収納装置 |
JP4190109B2 (ja) * | 1999-10-18 | 2008-12-03 | 日本特殊陶業株式会社 | 内燃機関のノッキング検出装置 |
US20020092499A1 (en) * | 2001-01-12 | 2002-07-18 | Kargilis John S. | Detonation sensing of crankshaft position |
EP1375890A4 (en) * | 2001-03-30 | 2011-04-27 | Mitsubishi Heavy Ind Ltd | EXHAUST DIAGNOSIS / REGULATING DEVICE FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR EXHAUST DIAGNOSIS / CONTROL |
JP3786269B2 (ja) * | 2002-11-06 | 2006-06-14 | 三菱電機株式会社 | 内燃機関のクランク角度検出装置 |
GB2404979B (en) * | 2003-08-15 | 2006-07-12 | Omitec Group Ltd | Testing diesel engines |
US7363883B2 (en) * | 2004-03-19 | 2008-04-29 | Mitsubishi Heavy Industries, Ltd. | Gas engine electric power generating system effectively utilizing greenhouse gas emission credit |
US6955697B1 (en) | 2004-04-02 | 2005-10-18 | Kwang Yang Motor Co., Ltd. | Air cleaner for engines |
-
2007
- 2007-02-15 AT AT0009707U patent/AT9242U3/de not_active IP Right Cessation
-
2008
- 2008-02-04 CN CN2008800050003A patent/CN101652550B/zh not_active Expired - Fee Related
- 2008-02-04 AT AT08708613T patent/ATE556208T1/de active
- 2008-02-04 EP EP08708613A patent/EP2122143B1/de not_active Not-in-force
- 2008-02-04 JP JP2009549812A patent/JP4927177B2/ja not_active Expired - Fee Related
- 2008-02-04 US US12/449,468 patent/US8170777B2/en not_active Expired - Fee Related
- 2008-02-04 WO PCT/EP2008/051309 patent/WO2008098852A1/de active Application Filing
- 2008-02-04 KR KR1020097017670A patent/KR20090125070A/ko not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021102260A1 (de) | 2021-02-01 | 2022-08-04 | Bayerische Motoren Werke Aktiengesellschaft | Bestimmung eines Klopfbetriebs in einem Zylinder eines Verbrennungsmotors |
Also Published As
Publication number | Publication date |
---|---|
EP2122143A1 (de) | 2009-11-25 |
CN101652550A (zh) | 2010-02-17 |
CN101652550B (zh) | 2013-04-03 |
US8170777B2 (en) | 2012-05-01 |
AT9242U2 (de) | 2007-06-15 |
AT9242U3 (de) | 2008-03-15 |
US20100030446A1 (en) | 2010-02-04 |
ATE556208T1 (de) | 2012-05-15 |
JP4927177B2 (ja) | 2012-05-09 |
WO2008098852A1 (de) | 2008-08-21 |
JP2010518318A (ja) | 2010-05-27 |
KR20090125070A (ko) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2122143B1 (de) | Indizieranordnung und verfahren zur bestimmung eines motorkennwertes | |
DE102018126501B3 (de) | Verfahren zur Wartungsvorhersage von Komponenten einer Brennkraftmaschine mittels Körperschallsensor | |
DE10237221A1 (de) | Verfahren und Vorrichtung zum Bereitstellen eines kurbelwinkelbasierten Signalverfahrens | |
DE102005060937A1 (de) | Verbrennungsmotorleistungskalibrierungssysteme | |
DE102015221809A1 (de) | Verfahren und Vorrichtung zur Diagnose einer variablen Verstellung eines Verdichtungsverhältnisses in einem Hubkolben-Verbrennungsmotor | |
EP1017979A1 (de) | Verfahren zur bestimmung relevanter grössen, die den zylinderdruck in den zylindern einer brennkraftmaschine repräsentieren | |
EP2225448B1 (de) | Diagnoseverfahren für zusatzventile | |
EP3786436B1 (de) | Verfahren zur diagnostik von verbrennungsaussetzern einer verbrennungskraftmaschine | |
DE102011007031A1 (de) | Verfahren zur Diagnose eines Aufladesystems von Verbrennungsmotoren | |
DE3933947C1 (en) | Combustion pressure determn. method for petrol-diesel engine - using acceleration sensors fitted at crankshaft bearings of engine in cylinder axial direction | |
DE10004330A1 (de) | Programmierbare Steuer- und Regelelektronik für eine Brennkraftmaschine | |
DE102010051370B4 (de) | Bestimmung eines indizierten Moments einer Brennkraftmaschine | |
DE102015210226B4 (de) | Verfahren und Vorrichtung zur Erhöhung der Leistung eines Verbrennungsmotors durch Nutzung eines Turboladerdrehzahlmodells und eines Turboladerdrehzahlsensors | |
EP2019195B1 (de) | Verfahren zur Bestimmung der eingespritzten Kraftstoffmenge | |
DE3917905A1 (de) | Verfahren zum optimieren des betriebs einer fremdgezuendeten kolbenbrennkraftmaschine, insbesondere eines otto-motors | |
EP0569608A1 (de) | Diagnoseverfahren für Drucksensoren im Brennraum einer Brennkraftmaschine | |
DE102006020434A1 (de) | Kraftfahrzeug und Kompressionsdruckprüfvorrichtung | |
DE102007035168A1 (de) | Überwachen eines Nockenprofilumschaltsystems in Verbrennungsmotoren | |
DE102006043679B4 (de) | Verfahren zur Einzelzylinderregelung bei einer Brennkraftmaschine | |
WO2004040251A1 (de) | Messung des drehmomentes eines verbrennungsmotors aus den lagerkräften | |
WO2010060445A1 (de) | Verfahren zur erkennung von verbrennungsaussetzern in einer verbrennungskraftmaschine, steuergerät für eine verbrennungskraftmaschine und verbrennungskraftmaschine | |
DE102004002456B4 (de) | Verfahren und Vorrichtung zur Motorsteuerung in einer Verbrennungskraftmaschine sowie Sensorelement | |
EP1058108A2 (de) | Verfahren und Vorrichtung zur Diagnose bzw. Steuerung von Brennkraftmaschinen | |
DE102011051072A1 (de) | Kompensation von Fehlzündungen im Saugrohr für Motorräder | |
DE4211810A1 (de) | Einrichtung zur temperaturabhängigen Steuerung einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090826 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20091209 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 556208 Country of ref document: AT Kind code of ref document: T Effective date: 20120515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER & PEDRAZZINI AG |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008007121 Country of ref document: DE Effective date: 20120628 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120502 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120802 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120902 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120903 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120803 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120813 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008007121 Country of ref document: DE Effective date: 20130205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120802 |
|
BERE | Be: lapsed |
Owner name: AVL LIST GMBH Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130204 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130204 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080204 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20170216 Year of fee payment: 10 Ref country code: CH Payment date: 20170217 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20170224 Year of fee payment: 10 Ref country code: GB Payment date: 20170216 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170221 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 556208 Country of ref document: AT Kind code of ref document: T Effective date: 20180204 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180204 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180204 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190228 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190225 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008007121 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200901 |