EP2087228B1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
EP2087228B1
EP2087228B1 EP07803448A EP07803448A EP2087228B1 EP 2087228 B1 EP2087228 B1 EP 2087228B1 EP 07803448 A EP07803448 A EP 07803448A EP 07803448 A EP07803448 A EP 07803448A EP 2087228 B1 EP2087228 B1 EP 2087228B1
Authority
EP
European Patent Office
Prior art keywords
valve
cylindrical portion
fuel
fuel injection
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07803448A
Other languages
English (en)
French (fr)
Other versions
EP2087228A1 (de
Inventor
Andreas Krause
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2087228A1 publication Critical patent/EP2087228A1/de
Application granted granted Critical
Publication of EP2087228B1 publication Critical patent/EP2087228B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size

Definitions

  • the invention is based on a fuel injection valve according to the preamble of the main claim.
  • injection valves are used for gasoline direct injection usually cylindrical injection holes provided. Stepped spray holes are currently used to protect the spray hole from deposits and a spray hole shortening at a constant
  • a fuel injection valve is already known, which is particularly suitable for the direct injection of fuel into a combustion chamber of an internal combustion engine.
  • the fuel injection valve has a valve needle arranged in a nozzle body, which can be actuated by an actuator, and a valve closing body operatively connected to the valve needle, which cooperates for opening and closing the valve with a valve seat surface which is formed on a valve seat body, wherein the valve seat body is provided with at least one injection hole.
  • the at least one injection hole has a first cylindrical section with a fuel inlet opening and a second cylindrical section arranged downstream of the first cylindrical section with a fuel outlet opening, wherein the first and second cylindrical sections are not coaxial with one another.
  • first cylindrical portion of the injection hole runs parallel to a valve longitudinal axis, while adjoining the second cylindrical portion consisting of several more sections obliquely inclined to the valve longitudinal axis.
  • second cylindrical portion consisting of several more sections obliquely inclined to the valve longitudinal axis.
  • a perforated disc with a throttling spray hole of smaller diameter is inserted into the second cylindrical section.
  • a fuel injection valve for fuel injection systems of internal combustion engines which is a magnetic coil, an active with the solenoid and acted upon in the closing direction by a return spring valve needle for actuating a valve closing body, which forms a sealing seat together with a formed on a valve seat body valve seat, and at least two spray orifices which are formed in the valve seat body comprises.
  • the ejection openings are formed in the valve seat body so that they are shielded from circulating mixture flows in a combustion chamber of the internal combustion engine and have a cylindrical Abspritzloch and a thereto subsequent annular wall, which is high enough to shield each of the spray openings against the circulating in the combustion chamber flows.
  • valves for low-pressure injection which have sharply inclined conical injection holes.
  • the mass sprayed as a thin film atomises much better than the main beam, the overall result is an SMD improvement, but this geometry is not suitable for fuel injection valves with stepped spray holes and the transverse flow, which is primarily generated by the hole angle ⁇ of the spray hole. is inevitably coupled with the spray angle ⁇ .
  • the fuel injection valve according to the invention with the characterizing feature of the main claim has the advantage that an improvement of the SMDs, in particular for intake manifold, is achieved, and there is the possibility of a spray angle increase in high-pressure injectors by means of the configuration according to the invention to further reduce the beam penetration into the combustion chamber can.
  • the cross flow required for the principle used for beam expansion is not necessarily coupled to the spray angle ⁇ .
  • the configuration of the injection hole according to the invention can be used in already manufactured with stepped spray holes fuel injectors, with only a corresponding modification of the hole axes is necessary.
  • Another advantage of the fuel injection valve according to the invention is that the circumferential direction of the fluid similar to the swirl valve when leaving the spray hole a causes additional expansion of the beam beyond the geometric angle addition.
  • Fig. 1 shows a schematic cross section through a fuel injection valve 1 according to the prior art, to which the essential components of the valve will be briefly explained.
  • the fuel injection valve 1 is embodied in the form of a fuel injection valve for fuel injection systems of mixture-compression spark-ignition internal combustion engines.
  • the fuel injection valve 1 is suitable in particular for the direct injection of fuel into a combustion chamber, not shown, of an internal combustion engine.
  • the fuel injection valve 1 consists of a nozzle body 2, in which a valve needle 3 is arranged.
  • the valve needle 3 is operatively connected to a valve closing body 4 which cooperates with a valve seat body 6 arranged on a valve seat body 5 to form a sealing seat.
  • the fuel injection valve 1 is an inwardly opening electromagnetically actuable fuel injection valve 1, which has an injection hole 7.
  • the nozzle body 2 is sealed by a seal 8 against the outer pole 9 of a magnetic coil 10.
  • the magnetic coil 10 is encapsulated in a coil housing 11 and wound on a bobbin 12, which rests against an inner pole 13 of the magnetic coil 10.
  • the inner pole 13 and the outer pole 9 are separated by a gap 26 and are based on a connecting member 29 from.
  • the magnetic coil 10 is energized via a line 19 from a via an electrical plug contact 17 can be supplied with electric current.
  • the plug contact 17 is surrounded by a plastic casing 18, which may be molded on the inner pole 13.
  • valve needle 3 is guided in a valve needle guide 14, which is designed disk-shaped.
  • armature 20 On the other side of the dial 15 is an armature 20. This is connected via a first flange 21 frictionally with the valve needle 3 in connection, which is connected by a weld 22 to the first flange.
  • a return spring 23 On the first flange 21, a return spring 23 is supported, which is brought in the present design of the fuel injection valve 1 by a sleeve 24 to bias.
  • An elastic intermediate ring 32 which rests on the second flange 31, avoids bouncing when closing the fuel injection valve. 1
  • valve needle guide 14 in the armature 20 and in the valve seat body 5 run fuel channels 30a, 30, which conduct the fuel, which is supplied via a central fuel supply 16 and filtered by a filter element 25, to the injection hole 7 in the valve seat body 5.
  • the fuel injection valve 1 is sealed by a seal 28 against a manifold, not shown.
  • the armature 20 In the idle state of the fuel injection valve 1, the armature 20 is acted upon via the first flange 21 on the valve needle 3 by the return spring 23 counter to its stroke direction so that the valve seat body 4 is held on the valve seat surface 6 in sealing engagement. Upon energization of the magnetic coil 10, this builds up a magnetic field, which moves the armature 20 against the spring force of the return spring 23 in the stroke direction, wherein the stroke is determined by a located in the rest position between the inner pole 13 and the armature 20 working gap 27. The armature 20 takes the first flange 21, which is welded to the valve needle 3, and thus the Valve needle 3 also in the stroke direction with.
  • valve closing body 4 which is in operative connection with the valve needle 3, lifts off from the valve seat surface 6 and the fuel passing over the fuel channels 30a, 30b to the injection hole 7 is hosed down. If the coil current is turned off, the armature 20 drops after sufficient degradation of the magnetic field by the pressure of the return spring 23 on the first flange 21 from the inner pole 13, whereby the valve needle 3 moves against the stroke direction. As a result, the valve closing body 4 is seated on the valve seat surface 6, and the fuel injection valve 1 is closed.
  • Fig. 2a shows a schematic cross section through a valve seat body 5 according to the prior art.
  • the valve seat body 5 has an inlet-side end face 34 and an opposite discharge-side end face 35.
  • the injection hole 7 enters at the inflow-side end face 34 obliquely to this in an angle formed with it ⁇ via an inlet opening 36 in the valve seat body 5 and occurs at the discharge-side end face 35 at an angle ⁇ , which the longitudinal axis of the injection hole 7 with the end face 35th forms, again.
  • the injection hole 7 thus has a strongly inclined and conical shape.
  • the inclination angle ⁇ or ⁇ of the injection hole leads on the one hand to the fact that the flow at the injection hole inlet separates and thus creates a two-phase flow in the injection hole.
  • the inlet flow is v divided into an axial component v ax and a radial component v r.
  • the angle between v and v ax (90 ° - ⁇ ) is produced mainly by the angle ⁇ , but can be a reduced or increased by a forced transverse flow of the hole, thereby changing the direction of v.
  • the velocity component v r inclined perpendicularly to the spray hole wall is converted into a peripheral component which results in being in the air filled part the injection hole is a thin film is built.
  • the remainder of the flow is sprayed as in the case of other valves as an approximately cylindrical main jet 38.
  • Fig. 3a shows a schematic cross section through a valve seat body 5 according to the invention.
  • the valve seat body 5 has an injection hole 7, which enters at its inflow-side end face 34 in the valve seat body 5 and a discharge-side end face 35 emerges.
  • the injection hole 7 consists of a first cylindrical portion 40 and a second cylindrical portion 41, which are not arranged coaxially with each other. Rather, the inlet opening 36 or a longitudinal axis of the first cylindrical portion 40 forms an angle ⁇ with the inflow-side end face 34, which characterizes the inlet angle of the fuel flow into the injection hole 7.
  • the outlet opening 37 or the longitudinal axis of the second cylindrical section 41 forms an angle ⁇ with the spray-side end face 35 of the valve seat body 5.
  • the spray hole inlet or inlet opening 36 consists of a cylinder with the diameter d
  • the spray hole outlet or the outlet opening 37 consists of a cylinder with the diameter D, which is larger than the diameter d.
  • the longitudinal axis of the first cylindrical portion 40 and the longitudinal axis of the second cylindrical portion 41 are inclined at an angle ⁇ to each other.
  • the angle ⁇ controls the ratio of the through the Inlet cylinder or the first cylindrical portion 40 axially directed fluid flow of the velocity v in the outlet cylinder or in the second cylindrical portion 41 in a radial (v r ) and thus peripheral component (v u ) is converted. This is the stronger the case, the greater the angle ⁇ between the two longitudinal axes.
  • ⁇ of the Ab moussewinkel is specified. This can be varied at constant ⁇ and thus without functional impairment. It only changes the lead-in angle ⁇ . Ideally, the degree of intersection I should be equal to or less than zero. This requirement is most easily met when b is zero, that is, when a portion of a lateral surface of the first cylindrical portion 40 adjacent to a portion of a lateral surface of the second cylindrical portion 41 and another portion of a lateral surface of the first cylindrical portion 40 at a Decking 42 of the second cylindrical portion 41 adjacent.
  • Fig. 3b is a sectional view taken along the line AA Fig. 3a shown.
  • the two cylinder axes do not have to lie in one plane or lie, but have a lateral offset f. The larger f is, the more irregular becomes the division of the mass flow on the two lamellae or the film 39.
  • Fig. 4a and 4b The flow principle according to the invention is again in Fig. 4a and 4b clarified.
  • a part of the jet is sprayed with an injection angle equal to the entry angle ⁇ and the direction of v, respectively, and forms a secondary beam, which in Fig. 4a and 4b designated by reference numeral 43.
  • This proportion is not used to build up the fins or thin film 39.
  • the velocity component of the Velocity vector v which runs parallel to the longitudinal axis of the second cylindrical section 41 (v ax ), is sprayed off mainly as the main jet or free jet 38 coaxially therewith.
  • the velocity component v r is partially converted into the velocity component v u and serves to build up the lamellae 39 and the thin film 39. After the lamellae leave the injection hole 7 at the discharge-side outlet opening 37 of the second cylindrical portion 41 of the injection hole 7, due to The centrifugal force built up by the peripheral component again generates a radial component which leads to an increased fanning of the beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Brennstoffeinspritzventil (1), insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum (18) einer Brennkraftmaschine, weist eine in einem Düsenkörper (2) angeordnete Ventilnadel (3), welche durch einen Aktor betätigbar ist, und einen mit der Ventilnadel (3) in Wirkverbindung stehenden Ventilschließkörper (4) auf, der zum Öffnen und Schließen des Ventils (1) mit einer Ventilsitzfläche (6) zusammenwirkt, die an einem Ventilsitzkörper (5) ausgebildet ist, wobei der Ventilsitzkörper (5) mit zumindest einem Spritzloch (7) versehen ist. Das zumindest eine Spritzloch (7) besteht aus einem ersten zylindrischen Abschnitt (40) mit einer Brennstoffeinlassöffnung (36) und einem stromabwärts des ersten zylindrischen Abschnitts (40) angeordneten zweiten zylindrischen Abschnitt (41) mit einer Brennstoffauslassöffnung (37), wobei der erste und der zweite zylindrische Abschnitt (40, 41) nicht koaxial zueinander verlaufen.

Description

    Stand der Technik
  • Die Erfindung geht von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs aus.
  • Zur Gemischaufbereitung werden bei derzeitig im Einsatz befindlichen Einspritzventilen für die Benzindirekteinspritzung in der Regel zylindrische Spritzlöcher vorgesehen. Gestufte Spritzlöcher werden derzeit eingesetzt, um das Spritzloch vor Ablagerungen zu schützen und um eine Spritzlochverkürzung bei konstanter
  • Spritzlochscheibendicke zu erzielen.
  • Aus der EP 1335129 A2 ist bereits ein Brennstoffeinspritzventil bekannt, das insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine geeignet ist. Das Brennstoffeinspritzventil weist eine in einem Düsenkörper angeordnete Ventilnadel auf, welche durch einen Aktor betätigbar ist, und einen mit der Ventilnadel in Wirkverbindung stehenden Ventilschließkörper, der zum Öffnen und Schließen des Ventils mit einer Ventilsitzfläche zusammenwirkt, die an einem Ventilsitzkörper ausgebildet ist, wobei der Ventilsitzkörper mit zumindest einem Spritzloch versehen ist. Das zumindest eine Spritzloch besitzt dabei einen ersten zylindrischen Abschnitt mit einer Brennstoffeinlassöffnung und einen stromabwärts des ersten zylindrischen Abschnitts angeordneten zweiten zylindrischen Abschnitt mit einer Brennstoffauslassöffnung, wobei der erste und der zweite zylindrische Abschnitt nicht koaxial zueinander verlaufen. Vielmehr verläuft der erste zylindrische Abschnitt des Spritzlochs parallel zu einer Ventillängsachse, während sich daran der zweite zylindrische Abschnitt bestehend aus nochmals mehreren Abschnitten schräg geneigt zur Ventillängsachse anschließt. In den zweiten zylindrischen Abschnitt ist zudem noch eine Lochscheibe mit einem drosselnden Spritzloch geringeren Durchmessers eingesetzt.
  • Aus der WO 02/084104 A1 ist ein Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen bekannt, welches eine Magnetspule, eine mit der Magnetspule in Wirkverbindung stehende und in Schließrichtung von einer Rückstellfeder beaufschlagte Ventilnadel zur Betätigung eines Ventilschließkörpers, der zusammen mit einer an einem Ventilsitzkörper ausgebildeten Ventilsitzfläche einen Dichtsitz bildet, und zumindest zwei Abspritzöffnungen, die in dem Ventilsitzkörper ausgebildet sind, umfasst. Die Abspritzöffnungen sind so in dem Ventilsitzkörper ausgebildet, dass sie vor zirkulierenden Gemischströmungen in einem Brennraum der Brennkraftmaschine abgeschirmt sind und weisen dazu ein zylindrisches Abspritzloch und einen sich daran anschließenden Ringwall auf, der hoch genug ist, jede der Abspritzöffnungen gegen die im Brennraum zirkulierenden Strömungen abzuschirmen.
  • Um eine Spraywinkelerhöhung zu erzielen, ist es weiterhin im Stand der Technik bekannt, das Länge-/Durchmesser-Verhältnis des Spritzlochs zu reduzieren, jedoch ist die Reduzierung der Spritzlochlänge aufgrund der damit verbundenen Festigkeitsabnahme der Spritzlochscheibe limitiert.
  • Für die Saugrohreinspritzung werden darüber hinaus Ventile mit trompetenförmigen Spritzlöchern eingesetzt, welche dem Strahl schon innerhalb des Spritzloches eine hohe Querbewegung verleihen und damit eine schnelle und gute Zerstäubung ermöglichen. Hierdurch wird ebenfalls eine Erhöhung des Spraywinkels erzielt, jedoch mit mäßiger Strahlstabilität. Der Strahlwinkel ist bei einer derartigen Konfiguration stark von den Anströmverhältnissen abhängig.
  • Bei den oben beschriebenen Ventilen besteht der Nachteil, dass die Gemischaufbereitung über einen turbulenten annähernd zylindrischen Freistrahl erfolgt, der ein relativ geringes Oberflächen-/Volumen-Verhältnis aufweist.
  • Weiterhin sind Ventile für die Niederdruckeinspritzung bekannt, welche stark geneigte konische Spritzlöcher aufweisen. Da die als dünner Film abgespritzte Masse wesentlich besser zerstäubt als der Hauptstrahl, kommt es zwar insgesamt zu einer SMD-Verbesserung, jedoch eignet sich diese Geometrie nicht für Brennstoffeinspritzventile mit gestuften Abspritzlöchern und die Querströmung, welche vorrangig durch den Lochneigungswinkel ϕ des Spritzloches erzeugt wird, ist zwangsläufig mit dem Abspritzwinkel γ gekoppelt.
  • Vorteile der Erfindung
  • Demgegenüber hat das erfindungsgemäße Brennstoffeinspritzventil mit dem kennzeichnenden Merkmal des Hauptanspruchs den Vorteil, dass eine Verbesserung des SMDs, insbesondere für Saugrohreinspritzventile, erzielt wird, und es besteht mittels der erfindungsgemäßen Konfiguration die Möglichkeit einer Spraywinkelerhöhung bei Hochdruckeinspritzventilen, um die Strahlpenetration in den Brennraum weiter reduzieren zu können. Im Verglich zu dem oben beschriebenen Ventil ist die für das zur Strahlaufweitung verwendete Prinzip erforderliche Querströmung auch nicht zwangsweise mit dem Abspritzwinkel γ gekoppelt.
  • Vorzugsweise kann die erfindungsgemäße Konfiguration des Spritzlochs bei bereits mit gestuften Spritzlöchern gefertigten Brennstoffeinspritzventilen eingesetzt werden, wobei lediglich eine entsprechende Modifikation der Lochachsen notwendig ist.
  • Es ist besonders vorteilhaft, dass das oben beschriebene erfindungsgemäße Prinzip der Strahlaufbereitung mit bereits etablierten Fertigungsmethoden ermöglicht wird.
  • Darüber hinaus ist von Vorteil, dass gegenüber den oben beschriebenen Ventilen des Standes der Technik nicht nur ein turbulenter zylindrischer Freistrahl erzeugt wird, der relativ schlecht bzw. nur bei Anwendung hoher Drücke gut zerstäubt, sondern ein gewisser Anteil des Brennstoffdurchflusses als dünne, gut zerstäubende Lamelle abgespritzt wird.
  • Ein weiterer Vorteil des erfindungsgemäßen Brennstoffeinspritzventils ist, dass die Umfangsrichtung des Fluids ähnlich wie beim Drallventil beim Verlassen des Spritzloches eine zusätzliche Aufweitung des Strahls über den geometrischen Winkel hinaus bewirkt.
  • Zeichnung
  • Ein Ausführungsbeispiel eines Brennstoffeinspritzventils gemäß dem Stand der Technik, ein Ausführungsbeispiel eines Ventilsitzelements gemäß dem Stand der Technik sowie eines Ventilsitzelements eines erfindungsgemäßen Brennstoffeinspritzventils sind in der Zeichnung vereinfacht dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Fig. 1
    einen schematischen Querschnitt durch ein Brennstoffeinspritzventil gemäß dem Stand der Technik;
    Fig. 2a, 2b
    einen schematischen Querschnitt durch einen Ventilsitzkörper gemäß dem Stand der Technik bzw. eine Abbildung einer durch das Spritzloch erzeugten Strahlgeometrie entlang der Linie A-A der Fig. 2a;
    Fig. 3a, 3b
    einen schematischen Querschnitt durch einen erfindungsgemäßen Ventilsitzkörper bzw. eine Abbildung einer Spritzlochgeometrie entlang der Linie A-A der Fig. 3a; und
    Fig. 4a, 4b
    einen schematischen Querschnitt durch den erfindungsgemäßen Ventilsitzkörper bzw. eine Abbildung der erzeugten Strahlgeometrie entlang der Linie A-A der Fig. 4a.
    Beschreibung des Ausführungsbeispiels
  • Fig. 1 zeigt einen schematischen Querschnitt durch ein Brennstoffeinspritzventil 1 gemäß dem Stand der Technik, an welchem die wesentlichen Bauteile des Ventils kurz erläutert werden sollen.
  • Das Brennstoffeinspritzventil 1 ist in der Form eines Brennstoffeinspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen ausgeführt. Das Brennstoffeinspritzventil 1 eignet sich insbesondere zum direkten Einspritzen von Brennstoff in einen nicht dargestellten Brennraum einer Brennkraftmaschine.
  • Das Brennstoffeinspritzventil 1 besteht aus einem Düsenkörper 2, in welchem eine Ventilnadel 3 angeordnet ist. Die Ventilnadel 3 steht mit einem Ventilschließkörper 4 in Wirkverbindung, der mit einer auf einem Ventilsitzkörper 5 angeordneten Ventilsitzfläche 6 zu einem Dichtsitz zusammenwirkt. Bei dem Brennstoffeinspritzventil 1 handelt es sich im Ausführungsbeispiel um ein nach innen öffnendes elektromagnetisch betätigbares Brennstoffeinspritzventil 1, welches über ein Spritzloch 7 verfügt. Der Düsenkörper 2 ist durch eine Dichtung 8 gegen den Außenpol 9 einer Magnetspule 10 abgedichtet. Die Magnetspule 10 ist in einem Spulengehäuse 11 gekapselt und auf einen Spulenträger 12 gewickelt, welcher an einem Innenpol 13 der Magnetspule 10 anliegt. Der Innenpol 13 und der Außenpol 9 sind durch einen Spalt 26 voneinander getrennt und stützen sich auf einem Verbindungsbauteil 29 ab. Die Magnetspule 10 wird über eine Leitung 19 von einem über einen elektrischen Steckkontakt 17 zuführbaren elektrischen Strom erregt. Der Steckkontakt 17 ist von einer Kunststoffummantelung 18 umgeben, die am Innenpol 13 angespritzt sein kann.
  • Die Ventilnadel 3 ist in einer Ventilnadelführung 14 geführt, welche scheibenförmig ausgeführt ist. Zur Hubeinstellung dient eine zugepaarte Einstellscheibe 15. An der anderen Seite der Einstellscheibe 15 befindet sich ein Anker 20. Dieser steht über einen ersten Flansch 21 kraftschlüssig mit der Ventilnadel 3 in Verbindung, welche durch eine Schweißnaht 22 mit dem ersten Flansch verbunden ist. Auf dem ersten Flansch 21 stützt sich eine Rückstellfeder 23 ab, welche in der vorliegenden Bauform des Brennstoffeinspritzventils 1 durch eine Hülse 24 auf Vorspannung gebracht wird. Ein zweiter flansch 31, welcher mit der Ventilnadel 3 ebenfalls über eine Schweißnaht 33 verbunden ist, dient als unterer Ankeranschlag. Ein elastischer Zwischenring 32, welcher auf dem zweiten Flansch 31 aufliegt, vermeidet Prellen beim Schließen des Brennstoffeinspritzventils 1.
  • In der Ventilnadelführung 14, im Anker 20 und in dem Ventilsitzkörper 5 verlaufen Brennstoffkanäle 30a, 30, die den Brennstoff, welcher über eine zentrale Brennstoffzufuhr 16 zugeführt und durch ein Filterelement 25 gefiltert wird, zum Spritzloch 7 in dem Ventilsitzkörper 5 leiten. Das Brennstoffeinspritzventil 1 ist durch eine Dichtung 28 gegen eine nicht dargestellte Verteilerleitung abgedichtet.
  • Im Ruhezustand des Brennstoffeinspritzventils 1 wird der Anker 20 über den ersten Flansch 21 an der Ventilnadel 3 von der Rückstellfeder 23 entgegen seiner Hubrichtung so beaufschlagt, dass der Ventilsitzkörper 4 an der Ventilsitzfläche 6 in dichtender Anlage gehalten wird. Bei Erregung der Magnetspule 10 baut diese ein Magnetfeld auf, welches den Anker 20 entgegen der Federkraft der Rückstellfeder 23 in Hubrichtung bewegt, wobei der Hub durch einen in der Ruhestellung zwischen dem Innenpol 13 und dem Anker 20 befindlichen Arbeitsspalt 27 vorgegeben ist. Der Anker 20 nimmt den ersten Flansch 21, welcher mit der Ventilnadel 3 verschweißt ist, und damit die Ventilnadel 3 ebenfalls in Hubrichtung mit. Der mit der Ventilnadel 3 in Wirkverbindung stehende Ventilschließkörper 4 hebt von der Ventilsitzfläche 6 ab und der über die Brennstoffkanäle 30a, 30b zum Spritzloch 7 gelangende Brennstoff wird abgespritzt. Wird der Spulenstrom abgeschaltet, fällt der Anker 20 nach genügendem Abbau des Magnetfeldes durch den Druck der Rückstellfeder 23 auf den ersten Flansch 21 vom Innenpol 13 ab, wodurch sich die Ventilnadel 3 entgegen der Hubrichtung bewegt. Dadurch setzt der Ventilschließkörper 4 auf der Ventilsitzfläche 6 auf, und das Brennstoffeinspritzventil 1 wird geschlossen.
  • Fig. 2a zeigt einen schematischen Querschnitt durch einen Ventilsitzkörper 5 gemäß dem Stand der Technik. Der Ventilsitzkörper 5 weist eine zulaufseitige Stirnfläche 34 und eine gegenüberliegende abspritzseitige Stirnfläche 35 auf. Das Spritzloch 7 tritt an der zulaufseitigen Stirnfläche 34 schräg zu dieser in einem mit ihr gebildeten Winkel ϕ über eine Eintrittsöffnung 36 in den Ventilsitzkörper 5 ein und tritt an der abspritzseitigen Stirnfläche 35 unter einem Winkel γ, welchen die Längsachse des Spritzlochs 7 mit der Stirnfläche 35 bildet, wieder aus. Das Spritzloch 7 weist somit eine stark geneigte und auch konische Form auf. Der Neigungswinkel γ bzw. ϕ des Spritzlochs führt zum einen dazu, dass die Strömung am Spritzlocheinlauf ablöst und somit eine zweiphasige Strömung im Spritzloch entsteht. Zum anderen wird die Einlaufströmung vein in eine Axialkomponente vax und eine Radialkomponente vr aufgeteilt. Der Winkel zwischen vein und vax (90° - δ) entsteht vorwiegend durch den Winkel ϕ, kann aber auch durch eine forcierte Queranströmung des Loches und damit Richtungsänderung von vein vermindert oder vergrößert werden. Die senkrecht auf die Spritzlochwand geneigte Geschwindigkeitskomponente vr wird in eine Umfangskomponente umgewandelt, die dazu führt, dass im mit Luft gefüllten Teil des Spritzloches ein dünner Film aufgebaut wird. Der Rest des Durchflusses wird wie bei anderen Ventilen als annähernd zylindrischer Hauptstrahl 38 abgespritzt. Da die als dünner Film 39 abgespritzte Masse wesentlich besser zerstäubt als der Hauptstrahl 38, kommt es in der Summe zu einer SMD-Verbesserung, jedoch ist die für dieses Prinzip erforderliche Queranströmung, welche vorrangig durch den Lochneigungswinkel ϕ des Spritzlochs 7 erzeugt wird, mit dem Abspritzwinkel γ gekoppelt. Die durch diese Konfiguration erzeugte Strahlgeometrie entlang der Linie A-A der Fig. 2a ist in einer Draufsicht auf die Strahlgeometrie in Fig. 2b gezeigt.
  • Fig. 3a zeigt einen schematischen Querschnitt durch einen erfindungsgemäßen Ventilsitzkörper 5. Der Ventilsitzkörper 5 weist ein Spritzloch 7 auf, welches an seiner zuströmseitigen Stirnfläche 34 in den Ventilsitzkörper 5 eintritt und einer abspritzseitigen Stirnfläche 35 austritt. Das Spritzloch 7 besteht aus einem ersten zylindrischen Abschnitt 40 und einem zweiten zylindrischen Abschnitt 41, welche nicht koaxial zueinander angeordnet sind. Vielmehr bildet die Einlassöffnung 36 bzw. eine Längsachse des ersten zylindrischen Abschnitts 40 mit der zuströmseitigen Stirnfläche 34 einen Winkel ϕ, welcher den Einlaufwinkel der Brennstoffströmung in das Spritzloch 7 kennzeichnet. Die Austrittsöffnung 37 bzw. die Längsachse des zweiten zylindrischen Abschnitts 41 bildet einen Winkel γ mit der abspritzseitigen Stirnfläche 35 des Ventilsitzkörpers 5. Weiterhin besteht der Spritzlocheinlauf bzw. die Einlassöffnung 36 aus einem Zylinder mit dem Durchmesser d, und der Spritzlochauslauf bzw. die Auslassöffnung 37 besteht aus einem Zylinder mit dem Durchmesser D, der größer als der Durchmesser d ist. Die Längsachse des ersten zylindrischen Abschnitts 40 und die Längsachse des zweiten zylindrischen Abschnitts 41 sind in einem Winkel α zueinander geneigt. Der Winkel α steuert, in welchem Verhältnis der durch den Einlaufzylinder bzw. den ersten zylindrischen Abschnitt 40 axial geleitete Fluidstrom der Geschwindigkeit v im Auslaufzylinder bzw. im zweiten zylindrischen Abschnitt 41 in eine Radial- (vr) und damit Umfangskomponente (vu) umgewandelt wird. Dies ist umso stärker der Fall, je größer der Winkel α zwischen den beiden Längsachsen ist.
  • Mit dem Winkel γ wird der Abspritzwinkel vorgegeben. Dieser kann bei konstantem α und damit ohne Funktionsbeeinträchtigung variiert werden. Es ändert sich hierbei lediglich der Einlaufwinkel ϕ. Idealerweise ist das Verschneidungsmaß I möglichst gleich oder kleiner Null. Diese Forderung wird am leichtesten erfüllt, wenn b gleich Null ist, dass heißt, wenn ein Abschnitt einer Mantelfläche des ersten zylindrischen Abschnitts 40 an einen Abschnitt einer Mantelfläche des zweiten zylindrischen Abschnitts 41 angrenzt und ein weiterer Abschnitt einer Mantelfläche des ersten zylindrischen Abschnitts 40 an einer Deckfläche 42 des zweiten zylindrischen Abschnitts 41 angrenzt. In Fig. 3b ist eine Schnittansicht entlang der Linie A-A der Fig. 3a gezeigt. Hier ist ersichtlich, dass die beiden Zylinderachsen nicht in einer Ebene liegen müssen bzw. liegen, sondern einen seitlichen Versatz f aufweisen. Je größer f ist, desto unregelmäßiger wird die Aufteilung des Massenstroms auf die beiden Lamellen bzw. den Film 39.
  • Das erfindungsgemäße Strömungsprinzip ist nochmals in Fig. 4a und 4b verdeutlicht. Insbesondere, wenn das Verschneidungsmaß I nicht gleich Null ist, wird ein Teil des Strahls mit einem Abspritzwinkel gleich dem Einlaufwinkel ϕ bzw. der Richtung von v abgespritzt und bildet einen Nebenstrahl, welcher in Fig. 4a und 4b mit Bezugszeichen 43 gekennzeichnet ist. Dieser Anteil wird nicht zum Aufbau der Lamellen bzw. des dünnen Films 39 verwendet. Die Geschwindigkeitskomponente des Geschwindigkeitsvektors v, welche parallel zur Längsachse des zweiten zylindrischen Abschnitts 41 verläuft (vax), wird vorwiegend als Hauptstrahl bzw. Freistrahl 38 koaxial zu diesem abgespritzt. Die Geschwindigkeitskomponente vr wird teilweise in die Geschwindigkeitskomponente vu umgewandelt und dient zum Aufbau der Lamellen 39 bzw. des dünnen Films 39. Nachdem die Lamellen das Spritzloch 7 an der abspritzseitigen Auslassöffnung 37 des zweiten zylindrischen Abschnitts 41 des Spritzlochs 7 verlassen, wird aufgrund der durch die Umfangskomponente aufgebauten Zentrifugalkraft wieder eine Radialkomponente erzeugt, die zu einer verstärkten Auffächerung des Strahls führt.

Claims (8)

  1. Brennstoffeinspritzventil (1), insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum (18) einer Brennkraftmaschine, mit einer in einem Düsenkörper (2) angeordneten Ventilnadel (3), welche durch einen Aktor betätigbar ist, und mit einem mit der Ventilnadel (3) in Wirkverbindung stehenden Ventilschließkörper (4), der zum Öffnen und Schließen des Ventils (1) mit einer Ventilsitzfläche (6) zusammenwirkt, die an einem Ventilsitzkörper (5) ausgebildet ist, wobei der Ventilsitzkörper (5) mit zumindest einem Spritzloch (7) versehen ist, wobei das zumindest eine Spritzloch (7) einen ersten zylindrischen Abschnitt (40) mit einer Brennstoffeinlassöffnung (36) und einen stromabwärts des ersten zylindrischen Abschnitts (40) angeordneten zweiten zylindrischen Abschnitt (41) mit einer Brennstoffauslassöffnung (37) aufweist, wobei der erste und der zweite zylindrische Abschnitt (40, 41) nicht koaxial zueinander verlaufen.
    dadurch gekennzeichnet,
    dass der erste zylindrische Abschnitt (40) des Spritzlochs (7) bezüglich einer Ventillängsachse schräg geneigt unter einem Winkel verläuft, und die jeweiligen Längsachsen des ersten zylindrischen Abschnitts (40) und des zweiten zylindrischen Abschnitts (41) in einem Winkel α derart zueinander geneigt sind, dass der zweite zylindrische Abschnitt (41) mit der Brennstoffauslassöffnung (37) in umgekehrter Richtung schräg geneigte unter einem Winkel bezüglich der Ventillänesachse verläuft.
  2. Brennstoffeinspritzventil (1) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Brennstoffeinlassöffnung (36) einen Durchmesser d aufweist, der kleiner ist als ein Durchmesser D der Brennstoffauslassöffnung (37).
  3. Brennstoffeinspritzventil (1) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet,
    dass die Längsachse des zweiten zylindrischen Abschnitts (41) in einem Winkel γ gegenüber einer abspritzseitigen Stirnfläche (35) des Ventilsitzkörpers (5) geneigt ist.
  4. Brennstoffeinspritzventil (1) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Längsachse des ersten zylindrischen Abschnitts (40) um einen Winkel ϕ gegenüber einer zulaufseitigen Stirnfläche (34) des Ventilsitzkörpers (5) geneigt ist, welcher den Brennstoffeinlaufwinkel kennzeichnet.
  5. Brennstoffeinspritzventil (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
    dass ein Verschneidungsmaß (I) gleich, kleiner oder größer als Null ist.
  6. Brennstoffeinspritzventil (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,
    dass ein Mantelflächenabschnitt der Zylinderwand des ersten zylindrischen Abschnitts (40) an einen Mantelflächenabschnitt der Zylinderwand des zweiten zylindrischen Abschnitts (41) angrenzt und ein weiterer Mantelflächenabschnitt der Zylinderwand des ersten zylindrischen Abschnitts (40) an einen Abschnitt der Deckfläche (42) des zweiten Zylinderabschnitts (41) angrenzt.
  7. Brennstoffeinspritzventil (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
    dass die gesamte Mantelfläche der Zylinderwand des ersten zylindrischen Abschnitts (40) an die Deckfläche (42) des zweiten Zylinderabschnitts (41) angrenzt.
  8. Brennstoffeinspritzventil (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,
    dass der gesamte oder ein Teil des abgespritzten Brennstoffstrahls als dünne Lamelle ausgegeben wird und im zweiten Fall der Rest als turbulenter zylindrischer Freistrahl ausgegeben wird.
EP07803448A 2006-10-31 2007-09-13 Brennstoffeinspritzventil Not-in-force EP2087228B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006051327A DE102006051327A1 (de) 2006-10-31 2006-10-31 Brennstoffeinspritzventil
PCT/EP2007/059611 WO2008052840A1 (de) 2006-10-31 2007-09-13 Brennstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP2087228A1 EP2087228A1 (de) 2009-08-12
EP2087228B1 true EP2087228B1 (de) 2012-07-18

Family

ID=38670994

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803448A Not-in-force EP2087228B1 (de) 2006-10-31 2007-09-13 Brennstoffeinspritzventil

Country Status (5)

Country Link
US (1) US8313048B2 (de)
EP (1) EP2087228B1 (de)
JP (1) JP2010508468A (de)
DE (1) DE102006051327A1 (de)
WO (1) WO2008052840A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942349B1 (en) 2009-03-24 2011-05-17 Meyer Andrew E Fuel injector
JP5185973B2 (ja) * 2010-04-16 2013-04-17 三菱電機株式会社 燃料噴射弁
FR2968720B1 (fr) * 2010-12-09 2015-08-07 Continental Automotive France Injecteur, notamment pour l'injection multipoints de carburant dans un moteur a combustion interne
CN103534476B (zh) * 2011-05-13 2016-12-28 安德鲁·E·迈耶 燃料喷射器
WO2013027257A1 (ja) * 2011-08-22 2013-02-28 トヨタ自動車株式会社 燃料噴射弁
DE102011084704A1 (de) 2011-10-18 2013-04-18 Robert Bosch Gmbh Ausrichtelement für ein Einspritzventil sowie Verfahren zur Herstellung eines Einspritzventils
DE102012221713A1 (de) 2012-11-28 2014-05-28 Robert Bosch Gmbh Einspritzventil
JP5987754B2 (ja) * 2013-04-01 2016-09-07 トヨタ自動車株式会社 燃料噴射弁
JP6044425B2 (ja) * 2013-04-02 2016-12-14 トヨタ自動車株式会社 燃料噴射弁
JP6080087B2 (ja) 2014-02-28 2017-02-15 株式会社デンソー 燃料噴射弁
JP7439399B2 (ja) 2019-06-20 2024-02-28 株式会社デンソー 燃料噴射弁

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025753A (ja) * 1988-06-23 1990-01-10 Aisan Ind Co Ltd 燃料噴射弁とそのノズル
US5449121A (en) * 1993-02-26 1995-09-12 Caterpillar Inc. Thin-walled valve-closed-orifice spray tip for fuel injection nozzle
JP3323429B2 (ja) * 1997-11-19 2002-09-09 トヨタ自動車株式会社 内燃機関用燃料噴射弁
DE19815789A1 (de) 1998-04-08 1999-10-14 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10049033B4 (de) 2000-10-04 2005-08-04 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10118163B4 (de) 2001-04-11 2007-04-19 Robert Bosch Gmbh Brennstoffeinspritzventil
JP4088493B2 (ja) * 2002-02-07 2008-05-21 株式会社日立製作所 燃料噴射弁
DE10341365A1 (de) * 2002-09-09 2004-05-06 Hitachi, Ltd. Kraftstoffeinspritzventil und damit ausgerüstete Brennkraftmaschine des Zylindereinspritzungstyps
JP2004100536A (ja) 2002-09-09 2004-04-02 Hitachi Ltd 電磁式燃料噴射弁
JP3977728B2 (ja) * 2002-11-18 2007-09-19 三菱電機株式会社 燃料噴射弁
JP4134966B2 (ja) * 2004-08-17 2008-08-20 株式会社デンソー 噴孔部材、燃料噴射弁、および噴孔部材の製造方法
DE102005036951A1 (de) * 2005-08-05 2007-02-08 Robert Bosch Gmbh Brennstoffeinspritzventil und Verfahren zur Ausformung von Abspritzöffnungen

Also Published As

Publication number Publication date
JP2010508468A (ja) 2010-03-18
US8313048B2 (en) 2012-11-20
EP2087228A1 (de) 2009-08-12
US20100282872A1 (en) 2010-11-11
WO2008052840A1 (de) 2008-05-08
DE102006051327A1 (de) 2008-05-08

Similar Documents

Publication Publication Date Title
EP2087228B1 (de) Brennstoffeinspritzventil
DE10049518B4 (de) Brennstoffeinspritzventil
EP1379773B1 (de) Brennstoffeinspritzventil
EP2521853B1 (de) Brennstoffeinspritzventil
EP1395749B1 (de) Brennstoffeinspritzventil
EP1312796B1 (de) Brennstoffeinspritzventil
DE10046306A1 (de) Brennstoffeinspritzventil
DE10103051B4 (de) Brennstoffeinspritzventil
DE10046305A1 (de) Brennstoffeinspritzventil
EP1328722A1 (de) Brennstoffeinspritzventil
DE10050752B4 (de) Brennstoffeinspritzventil mit einem drallerzeugenden Element
EP1328723A2 (de) Brennstoffeinspritzventil
EP1327070B1 (de) Brennstoffeinspritzventil
DE10354467A1 (de) Brennstoffeinspritzventil
DE10063261B4 (de) Brennstoffeinspritzventil
EP1702156B1 (de) Brennstoffeinspritzventil
DE102006044439A1 (de) Brennstoffeinspritzventil
EP1598550B1 (de) Brennstoffeinspritzventil
EP1195516B1 (de) Brennstoffeinspritzventil
WO2014082774A1 (de) Einspritzventil
DE10052146A1 (de) Brennstoffeinspritzventil
EP1350947B1 (de) Brennstoffeinspritzventil
DE102019219019A1 (de) Ventil zum Zumessen eines Fluids
DE102005024067A1 (de) Brennstoffeinspritzventil
DE10304866A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007010247

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0061180000

Ipc: F02M0051060000

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 51/06 20060101AFI20120301BHEP

Ipc: F02M 61/18 20060101ALI20120301BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 567093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007010247

Country of ref document: DE

Effective date: 20120913

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120718

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20130419

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121018

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120913

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121018

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007010247

Country of ref document: DE

Effective date: 20130419

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 567093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140924

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140917

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150913

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201121

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007010247

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401