EP1114877B1 - Strukturelement eines Flugzeugs aus Al-Cu-Mg Legierung - Google Patents

Strukturelement eines Flugzeugs aus Al-Cu-Mg Legierung Download PDF

Info

Publication number
EP1114877B1
EP1114877B1 EP00420263A EP00420263A EP1114877B1 EP 1114877 B1 EP1114877 B1 EP 1114877B1 EP 00420263 A EP00420263 A EP 00420263A EP 00420263 A EP00420263 A EP 00420263A EP 1114877 B1 EP1114877 B1 EP 1114877B1
Authority
EP
European Patent Office
Prior art keywords
structure element
element according
temperature
product
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00420263A
Other languages
English (en)
French (fr)
Other versions
EP1114877A1 (de
Inventor
Timothy Warner
Philippe Lassince
Philippe Leqeu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9553940&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1114877(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP1114877A1 publication Critical patent/EP1114877A1/de
Application granted granted Critical
Publication of EP1114877B1 publication Critical patent/EP1114877B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the invention relates to aircraft structural elements, in particular skin and underside sail stiffeners for large commercial aircraft capacity, made from rolled, extruded or forged AlCuMg alloy the state treated by dissolution, quenching and tempering, and presenting, with respect to prior art products used for the same application, an improved compromise between the different job properties required.
  • Large commercial aircraft wings have an upper section (or extrados) consisting of a skin made from thick alloy plates 7150 to the T651 state, or 7055 alloy to the T7751 state or 7449 to the T7951 state, and stiffeners made from profiles of the same alloy, and a lower part (or intrados) consisting of a skin made from thick 2024 alloy state T351 or 2324 in state T39, and stiffeners made from same alloy. Both parts are assembled by longitudinal members and ribs.
  • the alloy 2024 according to the designation of the Aluminum Association or the standard EN 573-3 has the following chemical composition (% by weight): If ⁇ 0.5 Fe ⁇ 0.5 Cu: 3.8 - 4.9 Mg: 1.2 - 1.8 Mn: 0.3 - 0.9 Cr ⁇ 0.10 Zn ⁇ 0.25 Ti ⁇ 0 15
  • US Patent 5652063 (Alcoa) relates to an aircraft structural element made from a composition alloy (% by weight): Cu: 4.85 - 5.3 Mg: 0.51 - 1.0 Mn: 0.4 - 0.8 Ag: 0.2 - 0.8 If ⁇ 0.1 Fe ⁇ 0.1 Zr ⁇ 0, With Cu / Mg between 5 and 9.
  • the sheet of this alloy in the T8 state has a yield strength> 77 ksi (531 MPa).
  • the alloy is particularly intended for supersonic aircraft.
  • the alloy may also contain: Zr ⁇ 0.20% V ⁇ 0.20% Mn ⁇ 0.80% Ti ⁇ 0.05% Fe ⁇ 0.15% If ⁇ 0.10%
  • the current trend is to use growing of very thick products, in the bulk of which structural elements are machined.
  • the skins of wing are machined from relatively thick sheets to allow machining in the mass of wing stiffeners, whereas these are usually made from profiles or folded sheets, and are then mechanically fixed to the skin.
  • the integral machining in the mass of the skin-stiffener assembly leads to a reduction in manufacturing costs, since the number of parts is reduced and we avoid assembly.
  • the use of an unassembled structure allows a reduction of the weight of the whole.
  • the sheets have homogeneous mechanical properties over the entire thickness, that is, the properties do not vary so significant depending on the thickness, typically between 10 and 120 mm.
  • the more machining is used the greater the stability to machining is desirable, which is obtained by a low level of internal constraints.
  • the mechanical characteristics are all the more homogeneous, and the internal constraints all the more reduced, as the sheet has a low sensitivity to the quenching.
  • aircraft wings especially large aircraft, have a curved wing profile, with a curvature both in the longitudinal direction and in the transversal direction.
  • This complex shape can be obtained during the operation of returned to an autoclave, by forming on a mold, by depressing the face the side of the mold with respect to the opposite side, using a partial vacuum. he It is imperative that this operation be successful, to avoid the costly waste of a part high added value, especially for large parts.
  • the pledge of success lies in the lowest possible springback for a form of mold given, because the springback is usually difficult to control.
  • the object of the present invention is to provide aircraft structural elements having properties at least equivalent to those of the same elements made alloy 2024 in the T351 state with respect to mechanical characteristics static, toughness, speed of crack propagation and resistance to corrosion, using rolled, spun or forged products with a low level of residual stresses, low sensitivity to quenching and good ability to train for income.
  • the subject of the invention is an aircraft structural element, in particular an aircraft wing surface element, made from a rolled or forged product, made of an alloy of composition (% by weight): Cu: 4.6 - 5.3 Mg: 0.10 - 0.50 Mn: 0.25 - 0.45 Si ⁇ 0.10 Fe ⁇ 0.15 Zn ⁇ 0.20 Cr ⁇ 0.10 other elements ⁇ 0.05 each and ⁇ 0.15 in total, remains Al treated by dissolution, quenching, controlled tensile stress relieving to more than 1.5% of permanent deformation and income.
  • the inlet temperature to hot rolling is preferably at least 40.degree. C., and more preferably at least 40.degree. 50 ° C, at the dissolution temperature.
  • the invention is based on the finding that a 2001 type alloy, with certain changes in composition and an appropriate manufacturing range, could present a set of properties making it suitable for use in structures of aircraft, and more particularly in the lower surface of the wings of commercial aircraft large capacity, with more interesting properties in terms of low quenching sensitivity, low residual stresses and income shaping.
  • the copper content range is significantly shifted towards the low, while remaining higher than that of the 2024 or 2034 alloys for intrados, for compensate, in its influence on the mechanical strength, the low magnesium. It is better to choose a copper content higher than 4.8% or at 4.9% or even 5%.
  • the magnesium content is of the same order as in the alloy 2001, and preferably between 0.20 and 0.40%.
  • the ratio Cu / Mg is thus almost always above 10, contrary to the teaching of the US patent 5652063, which recommends a Cu / Mg ratio of between 5 and 9.
  • the manganese content is controlled in a relatively narrow range. Below 0.15%, you could have a grain too big; above 0.45%, we get a non recrystallized structure which is not favorable to the control of the constraints residual. A preferred range is from 0.25 to 0.40%. Note that, for the same reason, and contrary to the teaching of US Patent 5593516, the alloy contains no other anti-recrystallizing element such as vanadium or zirconium.
  • the iron and silicon contents are maintained below 0.15, respectively. and 0.10%, and preferably below 0.09 and 0.08%, to ensure good tenacity.
  • the alloy may comprise up to 0.2% zinc, this addition having an effect favorable on the mechanical strength, without risk for other properties, such as corrosion resistance.
  • the transformation range includes the casting of a veneer or billet, a reheating or homogenization at a temperature close to the temperature of beginning fusion of the alloy and a hot transformation by rolling, spinning or forging.
  • rolling it may include a pass, called enlargement, in the direction perpendicular to that of the other passes, and intended for improve the isotropy of the product.
  • the hot transformation temperature is, preferably at a slightly lower level than that which would be profession with reference to the solution temperature. So, as far as the rolling, the inlet temperature is preferably at least 40 ° C or 50 ° C, below the solution temperature, and the outlet temperature of 20 to 30 ° C below the inlet temperature.
  • the product is then submitted to a dissolution as complete as possible, to a temperature close to, for example less than 10 ° C below, the temperature of beginning fusion of the alloy, while avoiding the burn. This temperature is between 520 and 535 ° C.
  • the quality of the dissolution in solution can be controlled by analysis differential enthalpy.
  • the product is then quenched, for example by immersion in cold water, so as to ensure a cooling rate of between 10 and 50 ° C / s. After quenching, the product is triturated until deformation at least 1.5%, so as to relax it and improve its flatness.
  • this traction also has the effect of improving, by a hardening effect, the elasticity limit after income, so that one can qualify the state obtained from state T851, as if it were a specific pass hardening after quenching.
  • the income itself can at the same time as the shaping of the curve of the intrados.
  • This income is preferably at a temperature greater than 160 ° C (and higher preferentially> 170 ° C.), of a duration enabling the limit peak to be reached elasticity, as for a T6 state.
  • a time income equivalent to that corresponding to 12 to 24 h at a temperature of 173 ° C is carried out; all time-temperature combination allowing to reach the peak of income of the alloy is usable.
  • the metallurgical structure obtained is, unlike that of alloys 2024 and 2034, strongly recrystallized, with a recrystallization rate still exceeding 70%, and the more often 90%, over the entire thickness.
  • the structural elements according to the invention have a compromise of properties (static mechanical characteristics, toughness, speed of crack propagation, corrosion resistance) that make them suitable for use in construction aeronautics, and in particular to the manufacture of wing bottoms.
  • properties static mechanical characteristics, toughness, speed of crack propagation, corrosion resistance
  • these elements can be easily made by machining and trained to income.
  • the alloy used is easily soldered by the usual techniques, which can reduce the number of riveted assemblies.
  • alloys have been prepared, the composition of which is indicated in Table 1.
  • the alloy A is a 2024-T3 alloy of the usual composition for the intrados application of the wing.
  • Alloy B is an alloy falling within the composition range described in US Patent No. 5652063, but without the addition of silver.
  • Alloy C is in accordance with the invention.
  • Alloys D and E differ from alloy C only by higher silicon for D, higher manganese and copper for E and F, and zirconium addition for F.
  • Cast plates with a cross section of 380 ⁇ 120 mm were homogenized, hot-rolled to a thickness of 22 mm, put into solution, quenched with cold water, triturated at 2.3% permanent deformation and returned.
  • the parameters of homogenization, hot rolling (inlet temperatures), dissolution and tempering are given in Table 2.
  • the toughness was also measured by the critical stress intensity factor K 1c (in MPa ⁇ m) measured, according to ASTM E 399, on CT20 specimens taken at quarter-thickness in the LT and TL directions (2 test pieces by case).
  • the alloy C according to the invention leads to a limit of elasticity significantly higher than that of 2024, and slightly lower than that of alloys B, E and F. Elongation is lower than for 2024, but better than that of alloys B, D, E and F. Toughness is the best of all the alloys tested. So we have a favorable compromise of these various properties. In particular, the results show the adverse effect, both on toughness and elongation, of increase in the silicon and manganese content, as well as an addition of zirconium.
  • the alloy according to the invention has the second best resistance to inter-crystalline corrosion on the surface, and the best at heart.
  • the difference between results at heart and on the surface is low, which is a favorable property when the structural element is manufactured by machining.
  • those according to the invention have an arrow such that the product fe is less than 0.10 l 2 , which is, as can be seen in the patent EP 0731185 mentioned above, the indication of a low rate of internal stresses.
  • the recrystallization rate (in%) at the surface, at quarter-thickness and at the core was measured by image analysis on micrographs of the 4 preceding samples. The results are shown in Table 8: Alloy e (mm) Area Recrist rate (Quarter-th.) Recrist rate (to heart) 2024 40 80 60 30 2034 40 12 0 0 Inv. 40 100 100 100 Inv. 80 100 100 100 100
  • the alloy according to the invention has, in the treated state, a structure completely recrystallized throughout the thickness of the product.
  • Samples according to the invention with a thickness of 15, 40 and 80 mm, treated in the T851 state, were measured with a hot-rolling entry temperature of 475 ° C. and dissolved for 2 hours. at 528 ° C, and a 24 hour yield at 173 ° C, the static mechanical characteristics (yield strength R 0.2 and tensile strength R m in MPa and elongation A in%)) at quarter-thickness and at half -thickness, in the L and TL directions.
  • the overall results are reproduced in Table 9. They show the low evolution of the properties as a function of the thickness, resulting from a low sensitivity to quenching. e (mm) CUPS.
  • These sheets are particularly suitable for the manufacture of wingtip elements. of aircraft by a manufacturing range involving machining and one or more formatting operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (22)

  1. Strukturelement eines Flugzeugs, insbesondere ein Element der Flügelunterseite eines Flugzeugs, hergestellt aus einem Walz-, Strangpressoder Schmiedeprodukt, aus einer Legierung mit der Zusammensetzung (Gew.-%):
    Cu: 4,6 - 5,3   Mg: 0,10 - 0,50   Mn: 0,25 - 0,45   Si < 0,10   Fe < 0,15 Zn < 0,20   Cr < 0,10
    weitere Elemente jeweils < 0,05 und insgesamt < 0,15, Rest Al,
    behandelt durch Lösungsglühen, Abschrecken, Entspannen durch kontrolliertes Recken mit einer bleibenden Verformung von mehr als 1,5 % und Warmauslagern.
  2. Strukturelement nach Anspruch 1, dadurch gekennzeichnet, dass Si < 0,08%.
  3. Strukturelement nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass Fe < 0,09 %.
  4. Strukturelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Cu > 4,8 % und vorzugsweise > 4,9 %.
  5. Strukturelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Cu > 5 %.
  6. Strukturelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Mg zwischen 0,20 und 0,40 % liegt.
  7. Strukturelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es eine Dehngrenze R0,2 (Quer-Längsrichtung) > 350 MPa und vorzugsweise > 370 MPa aufweist.
  8. Strukturelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es eine Bruchzähigkeit Klc (Längs-Querrichtung) > 42 MPa√m aufweist.
  9. Strukturelement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es eine Beständigkeit gegen interkristalline Korrosion vom Typ P nach der Norm ASTM G110 aufweist.
  10. Strukturelement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Lösungsglühen bei einer Temperatur erfolgt, die weniger als 10°C unter der Temperatur liegt, bei der die Legierung zu schmelzen beginnt.
  11. Strukturelement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Warmauslagerung bei einer Temperatur > 160°C (vorzugsweise > 170°C) durchgeführt wird.
  12. Strukturelement nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Warmauslagerung zur gleichen Zeit wie ein Umformvorgang durchgeführt wird.
  13. Strukturelement nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass es in der gesamten Dicke einen Rekristallisationsgrad größer 70 % und vorzugsweise größer 90 % aufweist.
  14. Strukturelement nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass es Bestandteil der Flügelunterseite eines Flugzeugs ist.
  15. Strukturelement nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass es durch Bearbeitung gewonnen wird.
  16. Element der Flügelunterseite eines Flugzeugs nach Anspruch 14, dadurch gekennzeichnet, dass Haut und Versteifungen durch Bearbeitung des gleichen Ausgangsproduktes gewonnen werden.
  17. Strukturelement nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass es nach erfolgter Bearbeitung eine Durchbiegung f in Längs- und Quer-Längsrichtung fe < 0,10 l2 aufweist, wobei f in µm ausgedrückt ist, e die Dicke des Elementes und I die Länge der stabförmigen Probe in mm ist.
  18. Verfahren zur Herstellung eines Flugzeugstrukturelementes, umfassend:
    a) das Gießen einer Platte bzw. eines Pressbarrens mit der Zusammensetzung:
    Cu: 4,6 - 5,3   Mg: 0,10 - 0,50   Mn: 0,25 - 0,45   Si < 0,10   Fe < 0,15 Zn < 0,20   Cr < 0,10 weitere Elemente jeweils < 0,05 und insgesamt < 0,15, Rest Aluminium,
    b) die Homogenisierung dieser Platte bzw. dieses Pressbarrens,
    c) die Warmumformung dieser Platte durch Walzen bzw. dieses Pressbarrens durch Strangpressen oder Schmieden, um ein Produkt mit einer Dicke größer 10 mm zu erhalten,
    d) das Abschrecken des warmumgeformten Produktes,
    e) das Lösungsglühen dieses Produktes, vorzugsweise bei einer Temperatur, die weniger als 10°C unter der Temperatur liegt, bei der die Legierung zu schmelzen beginnt.,
    f) das Entspannen des Produktes durch kontrolliertes Recken bis zu einer bleibenden Verformung von mehr als 1,5 %,
    g) die Warmauslagerung des Produktes bei einer Temperatur oberhalb 160°C, eventuell in Verbindung mit einer Umformung,
    h) die Bearbeitung des eventuell umgeformten Produktes bis auf die Endform des Strukturelementes.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die gegossene Platte bzw. der gegossene Pressbarren einen Cu-Gehalt > 4,8 % und vorzugsweise > 4,9 % hat.
  20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass die gegossene Platte bzw. der gegossene Pressbarren einen Mg-Gehalt von 0,20 bis 0,40 % hat.
  21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass die Warmauslagerung bei einer Temperatur > 170°C durchgeführt wird.
  22. Verfahren nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass das Produkt ein Blech ist, das durch Warmwalzen mit einer Eintrittstemperatur gewonnen wird, die um mindestens 40°C (und vorzugsweise mindestens 50°C) unter der Lösungsglühtemperatur liegt.
EP00420263A 1999-12-28 2000-12-20 Strukturelement eines Flugzeugs aus Al-Cu-Mg Legierung Revoked EP1114877B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9916610 1999-12-28
FR9916610A FR2802946B1 (fr) 1999-12-28 1999-12-28 Element de structure d'avion en alliage al-cu-mg

Publications (2)

Publication Number Publication Date
EP1114877A1 EP1114877A1 (de) 2001-07-11
EP1114877B1 true EP1114877B1 (de) 2005-02-02

Family

ID=9553940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00420263A Revoked EP1114877B1 (de) 1999-12-28 2000-12-20 Strukturelement eines Flugzeugs aus Al-Cu-Mg Legierung

Country Status (4)

Country Link
US (2) US6569542B2 (de)
EP (1) EP1114877B1 (de)
DE (1) DE60017868T2 (de)
FR (1) FR2802946B1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
CN102108476A (zh) * 2010-12-28 2011-06-29 重庆市宇一机械有限公司 一种高强高韧铝合金航空安全件改性制备方法
US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604704B2 (en) * 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
US7323068B2 (en) * 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7494552B2 (en) * 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
BR0317336B1 (pt) * 2002-12-17 2013-07-09 processo de fabricaÇço de elementos de estrutura por usinagem de chapas espessas e peÇa metÁlica usinada
FR2848480B1 (fr) 2002-12-17 2005-01-21 Pechiney Rhenalu Procede de fabrication d'elements structuraux par usinage de toles epaisses
CA2519139C (en) * 2003-03-17 2010-01-05 Corus Aluminium Walzprodukte Gmbh Method for producing an integrated monolithic aluminium structure and aluminium product machined from that structure
US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
CA2519390C (en) 2003-04-10 2015-06-02 Corus Aluminium Walzprodukte Gmbh An al-zn-mg-cu alloy
US7666267B2 (en) * 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US8043445B2 (en) * 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
DE10332003B3 (de) * 2003-07-14 2004-12-16 Eads Deutschland Gmbh Geschweißtes Aluminium-Strukturbauteil mit Aluminium-Guss-Werkstoffelementen
FR2858984B1 (fr) * 2003-08-19 2007-01-19 Corus Aluminium Walzprod Gmbh Produit en alliage ai-cu a haute tenacite et son procede de production
US20060032560A1 (en) * 2003-10-29 2006-02-16 Corus Aluminium Walzprodukte Gmbh Method for producing a high damage tolerant aluminium alloy
US20050098245A1 (en) * 2003-11-12 2005-05-12 Venema Gregory B. Method of manufacturing near-net shape alloy product
US20070204937A1 (en) * 2005-07-21 2007-09-06 Aleris Koblenz Aluminum Gmbh Wrought aluminium aa7000-series alloy product and method of producing said product
US20070151636A1 (en) * 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
CN101297054A (zh) * 2005-10-25 2008-10-29 阿勒里斯铝业科布伦茨有限公司 适用于航空航天应用的Al-Cu-Mg合金
US20070151637A1 (en) * 2005-10-28 2007-07-05 Aleris Aluminum Koblenz Gmbh Al-Cu-Mg ALLOY SUITABLE FOR AEROSPACE APPLICATION
WO2010081889A1 (en) 2009-01-16 2010-07-22 Aleris Aluminum Koblenz Gmbh Method for the manufacture of an aluminium alloy plate product having low levels of residual stress
US9314826B2 (en) 2009-01-16 2016-04-19 Aleris Rolled Products Germany Gmbh Method for the manufacture of an aluminium alloy plate product having low levels of residual stress
US9123930B1 (en) 2011-04-29 2015-09-01 Greatbatch Ltd. Dual glass to metal seal cell
CN103805924B (zh) * 2012-11-14 2016-01-20 北京有色金属研究总院 一种适用于镁合金铸锭的均匀化处理及后续加工的方法
CN103103370A (zh) * 2012-12-11 2013-05-15 龙口市丛林铝材有限公司 用于刹车片铝合金型材生产工艺
FR3011252B1 (fr) * 2013-09-30 2015-10-09 Constellium France Tole d'intrados a proprietes de tolerance aux dommages ameliorees
FR3040711B1 (fr) * 2015-09-03 2017-08-11 Constellium Issoire Produit extrude en alliage al-cu-mg a compromis ameliore entre resistance mecanique et tenacite
FR3047253B1 (fr) * 2016-02-03 2018-01-12 Constellium Issoire Toles epaisses en alliage al - cu - li a proprietes en fatigue ameliorees
CN109890663B (zh) 2016-08-26 2023-04-14 形状集团 用于横向弯曲挤压成形铝梁从而温热成型车辆结构件的温热成型工艺和设备
CN110114498A (zh) 2016-10-24 2019-08-09 形状集团 用于生产车辆零件的多阶段铝合金形成与热加工方法
CN106513638B (zh) * 2016-11-18 2019-07-12 喀左金牛铸造有限公司 2a12铝合金铸造工艺
CN107309658B (zh) * 2017-06-19 2019-05-14 江西洪都航空工业集团有限责任公司 一种窄长蒙皮零件加工工装及工艺
CN107090569A (zh) * 2017-07-07 2017-08-25 哈尔滨中飞新技术股份有限公司 制备高强度硬铝合金的热处理工艺
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
CN110205446B (zh) * 2019-06-17 2021-02-12 西安理工大学 一种g520马氏体沉淀硬化不锈钢热处理方法
CN110724866A (zh) * 2019-11-28 2020-01-24 西南铝业(集团)有限责任公司 一种2014铝合金航空精密轮毂模锻件的无锆毛坯
CN114293077B (zh) * 2021-12-29 2022-09-30 北京理工大学 一种用于航空航天结构件的高强铝铜合金及制备方法
CN115786787B (zh) * 2022-07-18 2024-02-23 山东浩信机械有限公司 一种高强韧Al-Cu系铸造铝合金及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1379764A (fr) * 1963-10-17 1964-11-27 Pechiney Prod Chimiques Sa Application nouvelle d'un alliage léger
US3874213A (en) * 1974-05-23 1975-04-01 Alusuisse Extrusion method for high strength heat treatable aluminum alloys
JPS5669346A (en) 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for working and its manufacture
GB2065516B (en) * 1979-11-07 1983-08-24 Showa Aluminium Ind Cast bar of an alumium alloy for wrought products having mechanical properties and workability
US4610733A (en) * 1984-12-18 1986-09-09 Aluminum Company Of America High strength weldable aluminum base alloy product and method of making same
US5376192A (en) * 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
FR2731440B1 (fr) * 1995-03-10 1997-04-18 Pechiney Rhenalu Toles en alliage al-cu-mg a faible niveau de contraintes residuelles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
US8002913B2 (en) 2006-07-07 2011-08-23 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US8088234B2 (en) 2006-07-07 2012-01-03 Aleris Aluminum Koblenz Gmbh AA2000-series aluminum alloy products and a method of manufacturing thereof
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
CN102108476A (zh) * 2010-12-28 2011-06-29 重庆市宇一机械有限公司 一种高强高韧铝合金航空安全件改性制备方法

Also Published As

Publication number Publication date
US20030207141A1 (en) 2003-11-06
US6692589B2 (en) 2004-02-17
DE60017868D1 (de) 2005-03-10
FR2802946B1 (fr) 2002-02-15
US6569542B2 (en) 2003-05-27
DE60017868T2 (de) 2005-12-29
US20010006082A1 (en) 2001-07-05
EP1114877A1 (de) 2001-07-11
FR2802946A1 (fr) 2001-06-29

Similar Documents

Publication Publication Date Title
EP1114877B1 (de) Strukturelement eines Flugzeugs aus Al-Cu-Mg Legierung
EP1170118B1 (de) Plattierte Bleche aus Aluminium-Legierung für Flugzeugstrukturelemente
FR2855834A1 (fr) Produit ouvre en alliage a grande tolerance aux dommages, en particulier pour des applications dans le domaine aerospatial
EP2449142B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserten mechanische beständigkeit und zähigkeit
FR2853667A1 (fr) Alliage al-an-mg-cu ameliore en ce qui concerne ses proprietes combinees de tolerance aux dommages et de resistance mecanique
FR3068370B1 (fr) Alliages al- zn-cu-mg et procede de fabrication
FR2838135A1 (fr) PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D&#39;AERONEF
CA2907854C (fr) Toles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
EP1644546B1 (de) Verwendung von rohren aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz
FR2853666A1 (fr) ALLIAGE Al-Zn A HAUTE RESISTANCE,PROCEDE DE PRODUCTION DE PRODUITS EN UN TEL ALLIAGE, ET PRODUITS OBTENUS SELON CE PROCEDE
FR2726007A1 (fr) Procede de fabrication de produits en alliage alsimgcu a resistance amelioree a la corrosion intercristalline
CA2961712C (fr) Toles isotropes en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
EP1382698B1 (de) Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs
FR2843754A1 (fr) Alliage ai-cu-mg-si equilibre
EP1231290A1 (de) Verfahren zur Herstellung eines hochfesten Knetproduktes aus AlZnMgCu-Legierung
EP1026270B1 (de) Produkt aus AlCuMg-Legierung für ein Zellenbauteil eines Flugzeuges
FR2938553A1 (fr) Produits en alliage aluminium-cuivre-lithium
CA2907807A1 (fr) Toles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
EP3824110A1 (de) Verfahren zur herstellung dünner bleche aus einer 7xxx-aluminiumlegierung zur formgebung und montage
EP1544315A1 (de) Knetprodukt und Strukturbauteil für Flugzeug aus Al-Zn-Cu-Mg-Legierung
CA3064802A1 (fr) Alliage d&#39;aluminium comprenant du lithium a proprietes en fatigue ameliorees
EP3411508B1 (de) Dicke bleche aus al- cu - li legierung mit verbesserten ermüdungseigenschaften
EP1143027A1 (de) Verfahren zur Herstellung von Flugzeugstrukturelementen aus Al-Si-Mg-Legierung
FR2889542A1 (fr) Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d&#39;avion
EP3802897B1 (de) Dünnschichten aus aluminium-kupfer-lithium-legierung für die herstellung eines flugzeugrumpfes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010929

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20040206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60017868

Country of ref document: DE

Date of ref document: 20050310

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050422

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20051102

Opponent name: ALCOA INC.

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20051102

Opponent name: ALCOA INC.

Effective date: 20051102

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCAN RHENALU

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ALCOA INC.

Effective date: 20051102

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 20051102

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090202

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081229

Year of fee payment: 9

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081217

Year of fee payment: 9

27W Patent revoked

Effective date: 20090604

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20090604