EP2010689B1 - Herstellungsprozess eines strukturelements für die flugzeigkonstruktion, welcher differentialfestwalzen enthält - Google Patents

Herstellungsprozess eines strukturelements für die flugzeigkonstruktion, welcher differentialfestwalzen enthält Download PDF

Info

Publication number
EP2010689B1
EP2010689B1 EP07731300.5A EP07731300A EP2010689B1 EP 2010689 B1 EP2010689 B1 EP 2010689B1 EP 07731300 A EP07731300 A EP 07731300A EP 2010689 B1 EP2010689 B1 EP 2010689B1
Authority
EP
European Patent Office
Prior art keywords
mpa
preferentially
dimension
thickness
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07731300.5A
Other languages
English (en)
French (fr)
Other versions
EP2010689A1 (de
Inventor
Philippe Lequeu
Fabrice Heymes
Armelle Danielou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP2010689A1 publication Critical patent/EP2010689A1/de
Application granted granted Critical
Publication of EP2010689B1 publication Critical patent/EP2010689B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2205/00Particular shaped rolled products
    • B21B2205/02Tailored blanks

Definitions

  • the present invention relates to wrought products and structural elements, in particular for aircraft construction, made of aluminum alloy.
  • the wrought products can be rolled products (such as thin sheets, medium sheets, thick sheets), spun products (such as bars, profiles, tubes or wires), and forged products.
  • Structural monolithic metal elements with variable properties in space are of considerable interest in the current context of the aeronautical industry. Indeed, the structural elements are subject to a set of contradictory constraints that require particular choices on materials and processing conditions, which can lead to unsatisfactory compromises.
  • the replacement of the long and costly mechanical assembly steps by more economical steps of integral machining of monolithic elements is limited by the possibility of obtaining within a monolithic element the most advantageous properties in a monolithic element. each geometric area. It would therefore be very interesting to produce monolithic structural elements having variable properties in space so as to obtain in each zone an optimal compromise of properties while enjoying the economic advantages of integral machining processes.
  • no method of manufacturing monolithic metal structural element with variable properties in space has been industrialized to date because many problems of cost and reliability are encountered.
  • a first proposed solution is to achieve, during the income, a different heat treatment between the ends of the structural element.
  • FR 2 707 092 discloses a method for producing structurally curable products having continuously variable properties in at least one direction in which the feed is made by carrying one end of the product at a temperature T and the other end at a temperature of temperature t in a specific furnace comprising a hot chamber and a cold room connected by a heat pump.
  • WO 2005/098072 (Pechiney Rhenalu) describes a manufacturing process in which at least one stage of the treatment of income is carried out in a controlled thermal profile oven comprising at least two zones or groups of zones Z 1 and Z 2 with initial temperatures T 1 and T 2 in which the length of the two zones is at least one meter.
  • the problem is partly solved by locally varying the thickness of structural elements with homogeneous properties in space so as to allow them to withstand the local level of stress.
  • the variation in thickness is generally obtained by assembly or by machining.
  • CA 2,317,366 Airbus GmbH describes, for example, the manufacture of fuselage elements by welding plates of various thicknesses. It is also conceivable to directly obtain by rolling sheets of varying thickness so as to avoid the assembly steps and the associated technical and economic problems. Thickness variations can be envisaged in the longitudinal direction or in the transverse direction (see for example R. Kopp, C. Wiedner and A. Meyer, International Sheet Metal Review, July / August 2005, p20-24 ).
  • JP 11-192502 (Nippon Steel) and describes a method for obtaining a steel strip, whose thickness and static mechanical characteristics vary in width.
  • EP 0 062 469 A1 (Sumitomo) describes a process comprising a step of transformation by cold plastic deformation with several cold reductions followed by a heat treatment solubilization also called dissolution.
  • WO 00/21695 (Thyssen Krupp) describes a method for obtaining sections of variable thickness in the rolling direction within a metal strip, these sections having different mechanical properties.
  • the problem addressed by the present invention is to develop a process for the manufacture of wrought products and monolithic alloy structural elements. of aluminum, in particular for aircraft construction, having variable use properties in space while having geometrical characteristics identical to those of current products and elements, which is sufficiently economical and controllable, which makes it possible to vary in the space the properties of use of structural elements whose manufacturing process does not necessarily require income and which allows to vary the properties of employment of structural elements at different positions of their length.
  • a first object of the present invention is a method for manufacturing a wrought product or a monolithic multi-functional structural element made of aluminum alloy comprising a hot transformation step characterized in that after the hot conversion it also comprises at least one step of transformation by cold plastic deformation in which at least two zones of the structural element of the average generalized plastic deformations different from at least 2% and preferably different by at least 3% are imposed. .
  • a second object of the invention is a wrought product or a 2XXX alloy structure element in the T3X state that can be obtained by the method according to the invention.
  • a third object of the invention is a wrought product or a structural element made of 2XXX alloy containing lithium in the T8X state that can be obtained by the process according to the invention.
  • the static mechanical characteristics ie the breaking strength R m , the yield stress R p0,2 , and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1.
  • K 1C toughness is measured according to ASTM E 399.
  • the definitions of the European standard EN 12258-1 apply, in particular without heat treatment, an alloy which can not be substantially hardened by heat treatment and alloy with heat treatment an alloy that can be hardened by a suitable heat treatment.
  • sheet metal is used here for rolled products of any thickness.
  • cold plastic deformation plastic deformation for which the metal is deliberately heated neither before being deformed nor during the deformation.
  • cold plastic deformations including cold rolling, controlled pulling (planing), drawing, drawing, stamping, stamping, bending, compression and cold forging.
  • hot transformation is meant a deformation step for which the initial temperature of the metal is at least 200 ° C.
  • the average generalized plastic deformation is the average of the generalized plastic deformation in a given volume.
  • machining includes any material removal process such as turning, milling, drilling, reaming, tapping, EDM, grinding, polishing, chemical machining.
  • spun product also includes products that have been drawn after spinning, for example by cold drawing through a die. It also includes drawn products.
  • wrought product refers to a semi-finished product (i.e., an intermediate product) ready to be processed, in particular by sawing, machining and / or forming a structural element. In some cases the wrought product can be used directly as a structural element.
  • the wrought products can be rolled products (such as thin sheets, medium sheets, thick sheets), spun products (such as bars, profiles, tubes or wires), and forged products.
  • the method of manufacturing the wrought product comprises a controlled pulling step, the ends of the workpiece which are under the grip of the jaws of the traction bench are sawed so as to render the workpiece usable in mechanical engineering.
  • structural element refers to an element used in mechanical engineering for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is usually prescribed or performed. It is typically a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs and spars) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the floor beams, the seat tracks and the doors.
  • fuselage such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs and spars
  • empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the floor beams, the seat tracks and the doors.
  • monolithic structural element refers to a structural element which has been obtained from a single piece of semi-finished product, rolled, forged or molded, without assembly, such as riveting, welding, gluing, with another room.
  • multi-functional structural element refers here primarily to the functions conferred by the metallurgical characteristics of the product and not by its geometric form.
  • the problem is solved by a method of manufacturing a wrought aluminum alloy product or a monolithic multi-functional aluminum alloy structural element which comprises at least one step of plastic deformation to cold after the hot transformation, in which at least two zones of the wrought product or of the structural element undergo different average generalized plastic deformations of at least 2%, preferably at least 3% and even more preferentially at least 4% or even 5%.
  • the areas considered have a significant volume relative to the total volume of the structural element.
  • the volume of the zones considered represents at least 5%, preferably at least 10% and more preferably at least 15% of the total volume of the wrought product or the structural element.
  • all zones of the wrought product or the structural element undergo minimum generalized plastic deformation of at least 1% and preferably at least 1.5%.
  • the process according to the invention comprises at least two stages of transformation by cold plastic deformation after the hot transformation.
  • the methods according to the invention make it possible to produce wrought products and structural elements having a main dimension or final length L f in the principal direction or direction of the length L and a final section in the plane perpendicular to this direction S f .
  • the section S f is substantially constant at all points of the wrought product.
  • the thickness e f it is advantageous for the thickness e f to be substantially constant at all points.
  • Machining may be one of the last step of the method according to the invention so as to obtain a final section and / or a final thickness of the wrought product substantially constant at any point.
  • the process according to the invention can be used to produce wrought products, preferably sheets and profiles, and structural elements of any wrought aluminum alloy.
  • the invention can be used with alloys without heat treatment such as alloys 1XXX, 3XXX, 5XXX and some alloys of the 8XXX series, and particularly advantageously with 5XXX alloys containing scandium, at a preferred content of 0.001 to 5% by weight and even more preferably 0.01 to 0.3% by weight.
  • the differences in mechanical properties resulting from the differences in workmanship obtained by the process according to the invention give the structural elements obtained from wrought products of alloy without heat treatment according to the invention a multi-functional character.
  • a heat-treated aluminum alloy is used, and between the hot conversion and the first cold plastic deformation transformation, a solution step, a quenching step and optionally a step of income posterior to the transformation steps by cold plastic deformation.
  • the invention can be used to develop wrought products or aluminum alloy structural members of the 2XXX, 4XXX, 6XXX and 7XXX series, as well as 8XXX series-containing structural alloy containing lithium.
  • alloy containing lithium an alloy whose lithium content is greater than 0.1% by weight.
  • an income can be used to obtain for example a T8X state or, on the contrary, to use a natural aging to a T3X state.
  • the invention is particularly advantageous for producing wrought products or structural elements made of 2XXX alloy in the T3X state.
  • the cold plastic deformation carried out after the solution and quenching steps makes it possible to modify the kinetics of income.
  • the zones undergoing different average generalized plastic deformations will reach different metallurgical states during the income, which will give the structural element a multi-functional character.
  • the tempering is carried out in a furnace having a temperature gradient so as to amplify the differences in properties between the ends of the heat sink element. structure.
  • the at least two zones of the wrought product or of the structural element undergoing different average generalized plastic deformations of at least 2% are located at a different position in the main direction or in length. L.
  • the zones considered advantageously have a section S Z in the plane perpendicular to the direction L equal to the section of the product wrought in this plane.
  • the wrought product is substantially constant section S Z is advantageously substantially equal to S f .
  • the length of said zones in the direction L is preferably at least 1m and preferably at least 5m.
  • the method according to the invention comprises in the first variant at least one cold plastic deformation step by controlled traction.
  • Controlled traction is usually used to perform planing or straightening and to release residual stresses.
  • a controlled traction step in which one of the ends of the intermediate product on which the controlled traction is carried out significantly exceeds the jaws of the traction bench, can also be used to generate average generalized plastic deformations. between two areas of the wrought product.
  • the figure 1 illustrates an embodiment of the invention in which 3 controlled traction steps are performed successively.
  • At least one of the jaws (1) of the traction bench is then moved as indicated on the figure 1 , so that one of the ends of the piece significantly exceeds the jaws and the length of the part between the jaws is L 1 .
  • a second controlled traction step B is then performed on the zone of the part located between the jaws so as to obtain a second useful intermediate length L i2 of the element and thus to pass the zone (22) between the jaws of the length L 1 to the length L i2 - L i1 + L 1 .
  • at least one of the jaws can be moved again so as to perform at least a third pulling step on a portion of length L 2 .
  • a fourth step D the ends of the part which were under the grip of the jaws of the traction bench during step A are sawn.
  • the method using successive pulls described by the figure 1 can be applied to sheet metal as well as to spun products.
  • the figure 2 describes another embodiment of the first variant of the invention.
  • an intermediate product having a variable section in the direction of the length L.
  • the intermediate product thus obtained has an initial length L 0 and three different sectional areas S 1 , S 2 and S 3 .
  • the deformations undergone by these zones are different.
  • At least one cold plastic deformation step is performed by compression. This embodiment is illustrated by the figure 5 .
  • the method according to the invention comprises a cold rolling step in which the thickness of the sheet is variable. at the entrance of the rolling mill and substantially constant at the exit of the rolling mill.
  • the figure 3 illustrates an embodiment in which a sheet having three zones Z31 , Z32 and Z33 of respective thicknesses e 1 , e 2 and e 3 and an initial length L 0 undergoes a cold rolling step between two rolls (5) leading to a final thickness e f .
  • the sheet having a variable thickness in the direction L required in the embodiment described by the figure 3 can be obtained for example by modifying in the course of hot rolling the thickness target.
  • this sheet of variable thickness can be obtained by machining a sheet of constant thickness resulting from the hot rolling step.
  • the figure 3 describes an embodiment in which the thickness variation is obtained on one side, the other face remaining flat. It is also possible to vary the thickness on both sides and not to keep a plane face.
  • the method according to the invention comprises a cold rolling step in which the thickness of the sheet is substantially constant at the input of the rolling mill and variable in the direction L at the exit of the rolling mill and a subsequent machining step which makes it possible to obtain a substantially constant thickness at all points.
  • the areas of the structural element undergoing different mean generalized plastic deformations of at least 2% are located at a different position in the transverse direction l .
  • the zones considered advantageously have a thickness e Z in the direction of the thickness e equal to the thickness of the wrought product.
  • the thickness e Z is advantageously substantially equal to e f .
  • the width of said zones is preferably at least 0.2 m and preferably at least 0.4 m.
  • the method according to the invention comprises a cold rolling step in which the thickness of the sheet is variable in the transverse direction 1 at the inlet of the rolling mill and is substantially constant at the exit of the rolling mill.
  • the thickness variation of the sheet may in particular be obtained by hot rolling, by machining at the end of the hot rolling or by forging.
  • This embodiment is illustrated on the figure 4 where a sheet whose thickness is e 1 for the areas at the ends of the element in direction 1 is e 2 for the centrally located area in the direction 1 is laminated in the direction L to a thickness substantially homogeneous e f .
  • the embodiment in which the zones Z41 and Z43 have the same initial thickness is advantageous, however an embodiment in which the thicknesses are different is also possible.
  • the method according to the invention comprises a cold rolling step in which the thickness of the sheet is substantially constant at the input of the rolling mill and variable in the direction l at the output of the rolling mill and a subsequent machining step that provides a substantially constant thickness at any point.
  • the figure 5 describes another embodiment in which a compression is performed using a tool (6) moving in the direction symbolized by an arrow.
  • the thickness is reduced from e 0 to e 1 , then in a second step from e 1 to e 2 on a part of the structural element, then finally during a third step of e 2 to e 3 , which defines three zones Z51 , Z52 and Z53 .
  • a final machining step allows to obtain a final thickness e f substantially equal at any point. It is also possible to machine the sheet to different thicknesses and then compress it so as to obtain a constant thickness at all points.
  • a sheet 30 meters long, 2.5 meters wide and 28.2 mm thick was manufactured by hot rolling a rolling plate.
  • composition of the alloy used is given in Table 1 below: Table 1: composition of the alloy rolling plate AA2023 (% by weight) Yes Fe Cu mg Ti Zr sc 0.06 0.07 3.81 1.36 0,024 0.11 0.03
  • the rolling plate was homogenized for 12 hours at 500 ° C.
  • the inlet temperature of the hot rolling was 460 ° C.
  • the sheet was then dissolved at 500 ° C. and quenched.
  • the sheet was then cold-rolled, so as to obtain a substantially constant thickness of 25.5 mm over the entire sheet, then underwent a controlled pull with a permanent elongation of about 2% at the end of which ends of the piece which were under the grip of the jaws of the traction bench were sawn
  • the rolling step led the zone Z31 to reach a length of about 11 meters
  • Table 2 The deformations performed in the different zones are summarized in Table 2 below: Table 2.
  • Zoned Work hardening rate Tensile strain rate Total work hardening rate Generalized deformation by rolling Generalized deformation by traction Total generalized deformation Z31 10.2% 2.0% 12.4% 11.2% 2.0% 13.2% Z32 3.1% 2.0% 5.2% 3.6% 2.0% 5.6% Z33 0.0% 2.0% 2.0% 0.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%
  • zone Z31 is characterized by a high mechanical strength, to the detriment of a limited elongation while zone Z33 is distinguished by a significant elongation but for a lower static mechanical resistance.
  • a sheet 30 meters long, 2.5 meters wide and 16.8 mm thick was manufactured by hot rolling a rolling plate.
  • composition of the alloy used is given in Table 4 below: Table 4: composition of the alloy rolling plate AA2024A (% by weight) Yes Fe Cu mn mg Ti 0.04 0.07 3.96 0.38 1.29 0,013
  • the rolling plate was homogenized and then hot rolled.
  • the sheet was then dissolved at 500 ° C. and quenched.
  • the sheet was then cold-rolled, so as to obtain a substantially constant thickness of 15.3 mm over the entire sheet, then underwent a controlled pull with a permanent elongation of about 2% at the end of which ends of the piece which were under the grip of the jaws of the traction bench were sawed.
  • Zoned Work hardening rate Tensile strain rate Total work hardening rate Generalized deformation by rolling Generalized deformation by traction Total generalized deformation Z31 9.2% 2% 11.3% 10.1% 2.0% 12.1% Z32 3.9% 2% 6.0% 4.4% 2.0% 6.4% Z33 0.0% 2% 2.0% 0.0% 2% 2.0%
  • zone Z31 is characterized by a high mechanical strength, to the detriment of a limited elongation while zone Z33 is distinguished by a significant elongation but for a lower static mechanical resistance.
  • composition of the alloy used is given in Table 7 below: Table 7: composition of the alloy rolling plate AA2027 (% by weight) Yes Fe Cu mn mg Zn Ti Zr 0.05 0.11 4.2 0.6 1.3 0.06 0.02 0.11
  • the spinning billet was homogenized at 490 ° C and extruded while hot.
  • Table 8 The deformations performed in the zones are summarized in Table 8 below: Table 8. Work hardening rate and general deformation in zones Z11, Z12 and Z13.
  • Tensile strain rate Generalized deformation rate Zoned Step 1 2nd step 3rd step Total Step 1 2nd step 3rd step Total Z11 2.8% 5.6% 2.4% 11.2% 2.8% 5.4% 2.4% 10.6% Z12 2.8% 5.6% 8.6% 2.8% 5.4% 8.2% Z13 2.8% 2.8% 2.8% 2.8%
  • zone Z11 is characterized by high mechanical strength, to the detriment of limited elongation and toughness, while zone Z13 is distinguished by a significant elongation and tenacity but for a lower static mechanical strength.
  • a sheet 30 meters long, 2.5 meters wide and 33 mm thick was manufactured by hot rolling a rolling plate.
  • composition of the alloy used is given in Table 10 below: Table 10: Composition of rolling plate alloy AA2195 (% by weight) Yes Fe Cu Li mg Zr Ag 0.03 0.06 4.3 1.17 0.39 0.12 0.35
  • the rolling plate was homogenized and then hot rolled.
  • the sheet was then dissolved at 510 ° C. and quenched.
  • zone G One half of the sheet (zone G) was then cold-rolled to 30 mm thickness while the other half underwent a controlled pull with 2.5% offset jaws (zone H).
  • the sheet was then machined, so as to obtain a substantially constant thickness of 30 mm over the entire sheet, then underwent a controlled pull with a permanent elongation of about 1.5% at the end of which the ends of the piece that were under the grip of the jaws of the traction bench were sawn
  • Table 11 The deformations made in the different zones are summarized in Table 11 below: Table 11. Work hardening rate and generalized deformation in zones G and H. Zoned Work hardening rate Tensile strain rate Total work hardening rate Deformations generalized by rolling Generalized deformation by traction Total generalized deformation BOY WUT 10% 1,5% 11.3% 11% 1,5% 11.5% H 0% 2.5 + 1.5% 4.0% 0% 2.5 + 1.5% 4.0%
  • the method according to the invention makes it possible to obtain compromises of different properties in the zones G and H.
  • the zone G is characterized by a high mechanical resistance, to the detriment of a limited elongation and tenacity whereas the zone H is distinguished by greater elongation and toughness but for lower static strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Rolling (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (14)

  1. Verfahren zur Herstellung eines Kneterzeugnisses aus Aluminiumlegierung ohne Wärmebehandlung, wobei das Verfahren umfasst:
    - einen Warmumformschritt,
    - mindestens einen Umformschritt durch plastische Kaltverformung, bei dem in wenigstens zwei Bereichen des Kneterzeugnisses mittlere generalisierte plastische Verformungen durchgeführt werden, die um mindestens 2% und vorzugsweise um mindestens 3% voneinander verschieden sind,
    dadurch gekennzeichnet, dass die Umformung durch plastische Kaltverformung nach der Warmumformung durchgeführt wird.
  2. Verfahren zur Herstellung eines Kneterzeugnisses aus Aluminiumlegierung mit Wärmebehandlung, wobei das Verfahren umfasst:
    - einen Warmumformschritt,
    - einen Lösungsglühschritt und einen Abschreckschritt,
    - mindestens einen Umformschritt durch plastische Kaltverformung, bei dem in wenigstens zwei Bereichen des Kneterzeugnisses mittlere generalisierte plastische Verformungen durchgeführt werden, die um mindestens 2 % und vorzugsweise um mindestens 3 % voneinander verschieden sind,
    dadurch gekennzeichnet, dass die Umformung durch plastische Kaltverformung nach der Warmumformung und dem Lösungsglüh- und Abschreckschritt durchgeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, welches mindestens zwei Umformschritte durch plastische Kaltverformung nach der Warmumformung umfasst.
  4. Verfahren nach irgendeinem der Ansprüche 1 bis 3, bei dem das Kneterzeugnis ein Haupt- oder Längenmaß in der Richtung L aufweist und bei dem sich die wenigstens zwei Bereiche an einer unterschiedlichen Position in der Hauptrichtung L befinden.
  5. Verfahren nach Anspruch 4, bei dem mindestens ein plastischer Kaltverformungsschritt ein kontrolliertes Ziehen ist und bei dem eines der Enden in Hauptrichtung des Zwischenerzeugnisses, an dem das kontrollierte Ziehen durchgeführt wird, bei diesem kontrollierten Ziehschritt deutlich aus den Klemmbacken der Ziehmaschine herausragt.
  6. Verfahren nach Anspruch 4, bei dem mindestens ein plastischer Kaltverformungsschritt ein kontrolliertes Ziehen ist und bei dem dieser kontrollierte Ziehschritt an einem Zwischenerzeugnis durchgeführt wird, das in der Ebene senkrecht zur Richtung L einen variablen Querschnitt hat.
  7. Verfahren nach Anspruch 4, bei dem das Kneterzeugnis ein Blech ist, das ein Haupt- oder Längenmaß in Richtung L, ein Quer- oder Breitenmaß in Richtung l und ein Dickenmaß in Richtung e aufweist, und bei dem mindestens ein Umformschritt durch plastische Kaltverformung mittels Kaltwalzen so durchgeführt wird, dass die Dicke des Blechs am Eingang des Walzwerks variabel und am Ausgang des Walzwerks im Wesentlichen konstant ist.
  8. Verfahren nach Anspruch 7, bei dem die Dickenvariation des Blechs am Eingang des Kaltwalzwerks während des Warmwalzschritts bzw. durch Bearbeitung eines aus dem Warmwalzschritt hervorgehenden Blechs konstanter Dicke erzeugt wird.
  9. Verfahren nach Anspruch 4, bei dem das Kneterzeugnis ein Blech ist, das ein Haupt- oder Längenmaß in Richtung L, ein Quer- oder Breitenmaß in Richtung l und ein Dickenmaß in Richtung e aufweist,
    und bei dem mindestens ein Umformschritt durch plastische Kaltverformung mittels Kaltwalzen so durchgeführt wird, dass die Dicke des Blechs am Eingang des Walzwerks im Wesentlichen konstant und am Ausgang des Walzwerks variabel ist,
    und bei dem mit einem nachfolgenden Bearbeitungsschritt eine an allen Stellen im Wesentlichen konstante Enddicke erhalten werden kann.
  10. Verfahren nach irgendeinem der Ansprüche 1 bis 3, bei dem das Kneterzeugnis ein Blech ist, das ein Haupt- oder Längenmaß in Richtung L, ein Quer- oder Breitenmaß in Richtung l und ein Dickenmaß in Richtung e aufweist, und bei dem sich die wenigstens zwei Bereiche an einer unterschiedlichen Position in der Querrichtung l befinden.
  11. Verfahren nach Anspruch 10, bei dem mindestens ein Umformschritt durch plastische Kaltverformung mittels Kaltwalzen so durchgeführt wird, dass die Dicke des Blechs am Eingang des Walzwerks im Wesentlichen konstant und am Ausgang des Walzwerks variabel ist,
    und bei dem mit einem nachfolgenden Bearbeitungsschritt eine an allen Stellen im Wesentlichen konstante Enddicke erhalten werden kann.
  12. Kneterzeugnis aus einer Legierung 2XXX im Zustand T3X, herstellbar durch das Verfahren nach irgendeinem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die wenigstens zwei Bereiche Z1 und Z2 Festigkeitseigenschaften aufweisen, die ausgewählt sind aus der Gruppe bestehend aus
    (i) Z1: Rm(L) > 500 MPa und vorzugsweise Rm(L) > 520 MPa
    und Z2 : A(L)(%) > 16% und vorzugsweise A(L)(%) > 18%
    (ii) Z1: Rm(L) > 450 MPa und vorzugsweise Rm(L) > 470 MPa
    und Z2 : A(L)(%) > 18% und vorzugsweise A(L)(%) > 20%
    (iii) Z1: Rm(L) > 550 MPa und vorzugsweise Rm(L) > 590 MPa
    und Z2 : A(L)(%) > 10% und vorzugsweise A(L)(%) > 14%
    (iv) Z1: Rm(L) > 550 MPa und vorzugsweise Rm(L) > 590 MPa
    und Z2 : K1c(L-T) > 45MPa√m und vorzugsweise K1c(L-T) > 45MPa√m.
  13. Kneterzeugnis aus einer Legierung 2XXX im Zustand T3X, herstellbar durch das Verfahren nach irgendeinem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die wenigstens zwei Bereiche Z1 und Z2 Festigkeitseigenschaften aufweisen, bei denen
    (i) Rp0,2, gemessen in L-Richtung oder in LT-Richtung, eine Abweichung Rp0,2(Z1) - Rp0,2(Z2) von mindestens 50 MPa und vorzugsweise mindestens 70 MPa aufweist, und/oder
    (ii) Rm, gemessen in L-Richtung oder in LT-Richtung, eine Abweichung Rm(Z1) - Rm(Z2) von mindestens 20 MPa und vorzugsweise mindestens 30 MPa aufweist.
    (iii) K1c, gemessen in L-T-Richtung, weist eine Abweichung K1c (Z1) - K1c (Z2) von mindestens 5MPa√m und vorzugsweise mindestens 15MPa√m auf.
  14. Kneterzeugnis aus einer Lithium enthaltenden Legierung 2XXX im Zustand T8X, herstellbar durch das Verfahren nach irgendeinem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die wenigstens zwei Bereiche Z1 und Z2 Festigkeitseigenschaften aufweisen, die ausgewählt sind aus der Gruppe bestehend aus
    (i) Z1 : Rm(L) > 630 MPa und vorzugsweise Rm(L) > 640 MPa
    und Z2 : A(L)(%) > 8% und vorzugsweise A(L)(%) > 9%
    (ii) Z1: Rm(L) > 640 MPa und vorzugsweise Rm(L) > 650 MPa
    und Z2 : A(L)(%) > 7% und vorzugsweise A(L)(%) > 8%
    (iii) Z1: Rm(L) > 630 MPa und vorzugsweise Rm(L) > 640 MPa
    und Z2 : K1c(L-T) > 25MPa√m und vorzugsweise K1c(L-T) > 30MPa√m.
EP07731300.5A 2006-04-21 2007-04-16 Herstellungsprozess eines strukturelements für die flugzeigkonstruktion, welcher differentialfestwalzen enthält Active EP2010689B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0603567A FR2900160B1 (fr) 2006-04-21 2006-04-21 Procede de fabrication d'un element de structure pour construction aeronautique comprenant un ecrouissage differentiel
US80355306P 2006-05-31 2006-05-31
PCT/FR2007/000633 WO2007122314A1 (fr) 2006-04-21 2007-04-16 Procede de fabrication d'un element de structure pour construction aeronautique comprenant un ecrouissage differentiel

Publications (2)

Publication Number Publication Date
EP2010689A1 EP2010689A1 (de) 2009-01-07
EP2010689B1 true EP2010689B1 (de) 2017-10-25

Family

ID=37137467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07731300.5A Active EP2010689B1 (de) 2006-04-21 2007-04-16 Herstellungsprozess eines strukturelements für die flugzeigkonstruktion, welcher differentialfestwalzen enthält

Country Status (9)

Country Link
US (1) US10144998B2 (de)
EP (1) EP2010689B1 (de)
JP (1) JP5576656B2 (de)
CN (1) CN101426945B (de)
BR (1) BRPI0711263A2 (de)
CA (1) CA2649571C (de)
FR (1) FR2900160B1 (de)
RU (1) RU2440438C2 (de)
WO (1) WO2007122314A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870234B1 (fr) * 2004-05-13 2007-02-09 Snpe Materiaux Energetiques Sa Compostion pyrotechnique dosable utilisee comme fusible thermique dans un generateur de gaz et generateur de gaz incluant un compose ayant ladite composition
CN101056736B (zh) * 2004-09-14 2010-12-01 爱尔康何纳吕公司 包括至少两个彼此不同或具有不同冶金学状态的铝合金部件的焊接结构构件及其制造方法
EP2829623B1 (de) * 2007-12-04 2018-02-07 Arconic Inc. Verbesserte Aluminium-Kupfer-Lithium-Legierungen
FR2938553B1 (fr) 2008-11-14 2010-12-31 Alcan Rhenalu Produits en alliage aluminium-cuivre-lithium
FR2938790B1 (fr) * 2008-11-21 2012-02-17 Alcan Rhenalu Profiles creux en alliage d'aluminium
RU2012106647A (ru) * 2009-07-24 2013-08-27 Алкоа Инк. Улучшенные алюминиевые сплавы серии 5ххх и изготовленные из них деформированные изделия
DE102010000292B4 (de) 2010-02-03 2014-02-13 Thyssenkrupp Steel Europe Ag Metallband hergestellt aus Stahl mit unterschiedlichen mechanischen Eigenschaften
EP2614170A4 (de) * 2010-09-08 2015-10-14 Alcoa Inc Verbesserte 7xxx-aluminiumlegierungen und verfahren zu ihrer herstellung
FR2969177B1 (fr) * 2010-12-20 2012-12-21 Alcan Rhenalu Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
FR2997706B1 (fr) * 2012-11-08 2014-11-07 Constellium France Procede de fabrication d'un element de structure d'epaisseur variable pour construction aeronautique
FR3013675B1 (fr) * 2013-11-22 2016-01-22 Airbus Operations Sas Partie de fuselage pour aeronef en materiau composite comprenant des lachers de plis a faible pente
FR3014904B1 (fr) * 2013-12-13 2016-05-06 Constellium France Produits files pour planchers d'avion en alliage cuivre lithium
EP3025809B1 (de) * 2014-11-28 2017-11-08 Ansaldo Energia IP UK Limited Verfahren zur herstellung einer komponente mittels additivem fertigungsverfahren
CN108472712A (zh) * 2016-01-14 2018-08-31 奥科宁克公司 用于生产锻造产品和其它加工产品的方法
CA3032261A1 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
EP3529394A4 (de) 2016-10-24 2020-06-24 Shape Corp. Mehrstufiges formen von aluminiumlegierungen und thermisches behandlungsverfahren zur herstellung von fahrzeugkomponenten
US20180251877A1 (en) * 2017-03-01 2018-09-06 GM Global Technology Operations LLC High-strength aluminum stampings with tailored properties
US10688592B1 (en) * 2017-09-05 2020-06-23 United Launch Alliance L.L.C Friction stir welding of aluminum alloys
CN110788560A (zh) * 2018-08-01 2020-02-14 中国商用飞机有限责任公司 变厚度板件的制造方法、变厚度板件及航空设备
CN111235443A (zh) * 2020-03-30 2020-06-05 天津忠旺铝业有限公司 一种低加工变形2系铝合金板材的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062469A1 (de) * 1981-03-31 1982-10-13 Sumitomo Light Metal Industries Limited Verfahren zur Herstellung von Bauteilen aus einer feinkörnigen, hochfesten Aluminiumlegierung
US5496426A (en) * 1994-07-20 1996-03-05 Aluminum Company Of America Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941434A (ja) 1982-12-13 1984-03-07 Sumitomo Light Metal Ind Ltd 段付の航空機ストリンガ−およびその製造法
JPH02160134A (ja) * 1988-12-13 1990-06-20 Mitsubishi Heavy Ind Ltd Al−Li合金形材の製作方法
RU1788078C (ru) 1990-10-29 1993-01-15 Научно-производственное объединение "Композит" Способ изготовлени сварных изделий из алюминиевых сплавов
JP3288499B2 (ja) * 1993-09-10 2002-06-04 日新製鋼株式会社 異形断面帯板の製造方法
JP3268378B2 (ja) * 1994-12-28 2002-03-25 株式会社河合楽器製作所 異形条材の製造方法及び製造装置
GB9713209D0 (en) * 1997-06-20 1997-08-27 British Aerospace Friction welding metal components
JPH11169950A (ja) * 1997-12-04 1999-06-29 Kawasaki Steel Corp テーパプレートの製造方法
JP2000317523A (ja) * 1999-04-30 2000-11-21 Kobe Steel Ltd 異形断面条材とその矯正方法
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
RU2184174C2 (ru) 2000-08-01 2002-06-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Способ получения полуфабрикатов из алюминиевого сплава и изделие, полученное этим способом
US20030226935A1 (en) * 2001-11-02 2003-12-11 Garratt Matthew D. Structural members having improved resistance to fatigue crack growth
US6912517B2 (en) * 2001-11-29 2005-06-28 Koninklijke Philips Electronics N.V. Intelligent information delivery system
RU2341585C2 (ru) * 2002-12-17 2008-12-20 Пешинэ Реналю Способ изготовления элементов конструкции при помощи механической обработки толстых листов
FR2868084B1 (fr) * 2004-03-23 2006-05-26 Pechiney Rhenalu Sa Element de structure pour construction aeronautique presentant une variation des proprietes d'emploi
US7547366B2 (en) * 2004-07-15 2009-06-16 Alcoa Inc. 2000 Series alloys with enhanced damage tolerance performance for aerospace applications
JP5941434B2 (ja) 2013-06-04 2016-06-29 日本電信電話株式会社 セッション・ボーダ・コントローラのクラスタシステム、アプリケーション・サーバのクラスタシステム、および、そのsipダイアログ生成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062469A1 (de) * 1981-03-31 1982-10-13 Sumitomo Light Metal Industries Limited Verfahren zur Herstellung von Bauteilen aus einer feinkörnigen, hochfesten Aluminiumlegierung
US5496426A (en) * 1994-07-20 1996-03-05 Aluminum Company Of America Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product

Also Published As

Publication number Publication date
JP5576656B2 (ja) 2014-08-20
CN101426945A (zh) 2009-05-06
JP2009534191A (ja) 2009-09-24
FR2900160A1 (fr) 2007-10-26
RU2440438C2 (ru) 2012-01-20
EP2010689A1 (de) 2009-01-07
FR2900160B1 (fr) 2008-05-30
CA2649571A1 (fr) 2007-11-01
BRPI0711263A2 (pt) 2011-08-30
US10144998B2 (en) 2018-12-04
CN101426945B (zh) 2015-04-15
WO2007122314A1 (fr) 2007-11-01
RU2008145888A (ru) 2010-05-27
US20070246137A1 (en) 2007-10-25
CA2649571C (fr) 2014-03-25

Similar Documents

Publication Publication Date Title
EP2010689B1 (de) Herstellungsprozess eines strukturelements für die flugzeigkonstruktion, welcher differentialfestwalzen enthält
EP2710163B1 (de) Aluminium-magnesium-lithiumlegierung mit erhöhter zähigkeit
EP2364378B1 (de) Produkte aus aluminium-kupfer-lithium-legierung
EP1114877B1 (de) Strukturelement eines Flugzeugs aus Al-Cu-Mg Legierung
EP2917380B1 (de) Verfahren zur herstellung eines strukturelements mit einer variablen dicke zur flugzeugproduktion
EP1838891B1 (de) Grobblech aus al-zn-cu-mg legierung mit niedrigen internen drücken
EP2429752B1 (de) Verfahren zur montage von aluminiumlegierungsteilen mittels schweissen, einschliesslich kaltverformung und anschliessendem tempern des gesamten schweissbereichs ; entsprechende verbindung
CA2560672C (fr) Element de structure pour construction aeronautique presentant une variation des proprietes d'emploi
EP3201370B1 (de) Knetprodukt aus einer aluminium magnesium lithium legierung
EP1644546B1 (de) Verwendung von rohren aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz
EP3411508B1 (de) Dicke bleche aus al- cu - li legierung mit verbesserten ermüdungseigenschaften
EP3362584B1 (de) Dünne bleche aus aluminium-magnesium-zirkonium-legierungen für luft- und raumfahrtanwendungen
FR3026410B1 (fr) Produit corroye en alliage aluminium magnesium lithium
FR3026411A1 (fr) Procede de fabrication de produits en alliage aluminium magnesium lithium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM FRANCE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140311

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ISSOIRE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170516

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 940022

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007052790

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171025

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007052790

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

26N No opposition filed

Effective date: 20180726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 940022

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200504

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 17

Ref country code: DE

Payment date: 20230427

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230403

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230427

Year of fee payment: 17