EP1999087A1 - Gesinterter verschleissbeständiger boridwerkstoff, sinterfähige pulvermischung zur herstellung des werkstoffs, verfahren zur herstellung des werkstoffs und dessen verwendung - Google Patents

Gesinterter verschleissbeständiger boridwerkstoff, sinterfähige pulvermischung zur herstellung des werkstoffs, verfahren zur herstellung des werkstoffs und dessen verwendung

Info

Publication number
EP1999087A1
EP1999087A1 EP07723199A EP07723199A EP1999087A1 EP 1999087 A1 EP1999087 A1 EP 1999087A1 EP 07723199 A EP07723199 A EP 07723199A EP 07723199 A EP07723199 A EP 07723199A EP 1999087 A1 EP1999087 A1 EP 1999087A1
Authority
EP
European Patent Office
Prior art keywords
transition metal
phase
material according
sintered material
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07723199A
Other languages
English (en)
French (fr)
Inventor
Hubert Thaler
Clemens Schmalzried
Frank Wallmeier
Christoph Lesniak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESK Ceramics GmbH and Co KG
Original Assignee
ESK Ceramics GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESK Ceramics GmbH and Co KG filed Critical ESK Ceramics GmbH and Co KG
Publication of EP1999087A1 publication Critical patent/EP1999087A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Definitions

  • the invention relates to a sintered wear-resistant material based on transition metal diborides, pulverulent sinterable mixtures for producing such a sintered material, method for producing such sintered sintered materials and the use of the sintered material for the production of wearing parts in general plant construction, in particular chemical plant construction, for Production of tools for machining as well as chipless machining and shaping, as well as electrode material for sliding contacts, welding electrodes and erosion pins.
  • Titanium diboride has a number of advantageous properties, such as a high melting point of 3,225 ° C, a high hardness of 26-32 GPa (HV), excellent room temperature electrical conductivity and good chemical resistance.
  • titanium diboride A major disadvantage of titanium diboride is its poor sinterability.
  • the poor sinterability is due in part to impurities, especially oxygen impurities in the form of TiÜ 2 , which are contained in the commonly used titanium diboride powders, either by the carbothermal reduction of titanium oxide and boron oxide or by the known as Borcarbidvon reduction of me talloxide with Carbon and / or boron carbide are produced.
  • oxygen impurities enhance grain and pore growth in the sintering process by increasing surface diffusion.
  • Sintered titanium diboride materials can be made by the hot pressing process. For example, by axial hot pressing with sintered achieved temperatures above 1.80O 0 C and a pressure of> 20 MPa densities of above 95% of the theoretical density, wherein the hot-pressed material typically has a grain size of more than 20 microns.
  • the disadvantage of the hot pressing method is that only simple body geometries can be produced thereby, while bodies or components with complex geometries can not be produced by this method.
  • sintering additives are, for example, metals, such as iron and iron alloys. By adding small amounts of iron, dense materials with good mechanical properties and high fracture toughnesses of more than 8 MPa m 1/2 can be obtained. Such materials are described for example in EP 433 856 B l.
  • these materials with a metallic binder phase which are also referred to as cermets, have the disadvantage that they have a poor corrosion resistance to air or oxygen and in particular to acids and bases due to the metallic binder phase. Because of their reactivity to acids and bases, these materials can not be used in chemical plant engineering.
  • US-A-5,108,670 describes a method of making a titanium diboride sintered material having improved toughness which does not contain a metallic binder phase.
  • Titandi- is boride with up mixed to 10 wt .-% Chromdiborid, the mixture in the form of pressed and then ⁇ in a powder bed consisting of Y 2 * sintered 3 Resins in a microwave oven, wherein the Y 2 O 3 then washed with reacts the TiB 2 and forms a yttrium-titanium oxide phase, so that a TiB 2 material is formed with oxidic second phase.
  • a higher fracture toughness of about 6 MPa m 1/2 is achieved with this material.
  • the invention is therefore based on the object of providing a sintered material which not only has good mechanical properties, such as high hardness, high strength and high toughness, but is also oxidation-resistant and corrosion-resistant, in particular to acids and alkalines , And if necessary, even at high temperatures has good mechanical properties. Furthermore, such a sintered material should be producible by a simple and inexpensive process, which also allows the production of moldings with complex geometries.
  • the invention thus relates to a sintered wear-resistant
  • a material based on transition metal diborides comprising a) as the main phase 80-98.8% by weight of a fine-grained transition metal diboride or transition metal diboride mixed crystal of at least two transition metal diborides or mixtures of such diboride mixed crystals or mixtures of such diboride mixed crystals with one or more a plurality of transition metal diborides, wherein the transition metals from the IV. to VI. B) as secondary phase 0.2 to 5 wt .-% of a continuous, oxygen-containing grain boundary phase, and c) as a third phase 1- 15 wt .-% particulate boron carbide and / or silicon carbide.
  • the invention further provides a pulverulent sinterable mixture for producing a sintered material based on transition metal diborides, comprising 1) 0.05-2% by weight of Al and / or Si as metallic Al and / or Si and / or an amount of an Al and / or Si compound corresponding to this content,
  • the invention furthermore relates to a process for the production of such a sintered material by hot pressing or hot isostatic pressing or gas pressure sintering or spark plasma sintering of a pulverulent mixture as described above, optionally with the addition of organic binding and pressing aids.
  • the invention likewise provides a process for producing a sintered material as described above by pressure-sintering, comprising the steps:
  • the sintered material according to the invention is suitable for the production of wearing parts in general plant construction, in particular in chemical plant construction due to its corrosion resistance to acids and bases, in thermal plant construction, in paper machines, in the milling and wear protection.
  • the invention also relates to the use of the sintered material for the production of tools for machining as well as for non-cutting machining and shaping, forming technology and pulleys. Another use relates to the production of water and sandblast nozzles.
  • the sintered material according to the invention is likewise suitable as electrode material for sliding contacts, welding electrodes and erosion pins.
  • the above-mentioned object is achieved by providing a sintered, wear-resistant, transition-metal diboride-based dense material whose matrix (main phase) consists of a fine-grained transition metal diboride or transition metal diboride mixed crystal or combinations thereof.
  • the material contains an oxygen-containing, continuous grain boundary phase, which is formed as a thin continuous grain boundary film. At the triple points, larger portions or areas of the oxygen-containing second phase may be present.
  • the material contains particulate boron carbide and / or silicon carbide, which acts as a grain growth inhibitor.
  • the mixed crystal formation of the main phase has an additional grain growth inhibiting effect, so that a sintered material having good mechanical properties is obtained.
  • the sintered material according to the invention has a surprisingly excellent corrosion resistance to acids and alkalis while retaining very good mechanical properties.
  • the microstructure of the material according to the invention consists of a transition metal diboride or transition metal diboride mixed crystal of at least two transition metal diborides or mixtures of such diboride mixed crystals or mixtures of such diboride mixed crystals with one or more transition metal diborides.
  • a second phase there is a continuous oxygen-containing grain boundary film with a small thickness of, for example, about 2 nm.
  • a third phase particulate boron carbide and / or silicon carbide, which is predominantly located at the grain boundaries, is present in a small proportion.
  • the boron carbide and / or silicon carbide additionally acts as a particle-reinforcing agent.
  • particulate carbon and / or particulate boron may also be present in the material.
  • low contents of these elements may be present in the main phase.
  • the proportion of the oxygen-containing second phase is preferably up to 2.5 wt .-%.
  • the main phase preferably has an average particle size of less than 20 ⁇ m, more preferably less than 10 ⁇ m.
  • the boron carbide and / or silicon carbide of the third phase preferably has an average particle size of less than 20 microns, more preferably less than 5 microns, and the proportion of this third phase is 1-15 wt .-%, preferably 1 -4 wt .-%.
  • the determination of the mean grain size of the main phase and of the average particle size of the boron carbide and / or silicon carbide is carried out by the line intercept length method on the etched cut.
  • transition metals of IV. To VI. Subgroups are preferably selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W.
  • the main phase is preferably fine-grained TiB 2 and / or ZrB 2 and / or a mixed crystal of (Ti 1 W) B 2 and / or (Zr 1 W) B 2 and / or (Ti 1 Zr) B 2 , more preferably a mixed crystal of (Ti, W) B 2 and / or (Zr 1 W) B 2 , including the ternary diborides (Ti, Zr, W) B 2 . Particularly preferably, it is the mixed crystal (Ti, W) B 2 or the mixed crystal (Zr. W) B 2 .
  • the pulverulent, sinterable mixture according to the invention for producing a sintered material according to the invention contains the following components:
  • transition metal diboride of IV As the remainder at least one transition metal diboride of IV.
  • Subgroup of the periodic table which is different from the transition metal boride of the above component 2).
  • the transition metals are selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W.
  • the transition metal diboride of component 6) is preferably TiB 2 and / or ZrB 2 , more preferably TiB 2 ,
  • the transition metal diboride of component 5 preferably has an average particle size of not more than 4 ⁇ m, more preferably not more than 2 ⁇ m.
  • the sintered material according to the invention can be produced in a manner known per se by hot pressing, hot isostatic pressing, gas pressure sintering or spark plasma sintering of a pulverulent mixture as described above, optionally with the addition of organic binding and pressing aids.
  • customary organic binders such as polyvinyl alcohol (PVA), water-soluble resins and polyacrylic acids and customary pressing aids such as fatty acids and waxes can be used.
  • At least one transition metal diboride of IV At least one transition metal diboride of IV.
  • To VI. Subgroup processed with the other powder-shaped components and optionally organic binding and pressing aids in water and / or organic solvents to form a homogeneous powder suspension.
  • the homogeneous powder suspension is then transferred to a powder granules, preferably by spray drying.
  • This powder granulate can then be further processed by hot pressing or hot isostatic pressing to form a sintered material.
  • the production of the sintered material according to the invention by Drucklossintern a powder granules obtained as described above are pressed into green bodies of high density.
  • customary shaping methods such as axial pressing or calcostatic pressing, but also extrusion, injection molding, slip casting and pressure slip casting.
  • the green bodies obtained are then transferred in a vacuum or under protective gas at a temperature of 1,800-2,200 ° C., preferably 1,900-2,100 0 C, more preferably about 2,000 0 C, by pressureless sintering in a sintered material.
  • the green bodies are annealed prior to pressure-sintering in an inert atmosphere at temperatures below the sintering temperature to remove the organic binding or pressing aids.
  • the materials obtained by pressure-sintering have a density of at least about 94% of the theoretical density, preferably a density of at least 97% of the theoretical density. Such density values ensure that porosity, if present, is present as closed porosity.
  • the sintered material may be densified by hot isostatic pressing to increase the density and to reduce the closed porosity.
  • the transition metal boride formed and / or the added transition metal boride of the above-mentioned component 2) can form a mixed crystal with the transition metal diboride of component 5) used, such as titanium diboride.
  • This boride mixed crystal formation has a grain growth inhibiting effect.
  • the boron carbide, both added and that formed, for example, from tungsten carbide and boron, also acts to inhibit grain growth.
  • the sintered material according to the invention is outstandingly suitable for the production of wearing parts in general plant construction, in particular chemical plant construction, thermal plant construction, in paper machines, in grinding technology and in wear protection.
  • Special applications of the sintered material according to the invention are tools for cutting machining as well as for non-cutting machining and shaping, for the forming technique and for deflection rollers.
  • it is suitable for the production of water or sandblast nozzles, as well as electrode materials for sliding contacts, welding electrodes and erosion pins.
  • Figure 1 shows a light micrograph of the microstructure of the material obtained in Example 1;
  • Figure 2 is a photomicrograph of the microstructure of the sintered material obtained in Example 2;
  • Figure 3a shows a TEM brightfield image of a representative area of the microstructure of Figure 1;
  • Figures 3b and 3c show the EELS spectra associated with Figure 3a concerning the elemental qualitative composition of the investigated oxygen-containing secondary phase
  • Figure 4a shows a TEM brightfield image of a representative (Ti, W) B 2 - (Ti, W) B 2 grain boundary of a representative region of the microstructure of Figure 1;
  • Figure 4b shows the oxygen distribution pattern associated with Figure 4a associated with EFTEM (Energy Filtering Transmission Electron Microscopy);
  • Figure 4c shows the line scan of oxygen along the line drawn in Figure 4b;
  • FIG. 5 shows a light micrograph of the microstructure of the sintered material obtained in Reference Example 1.
  • the spray granules are pressed at 1000 bar uniaxially to green bodies.
  • the total oxygen content of a coked green body is 2.7%.
  • the green bodies are heated at 10 K / min under vacuum to 2020 0 C and 45 minutes held at sintering temperature. Cooling takes place with switched off heating power under Ar.
  • the sintered density of the obtained samples is 97.7% of the theoretical density.
  • the resulting microstructure consists of a (Ti, W) B 2 mixed crystal matrix, finely divided particulate B 4 C, a Ti-Al-BO phase particulate in the triple points ( Figures 3a, b and c, EELS spectroscopy) and a about 2 nm thick, continuous oxygen-containing amorphous grain boundary film ( Figures 4a, b and c, EFTEM).
  • the hardness of the sintered body is 2,500 (HKO.1), the fracture toughness was determined by the SEVNB method and is 5.3 MPa m 1/2 , the modulus of elasticity is 560 GPa and the breaking strength measured by the 4-point method is 500 MPa.
  • Example 2 The hardness of the sintered body is 2,500 (HKO.1), the fracture toughness was determined by the SEVNB method and is 5.3 MPa m 1/2 , the modulus of elasticity is 560 GPa and the breaking strength measured by the 4-point method is 500 MPa.
  • Example 2 The hardness of the sintered body is 2,500 (HKO.1), the fracture toughness was determined by the SEVNB method and is 5.3 MPa m 1/2 , the modulus of elasticity is 560 GPa and the breaking strength measured by the 4-point method is 500 MPa.
  • the spray granules are cold isostatically pressed into green bodies at 1200 bar.
  • the total oxygen content of a coked green body is 2.7%.
  • the green bodies are heated at 10 K / min under vacuum to 2,060 0 C and 45 minutes held at sintering temperature. Cooling takes place with switched off heating power under Ar.
  • the sintered density of the obtained samples is 98.7% of the theoretical density.
  • the resulting microstructure consists of a (Ti, W) B 2 mixed crystal matrix, finely divided particulate B 4 C, a present in the triple points particulate Ti-Al-BO phase and an approximately 2 nm thick, continuous oxygen-containing amorphous grain boundary film.
  • Example 1 The sintered bodies of Example 1 are post-densitized with 1,950 bar at 2,000 0 C with a hold time of 60 minutes hot isostatic under argon. The density of the samples obtained is 99.1% of the theoretical density.
  • Samples of the materials prepared according to Example 4 were subjected to a corrosion test in 1 molar HCl at 100 ° C.
  • the sample size was 20 x 3 x 4 mm.
  • the samples were exposed to the corrosion medium for 90 minutes. After this time the corrosion rate was 1, 51 ⁇ g / mm 2 h.
  • the green bodies are heated at 10 K / min in vacuo to 2.170 ° C and held for 45 min at sintering temperature. Cooling takes place with switched off heating power under Ar.
  • the sintered body is subsequently recompressed at 1,950 bar Ar pressure for one hour at 2,000 0 C. The density is 97.9% of the theoretical density.
  • FIG. 5 A light micrograph of the microstructure is shown in Figure 5.
  • the resulting microstructure consists of a (Ti, W) B 2 mixed crystal matrix and particulate boron carbide, which lies partly in the grain boundary and partly in the mixed crystal grain.
  • the average grain diameter is about 100 microns.
  • a higher sintering temperature was needed for compacting to closed porosity here a higher sintering temperature was needed. The result is a coarse-grained structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

Die Erfindung betrifft einen gesinterten verschleißbeständigen Werkstoff auf der Basis von Übergangsmetalldiboriden, enthaltend: a) als Hauptphase 80-98,8 Gew.-% eines feinkörnigen Übergangsmetalldiborids oder Übergangsmetalldiborid-Mischkristalls aus mindestens zwei Übergangsmetalldiboriden oder Mischungen aus solchen Diborid-Mischkristallen oder Mischungen solcher Diborid-Mischkristalle mit einem oder mehreren Übergangsmetalldiboriden, wobei die Übergangsmetalle aus der IV. bis VI. Nebengruppe des Periodensystems ausgewählt sind, b) als Zweitphase 0,2 bis 5 Gew. -% einer durchgängigen, sauerstoffhaltigen Korngrenzphase, und c) als Drittphase 1 - 15 Gew.-% partikuläres Borcarbid und/oder Siliciumcarbid. Ferner betrifft die Erfindung eine pulverförmige sinterfähige Mischung zur Herstellung eines solchen gesinterten Werkstoffs, Verfahren zur Herstellung des Sinterwerkstoffs, vorzugsweise durch Drucklossintern, sowie die Verwendung des Sinterwerkstoffs zur Herstellung von Verschleißteilen im allgemeinen Maschinenbau, insbesondere chemischen Anlagenbau.

Description

GESINTERTER VERSCHLEISSBESTÄNDIGER BORIDWERKSTOFF, SINTERFÄHIGE PULVERMISCHUNG ZUR HERSTELLUNG DES WERKSTOFFS, VERFARHEN ZUR HERTSELLUNG DES WERKSTOFFS UND DESSEN VERWENDUNG
Gebiet der Erfindung
Die Erfindung betrifft einen gesinterten verschleißbeständigen Werkstoff auf der Basis von Übergangsmetalldiboriden, pulverförmige sinterfähige Mischungen zur Herstellung eines solchen gesinterten Werkstoffs, Verfahren zur Her- Stellung solcher gesinterten Werkstoffe sowie die Verwendung des gesinterten Werkstoffs zur Herstellung von Verschleißteilen im allgemeinen Anlagenbau, insbesondere chemischen Anlagenbau, zur Herstellung von Werkzeugen zur spanabhebenden Bearbeitung als auch zur spanlosen Bearbeitung und Formgebung, als auch als Elektrodenmaterial für Schleifkontakte, Schweißelektro- den und Erodierstifte.
Hintergrund der Erfindung
Titandiborid besitzt eine Reihe vorteilhafter Eigenschaften, wie etwa einen ho- hen Schmelzpunkt von 3.225°C, eine hohe Härte von 26-32 GPa (HV), eine ausgezeichnete elektrische Leitfähigkeit bei Raumtemperatur und eine gute chemische Beständigkeit.
Ein Hauptnachteil von Titandiborid ist seine schlechte Sinterfähigkeit. Die schlechte Sinterfähigkeit ist zum Teil auf Verunreinigungen, insbesondere Sauerstoffverunreinigungen in Form von TiÜ2 zurückzuführen, die herstellungsbedingt in den üblicherweise verwendeten Titandiboridpulvern enthalten sind, welche entweder über die carbothermische Reduktion von Titanoxid und Boroxid oder durch die als Borcarbidverfahren bekannte Reduktion der Me- talloxide mit Kohlenstoff und/oder Borcarbid hergestellt werden. Solche Sauerstoffverunreinigungen verstärken beim Sintervorgang das Korn- und Porenwachstum durch Erhöhung der Oberflächendiffussion.
Stand der Technik
Gesinterte Titandiborid-Werkstoffe können über das Heißpressverfahren hergestellt werden. Beispielsweise wurden durch axiales Heißpressen bei Sinter- temperaturen oberhalb 1.80O0C und einem Druck von > 20 MPa Dichten von oberhalb 95% der theoretischen Dichte erzielt, wobei der heißgepresste Werkstoff typischerweise eine Korngröße von mehr als 20 μm aufweist. Das Heißpressverfahren hat jedoch den Nachteil, dass hierüber nur einfache Kör- pergeometrien hergestellt werden können, während Körper bzw. Bauteile mit komplexen Geometrien über dieses Verfahren nicht herstellbar sind.
Anderseits können Bauteile mit komplexeren Geometrien über das Drucklossinterverfahren hergestellt werden. Hierbei ist es erforderlich, geeignete Sin- terhilfsmittel zuzugeben, um Sinterkörper hoher Dichte zu erhalten. Mögliche Sinteradditive sind beispielsweise Metalle, wie etwa Eisen und Eisenlegierungen. Durch Zugabe von geringen Mengen an Eisen können dichte Werkstoffe mit guten mechanischen Eigenschaften und hohen Bruchzähigkeiten von über 8 MPa m1 /2 erhalten werden. Solche Werkstoffe sind beispielsweise in EP 433 856 B l beschrieben. Diese Werkstoffe mit einer metallischen Bindephase, die auch als Cermets bezeichnet werden, haben jedoch den Nachteil, dass sie aufgrund der metallischen Bindephase eine schlechte Korrosionsbeständigkeit aufweisen gegenüber Luft bzw. Sauerstoff sowie insbesondere gegenüber Säuren und Basen. Wegen ihrer Reaktionsfreudigkeit gegenüber Säuren und Ba- sen sind diese Werkstoffe im chemischen Anlagenbau nicht einsetzbar.
Die US-A-5, 108,670 beschreibt ein Verfahren zur Herstellung eines gesinterten Titandiborid-Werkstoffs mit verbesserter Zähigkeit, welcher keine metallische Bindephase enthält. Zur Herstellung des Sinterwerkstoffs wird Titandi- borid mit bis zu 10 Gew.-% Chromdiborid vermischt, die Mischung in Form gepresst und anschließend in einem Pulverbett aus Y2θ* 3-Granulaten in einem Mikrowellenofen gesintert, wobei das Y2O3 dann mit dem TiB2 reagiert und eine Yttrium-Titan-Oxid-Phase ausbildet, so dass ein TiB2-Werkstoff mit oxidischer Zweitphase entsteht. Zwar wird bei diesem Werkstoff eine höhere Bruchzähigkeit von etwa 6 MPa m1 /2 erreicht. Nachteilig ist jedoch, dass lediglich eine Härte von maximal 18 GPa erreicht wird, was für Verschleißanwendungen sehr niedrig ist. Zudem ist das Verfahren des Sinterns im Pulverbett für die Herstellung großvolumiger Bauteile sowie von Bauteilen mit dickeren Wandstärken ungeeignet, da sich keine homogene Verteilung errei- chen lässt.
Aufgabe der Erfindung Der Erfindung liegt daher die Aufgabe zugrunde, einen Sinterwerkstoff zur Verfügung zu stellen, der nicht nur gute mechanische Eigenschaften, wie hohe Härte, hohe Festigkeit und hohe Zähigkeit aufweist, sondern auch oxi- dations- und korrosionsbeständig, insbesondere gegenüber Säuren und Lau- gen ist, und der bei Bedarf auch bei hohen Temperaturen gute mechanische Eigenschaften aufweist. Ferner soll ein solcher Sinterwerkstoff durch ein einfaches und kostengünstiges Verfahren herstellbar sein, das auch die Fertigung von Formkörpern mit komplexen Geometrien erlaubt.
Zusammenfassung der Erfindung
Die vorstehende Aufgabe wird erfindungsgemäß gelöst durch einen gesinterten verschleißbeständigen Werkstoff auf der Basis von Übergangsmetalldi- boriden gemäß Anspruch 1 , eine pulverförmige sinterfähige Mischung zur Herstellung eines solchen gesinterten Werkstoffs gemäß Anspruch 8, Verfahren zur Herstellung eines solchen gesinterten Werkstoffs gemäß den Ansprüchen 15 und 16, sowie die Verwendung des gesinterten Werkstoffs gemäß den Ansprüchen 22-26. Vorteilhafte bzw. besonders zweckmäßige Ausgestaltungen des Anmeldungsgegenstandes sind in den Unteransprüchen angege- ben.
Gegenstand der Erfindung ist somit ein gesinterter verschleißbeständiger
Werkstoff auf der Basis von Übergangsmetalldiboriden, enthaltend a) als Hauptphase 80-98,8 Gew.-% eines feinkörnigen Übergangsmetalldi- borids oder Übergangsmetalldiborid-Mischkristalls aus mindestens zwei Übergangsmetalldiboriden oder Mischungen aus solchen Diborid-Mischkristallen oder Mischungen solcher Diborid-Mischkristalle mit einem oder mehreren Übergangsmetalldiboriden, wobei die Übergangsmetalle aus der IV. bis VI. Nebengruppe des Periodensystems ausgewählt sind, b) als Zweitphase 0,2 bis 5 Gew.-% einer durchgängigen, sauerstoffhaltigen Korngrenzphase, und c) als Drittphase 1- 15 Gew.-% partikuläres Borcarbid und/oder Silicium- carbid.
Gegenstand der Erfindung ist ferner eine pulverförmige sinterfähige Mischung zur Herstellung eines gesinterten Werkstoffs auf der Basis von Übergangsmetalldiboriden, enthaltend 1 ) 0,05-2 Gew.-% Al und/oder Si als metallisches Al und/oder Si und/oder eine diesem Gehalt entsprechende Menge einer Al- und/oder Si-Verbindung,
2) optional mindestens eine Komponente, gewählt aus Carbiden und Boriden von Übergangsmetallen der IV. bis VI. Nebengruppe des Periodensys- tems,
3) 0,5- 19 Gew.-% Bor,
4) 0- 15 Gew.-% Borcarbid und/oder Siliciumcarbid, und
5) als Rest mindestens ein Übergangsmetalldiborid der IV. bis VI. Nebengruppe des Periodensystems, das von dem Übergangsmetallborid der obigen Komponente 2) verschieden ist.
Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung eines solchen gesinterten Werkstoffs durch Heißpressen oder Heißisostatpressen oder Gasdrucksintern oder Spark-Plasma-Sintern einer wie oben beschriebe- nen pulverförmigen Mischung, gegebenenfalls unter Zusatz von organischen Binde- und Presshilfsmitteln.
Gegenstand der Erfindung ist ebenso ein Verfahren zur Herstellung eines wie oben beschriebenen gesinterten Werkstoffs durch Drucklossintern, umfassend die Schritte:
a) Vermischen einer wie oben beschriebenen pulverförmigen Mischung, gegebenenfalls unter Zusatz von organischen Binde- und Presshilfsmitteln in Wasser und/oder organischen Lösemitteln zur Herstellung einer ho- mogenen Pulversuspension, b) Herstellen eines Pulvergranulats aus der Pulversuspension, c) Verpressen des Pulvergranulats zu Grünkörpern hoher Dichte, und d) Drucklossintern der erhaltenen Grünkörper im Vakuum oder unter Schutzgas bei einer Temperatur von 1.800 - 2.2000C.
Der erfindungsgemäße gesinterte Werkstoff eignet sich zur Herstellung von Verschleißteilen im allgemeinen Anlagenbau, insbesondere im chemischen Anlagenbau aufgrund seiner Korrosionsbeständigkeit gegenüber Säuren und Basen, im thermischen Anlagenbau, in Papiermaschinen, in der Mahtechnik und im Verschleißschutz. Gegenstand der Erfindung ist ebenso die Verwendung des gesinterten Werkstoffs zur Herstellung von Werkzeugen zur spanabhebenden Bearbeitung als auch zur spanlosen Bearbeitung und Formgebung, Umformtechnik und für Umlenkrollen. Eine weitere Verwendung betrifft die Herstellung von Wasser- und Sandstrahldüsen.
Der erfindungsgemäße gesinterte Werkstoff eignet sich ebenfalls als Elektrodenmaterial für Schleifkontakte, Schweißelektroden und Erodierstifte.
Gemäß der Erfindung hat sich somit gezeigt, dass die oben genannte Aufgabe gelöst wird durch Bereitstellung eines gesinterten, verschleißbeständigen, dichten Werkstoffs auf der Basis von Übergangsmetalldiboriden, dessen Matrix (Hauptphase) aus einem feinkörnigen Übergangsmetalldiborid oder Über- gangsmetalldiborid-Mischkristall oder Kombinationen davon besteht. Als Zweitphase enthält der Werkstoff eine sauerstoffhaltige, durchgängige Korngrenzphase, die als ein dünner durchgehender Korngrenzfilm ausgebildet ist. An den Tripelpunkten können größere Anteile bzw. Bereiche der sauerstoffhaltigen Zweitphase vorliegen. Als Drittphase enthält der Werkstoff partikulä- res Borcarbid und/ oder Siliciumcarbid, das als Kornwachstumshemmer wirkt. Die Mischkristallbildung der Hauptphase hat einen zusätzlichen kornwachstumshemmenden Effekt, so dass ein Sinterwerkstoff mit guten mechanischen Eigenschaften erhalten wird. Der erfindungsgemäße Sinterwerkstoff weist eine überraschend ausgezeichnete Korrosionsbeständigkeit gegenüber Säuren und Laugen auf unter Beibehaltung sehr guter mechanischer Eigenschaften.
Detaillierte Beschreibung der Erfindung
Wie oben erwähnt, besteht das Gefüge des erfindungsgemäßen Werkstoffs aus der feinkörnig vorliegenden Hauptphase aus einem Übergangsmetalldiborid oder Übergangsmetalldiborid-Mischkristall aus mindestens zwei Übergangsmetalldiboriden oder Mischungen aus solchen Diborid-Mischkristallen oder Mischungen solcher Diborid-Mischkristalle mit einem oder mehreren Über- gangsmetalldiboriden. Als Zweitphase liegt ein durchgängiger sauerstoffhaltiger Korngrenzfilm mit geringer Dicke von beispielsweise etwa 2 nm vor. An den Tripelpunkten können größere Anteile bzw. Bereiche der sauerstoffhalti- gen Zweitphase vorliegen. Als Drittphase liegt in einem geringen Anteil partikuläres Borcabid und/oder Siliciumcarbid vor, das sich überwiegend an den Korngrenzen befindet. Das Borcarbid und /oder Siliciumcarbid wirkt zusätzlich partikelverstärkend. Gegebenenfalls können im Werkstoff auch noch ge- ringe Mengen an partikulär vorliegendem Kohlenstoff und /oder partikulär vorliegendem Bor enthalten sein. Ferner können bei Verwendung von Al oder Si bzw. deren Verbindungen als Sinterhilfsmittel geringe Gehalte dieser Elemente in der Hauptphase vorliegen. Der Anteil der sauerstoffhaltigen Zweitphase beträgt vorzugsweise bis zu 2,5 Gew.-%.
Die Hauptphase weist vorzugsweise eine mittlere Korngröße von weniger als 20 μm, weiter vorzugsweise weniger als 10 μm auf. Das Borcarbid und/oder Siliciumcarbid der Drittphase besitzt vorzugsweise eine mittlere Partikelgröße von weniger als 20 μm, weiter vorzugsweise weniger als 5 μm, und der Anteil dieser Drittphase beträgt 1 - 15 Gew.-%, vorzugsweise 1 -4 Gew.-%.
Die Bestimmung der mittleren Korngröße der Hauptphase und der mittleren Partikelgröße des Borcarbids und /oder Siliciumcarbids erfolgt nach dem Lini- enschnittverfahren ("line intercept length"-Methode) am geätzten Schliff.
Die Übergangsmetalle der IV. bis VI. Nebengruppe sind vorzugsweise ausgewählt aus Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und W.
Bei der Hauptphase handelt es sich vorzugsweise um feinkörniges TiB2 und/ oder ZrB2 und/oder einen Mischkristall aus (Ti1W)B2 und/oder (Zr1W)B2 und/ oder (Ti1Zr)B2, weiter vorzugsweise um einen Mischkristall aus (Ti, W)B2 und/ oder (Zr1W)B2, einschließlich den ternären Diboriden (Ti, Zr, W)B2. Insbesondere bevorzugt handelt es sich um den Mischkristall (Ti, W)B2 oder um den Mischkristall (Zr. W)B2.
Die erfindungsgemäße pulverförmige, sinterfähige Mischung zur Herstellung eines erfindungsgemäßen Sinterwerkstoffs enthält folgende Komponenten:
1 ) 0,05-2 Gew.-%, vorzugsweise 0,2-0,6 Gew.-%, Al und/oder Si als metal- lisches Al und/oder Si und/oder eine diesem Gehalt entsprechende Menge einer Al- und /oder Si- Verbindung. Vorzugsweise werden Al oder sauerstoffhaltige AI-Verbindungen, insbesondere A12Ü3 oder Böhmit, eingesetzt. 2) optional, vorzugsweise ≥ 0,25 Gew.-% mindestens einer Komponente, gewählt aus Carbiden und Boriden von Übergangsmetallen der IV. bis VI. Nebengruppe des Periodensystems, vorzugsweise Wolframcarbid. Gegebenenfalls können als Komponente 2) auch Übergangsmetalle der IV. bis VI. Neben- gruppe selbst und Oxide solcher Übergangsmetalle eingesetzt werden.
3) 0,5- 19 Gew.-%, vorzugsweise 1 -5 Gew.-% Bor in elementarer Form,
4) 0- 15 Gew.-%, vorzugsweise 0,5-5 Gew. -% Borcarbid und/oder Silicium- carbid,
5) Als Rest mindestens ein Übergangsmetalldiborid der IV. bis VI. Nebengruppe des Periodensystems, das von dem Übergangsmetallborid der obigen Komponente 2) verschieden ist. Wie bereits oben erwähnt, sind die Über- gangsmetalle ausgewählt aus Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und W. Das Übergangsmetalldiborid der Komponente 6) ist vorzugsweise TiB2 und/oder ZrB2, weiter vorzugsweise TiB2.
Vorzugsweise werden die obigen Komponenten der pulverförmigen Mischung in möglichst hoher Reinheit und mit kleiner Teilchengröße eingesetzt. Beispielsweise besitzt das Übergangsmetalldiborid der Komponente 5) vorzugsweise eine mittlere Teilchengröße von maximal 4 μm, weiter vorzugsweise maximal 2 μm.
Die Herstellung des erfindungsgemäßen gesinterten Werkstoffs kann in an sich bekannter Weise durch Heißpressen, Heißisostatpressen, Gasdrucksintern oder Spark-Plasma-Sintern einer wie oben beschriebenen pulverförmigen Mischung, gegebenenfalls unter Zusatz von organischen Binde- und Presshilfsmitteln erfolgen. Hierbei können übliche organische Bindemittel wie PoIy- vinylalkohol (PVA), wasserlösliche Harze und Polyacrylsäuren sowie übliche Presshilfsmittel wie Fettsäuren und Wachse eingesetzt werden.
Zur Herstellung des erfindungsgemäßen Sinterwerkstoffs werden mindestens ein Übergangsmetalldiborid der IV. bis VI. Nebengruppe mit den anderen pul- verförmigen Komponenten und gegebenenfalls organischen Binde- und Presshilfsmitteln in Wasser und/oder organischen Lösungsmitteln zu einer homogenen Pulversuspension verarbeitet. Die homogene Pulversuspension wird dann in ein Pulvergranulat überführt, vorzugsweise durch Sprühtrocknung.
Dieses Pulvergranulat kann dann durch Heißpressen oder Heißisostatpressen zu einem Sinterwerkstoff weiter verarbeitet werden.
Gemäß einer bevorzugten Ausführungsform erfolgt die Herstellung des erfindungsgemäßen Sinterwerkstoffs durch Drucklossintern. Hierbei wird ein wie oben erhaltenes Pulvergranulat zu Grünkörpern hoher Dichte verpresst. Hierzu können alle üblichen Formgebungsverfahren, wie axiales Pressen oder kal- tisostatisches Pressen, aber auch Strangpressen, Spritzgießen, Schlickergie- ßen und Druckschlickergießen eingesetzt werden. Die erhaltenen Grünkörper werden dann im Vakuum oder unter Schutzgas bei einer Temperatur von 1.800 - 2.200°C, vorzugsweise 1.900 - 2.1000C, weiter vorzugsweise etwa 2.0000C, durch Drucklossintern in einen gesinterten Werkstoff überführt.
Vorzugsweise werden die Grünkörper vor dem Drucklossintern in inerter Atmosphäre bei Temperaturen unterhalb der Sintertemperatur ausgeheizt, um die organischen Binde- oder Presshilfsmittel zu entfernen.
Die durch Drucklossintern erhaltenen Werkstoffe besitzen eine Dichte von mindestens etwa 94% der theoretischen Dichte, vorzugsweise eine Dichte von mindestens 97% der theoretischen Dichte. Durch solche Dichtewerte wird gewährleistet, dass eine Porosität, soweit vorhanden, als geschlossene Porosität vorliegt. Wahlweise kann der gesinterte Werkstoff durch Heißisostatpressen nachverdichtet werden, um die Dichte zu erhöhen, und um die geschlossene Porosität zu verringern.
Die aus Carbiden von Übergangsmetallen der IV. bis VI. Nebengruppe des Periodensystems ausgewählte Komponente der pulverförmigen Ausgangsmischung reagiert während des Sinterprozesses mit dem zugesetzten Bor zu Übergangsmetallborid und Borcarbid. Das gebildete Übergangsmetallborid und/ oder das zugesetzte Übergangsmetallborid der oben erwähnten Komponente 2) kann einen Mischkristall bilden mit dem eingesetzten Übergangsme- talldiborid der Komponente 5), wie etwa Titandiborid. Diese Borid-Mischkris- tallbildung wirkt kornwachstumshemmend. Das Borcarbid, sowohl das zuge- setzte als auch das beispielsweise aus Wolframcarbid und Bor gebildete, wirkt ebenfalls kornwachstumshemmend. Das Al und/oder Si bzw. deren Verbindungen wirken als Sinterhilfsmittel, wobei das ausgebildete Mikrogefüge auf einen Flüssigphasensinterprozess hinweist.
Der erfindungsgemäße Sinterwerkstoff eignet sich ausgezeichnet zur Herstellung von Verschleißteilen im allgemeinen Anlagenbau, insbesondere chemischen Anlagenbau, thermischen Anlagenbau, in Papiermaschinen, in der Mahltechnik und im Verschleißschutz. Spezielle Anwendungen des erfindungsgemäßen Sinterwerkstoffs sind Werkzeuge zur spanabhebenden Bear- beitung sowie zur spanlosen Bearbeitung und Formgebung, für die Umformtechnik und für Umlenkrollen. Weiterhin eignet er sich zur Herstellung von Wasser- oder Sandstrahldüsen, als auch als Elektrodenmaterialien für Schleifkontakte, Schweißelektroden und Erodierstifte.
Kurze Beschreibung der beigefügten Zeichnungen
Abbildung 1 zeigt eine lichtmikroskopische Aufnahme des Gefüges des in Beispiel 1 erhaltenen Werkstoffs;
Abbildung 2 zeigt eine lichtmikroskopische Aufnahme des Gefüges des in Beispiel 2 erhaltenen Sinterwerkstoffs;
Abbildung 3a zeigt eine TEM-Hellfeldaufnahme eines repräsentativen Bereichs des Gefüges aus Abbildung 1 ;
Abbildungen 3b und 3c zeigen die zu Abbildung 3a gehörigen EELS-Spektren betreffend die elementare qualitative Zusammensetzung des untersuchten Bereichs der sauerstoffhaltigen Sekundärphase;
Abbildung 4a zeigt eine TEM-Hellfeldaufnahme einer repräsentativen (Ti,W)B2-(Ti,W)B2-Korngrenze eines repräsentativen Bereichs des Gefüges aus Abbildung 1 ;
Abbildung 4b zeigt das zu Abbildung 4a dazugehörige, mit EFTEM (Energy Filtering Transmission Electron Microscopy) ermittelte Sauerstoff- Verteilungsbild; Abbildung 4c zeigt den Linienscan des Sauerstoffs entlang der in Abbildung 4b eingezeichneten Linie; und
Abbildung 5 zeigt eine lichtmikroskopische Aufnahme des Gefüges des in Re- ferenzbeispiel 1 erhaltenen Sinterwerkstoffs.
Die nachfolgenden Beispiele und Referenzbeispiel 1 erläutern die Erfindung.
Beispiel 1 :
450 g TiB2-Pulver (d50 = 2 μm; 1 ,7 Gew.-% Sauerstoff, 0. 15 Gew.-% Kohlenstoff, 0.077 Gew.-% Fe), 30 g Wolframcarbid- Pulver (d 50 < 1 μm), 10 g Bor amorph (Reinheit 96,4%, d50 < 1 μm), 8 g Borcarbid-Pulver (d50 = 0.7 μm) und 2 g AI2O3 (Böhmit als Ausgangsstoff) werden zusammen mit 10 g Po- lyvinylalkohol mit einer mittleren Molmasse von 1.500 als Binder und 20 g Stearinsäure als Presshilfsmittel in wässriger Lösung dispergiert und sprühgranuliert. Das Sprühgranulat wird mit 1.000 bar uniaxial zu Grünkörpern verpresst. Der Gesamtsauerstoffgehalt eines verkokten Grünkörpers beträgt 2.7%. Die Grünkörper werden mit 10 K/ min unter Vakuum auf 2.0200C aufgeheizt und 45 min bei Sintertemperatur gehalten. Die Abkühlung erfolgt mit abgeschalteter Heizleistung unter Ar.
Die Sinterdichte der erhaltenen Proben beträgt 97,7% der theoretischen Dichte.
Eine lichtmikroskopische Aufnahme des Gefüges zeigt Abbildung 1.
Das resultierende Gefüge besteht aus einer (Ti,W)B2-Mischkristallmatrix, fein verteiltem partikulärem B4C, einer in den Tripelpunkten partikulär vorliegenden Ti-Al-B-O- Phase (Abbildungen 3a, b und c, EELS-Spektroskopie) und einem ca. 2 nm dicken, durchgängigen sauerstoffhaltigen amorphen Korngrenzenfilm (Abbildungen 4a, b und c, EFTEM).
Die Härte des Sinterkörpers beträgt 2.500 (HKO.1), die Bruchzähigkeit wurde mit der SEVNB-Methode ermittelt und beträgt 5,3 MPa m1 /2, der E-Modul beträgt 560 GPa und die mit der 4-Punkt-Methode gemessene Bruchfestigkeit ist 500 MPa. Beispiel 2:
450 g TiB2-Pulver (d50 = 2 μm; 1 ,7 Gew.-% O, 0. 15 Gew.-% C, 0.077 Gew.-% Fe), 30 g WC (d50 < 1 μm), 10 g Bor amorph (Reinheit 96,4%, d50 < 1 μm), 8 gB 4C (d50 = 0.7 μm) und 2 g AI2O3 (Böhmit als Ausgangsstoff) werden zusammen mit 10 g Polyvinylalkohol mit einer mittleren Molmasse von 1.500 als Binder und 20 g Stearinsäure als Presshilfsmittel in wässriger Lösung dispergiert und sprühgranuliert. Das Sprühgranulat wird mit 1.200 bar kaltisostatisch zu Grünkörpern verpresst. Der Gesamtsauerstoffgehalt eines verkokten Grünkörpers beträgt 2.7%. Die Grünkörper werden mit 10 K/min unter Vakuum auf 2.0600C aufgeheizt und 45 min bei Sintertemperatur gehalten. Die Abkühlung erfolgt mit abgeschalteter Heizleistung unter Ar.
Die Sinterdichte der erhaltenen Proben beträgt 98,7% der theoretischen Dichte.
Eine lichtmikroskopische Aufnahme des Gefüges zeigt Abbildung 2.
Das resultierende Gefüge besteht aus einer (Ti,W)B2-Mischkristallmatrix, fein verteiltem partikulärem B4C, einer in den Tripelpunkten partikulär vorliegenden Ti-Al-B-O-Phase und einem ca. 2 nm dicken, durchgängigen sauerstoffhaltigen amorphen Korngrenzenfilm.
Beispiel 3:
436 g TiB2-Pulver (d50= 2 μm; 1 ,7 Gew.-% O, 0. 15 Gew.-% C, 0.077 Gew.-% Fe), 44 g WC (d50 < 1 μm), 18 g Bor amorph (Reinheit 96,4%, d50 < 1 μm) und 2 g Al2O3 (Böhmit als Ausgangsstoff) werden zusammen mit 10 g Polyvinylalkohol mit einer mittleren Molmasse von 1.500 als Binder und 20 g Stearinsäure als Presshilfsmittel in wässriger Lösung dispergiert und sprühgranuliert. Das Sprühgranulat wird mit 1.200 bar kaltisostatisch zu Grünkörpern verpresst. Die Grünkörper werden mit 10 K/min auf 2.0200C aufgeheizt und 45 min bei Sintertemperatur gehalten. Die Abkühlung erfolgt mit abgeschalteter Heizleistung unter Ar. Beispiel 4:
Die Sinterkörper aus Beispiel 1 werden mit 1.950 bar bei 2.0000C mit einer Haltezeit von 60 Minuten heißisostatisch unter Argon nachverdichtet. Die Dichte der erhaltenen Proben beträgt 99, 1 % der theoretischen Dichte.
Proben der gemäß Beispiel 4 hergestellten Werkstoffe wurden einem Korrosionstest in 1 -molarer HCl bei 100°C unterzogen. Die Probenabmessung betrug 20 x 3 x 4 mm. Die Proben wurden dem Korrosionsmedium für 90 Minuten ausgesetzt. Nach dieser Zeit betrug die Korrosionsrate 1 ,51 μg/ mm2 h.
Zum Vergleich wurde dieser Test auch an Referenzproben durchgeführt, die aus einem gesinterten TiB2-Werkstoff mit 0,5 Vol.-% einer Fe-Cr-Ni- Bindephase hergestellt wurden. Die dort ermittelte Korrosionsrate an Proben derselben Abmessungen wie oben betrug 5,26 μg/mm2 h, so dass der erfindungsgemäße Werkstoff aus Beispiel 4 eine um den Faktor 5 verringerte Korrosionsrate aufweist.
Referenzbeispiel 1 : (Ausgangsmischung ohne AI-Verbindung als Sinterhilfsmittel)
450 g TiB2-Pulver (d50 = 2 μm; 1 , 7 Gew.-% O, 0. 15 Gew.-% C, 0.077 Gew.-% Fe), 30 g WC (d50 < 1 μm), und 2O g B amorph (Reinheit 96,4%, d50 < 1 μm) werden zusammen mit 10 g Polyvinylalkohol mit einer mittleren Molmasse von 1.500 als Binder und 20 g Stearinsäure als Presshilfsmittel in wässriger Lösung dispergiert und sprühgranuliert. Das Sprühgranulat wird mit 1.200 bar kaltisostatisch zu Grünkörpern verpresst. Die Grünkörper werden mit 10 K/min im Vakuum auf 2. 170°C aufgeheizt und 45 min bei Sintertemperatur gehalten. Die Abkühlung erfolgt mit abgeschalteter Heizleistung unter Ar. Der Sinterkörper wird anschließend mit 1.950 bar Ar-Druck eine Stunde bei 2.0000C nachverdichtet. Die Dichte beträgt 97.9% der theoretischen Dichte.
Eine lichtmikroskopische Aufnahme des Gefüges zeigt Abbildung 5. Das resultierende Gefüge besteht aus einer (Ti,W)B2-Mischkristallmatrix und partikulärem Borcarbid, das zum Teil in der Korngrenze und zum Teil im Mischkristallkorn liegt. Der mittlere Korndurchmesser beträgt ca. 100 μm. Zur Verdichtung auf geschlossene Porosität wurde hier eine höhere Sintertemperatur benötigt. Es resultiert ein grobkörniges Gefüge.

Claims

Patentansprüche
1. Gesinterter verschleißbeständiger Werkstoff auf der Basis von Über- gangsmetalldiboriden, enthaltend a) als Hauptphase 80-98,8 Gew.-% eines feinkörnigen Übergangsmetalldi- borids oder Übergangsmetalldiborid-Mischkristalls aus mindestens zwei Über- gangsmetalldiboriden oder Mischungen aus solchen Diborid-Mischkristallen oder Mischungen solcher Diborid-Mischkristalle mit einem oder mehreren Übergangsmetalldiboriden, wobei die Übergangsmetalle aus der IV. bis VI. Ne- bengruppe des Periodensystems ausgewählt sind, b) als Zweitphase 0,2 bis 5 Gew.-% einer durchgängigen, sauerstoffhaltigen Korngrenzphase, und c) als Drittphase 1 - 15 Gew.-% partikuläres Borcarbid und/oder Silicium- carbid.
2. Werkstoff nach Anspruch 1 , wobei die Hauptphase a) eine mittlere Korngröße von weniger als 20 μm, vorzugsweise weniger als 10 μm aufweist.
3. Werkstoff nach Anspruch 1 und /oder 2, wobei das Borcarbid und /oder Siliciumcarbid der Drittphase c) eine mittlere Partikelgröße von weniger als
20 μm, vorzugsweise weniger als 5 μm aufweist.
4. Werkstoff nach mindestens einem der Ansprüche 1 -3, wobei der Anteil der Drittphase c) 1 -4 Gew.-% beträgt.
5. Werkstoff nach mindestens einem der Ansprüche 1 -4, wobei die Zweitphase b) in einem Anteil von bis zu 2,5 Gew.-% vorliegt.
6. Werkstoff nach mindestens einem der Ansprüche 1-5, wobei die Über- gangsmetalle der IV. bis VI. Nebengruppe ausgewählt sind aus Ti, Zr, Hf, V,
Nb, Ta, Cr, Mo und W.
7. Werkstoff nach mindestens einem der Ansprüche 1 -6, wobei es sich bei der Hauptphase a) um feinkörnniges TiB2 und/oder ZrB2 und/oder einen Mischkristall aus (Ti1W)B2 und/oder (Zr, W)B2 und/oder (Ti1Zr)B2, vorzugsweise um einen Mischkristall aus (Ti, W)B2 und/oder (Zr1W)B2, weiter vorzugswei- se um den Mischkristall (Ti1W)B2 oder um den Mischkristall (Zr1W)B2, handelt.
8. Pulverförmige sinterfähige Mischung zur Herstellung eines gesinterten Werkstoffs auf der Basis von Übergangsmetalldiboriden, enthaltend
1 ) 0,05-2 Gew.-% Al und/oder Si als metallisches Al und/oder Si und/oder eine diesem Gehalt entsprechende Menge einer Al- und/oder Si-Verbindung,
2) optional mindestens eine Komponente, gewählt aus Carbiden und Bori- den von Übergangsmetallen der IV. bis VI. Nebengruppe des Periodensystems, 3) 0,5- 19 Gew.-%, bevorzugt 1 -5 Gew.-% Bor,
4) 0- 15 Gew.-%, bevorzugt 0,5-5 Gew.-% Borcarbid und/oder Siliciumcar- bid, und
5) als Rest mindestens ein Übergangsmetalldiborid der IV. bis VI. Nebengruppe des Periodensystems, das von dem Übergangsmetallborid der obigen Komponente 2) verschieden ist.
9. Mischung nach Anspruch 8, wobei der Anteil der Komponente 1 ) 0,2- 0,6 Gew.-% beträgt.
10. Mischung nach Anspruch 8 und/oder 9, wobei der Anteil der Komponente 2) > 0,25 Gew.-% beträgt.
1 1. Mischung nach mindestens einem der Ansprüche 8- 10, wobei das Übergangsmetalldiborid der Komponente 5) eine mittlere Teilchengröße von < 4 μm, vorzugsweise < 2 μm aufweist.
12. Mischung nach mindestens einem der Ansprüche 8 bis 1 1 , wobei die Übergangsmetalle der IV. bis VI. Nebengruppe ausgewählt sind aus Ti, Zr, Hf, V, Nb, Ta, Cr, Mo und W.
13. Mischung nach mindestens einem der Ansprüche 8- 12, wobei die Komponente 2) Wolframcarbid ist.
14. Mischung nach mindestens einem der Ansprüche 8- 13, wobei das Über- gangsmetalldiborid der Komponente 5) TiB2 und/oder ZrB2 ist.
15. Verfahren zur Herstellung eines gesinterten Werkstoffs nach mindestens einem der Ansprüche 1 -7 durch Heißpressen oder Heißisostatpressen oder Gasdrucksintern oder Spark-Plasma-Sintern einer pulverförmigen Mischung nach mindestens einem der Ansprüche 8- 14, gegebenenfalls unter Zusatz von organischen Binde- und Presshilfsmitteln.
16. Verfahren zur Herstellung eines gesinterten Werkstoffs nach mindestens einem der Ansprüche 1-7 durch Drucklossintern, umfassend die Schritte: a) Vermischen einer pulverförmigen Mischung nach mindestens einem der Ansprüche 9- 14, gegebenenfalls unter Zusatz von organischen Binde- und Presshilfsmitteln in Wasser und /oder organischen Lösemitteln zur Herstellung einer homogenen Pulversuspension, b) Herstellen eines Pulvergranulats aus der Pulversuspension, c) Verpressen des Pulvergranulats zu Grünkörpern hoher Dichte, und d) Drucklossintern der erhaltenen Grünkörper im Vakuum oder unter Schutzgas bei einer Temperatur von 1.800 - 2.2000C.
17. Verfahren nach Anspruch 16, wobei die Herstellung des Pulvergranulats in Schritt b) durch Sprühtrocknung erfolgt.
18. Verfahren nach Anspruch 16 und/oder 17, wobei die Herstellung der Grünkörper in Schritt c) durch axiales Pressen, kaltisostatisches Pressen, Strangpressen, Spritzgießen, Schlickergießen oder Druckschlickergießen erfolgt.
19. Verfahren nach mindestens einem der Ansprüche 16- 18, wobei die in Schritt c) erhaltenen Grünkörper vor dem Drucklossintern in inerter Atmosphäre bei Temperaturen unterhalb der Sintertemperatur ausgeheizt werden.
20. Verfahren nach mindestens einem der Ansprüche 16- 19, wobei das Drucklossintern in Schritt d) bei einer Temperatur im Bereich von 1.900- 2. 1000C, vorzugsweise etwa 2.0000C durchgeführt wird.
21. Verfahren nach mindestens einem der Ansprüche 16-20, wobei der drucklos gesinterete Werkstoff durch Heißisostatpressen nachverdichtet wird.
22. Verwendung des gesinterten Werkstoffs nach mindestens einem der Ansprüche 1 -7 zur Herstellung von Verschleißteilen im allgemeinen Anlagenbau, insbesondere chemischen Anlagenbau, thermischen Anlagenbau, in Papiermaschinen, in der Mahltechnik und im Verschleißschutz.
23. Verwendung des gesinterten Werkstoffs nach mindestens einem der Ansprüche 1 -7 zur Herstellung von Werkzeugen zur spanabhebenden Bearbeitung.
24. Verwendung des gesinterten Werkstoffs nach mindestens einem der Ansprüche 1 -7 zur Herstellung von Werkzeugen zur spanlosen Bearbeitung und Formgebung, Umformtechnik und für Umlenkrollen.
25. Verwendung des gesinterten Werkstoffs nach mindestens einem der An- sprüche 1 -7 zur Herstellung von Wasser- oder Sandstrahldüsen.
26. Verwendung des gesinterten Werkstoffs nach mindestens einem der Ansprüche 1-7 als Elektrodenmaterial für Schleifkontakte, Schweißelektroden und Erodierstifte.
EP07723199A 2006-03-24 2007-03-12 Gesinterter verschleissbeständiger boridwerkstoff, sinterfähige pulvermischung zur herstellung des werkstoffs, verfahren zur herstellung des werkstoffs und dessen verwendung Withdrawn EP1999087A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013746A DE102006013746A1 (de) 2006-03-24 2006-03-24 Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
PCT/EP2007/002160 WO2007110149A1 (de) 2006-03-24 2007-03-12 Gesinterter verschleissbeständiger boridwerkstoff, sinterfähige pulvermischung zur herstellung des werkstoffs, verfahren zur herstellung des werkstoffs und dessen verwendung

Publications (1)

Publication Number Publication Date
EP1999087A1 true EP1999087A1 (de) 2008-12-10

Family

ID=38258822

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723199A Withdrawn EP1999087A1 (de) 2006-03-24 2007-03-12 Gesinterter verschleissbeständiger boridwerkstoff, sinterfähige pulvermischung zur herstellung des werkstoffs, verfahren zur herstellung des werkstoffs und dessen verwendung

Country Status (5)

Country Link
US (1) US20090105062A1 (de)
EP (1) EP1999087A1 (de)
CN (1) CN101410347A (de)
DE (1) DE102006013746A1 (de)
WO (1) WO2007110149A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050593A1 (de) 2005-10-21 2007-04-26 Esk Ceramics Gmbh & Co. Kg Dauerhafte siliciumnitridhaltige Hartbeschichtung
DE102006013729A1 (de) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Gesinterter Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
DE102007053284A1 (de) * 2007-11-08 2009-05-20 Esk Ceramics Gmbh & Co. Kg Fest haftende siliciumnitridhaltige Trennschicht
AT11884U1 (de) * 2010-05-04 2011-06-15 Plansee Se Target
DE102011111331A1 (de) 2011-08-23 2013-02-28 Esk Ceramics Gmbh & Co. Kg Titandiborid-Granulate als Erosionsschutz für Kathoden
CN104119837B (zh) * 2014-07-30 2016-06-08 太仓力达莱特精密工业有限公司 一种纤维增强陶瓷基摩擦材料的制备方法
EP3224222B1 (de) * 2014-11-26 2019-05-08 Corning Incorporated Verbundkeramik und verfahren deren herstellung
JP7000104B2 (ja) * 2017-10-04 2022-01-19 キヤノン株式会社 造形方法および造形用の粉末材料
CN109133937B (zh) * 2018-08-08 2021-05-25 天津德天助非晶纳米科技有限公司 三元硼化物及其制备方法和应用
CN110735076B (zh) * 2019-09-04 2021-05-11 广东工业大学 一种高熵金属陶瓷及其制备方法和应用
RU2770773C1 (ru) * 2021-02-25 2022-04-21 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» Способ получения шихты для изготовления композиционной керамики карбид бора - диборид циркония
FR3127754B3 (fr) * 2021-10-04 2023-11-24 Saint Gobain Ct Recherches Procede de synthese d’une poudre de diborure de titane

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610106B2 (ja) * 1985-06-14 1994-02-09 旭硝子株式会社 導電性可変ZrB2質複合焼結体
JPH0627036B2 (ja) * 1988-06-22 1994-04-13 日本鋼管株式会社 高強度高靭性TiB▲下2▼セラミックス
JPH0674177B2 (ja) * 1990-09-21 1994-09-21 工業技術院長 ホウ化チタン/炭化ケイ素複合セラミックスの高強度化法
JPH05319935A (ja) * 1991-10-29 1993-12-03 Mitsubishi Heavy Ind Ltd TiB2 セラミックス焼結体
DE4319460A1 (de) * 1993-06-11 1994-12-15 Kempten Elektroschmelz Gmbh Verbundwerkstoffe auf der Basis von Borcarbid, Titandiborid und elementarem Kohlenstoff sowie Verfahren zu ihrer Herstellung
US5449646A (en) * 1994-07-29 1995-09-12 Dow Corning Corporation Preparation of high density zirconium diboride ceramics with preceramic polymer binders
JPH09100165A (ja) * 1995-10-03 1997-04-15 Mitsubishi Materials Corp 硼化物セラミックス及びその製造方法
DE102006013729A1 (de) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Gesinterter Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007110149A1 *

Also Published As

Publication number Publication date
CN101410347A (zh) 2009-04-15
WO2007110149A1 (de) 2007-10-04
DE102006013746A1 (de) 2007-09-27
US20090105062A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
EP1999087A1 (de) Gesinterter verschleissbeständiger boridwerkstoff, sinterfähige pulvermischung zur herstellung des werkstoffs, verfahren zur herstellung des werkstoffs und dessen verwendung
DE10244955B4 (de) Sinterhartmetall, Verwendung eines Sinterhartmetalls und Verfahren zur Herstellung eines Sinterhartmetalls
EP0002067B1 (de) Verfahren zur Herstellung von polykristallinen dichten Formkörpern aus Borcarbid durch drucklose Sinterung
EP1999070A1 (de) Gesinterter werkstoff, sinterfähige pulvermischung, verfahren zur herstellung des werkstoffs und dessen verwendung
DE69104862T2 (de) Keramisches Material auf Basis von Tonerde.
EP0628525B1 (de) Verbundwerkstoffe auf der Basis von Borcarbid, Titanborid und elementarem Kohlenstoff sowie Verfahren zu ihrer Herstellung
EP0433856B1 (de) Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen
DE102018113340B4 (de) Dichteoptimierte Molybdänlegierung
DE19850366B4 (de) Plateletverstärkter Sinterformkörper, dessen Verwendung und Verfahren zu seiner Herstellung
EP0629594B1 (de) Verfahren zur Herstellung von polykristallinen dichten Formkörpern auf der Basis von Borcarbid durch drucklose Sinterung
DE3127649A1 (de) Dichtgesinterter siliciumcarbid-keramikkoerper
DE3027401C2 (de)
DE68925310T2 (de) Komplexe Cermets aus Boriden
DE3938879C2 (de) Sinterkörper auf Siliziumnitridbasis
DE69418578T2 (de) Keramischer Werkstoff auf Aluminiumoxid-Basis und Verfahren zu seiner Herstellung
DE112009002609T5 (de) Leicht verdichtbares Titandiborid und Verfahren zur Herstellung von selbigem
DE69212398T2 (de) Siliciumnitridkeramik mit einer dispergierten Pentamolybdäntrisilicidphase
DE102014204277B4 (de) VERSCHLEIßFESTE WOLFRAMCARBID-KERAMIKEN UND VERFAHREN ZU IHRER HERSTELLUNG
DE68918506T2 (de) Hochfeste hochzähe TiB2-Keramik.
DE3881777T2 (de) Gesinterte Siliziumcarbid-Verbundkörper und Verfahren zu ihrer Herstellung.
DE4007825C2 (de)
EP1560799A2 (de) Keramik-metall- oder metall-keramik-komposite
DE69306414T2 (de) Kristallisation von kongrenzenphasen in silicumcarbidkeramik
DE3603331A1 (de) Siliciumcarbid-sintererzeugnis und verfahren zu dessen herstellung
DE3939989C2 (de) Verfahren zur Herstellung eines Sinterkörpers auf Siliziumnitridbasis und Sinterkörper auf Siliziumnitridbasis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WALLMEIER, FRANK

Inventor name: SCHMALZRIED, CLEMENS

Inventor name: THALER, HUBERT

Inventor name: LESNIAK, CHRISTOPH

17Q First examination report despatched

Effective date: 20110225

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110908