EP2084722B1 - Verfahren zum abkühlen supraleitender magnete - Google Patents

Verfahren zum abkühlen supraleitender magnete Download PDF

Info

Publication number
EP2084722B1
EP2084722B1 EP07819508.8A EP07819508A EP2084722B1 EP 2084722 B1 EP2084722 B1 EP 2084722B1 EP 07819508 A EP07819508 A EP 07819508A EP 2084722 B1 EP2084722 B1 EP 2084722B1
Authority
EP
European Patent Office
Prior art keywords
helium
cooling
temperature
magnets
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07819508.8A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2084722A1 (de
Inventor
Andres Kündig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2084722A1 publication Critical patent/EP2084722A1/de
Application granted granted Critical
Publication of EP2084722B1 publication Critical patent/EP2084722B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant

Definitions

  • the invention relates to a method for cooling at least one superconducting magnet.
  • a plant with helium cooling circuit is from the EP 1 655 616 A1 known.
  • Object of the present invention is to provide a generic method for cooling at least one superconducting magnet, which avoids the aforementioned disadvantages.
  • a method for cooling at least one superconducting magnet which is characterized in that the cooling of the superconducting magnet or exclusively by means of several, located on at least two temperature levels helium flows, wherein the magnet to be cooled, a first mixture consisting from a helium stream at ambient temperature level and a helium stream at liquid nitrogen temperature level, and then a second mixture consisting of a helium stream at liquid nitrogen temperature level and a helium stream at a temperature level of about 10 K, is supplied.
  • Liquid nitrogen may be used indirectly as a partial primary source of cold, especially for pre-cooling of helium. This creates - assuming a corresponding pre-cleaning - a cryostat volume with negligible residual impurities. This leads to a significant reduction in the quench tendency of a correspondingly cooled superconducting magnet. This in turn results in a significant reduction of the not insignificant helium losses that are inevitably associated with the occurrence of the quenching effect.
  • the temperature difference between the cooling flow or the medium and the magnet to be cooled is comparatively low, which is thermodynamically favorable.
  • the heat transfer coefficient in the helium gas can be kept relatively large by a correspondingly large Gas flow rate is selected. This gentler cooling of the magnets allows an accelerated cooling process, ie significantly shorter throughput times of the production process.
  • the inventive method for cooling at least one superconducting magnet makes it possible to cool and fill magnets by means of only one helium refrigeration system. Unwanted opening of the cryostat of the magnet with respect to the atmosphere is thus no longer necessary.
  • the filling of the magnets with liquid helium can be done relatively quickly by using a liquid helium pump.
  • the inventive method also allows a significant saving of liquid helium, which must be collected in the methods of the prior art, cleaned and then re-liquefied. Furthermore, the amount of helium that is finally lost to the atmosphere is significantly reduced.
  • the cooling of the superconducting magnet or magnets by the magnet to be cooled a first mixture consisting of a helium stream at ambient temperature level and a helium stream at liquid nitrogen temperature level, and then a second Mixture, consisting of a helium stream at liquid nitrogen temperature level and a helium stream at a temperature level of about 10 K, is supplied.
  • the figure shows in schematic form a helium refrigeration cycle, which serves to cool two superconducting magnets M1 and M2.
  • a single or multistage Compressor unit C preferably a screw compressor system is used - helium is sucked in at about ambient pressure and compressed to a pressure between about 13 and 20 bar (high pressure).
  • the compressor unit C possibly downstream (water) cooler and oil separator.
  • the high-pressure helium stream is fed via line 1 to a first heat exchanger E1 and in this against medium-pressure and low-pressure helium streams - which will be discussed below - and against liquid nitrogen, which is passed via line 2 through the heat exchanger E1 on about 80 K cooled.
  • the adsorption unit A is preferably designed to be redundant and moreover has means for the regeneration of the loaded adsorbent.
  • the withdrawn via line 3 from the first heat exchanger E1 helium stream can now be divided into three partial streams 4, 11 and 15.
  • the former part of the stream is fed via line 4 to an expansion turbine X and relaxed in this to a mean pressure between 2 and 3 bar.
  • this medium-pressure helium stream is passed through the line sections 5 to 10 through the two heat exchangers E2 and E1 and warmed up to ambient temperature in this, before it is fed to the compressor unit C.
  • the aforementioned second helium partial stream is fed via line 11 to the second heat exchanger E2 and further cooled in this against process streams to be heated.
  • Via line 12 of this helium partial stream is supplied after passing through the heat exchanger E2 a second expansion turbine X 'and relaxed in this also with cooling at a temperature of about 10 K to a medium pressure between 2 and 3 bar.
  • this medium-pressure helium flow is supplied via the line sections 13, 14, 19 to 21 and 10 after warming to ambient temperature in the heat exchanger E1 of the compressor unit C.
  • the aforementioned third helium partial flow can also be fed to the compressor unit C via the line sections 15 and 7 to 10.
  • the figure shows a helium refrigeration plant which serves to cool only two superconducting magnets M1 and M2.
  • the cryostat volumes of the magnets M1 and M2 are, if necessary, evacuated (several times) before the actual cooling process, rinsed and largely freed from unwanted residues or impurities, such as air and moisture, by circulating dried helium gas.
  • the facilities required for this purpose are not shown in the figure.
  • the medium-pressure helium gas is supplied via the line sections 26 and 30 to the magnet M1 / M2 to be cooled.
  • the valve b is open, medium-pressure helium gas, which has a temperature of approximately 80 K, is supplied to the magnets M1 / M2 to be cooled via the line sections 24 and 30.
  • any desired flow temperature between ambient temperature and a temperature of about 80 K can be set.
  • a continuous cooling of the magnets M1 / M2 is achieved from ambient temperature to a temperature level of about 80 K.
  • the helium supply via line 26 is already closed again at this time and helium is supplied exclusively via line 24 - valve c is opened, so that via the line sections 16 and 30 medium-pressure helium gas, which has a temperature of about 10 K, mixed or the magnet M1 / M2 can be supplied.
  • the flow temperature is further lowered.
  • the warmed return gas leaving the magnets M1 / M2 is further supplied to the first heat exchanger E1 via the line sections 31 and 25 when the valve f is open. However, this recycling takes place only until a certain temperature - this is between 50 and 60 K - is exceeded. Then valve f is closed and valve g is opened. Now, the heated return gas can be supplied via the line sections 31 and 17 to the second heat exchanger E2. For this purpose, it is fed via the line sections 18 to 21 and 10 of the compressor unit C.
  • valve g When the temperature of the return gas withdrawn from the magnets M1 / M2 reaches the outlet temperature of the second expansion turbine X ', valve g is closed and valve h is opened. Now, the warmed return gas is supplied via the line sections 31 and 23 to the cold end of the heat exchanger E2 and warmed in this. Via the line sections 18 to 21 and 10, this return gas is supplied through the heat exchanger E1 and the compressor unit C.
  • the inventive method for cooling at least one superconducting magnet is particularly suitable for implementation in a helium refrigerator, which serves for the parallel cooling of superconducting MRI magnets and the filling of the cryostat with liquid. Furthermore, the inventive method for cooling at least one superconducting magnet but also always be used when a relatively gentle cooling is required, only relatively small temperature differences occur or allowed, the cooling rate must be controlled, a relatively high helium flow rate of advantage or is desired and impurities are undesirable.
  • the inventive method for cooling at least one superconducting magnet allows the parallel and temporally offset cooling and filling of one or more magnets, wherein the number of magnets to be cooled in principle can be arbitrarily large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
EP07819508.8A 2006-10-31 2007-10-31 Verfahren zum abkühlen supraleitender magnete Active EP2084722B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006051880A DE102006051880A1 (de) 2006-10-31 2006-10-31 Verfahren zum Abkühlen supraleitender Magnete
PCT/EP2007/009476 WO2008052777A1 (de) 2006-10-31 2007-10-31 Verfahren zum abkühlen supraleitender magnete

Publications (2)

Publication Number Publication Date
EP2084722A1 EP2084722A1 (de) 2009-08-05
EP2084722B1 true EP2084722B1 (de) 2016-07-20

Family

ID=39018061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07819508.8A Active EP2084722B1 (de) 2006-10-31 2007-10-31 Verfahren zum abkühlen supraleitender magnete

Country Status (6)

Country Link
US (1) US8291725B2 (zh)
EP (1) EP2084722B1 (zh)
JP (1) JP5306216B2 (zh)
CN (1) CN101536123B (zh)
DE (1) DE102006051880A1 (zh)
WO (1) WO2008052777A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269136A (ja) * 2009-04-23 2010-12-02 Toshiba Corp 磁気共鳴イメージング装置
CN102054554B (zh) * 2009-10-30 2015-07-08 通用电气公司 超导磁体的制冷系统和制冷方法
FR2970563B1 (fr) * 2011-01-19 2017-06-02 Air Liquide Installation et procede de production d'helium liquide
DE102011112911A1 (de) * 2011-09-08 2013-03-14 Linde Aktiengesellschaft Kälteanlage
CN111043805B (zh) * 2019-12-30 2021-09-10 成都新连通低温设备有限公司 一种大功率液氮温区变温压力实验系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214403A (ja) * 1985-03-19 1986-09-24 Mitsubishi Electric Corp 極低温装置
JPH01137166A (ja) * 1987-11-24 1989-05-30 Daikin Ind Ltd 極低温ヘリウム冷凍機
US4796433A (en) * 1988-01-06 1989-01-10 Helix Technology Corporation Remote recondenser with intermediate temperature heat sink
JP2821241B2 (ja) * 1990-06-08 1998-11-05 株式会社日立製作所 液化冷凍機付きクライオスタツト
JPH076664U (ja) * 1993-06-28 1995-01-31 株式会社超伝導センサ研究所 極低温冷却装置
DE19720677C1 (de) * 1997-05-16 1998-10-22 Spectrospin Ag NMR-Meßvorrichtung mit gekühltem Meßkopf
CN2641776Y (zh) * 2003-07-31 2004-09-15 核工业西南物理研究院 高温超导磁体和材料冷却的新装置
DE102004053973B3 (de) 2004-11-09 2006-07-20 Bruker Biospin Ag NMR-Spektrometer mit Refrigeratorkühlung

Also Published As

Publication number Publication date
JP2010508666A (ja) 2010-03-18
CN101536123B (zh) 2012-02-22
WO2008052777A1 (de) 2008-05-08
DE102006051880A1 (de) 2008-05-08
JP5306216B2 (ja) 2013-10-02
CN101536123A (zh) 2009-09-16
EP2084722A1 (de) 2009-08-05
US20100281888A1 (en) 2010-11-11
US8291725B2 (en) 2012-10-23

Similar Documents

Publication Publication Date Title
DE2535132C3 (de) Verfahren und Vorrichtung zur Herstellung von Drucksauerstoff durch zweistufige Tieftemperaturrektifikation von Luft
EP2084722B1 (de) Verfahren zum abkühlen supraleitender magnete
DE2730155C3 (de) Verfahren zum Erzeugen von Kälte im Bereich kryogener Temperaturen
DE69912229T2 (de) Kryogenisches Luftzerleggungsverfahren
DE2207509A1 (de) Verfahren und Vorrichtung zur Neon und Helium Erzeugung aus Luft
DE2207508A1 (de) Verfahren und Vorrichtung zur Trennung von Neon Helium Gemisch mittels Expansions turbinen
EP3365615B1 (de) Verfahren und vorrichtung zum betreiben eines kältekreislaufes mit einem sublimator für kohlendioxid als kältemittel
EP2997320A2 (de) Anlage zur verringerung eines kohlendioxidgehalts eines kohlendioxidhaltigen und kohlenwasserstoffreichen gasstroms und entsprechendes verfahren
DE102015009290A1 (de) Verfahren zum Befüllen eines Kältemittelkreislaufs eines Kraftwagens
DE1501101B2 (de) Vorrichtung zum Erzeugen von Kälte und/oder zum Verflüssigen von Gasen
DE102013012656A1 (de) Verfahren zum Abtrennen unerwünschter Komponenten aus einem Helium-Strom
DE2009401A1 (de) Verfahren zum Verflüssigen tiefsie dender Gase
DE550686C (de) Verfahren zum Zerlegen von Gasgemischen unter Abscheidung der leicht kondensierbarenBestandteile in fluessiger oder fester Form
DE102011076858A1 (de) Vorrichtung zur Kühlung einer supraleitenden Maschine und Verfahren zum Betrieb der Vorrichtung
DE102007057979A1 (de) Verfahren zum Befüllen eines Speicherbehälters mit kryogenem Wasserstoff
DE102016114906A1 (de) Vorrichtung und Verfahren zum Speichern und Rückgewinnen von Energie
DE102019206904B4 (de) Verfahren zur Kühlung eines Fluidgemischs
EP3322947A1 (de) Verfahren zum abkühlen eines prozessstromes
DE102011009965A1 (de) Verfahren zum Betreiben eines Kältekreislaufes
DE102010021798A1 (de) Verfahren und Vorrichtung zur Trennung eines Stoffgemischs durch Destillation
DE102019209509A1 (de) Verfahren und vorrichtung zur reinigung von bauteilen für die euv-mikrolithographie
DE880893C (de) Verfahren zur Zerlegung von Luft bei gleichzeitiger Gewinnung von fluessigem oder komprimiertem Sauerstoff
DE685490C (de) Verfahren zum Ausfrieren der Kohlensaeure
DE102010055448A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE745667C (de) Verfahren zur Zerlegung schwer kondensierbarer Gasgemische

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 814662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014957

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014957

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20170421

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 814662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007014957

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221020

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221020

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007014957

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240501