EP2121218A1 - Stranggiesskokille mit kühlmittelkanal - Google Patents

Stranggiesskokille mit kühlmittelkanal

Info

Publication number
EP2121218A1
EP2121218A1 EP07847053A EP07847053A EP2121218A1 EP 2121218 A1 EP2121218 A1 EP 2121218A1 EP 07847053 A EP07847053 A EP 07847053A EP 07847053 A EP07847053 A EP 07847053A EP 2121218 A1 EP2121218 A1 EP 2121218A1
Authority
EP
European Patent Office
Prior art keywords
turbulence
continuous casting
generating elements
mold
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07847053A
Other languages
German (de)
English (en)
French (fr)
Inventor
Hans-Jürgen ODENTHAL
Norbert Vogl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Publication of EP2121218A1 publication Critical patent/EP2121218A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds

Definitions

  • the invention relates to a continuous casting mold with a coolant channel which is formed by a, the molten metal facing mold inner wall as a hot side, a mold outer wall as a cold side and a right and left side wall.
  • a mold wall of a continuous casting mold which consists of a Kokilleninnenplatte and one connected to the Kokilleninnenplatte via screw connections water tank, wherein the mold inner plate on its side facing the water tank webs with grooves extending therebetween, are arranged in the filling pieces ,
  • the grooves serve as cooling channels for a cooling liquid, usually water.
  • the patches serve to reduce the channel cross-section, so that the speed of dilution of the cooling liquid in the cooling channel increases.
  • Continuous casting molds with cooling channels are furthermore known from the documents DE 101 22 618 A1, DE 100 35 737 A1 and DE 101 38 988 C2.
  • a mold for the continuous casting of molten metals, in particular steel is known, with cooling channels such as cooling grooves, cooling slots or cooling holes in the Kokillenh designedseite opposite contact surface.
  • the heat transfer of the mold is improved in that the geometric configurations of the heat-transmitting surfaces of a cooling channel or a group of cooling channels in shape, cross-sectional area, circumference, interface properties, orientation to the contact surface, arrangement and / or arrangement density compared to the contact surface of the local formation of heat flux density and / or temperature of the con- contact surface in the casting operation, and in particular in GittyLite Kunststoffe adapted.
  • the liquid melt flows from a continuous casting distributor through a dip tube into an oscillating, water-cooled copper mold.
  • the melt temperature drops below the solidus temperature and it forms a thin strand shell, which is withdrawn in the casting direction.
  • the thickness of the strand shell increases until the strand is completely solidified.
  • casting speeds of 6 m / min and more are achieved today.
  • Typical local heat flux densities are on the order of up to 12 MW / qm.
  • the dissipated by the coolant heat flow is u. a.
  • the wall roughness and the flow rate and thus also on the degree of turbulence.
  • the higher the degree of turbulence on the coolant side the more intense the mixing and the more heat is dissipated.
  • the heat-transferring area can be increased, however, this enlargement has narrow limits.
  • fouling Since the deposits have a very low thermal conductivity, fouling in the case of Kokillenkühlung leads to a strong increase in the copper temperature and thus to a reduced service life of the mold.
  • the invention has for its object to provide a continuous casting mold, in which the recrystallization process of the mold material or the material of the walls of the coolant channel, which is dependent on the operating temperature and operating time is delayed, the life of the mold and the turbulence increases and a homogeneous Mixing of the coolant is achieved.
  • the coolant channel is formed with turbulence generating elements.
  • turbulence-generating elements By introducing turbulence-generating elements is generally achieved a greater mixing of the coolant.
  • the turbulence-generating elements increase the heat-transferring area of the coolant channel or of the mold walls. The interaction of both measures, i. Turbulence generation and enlargement of the heat transfer surface, improves the local heat transfer from the walls of the coolant channel or from its walls to the coolant, which then dissipates the heat.
  • the basic principle of all turbulence generating elements is based on the turbulence-induced mass impulse and energy transport.
  • the heat transfer in the coolant channel of continuous casting molds is improved according to the invention.
  • the turbulence generators lead to higher local heat flow densities, ie the heat dissipated per unit area is increased.
  • the turbulence, both near the wall and in the area of the core flow, is increased and a homogeneous mixing is achieved.
  • the turbulence-generating elements a better mixing of the cooling water is achieved and the temperature level in the copper is lowered, whereby the dependent on the operating temperature and duration recrystallization process of the mold material or the material of the walls of the coolant channel delays.
  • the material of the mold or the mold walls is for example copper, partially copper or another material. Furthermore, the contamination and the tendency to deposit are reduced by the increased turbulence and the greater shear forces on the hot side of the cooling channel.
  • a first embodiment of turbulence-generating elements consists of horizontal steps in the coolant formed, for example, by rectangular profiles extending over the entire width or portions of the coolant channel.
  • a second and third embodiment of turbulence generating elements is in the form of tetrahedrons and winglets. In these forms, inwardly rotating swirl pegs are induced, which lead to an even more intensive mixing of the coolant. Vortex pegs can be observed for example at the end of a wing profile or behind motor vehicles, where they are in principle undesirable.
  • the turbulence-generating elements are arranged offset one after the other on the hot side, for example, the distance being largely determined by the spatial extent of the upstream recirculation area.
  • the turbulence-generating elements can also be installed on the cold side, since the effect of the recirculation extends to the hot side.
  • a combination of tetrahedrons on the cold side and horizontally mounted steps on the hot side of the coolant channel is also possible. It is also conceivable to install the turbulence-generating elements only in the entry of a coolant channel or only at the level of the casting mirror in order to keep the manufacturing effort within limits.
  • the heat transfer surface is through the turbulence elements slightly increased, in the tetrahedra described by about 6%. In this way, the local heat flux density is increased. Due to the dimensions of the turbulence elements not too large, the pressure loss can be kept low.
  • the basic mode of operation of the coolant channel according to the invention can be demonstrated by means of numerical flow simulations (CFD - Computational Fluid Dynamics).
  • Figure 1 in a spatial representation of a part of a continuous casting mold.
  • FIG. 2 is a sectional front view of the continuous casting mold with turbulence-generating elements according to a first embodiment
  • FIG. 3 is a sectional front view of the continuous casting mold with turbulence-generating elements according to a second embodiment
  • FIG. 5 shows a sectional side view of the continuous casting mold with turbulence-generating elements.
  • Figure 1 shows a spatial representation of a part of a continuous casting mold 1 with a coolant channel 2, the one facing the molten metal, mold inner wall 3 as a hot side, a mold outer wall 4 as Cold side and a right side wall 5 and a left side wall 6 is formed.
  • turbulence-generating elements 7, 9 and 10 are mounted on the mold inner wall 3, the hot side, and protrude into the coolant channel 2.
  • FIG. 2 shows, in a sectional front view, the coolant channel 2 in which 11 turbulence-generating elements 7 in the form of tetrahedrons are mounted on the mold inner wall 3 in two rows.
  • the tetrahedra point with their tip counter to the flow direction 8. By such an arrangement, a building resistance is generated. Behind the tetrahedron, the coolant behaves turbulently.
  • the tetrahedra can also be arranged offset.
  • FIG. 3 shows turbulence-generating elements 9 in the form of horizontal steps.
  • the horizontal steps are formed, for example, by a rectangular bar (see FIG. 5) which extends over the entire width of the coolant channel 2.
  • FIG. 10 Another form of the turbulence-generating elements 10 is shown in FIG. These turbulence generating elements 10 are in the form of winglets. These, e.g. Winglets known from aircraft wings are either aligned one behind the other in rows 11 fixed to the mold inner wall 3 or are distributed on the mold inner wall, as indicated by the lowermost winglet.
  • Winglets known from aircraft wings are either aligned one behind the other in rows 11 fixed to the mold inner wall 3 or are distributed on the mold inner wall, as indicated by the lowermost winglet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
EP07847053A 2007-01-17 2007-12-11 Stranggiesskokille mit kühlmittelkanal Withdrawn EP2121218A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007002405A DE102007002405A1 (de) 2007-01-17 2007-01-17 Stranggießkokille mit Kühlmittelkanal
PCT/EP2007/010773 WO2008086856A1 (de) 2007-01-17 2007-12-11 Stranggiesskokille mit kühlmittelkanal

Publications (1)

Publication Number Publication Date
EP2121218A1 true EP2121218A1 (de) 2009-11-25

Family

ID=39168055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07847053A Withdrawn EP2121218A1 (de) 2007-01-17 2007-12-11 Stranggiesskokille mit kühlmittelkanal

Country Status (15)

Country Link
US (1) US20100065242A1 (ru)
EP (1) EP2121218A1 (ru)
JP (1) JP2010515580A (ru)
KR (1) KR20090077925A (ru)
CN (1) CN101646515B (ru)
AR (1) AR064927A1 (ru)
BR (1) BRPI0718884A2 (ru)
CA (1) CA2670037A1 (ru)
DE (1) DE102007002405A1 (ru)
MX (1) MX2009007659A (ru)
RU (1) RU2414986C1 (ru)
TW (1) TW200909099A (ru)
UA (1) UA92985C2 (ru)
WO (1) WO2008086856A1 (ru)
ZA (1) ZA200902185B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711276C1 (ru) * 2018-12-05 2020-01-16 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Устройство для непрерывного литья и прессования

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206914A1 (de) 2017-04-25 2018-10-25 Sms Group Gmbh Stranggießkokille mit strömungsoptimierter Kühlung
JP7020376B2 (ja) * 2018-11-09 2022-02-16 Jfeスチール株式会社 鋼の連続鋳造用鋳型及び鋼の連続鋳造方法
EP3878572A1 (en) * 2018-11-09 2021-09-15 JFE Steel Corporation Mold for continuous steel casting and continuous steel casting method
CN109434044A (zh) * 2018-11-29 2019-03-08 李泽朋 带造浪效果冷却结构合理的连铸结晶铜板模结构
IT201900001035A1 (it) * 2019-01-24 2020-07-24 Danieli Off Mecc Lingottiera per colata continua

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716954A (en) * 1986-10-24 1988-01-05 Allegheny Ludlum Corporation Method and apparatus for sequentially continuous casting different composition grades of steel
FR2661120B3 (fr) * 1990-04-20 1992-04-03 Siderurgie Fse Inst Rech Lingotiere de coulee continue de metal liquide equipee de moyens de controle de la solidification du metal liquide.
IT1267246B1 (it) * 1994-06-06 1997-01-28 Danieli Off Mecc Sottolingottiera a pareti per colata continua
DE69518359T2 (de) 1994-06-06 2000-12-21 Danieli & C. Officine Meccaniche S.P.A., Buttrio Verfahren zum Kontrollieren der Verformung von Seitenwänden einer Kokille sowie Stranggiesskokille
DE69518360T2 (de) * 1994-06-06 2000-12-28 Danieli & C. Officine Meccaniche S.P.A., Buttrio Stranggiesskokille mit verbessertem Wärmeaustausch sowie Verfahren zur Erhöhung des Wärmeaustauschs einer Stranggiesskokille
ES2148375T3 (es) 1994-06-06 2000-10-16 Danieli Off Mecc Cristalizador de colada continua con un mayor intercambio de calor y metodo para aumentar el intercambio de calor en un cristalizador de colada continua.
US5522448A (en) * 1994-09-27 1996-06-04 Aluminum Company Of America Cooling insert for casting mold and associated method
DE19508169C5 (de) * 1995-03-08 2009-11-12 Kme Germany Ag & Co. Kg Kokille zum Stranggießen von Metallen
DE19826522A1 (de) 1998-06-15 1999-12-16 Schloemann Siemag Ag Kokillenwand einer Stranggießkokille
CN1240685A (zh) * 1998-07-02 2000-01-12 Sms舒路曼-斯玛公司 扁锭结晶器的宽边
DE19842674A1 (de) 1998-09-17 2000-03-23 Schloemann Siemag Ag Kokillenwand einer Stranggießkokille
IT1310518B1 (it) 1999-01-13 2002-02-18 Danieli Off Mecc Dispositivo per colata continua ad alta velocita' e relativoprocedimento
DE10035737A1 (de) 2000-07-22 2002-01-31 Sms Demag Ag Stranggießkokille mit den Gießquerschnitt umschließenden Kupferplatten
DE10138988C2 (de) 2000-08-23 2003-06-12 Sms Demag Ag Gekühlte Stranggießkokille zum Gießen von Metall
DE10122618A1 (de) 2001-05-10 2002-11-14 Sms Demag Ag Verfahren zur Verzögerung der Belagbildung in Kühlkanälen von Stranggießkokillen
DE10253735A1 (de) 2002-04-27 2003-11-13 Sms Demag Ag Intensivierung des Wärmeüberganges bei Stranggießkokillen
DE10337205A1 (de) * 2003-08-13 2005-03-10 Km Europa Metal Ag Flüssigkeitsgekühlte Kokille

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008086856A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711276C1 (ru) * 2018-12-05 2020-01-16 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Устройство для непрерывного литья и прессования

Also Published As

Publication number Publication date
KR20090077925A (ko) 2009-07-16
AR064927A1 (es) 2009-05-06
DE102007002405A1 (de) 2008-07-24
TW200909099A (en) 2009-03-01
WO2008086856A1 (de) 2008-07-24
BRPI0718884A2 (pt) 2013-12-17
RU2414986C1 (ru) 2011-03-27
UA92985C2 (ru) 2010-12-27
CN101646515A (zh) 2010-02-10
MX2009007659A (es) 2009-10-13
JP2010515580A (ja) 2010-05-13
US20100065242A1 (en) 2010-03-18
ZA200902185B (en) 2010-01-27
CN101646515B (zh) 2012-06-13
CA2670037A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
DE4116886C2 (de) Gelochtes Blech als Hitzeschild
EP2121218A1 (de) Stranggiesskokille mit kühlmittelkanal
DE102016216019A1 (de) Einsatz für einen Kühlmantel einer elektrischen Maschine
EP3062054B1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
EP1668236B1 (de) Brennkammer mit kühleinrichtung und verfahren zur herstellung der brennkammer
DE112015001138T5 (de) Hochleistungswerkzeugkühlungssystem
CH697919B1 (de) Turbinenblatt mit konkavem Kühlströmungskanal und darin angeordneten, entgegengesetzte Drallströme bewirkenden Turbulatoren.
EP1736257B1 (de) Flüssigkeitsgekühlte Kokille zum Stranggiessen von Metallen
DE102014204816A1 (de) Elektrische Maschine mit einem Kühlelement
EP1136621B1 (de) Rotierbare Walze
WO2010003695A1 (de) Stranggiesskokille
DE60000858T2 (de) Verfahren und vorrichtung zum stranggiessen mit hoher geschwindigkeit
EP0661511A1 (de) Wärmeaustauscherrohr mit Einbauelement
EP1795281B1 (de) Stranggiesskokille
DE102018216691A1 (de) Antriebseinrichtung für ein Schiff und Verfahren zum Betrieb einer solchen
DE102015202918A1 (de) Gehäuse einer elektrischen Maschine
EP3461570B1 (de) Stranggiesskokille
DE102013102561A1 (de) Einrichtung zur Aufnahme eines Volumenstromes eines Mediums und Verfahren zur Realisierung eines Volumenstromes eines Mediums
DE69117422T2 (de) Gerät zum verstärkten Kühlen beim Giessen von Werkstücken aus Metall
DE102023115151B3 (de) Kokillenkörper
DE102020000274A1 (de) Verfahren zur Herstellung eines Rippen-Platten-Wärmetauschers
DE102004020602A1 (de) Plattenwärmetauscher mit Strömungswegen für drei Wärmetauschfluide
EP3395472A1 (de) Stranggiesskokille mit strömungsoptimierter kühlung
EP3812677B1 (de) Radiator zur kühlung eines transformators oder einer drosselspule
DE102012111928A1 (de) Wärmetauscher für eine Verbrennungskraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100506

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20130220