EP1979529B1 - Support fibreux comprenant un revetement silicone - Google Patents
Support fibreux comprenant un revetement silicone Download PDFInfo
- Publication number
- EP1979529B1 EP1979529B1 EP20060830671 EP06830671A EP1979529B1 EP 1979529 B1 EP1979529 B1 EP 1979529B1 EP 20060830671 EP20060830671 EP 20060830671 EP 06830671 A EP06830671 A EP 06830671A EP 1979529 B1 EP1979529 B1 EP 1979529B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- article according
- optionally
- crosslinking
- silicone
- outer layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/128—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/235—Inflatable members characterised by their material
- B60R2021/23504—Inflatable members characterised by their material characterised by material
- B60R2021/23509—Fabric
- B60R2021/23514—Fabric coated fabric
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/12—Polysiloxanes containing silicon bound to hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/56—Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
Definitions
- the present invention relates to a fibrous support comprising a silicone coating, consisting of at least two successive layers of silicone type.
- the first layer that in contact with the fibrous support is a layer based on an elastomeric silicone composition.
- the second layer, that in contact with the first layer, is a thin layer obtained by crosslinking an aqueous polyorganosiloxane emulsion crosslinkable by polyaddition reaction comprising a high level of charges.
- the invention also relates to a method for manufacturing such coated fibrous support, in particular airbag type air bag.
- the general field of the invention is that of the use of silicone compositions, in particular those of the two-component or multicomponent type, crosslinkable by polyaddition reactions to produce a thin-film elastomer as a coating of different fibrous supports, such as for example fibrous, woven, knitted or non-woven supports.
- Such silicone coatings are generally obtained by coating the fibrous supports and then curing by polyaddition of the unsaturated groups (alkenyls, e.g. Si-Vi) of a polyorganosiloxane onto hydrogens of the same or another polyorganosiloxane.
- unsaturated groups alkenyls, e.g. Si-Vi
- These are generally formed by a fabric of synthetic fiber, for example polyamide, covered on at least one of these faces with a layer of a silicone composition.
- silicone compositions have thus found an important outlet in the coating of flexible materials - woven, knitted or non-woven - used for the manufacture of personal protective bags of vehicle occupants.
- Front airbags can be adaptive and deploy in proportion to the violence of the shock.
- the protection system is now increasingly complemented by side airbags, or curtains.
- side airbags or curtains.
- the protective bags remain inflated as long as possible, especially when the motor vehicle is shocked causing it into a series of rolls (roll-over). It is therefore important that these protective bags are perfectly waterproof in this respect.
- the protective bag obtained is then covered on its external surface with a quantity of silicone composition that is large enough to ensure a good air-tightness.
- US-B-6354620 discloses a fibrous support coated for two successive layers of silicone type for inflatable bags having good coefficients of dynamic friction.
- the present invention thus relates to a surface of a fibrous support, such as airbag-type airbag, comprising two successive layers of silicone type.
- the first layer that in contact with the fibrous support is a layer based on an elastomeric silicone composition.
- the second layer, that in contact with the first layer, is a thin layer obtained by crosslinking an aqueous polyorganosiloxane emulsion crosslinkable by polyaddition reaction comprising a high level of charges.
- the resulting silicone coating is capable of imparting excellent mechanical properties to fibrous substrates, such as cohesion, flexibility, flexibility, fraying resistance, tear resistance and combing strength, as well as creasing, while obtaining an excellent compromise in terms of sealing properties, in particular with respect to air, and abrasion resistance properties (scrub test) and friction coefficient representative of a low coefficient of friction.
- the solution of the invention also makes it possible to obtain fibrous supports which also have the other expected and required properties, such as good fire resistance and temperature.
- airbags can be produced for the personal protection of the occupants of a vehicle from open-textured fabrics as described above, in particular polyamide or polyester fabrics, which once coated, have a good coefficient of friction and good resistance to combing and tearing, also having optimal properties including impermeability, thermal protection, porosity, pliability, fire resistance. This makes it possible to produce airbags that are more efficient and less costly than the bags made from the coated fabrics of the prior art.
- the solution according to the invention also allows better control of the desired thickness in silicone coating on the fibrous support, thus ensuring the best possible performance in terms of impermeability and touch characteristics.
- the present invention is directed to any product that can be obtained by depositing on a fibrous support the silicone layers mentioned above.
- air bags used for the protection of the occupants of a vehicle, in English "air bag", glass braids, such as sheaths made of glass fabric for thermal protection and dielectric for wire electric, conveyor belts, fireproof fabrics, thermal insulators, compensators, such as flexible pipe sealing sleeves, clothing or soft materials for use in indoor or outdoor textile architecture such as tarpaulins, tents, stands, and capitals.
- the fibrous supports intended to be coated may be, for example, woven fabrics, nonwovens or knits or more generally any fibrous support comprising fibers and / or fibers chosen from the group of materials comprising: glass, silica, metals, ceramics, silicon carbide, carbon, boron, natural fibers such as cotton, wool, hemp, flax, artificial fibers such as viscose, or cellulosic fibers, synthetic fibers such as polyesters polyamides, polyacrylics, chlorofibers, polyolefins, polyimides, synthetic rubbers, polyvinyl alcohol, aramids, fluorofibres, phenolics, etc.
- the airbag used preferentially in the context of the invention are woven in one piece ("one piece woven"), as mentioned in the applications GB2383304 and GB2397805 .
- These bags may be based on various fibrous materials, such as for example polyamides or polyesters.
- the polyorganosiloxanes (POS), main constituents of the compositions according to the invention, may be linear, branched or crosslinked, and may comprise hydrocarbon radicals and reactive groups such as, for example, alkenyl groups and / or hydrogen atoms.
- POS polyorganosiloxanes
- the organopolysiloxane compositions are amply described in the literature and in particular in the work of Walter Noll "Chemistry and Technology of Silicones", Academic Press, 1968, 2nd Edition, pages 386-409 .
- organopolysiloxane compositions crosslinking at room temperature or with heat by polyaddition reactions, essentially by reaction of hydrogenosilyl groups with alkenylsilyl groups, in the generally presence of a metal catalyst, preferably platinum.
- metal catalyst preferably platinum
- the organopolysiloxanes used in these compositions are generally composed of pairs based on one hand with at least one linear polysiloxane, branched or cross-linked compound comprising at least two alkenyl groups, and on the other hand at least one linear, branched or crosslinked hydrogen polysiloxane comprising at least two, sometimes at least three, hydrogen atoms.
- organic radicals Y directly linked to silicon atoms methyl groups; ethyl; propyl; isopropyl; butyl; isobutyl; n-pentyl; t-butyl chloromethyl; dichloromethyl; ⁇ -chloroethyl, ⁇ , ⁇ -dichloroethyl; fluoromethyl; difluoromethyl ⁇ , ⁇ -difluoroethyl; 3,3,3-trifluoropropyl trifluorocyclopropyl; 4,4,4-trifluorobutyl; hexafluoro-3,3,4,4,5,5 pentyl; ⁇ -cyanoethyte; ⁇ -cyanopropyte; phenyl; p-chlorophenylem-; chlorophenyl; 3,5-dichlorophenyl; o-, p-, or m-tolyl trichlorophen
- the organic radicals Y bonded to the silicon atoms are methyl or phenyl radicals, these radicals possibly being optionally halogenated or else cyanoalkyl radicals.
- POS (A) corresponding to a polydimethylsiloxane oil blocked at each end of the chains by a (CH 3 ) 2 ViSiO 1/2 (M vi ) motif is preferred.
- a PS (B) corresponding to a poly (dimethyl) (hydrogenomethyl) siloxane oil blocked at each end of the chains by a (CH 3 ) 2 HSiO 1/2 (M H ) unit is especially preferred.
- the emulsions according to the invention may further comprise at least one silicone resin (G) of the polyorganosiloxane resin (POS) type optionally comprising at least one, preferably at least 2, group (s). alkenyls, especially non-hydroxylated.
- This resin may in particular correspond to the definition of the polyorganosiloxanes (A) mentioned above.
- silicone resins are well known and commercially available branched POS polymers. They have, per molecule, at least two different units chosen from those of formula R 1 3 SiO 1/2 (M unit), R 1 2 SiO 2/2 (D unit), R 1 SiO 3/2 (T unit) and Si0 4/2 (Q pattern).
- the radicals R 1 are identical or different and are chosen from linear or branched alkyl radicals, vinyl, phenyl and / or 3,3,3-trifluoropropyl radicals.
- the alkyl radicals have from 1 to 6 carbon atoms inclusive. More particularly, there may be mentioned as radicals R 1 alkyl, methyl, ethyl, isopropyl, tert-butyl and n-hexyl radicals.
- the radicals R 1 are vinyl residues, with a weight content of Vi in particular between 0.1 and 2%.
- These vinyl functional groups are borne by the units M, D or T.
- a resin (G) corresponding to an MD Vi Q resin optionally in solution in a polydimethylsiloxane oil blocked at each end of the chains by a (CH 3 ) 2 ViSiO 1/2 motif.
- the POS (A) may have a dynamic viscosity of at least 200 mPa.s and preferably less than 500000 mPa.s, preferably between 3500 and 100000 mPa.s.
- the POS (B) may have a dynamic viscosity in particular of less than 300 mPa.s, preferably between 1 and 50 mPa.s.
- the POS resin (G) may have a dynamic viscosity of between 200 and 500,000 mPa.s, preferably between 3,000 and 100,000 mPa.s.
- the surfactants (C) can be anionic, cationic or nonionic. In particular, it may be one or more polyethoxylated fatty alcohols. Preferably, the surfactants are nonionic.
- the role of the surfactant will notably be to refine the particle size of the emulsion, possibly to improve its stability, and also to ensure its wetting on the first silicone layer.
- the nonionic surfactants may be chosen from alkoxylated fatty acids, polyvinyl alcohols, polyalkoxylated alkylphenols, polyalkoxylated fatty alcohols, polyalkoxylated or polyglycerolated fatty amides, polyglycerolated alcohols and alpha diols, and oxide block polymers.
- the anionic surfactants may be chosen from alkylbenzene sulphonates, alkyl sulphates, alkyl ether sulphates, alkyl aryl ether sulphates, dialkyl sulphosuccinates, alkyl phosphates, and ether phosphates, of alkali metals. They advantageously have an HLB of at least 10.
- cationic surfactants mention may be made of aliphatic or aromatic fatty amines, aliphatic fatty amides and quaternary ammonium derivatives. They advantageously have an HLB of at least 10.
- the surfactant used alone or as a mixture, is in particular chosen according to the nature of the POS used.
- An alkyl siloxane modified with an alkylene polyoxide is particularly useful in the context of the invention.
- crosslinking catalyst it is possible in particular to choose a catalyst consisting of at least one metal, or compound, of the platinum group which are also well known.
- the platinum group metals are those known as platinoids, which includes, in addition to platinum, ruthenium, rhodium, palladium, osmium and iridium.
- the platinum and rhodium compounds are preferably used.
- the amount by weight of catalyst (III), calculated as weight of platinum-metal is generally between 2 and 400 ppm, preferably between 5 and 200 ppm based on the total weight of polyorganosiloxanes (I) and (II). ).
- the emulsion comprises from 10 to 80% by weight of a filler, relative to the dry weight of the outer layer after crosslinking, said filler has a particle size d50 of between 0.5 and 50 ⁇ m, preferably between 1 and 10 ⁇ m.
- This particle size d50 corresponds to the particle size under which is 50% of the distribution by weight.
- the emulsion according to the invention may in particular comprise two types of fillers (E) having different particle sizes.
- one type of filler (E) may have a particle size of between 0.5 and 5 ⁇ m and another type of filler (E) may have a particle size of between 10 and 50 ⁇ m.
- Such a feedstock may be, for example, fillers included in the group consisting of: silicas, calcium carbonate, crushed quartz, calcined clays, diatomaceous earths, carbon black, titanium dioxide, aluminum oxide, hydrated alumina, expanded vermiculite, unexpanded vermiculite, zinc oxide, mica, talc, iron oxide, barium sulfate and slaked lime. These fillers can be incorporated as such or surface-treated. These fillers may optionally be in the form of an aqueous dispersion (slurry).
- acetylenic alcohols (cf. FR-B-1,528,464 and FR-A-2,372,874 ), which form part of the preferred hydrosilylation reaction heat blockers, may in particular choose ethynyl-1-cyclohexanol-1, 3-methyl-1-dodecyn-3-ol, trimethyl-3,7,11-dodecylne- 1-ol, 1,1-diphenyl-2-propyne-1-ol, 3-ethyl-6-ethyl-1-nonyne-3-ol, 2-methyl-3-butyne-2-ol, 3-methyl-5-pentadecyl, 1-ol, diallyl maleate or diallyl maleate derivatives.
- Such an inhibitor may be present at a maximum of 3000 ppm, preferably at 100 to 1000 ppm based on the total weight of organopolysiloxanes (I) and (II).
- the emulsion according to the invention may also comprise other conventional formulation additives (J), such as condensation catalysts, dyes, fireproofing agents, bactericidal agents, inorganic or organic pigments, thickeners organic (polyethylene oxide and derived copolymers, xanthan gum, hydroxyethylcellulose, acrylic or cationic polymers ...) or minerals (laponite), antioxidants, and pH-fixing agents, especially siliceous or non-siliceous mineral materials reinforcement, stuffing or specific properties.
- J conventional formulation additives
- J such as condensation catalysts, dyes, fireproofing agents, bactericidal agents, inorganic or organic pigments, thickeners organic (polyethylene oxide and derived copolymers, xanthan gum, hydroxyethylcellulose, acrylic or cationic polymers ...) or minerals (laponite), antioxidants, and pH-fixing agents, especially siliceous or non-siliceous mineral materials reinforcement, stuffing or specific properties.
- a pH-fixing agent used in the emulsion makes it possible to maintain the pH at alkaline values, for example between 7 and 8.
- This pH-maintaining system may be, for example, sodium bicarbonate.
- the emulsion may further contain reinforcing or stuffing mineral fillers, which are preferably chosen from combustion silicas and precipitated silicas. They have a specific surface area, measured according to the BET methods, of at least 50 m 2 / g, in particular between 50 and 400 m 2 / g, preferably greater than 70 m 2 / g, a mean average particle size of the lower particles. at 0.1 micrometer ( ⁇ m) and a bulk density of less than 200 g / liter.
- reinforcing or stuffing mineral fillers which are preferably chosen from combustion silicas and precipitated silicas. They have a specific surface area, measured according to the BET methods, of at least 50 m 2 / g, in particular between 50 and 400 m 2 / g, preferably greater than 70 m 2 / g, a mean average particle size of the lower particles. at 0.1 micrometer ( ⁇ m) and a bulk density of less than 200 g / liter.
- hydrophilic silicas are preferably incorporated as such into the (continuous) aqueous phase of the emulsion.
- these silicas may optionally be treated with one or more organosilicon compounds usually used for this purpose.
- the silicas may be predispersed in the silicone oil.
- methylpolysiloxanes such as hexamethyldisiloxane, octamethylcyclotetrasiloxane, methylpolysilazanes such as hexamethyldisilazane, hexamethylcyclotrisilazane, chlorosilanes such as dimethyl-dichlorosilane, trimethylchlorosilane, methylvinyldichlorosilane, dimethylvinylchlorosilane, alkoxysilanes such as dimethyl-dimethoxysilane, dimethylvinylethoxysilane, trimethylmethoxysilane.
- the silicas can increase their starting weight up to a rate of 20%.
- the aqueous silicone emulsion according to the invention is of the type that crosslinkable by room temperature polyaddition (EVF or RTV), knowing that this platinum catalyzed crosslinking can be activated thermally (100-200 ° C).
- This emulsion makes it possible to obtain fabrics coated with silicone elastomers in thin, water-repellent layers having good mechanical properties of flexibility, resistance to tearing and fraying and releasing little heat in the event of combustion.
- the silicone phase of the emulsion according to the invention comprises POS intended to generate the elastomer by crosslinking / curing at room temperature (23 ° C.) according to a polyaddition mechanism. It is possible to accelerate the crosslinking by thermal activation at a temperature above ambient.
- the so-called cold vulcanizable polyaddition elastomers and the hot vulcanizable polyaddition elastomers are within the scope of the invention.
- the aqueous emulsion can be carried out at ambient temperature (25 ° C.) and at atmospheric pressure.
- the aqueous emulsion of POS as defined above can be carried out by emulsification by introducing into the same reactor constituents (A) to (J).
- This emulsion can also be produced by mixing pre-emulsions which are each incapable of crosslinking separately because they do not have all the reactive species and the catalyst necessary for polyaddition (in particular POS ⁇ SiVi + POS ⁇ SiH + catalyst). .
- pre-emulsions are then mixed. Any one of the aforementioned pre-emulsions may additionally contain the surfactant (C), the fillers (E), and the other possible components (G) - (J).
- the catalytic emulsion may be added to the other silicone emulsions (in particular that based on SiH) during the formulation of the bath, before application to the article.
- the surfactant (C) can be emulsified directly, ie. the silicone phase is poured into the aqueous solution containing the surfactant, or in reverse phase.
- the adhesion promoter (I) may be added at any time, in particular during the preparation of the bath.
- the inner layer (1) in contact with the fibrous support is based on an elastomeric silicone composition. Various types of these compositions may be used.
- compositions may be the same as those described above for the outer layer (2).
- the composition may also comprise the various additives used for the formation of the outer layer (2).
- the elastomeric silicone composition preferably comprises reinforcing fillers, such as those described above, in particular polyorganosiloxane resins, and / or silica preferentially treated, more preferably in proportions of between 5 and 50% of the inner layer.
- the deposition steps are advantageously carried out by coating.
- the coating step can in particular be carried out using a squeegee, in particular a squeegee on a cylinder, a squeegee in the air or a squeegee on the belt, by transfer, by padding, that is to say by squeezing between two rollers, or by roll liner, rotating frame, inverse roll "reverse roll", and / or spray.
- a squeegee in particular a squeegee on a cylinder, a squeegee in the air or a squeegee on the belt
- transfer by padding, that is to say by squeezing between two rollers, or by roll liner, rotating frame, inverse roll "reverse roll", and / or spray.
- padding that is to say by squeezing between two rollers, or by roll liner, rotating frame, inverse roll "reverse roll", and / or spray.
- drying and crosslinking are then carried out, preferably by hot air or electromagnetic radiation, for example infra-red, especially from 10 seconds to 5 minutes, preferably from 10 to 60 seconds, at a temperature of crosslinking temperature without exceeding the degradation temperature of the fibrous support.
- hot air or electromagnetic radiation for example infra-red, especially from 10 seconds to 5 minutes, preferably from 10 to 60 seconds, at a temperature of crosslinking temperature without exceeding the degradation temperature of the fibrous support.
- the amount of elastomeric silicone composition applied is such that it allows the formation of an inner layer (1) having a basis weight of between 10 and 200 g / m 2 , preferably between 40 and 120 g / m 2 . In general, a final deposited thickness after crosslinking of between 30 and 70 ⁇ m will be used.
- the amount of crosslinkable polyorganosiloxane aqueous emulsion applied by polyaddition reaction is such that it allows the formation of an outer layer (2) having a basis weight of between 1 and 20 g / m 2 , preferably between 5 and 15 g / m 2 .
- the silicone coating forming the subject of the invention is carried out on the outer surface of said bag, in contact with the user or the various elements of the vehicle.
- the viscosity is measured using a BROOKFIELD viscometer according to the indications of standard AFNOR NFT-76-106 of May 82.
- TA1 and sorbic acid are introduced in a laboratory IKA reactor equipped with a scraping anchor and a base (cooled by circulation of cold water).
- the resin G is then cast with stirring for 170 min.
- poured POS A in which was predispersed the ECH, for 150min.
- An ultra-turrax rotor-stator (IKA) is then added and the emulsion is sheared for 90 min, 20 min at 16,000 rpm and then 70 min at 13,000 rpm.
- the final temperature is 28.6 ° C.
- the average particle size is 3 microns.
- poured POS B for 20min.
- the emulsion is then diluted by gradual addition of demineralized water for 60 min.
- TA2 is then additive then the charge (E) and stir to homogenize.
- This emulsion comprises 53% by weight of POS A, 28% by weight of TA1, 0.45% by weight of catalyst, and 17.5% by weight of water.
- the fabric is a polyamide fabric warp and weft 470dtex, 18fils per centimeters. It was coated with an inner layer (1) of silicone with a surface density of 65 g / m 2 of Rhodorsil TCS 7510 Rhodia Silicones.
- the inner layer (1) has a thickness of 60 microns.
- the mixture of the amounts of crosslinking and catalyzing preparations indicated in Table 2, plus possibly the dilution water to adjust the viscosity and the concentration of the bath in order to adjust the amount of silicone deposited on the fabric, is achieved during the constitution of the coating bath, before application to the fabric.
- the coating bath is applied to the fabric already coated with the silicone inner layer, at the Meyer bar number 3. Then, the coated fabric is passed through a ventilated heating chamber according to the conditions specified in Table 2.
- Example 4 Coating of a "one piece woven" fabric and sealing measurement
- a fabric sample "one piece woven” (commonly called “T-bag”) is initially coated with an inner layer (1) of liquid silicone elastomer. Then, an outer layer of emulsion is applied in a second time.
- the coating of the inner layer (1) is performed on a pilot line (Rotary) of continuous laboratory coating, using a rake in 1 to 2m / min, followed by a line passage in a oven at 180 ° C.
- the weight per unit area of the inner layer (1) deposited is 60 g / m 2 on each face.
- An emulsion comprising 100 g of emulsion R5, 5 g of emulsion C and 50 g of water is then applied to the same line with the aid of an engraved cylinder bathed in an emulsion bath, the fabric being then wrung out by a Meyer bar.
- the coating is carried out at 4m / min and after passing through an oven at 170 ° C. an outer layer (2) is obtained with a basis weight of 10 g / m 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Air Bags (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0512886A FR2894997A1 (fr) | 2005-12-19 | 2005-12-19 | Support fibreux comprenant un revetement silicone |
PCT/EP2006/069789 WO2007071631A1 (fr) | 2005-12-19 | 2006-12-15 | Support fibreux comprenant un revetement silicone |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1979529A1 EP1979529A1 (fr) | 2008-10-15 |
EP1979529B1 true EP1979529B1 (fr) | 2012-07-25 |
Family
ID=36999951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20060830671 Not-in-force EP1979529B1 (fr) | 2005-12-19 | 2006-12-15 | Support fibreux comprenant un revetement silicone |
Country Status (7)
Country | Link |
---|---|
US (1) | US20090298367A1 (ja) |
EP (1) | EP1979529B1 (ja) |
JP (1) | JP4804540B2 (ja) |
KR (1) | KR20080078723A (ja) |
CN (1) | CN101443512B (ja) |
FR (1) | FR2894997A1 (ja) |
WO (1) | WO2007071631A1 (ja) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2919615A1 (fr) * | 2007-08-02 | 2009-02-06 | Bluestar Silicones France Soc | Composition elastomere silicone adhesive |
JP5017211B2 (ja) * | 2008-08-13 | 2012-09-05 | 三菱レイヨン株式会社 | 炭素繊維前駆体アクリル繊維用油剤組成物、並びにそれを用いた炭素繊維前駆体アクリル繊維束及びその製造方法 |
JP5549172B2 (ja) * | 2009-09-30 | 2014-07-16 | 東洋紡株式会社 | エアバッグ用コート布 |
WO2011060238A1 (en) * | 2009-11-12 | 2011-05-19 | Dow Corning Corporation | Coated fabric products |
CN104674561B (zh) | 2009-11-12 | 2018-05-15 | 道康宁公司 | 涂层织物产品 |
US8372497B2 (en) | 2009-12-30 | 2013-02-12 | Dow Corning Corporation | Silicone coatings on air bags |
US20120289110A1 (en) * | 2009-12-30 | 2012-11-15 | William Blackwood | Silicone coating composition for air bags |
KR101441736B1 (ko) * | 2010-10-21 | 2014-09-24 | 코오롱인더스트리 주식회사 | 에어백 및 그 제조방법 |
EP2500454B1 (en) * | 2011-03-16 | 2015-05-13 | Autoliv Development AB | A fabric for use in the manufacture of an inflatable air-bag |
CN103132343A (zh) * | 2011-11-29 | 2013-06-05 | 东丽纤维研究所(中国)有限公司 | 一种气囊用涂层织物 |
CN102532336B (zh) * | 2011-12-16 | 2014-09-03 | 常州圣安涂料有限公司 | 改性植物胶及其制备方法,以及该改性植物胶在乳胶漆制备中的用途 |
US9388291B2 (en) * | 2012-03-02 | 2016-07-12 | Basf Se | Thin aluminum flakes |
CN102582566A (zh) * | 2012-03-22 | 2012-07-18 | 华懋(厦门)新材料科技股份有限公司 | 一种一次成型侧面帘式气囊 |
CN102808240A (zh) * | 2012-08-27 | 2012-12-05 | 中国科学院化学研究所 | 耐高温碳化硅纤维的制备方法 |
CN102808330B (zh) * | 2012-08-31 | 2014-02-26 | 南京理工大学常熟研究院有限公司 | 一种纺织隔热涂料及其制备方法和使用方法 |
JP6518590B2 (ja) * | 2012-11-12 | 2019-05-22 | ダウ シリコーンズ コーポレーション | 膨張可能な安全装置のためのシリコーンエラストマー及びトップコートを有する可撓性熱シールド |
EP2917030B1 (en) | 2012-11-12 | 2022-04-27 | Dow Silicones Corporation | Flexible heat shield with silicone elastomer and a topcoat for inflatible safety devices |
DE102013107329A1 (de) * | 2013-07-10 | 2015-01-15 | Kuraray Europe Gmbh | Imprägnierungsmaterialien für Release-Papiere |
KR101918376B1 (ko) * | 2013-12-31 | 2019-01-29 | 블루스타 실리콘즈 상하이 컴퍼니 리미티드 | 실리콘 코팅을 포함하는 섬유 지지체 |
JP2016027069A (ja) * | 2014-06-26 | 2016-02-18 | 日東電工株式会社 | 難燃材料およびその用途 |
CA2955137A1 (en) * | 2014-07-21 | 2016-01-28 | Goodwin Plc | Fire resistant container |
JP6323569B2 (ja) * | 2014-12-12 | 2018-05-16 | 信越化学工業株式会社 | シリコーンゴムで被覆された布基材成形物の製造方法及び人工皮革様シート成形物 |
GB201506589D0 (en) | 2015-04-16 | 2015-06-03 | Dow Corning | Surface modifications of silicones |
US10453664B2 (en) * | 2015-04-21 | 2019-10-22 | Battelle Memorial Institute | Collection, release, and detection of analytes with polymer composite sampling materials |
TWI730958B (zh) * | 2015-05-18 | 2021-06-21 | 英商尼克瓦格斯有限公司 | 清潔以及清洗羽絨以及/或羽毛之方法、組合物以及套組 |
TWI699470B (zh) * | 2015-05-18 | 2020-07-21 | 英商尼克瓦格斯有限公司 | 加濕系統以及對於織物或布料產生濕潤或再濕潤效果之方法 |
US10450742B2 (en) | 2016-01-11 | 2019-10-22 | Owens Corning Intellectual Capital, Llc | Unbonded loosefill insulation |
CN105696361A (zh) * | 2016-03-15 | 2016-06-22 | 惠州赛力珑新材料有限公司 | 一种超柔软有机硅皮革及其制作方法 |
CN107162431B (zh) * | 2017-05-17 | 2019-08-20 | 长兴县煤山工业炉料有限公司 | 一种制备幕帘的抗菌硅酸铝耐火纤维 |
CN112004903B (zh) * | 2017-12-28 | 2022-09-30 | 埃肯有机硅(上海)有限公司 | 低tvoc释放的有机硅复合片材 |
KR102038939B1 (ko) * | 2018-02-19 | 2019-10-31 | (주)삼광기업 | 주름무늬 형성이 가능한 무기질 세라믹 코팅제 조성물 |
FR3084281B1 (fr) * | 2018-07-25 | 2020-12-25 | Ferrari Serge Sas | Membrane non combustible imper-respirante |
CN109078825A (zh) * | 2018-09-26 | 2018-12-25 | 温州晨光集团有限公司 | 一种塑料编织袋环保内涂覆工艺 |
EP3722086A1 (en) * | 2019-04-12 | 2020-10-14 | Nitto Denko Corporation | Multilayer films for airbag applications |
KR102029415B1 (ko) * | 2019-05-14 | 2019-10-07 | (주)로시코리아 | 친환경 나염원단 |
KR102029416B1 (ko) * | 2019-05-14 | 2019-10-07 | (주)로시코리아 | 친환경 발수코팅층을 구비한 원단 |
KR102063827B1 (ko) * | 2019-07-12 | 2020-03-02 | 주식회사 비에스텍 | 무용제형 다기능성 실리콘 코팅 원단의 제조방법 |
CN110549985B (zh) * | 2019-07-29 | 2021-02-09 | 华懋(厦门)新材料科技股份有限公司 | 一种低透气率一次成型安全气囊及其生产工艺 |
US20230071589A1 (en) * | 2019-12-30 | 2023-03-09 | Elkem Silicones Shanghai Co., Ltd. | An abrasion resistant multi-layered composite |
JP7353235B2 (ja) * | 2020-05-18 | 2023-09-29 | 信越化学工業株式会社 | 液状シリコーンゴムコーティング剤組成物 |
JP7401413B2 (ja) * | 2020-08-06 | 2023-12-19 | 信越化学工業株式会社 | エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ |
WO2023083923A1 (de) | 2021-11-11 | 2023-05-19 | Loparex Germany Gmbh & Co. Kg | Verpackungseinheit umfassend ein textiles flächengebilde mit trenneigenschaften |
CN114232332B (zh) * | 2022-01-04 | 2024-03-19 | 顾译雯 | 一种用于被套的防黄变耐磨面料及其制备工艺 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3159602A (en) * | 1962-06-07 | 1964-12-01 | Olin Mathieson | Preparation of polymeric phosphates |
US3220972A (en) * | 1962-07-02 | 1965-11-30 | Gen Electric | Organosilicon process using a chloroplatinic acid reaction product as the catalyst |
US3159601A (en) * | 1962-07-02 | 1964-12-01 | Gen Electric | Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes |
US3284406A (en) * | 1963-12-18 | 1966-11-08 | Dow Corning | Organosiloxane encapsulating resins |
NL133821C (ja) * | 1964-07-31 | |||
NL131800C (ja) * | 1965-05-17 | |||
US3436366A (en) * | 1965-12-17 | 1969-04-01 | Gen Electric | Silicone potting compositions comprising mixtures of organopolysiloxanes containing vinyl groups |
US3814730A (en) * | 1970-08-06 | 1974-06-04 | Gen Electric | Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes |
US3715334A (en) * | 1970-11-27 | 1973-02-06 | Gen Electric | Platinum-vinylsiloxanes |
US3697473A (en) * | 1971-01-04 | 1972-10-10 | Dow Corning | Composition curable through si-h and si-ch equals ch2 with improved properties |
US4340709A (en) * | 1980-07-16 | 1982-07-20 | General Electric Company | Addition curing silicone compositions |
JP2590649B2 (ja) * | 1991-10-01 | 1997-03-12 | 信越化学工業株式会社 | エアバッグ用コーティング剤及びエアバッグ |
GB9705524D0 (en) * | 1997-03-18 | 1997-05-07 | Dow Corning | Coated textile fabrics |
US6805912B2 (en) * | 1997-03-21 | 2004-10-19 | Jean-Paul Benayoun | Process and device for coating a support using a crosslinkable silicone composition |
DE19857307A1 (de) * | 1998-12-11 | 2000-06-15 | Wacker Chemie Gmbh | Beschichtete Airbags, Beschichtungsmaterial und Beschichtungsverfahren |
US6268300B1 (en) * | 1998-12-22 | 2001-07-31 | Dow Corning Corporation | Textile coating compositions |
GB9919083D0 (en) * | 1999-08-13 | 1999-10-13 | Dow Corning | Silicone coated textile fabrics |
US6534126B1 (en) * | 2000-11-13 | 2003-03-18 | Dow Corning Corporation | Coatings for polymeric substrates |
FR2840912B1 (fr) * | 2002-06-18 | 2005-10-21 | Rhodia Chimie Sa | Emulsion silicone aqueuse pour le revetement de supports fibreux tisses ou non |
FR2840915B1 (fr) * | 2002-06-18 | 2004-08-27 | Ferrari S Tissage & Enduct Sa | Procede de revetement d'un textile architectural avec au moins une couche d'elastomere silicone, a partir d'une emulsion silicone aqueuse et textile architectural ainsi revetu |
FR2854637B1 (fr) * | 2003-05-07 | 2006-08-11 | Rhodia Chimie Sa | Procede de collage de supports fibreux enduits de silicone |
FR2861753B1 (fr) * | 2003-11-03 | 2006-03-03 | Rhodia Chimie Sa | Composition silicone et procede utile pour ameliorer la resistance a la dechirure et au peinage de sac gonflable, destines a la protection d'un occupant de vehicule. |
JP4749677B2 (ja) * | 2004-04-13 | 2011-08-17 | 旭化成ワッカーシリコーン株式会社 | シリコーンエマルション組成物 |
-
2005
- 2005-12-19 FR FR0512886A patent/FR2894997A1/fr active Pending
-
2006
- 2006-12-15 CN CN2006800530389A patent/CN101443512B/zh not_active Expired - Fee Related
- 2006-12-15 WO PCT/EP2006/069789 patent/WO2007071631A1/fr active Application Filing
- 2006-12-15 US US12/097,949 patent/US20090298367A1/en not_active Abandoned
- 2006-12-15 KR KR1020087017459A patent/KR20080078723A/ko not_active Application Discontinuation
- 2006-12-15 JP JP2008546404A patent/JP4804540B2/ja not_active Expired - Fee Related
- 2006-12-15 EP EP20060830671 patent/EP1979529B1/fr not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
US20090298367A1 (en) | 2009-12-03 |
CN101443512A (zh) | 2009-05-27 |
JP4804540B2 (ja) | 2011-11-02 |
CN101443512B (zh) | 2013-02-13 |
KR20080078723A (ko) | 2008-08-27 |
EP1979529A1 (fr) | 2008-10-15 |
WO2007071631A1 (fr) | 2007-06-28 |
JP2009531552A (ja) | 2009-09-03 |
FR2894997A1 (fr) | 2007-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1979529B1 (fr) | Support fibreux comprenant un revetement silicone | |
JP3349516B2 (ja) | 織物材料製の下地を被覆するためのケイ素樹脂組成物 | |
JP5399515B2 (ja) | コーティング組成物及びそれにより被覆された編織布 | |
EP1513979B1 (fr) | Emulsion silicone aqueuse pour le revetement de supports fibreux tisses ou non | |
EP1525351B1 (fr) | Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere | |
KR101106522B1 (ko) | 접착 실리콘 조성물 및 이를 사용하는 접착 방법 | |
EP3116713B1 (en) | Fibrous support comprising a silicone coating | |
EP1141109B1 (fr) | Composition silicone pour l'enduction de substrats en matiere textile | |
EP1534888B1 (fr) | Procede de revetement d'un textile architectural avec au moins une couche d'elastomere silicone, a partir d'une emulsion silicone aqueuse et textile architectural ainsi revetu | |
EP1525277B1 (fr) | Composition d huiles silicone reticulables en elastomeres pour le traitement par impregnation de materiaux fibreux | |
JP3999987B2 (ja) | エアバッグコーティング用シリコーン組成物 | |
CN108291112B (zh) | 可用于改善旨在保护交通工具乘员的可充气袋的抗折皱性和抗磨损性的有机硅组合物及方法 | |
EP1711654B1 (fr) | Composition silicone et procede utile pour ameliorer la resistance a la dechirure et au peignage de sac gonflable, destines a la protection d' un occupant de vehicule | |
EP1689927A1 (fr) | Composition silicone et procede utile pour ameliorer le coefficient de friction de sac gonflable, destines a la protection d' un occupant de vehicule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080717 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080930 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH Ref country code: AT Ref legal event code: REF Ref document number: 567777 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006030998 Country of ref document: DE Effective date: 20120920 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120725 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 567777 Country of ref document: AT Kind code of ref document: T Effective date: 20120725 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121026 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121105 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121025 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006030998 Country of ref document: DE Effective date: 20130426 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20131211 Year of fee payment: 8 Ref country code: DE Payment date: 20131211 Year of fee payment: 8 Ref country code: CH Payment date: 20131212 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20131209 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20131217 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006030998 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141215 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141215 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150701 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |