EP1975264B1 - Herstellungsverfahren eines Teils, das mindestens einen Block aus dichtem Material umfasst, das aus harten Partikeln besteht, die in der Bindephase dispergiert werden, zum Einsatz bei Werkzeugen zum Schneiden oder Bohren - Google Patents

Herstellungsverfahren eines Teils, das mindestens einen Block aus dichtem Material umfasst, das aus harten Partikeln besteht, die in der Bindephase dispergiert werden, zum Einsatz bei Werkzeugen zum Schneiden oder Bohren Download PDF

Info

Publication number
EP1975264B1
EP1975264B1 EP08102886.2A EP08102886A EP1975264B1 EP 1975264 B1 EP1975264 B1 EP 1975264B1 EP 08102886 A EP08102886 A EP 08102886A EP 1975264 B1 EP1975264 B1 EP 1975264B1
Authority
EP
European Patent Office
Prior art keywords
block
dense
imbibiting
imbibition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08102886.2A
Other languages
English (en)
French (fr)
Other versions
EP1975264A1 (de
Inventor
Alfazazi Dourfaye
Christophe Colin
Elodie Sorlier
Hedi Sellami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varel Europe SAS
Original Assignee
Varel Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varel Europe SAS filed Critical Varel Europe SAS
Publication of EP1975264A1 publication Critical patent/EP1975264A1/de
Application granted granted Critical
Publication of EP1975264B1 publication Critical patent/EP1975264B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/78Tool of specific diverse material

Definitions

  • the invention relates to the manufacture of parts comprising at least one block of dense material consisting of hard particles dispersed in a ductile binder phase, the dense material being capable of being locally enriched in the binder phase by imbibition.
  • the invention relates more particularly to the manufacture of ceramic-metal composite tools, also called cermet, and more particularly tools for oil drilling and / or mining.
  • imbibition is meant a liquid enrichment of a perfectly dense solid / liquid system in which at least one solid phase is in the form of grains having the ability to adapt their shape by the absorption of liquid thus making the system more energetically stable .
  • the enrichment in liquid is done under the effect of the driving force of the migration pressure existing in such systems.
  • the drilling tools consist of heads surmounted by cutters intended to cut or grind the rock. These cutting, active parts of the tool, are mainly based on carbide, extremely hard but fragile material. This fragility is particularly troublesome when such tools are used to drill geological layers made of rocks of different hardnesses, these heterogeneities being capable of causing shocks which can cause cracks in the cutters and thus lead to wear by peeling or to breaks in these cutters.
  • cermet cutters whose core is more ductile than the outer surface, which is directly in contact with the rocks.
  • the core of the cutter will be more resistant to shocks (zone enriched in the binder phase), while maintaining a good cutting capacity (poor zone in binder phase in contact with the rock).
  • composition gradient or property gradient gradients In order to produce such cuttings, known as composition gradient or property gradient gradients, it has been proposed to produce porosity gradient non-dense cermets and to infiltrate them with a binder phase in order to improve the ductility of a product. area in the heart of the cermet.
  • this method is poorly suited, in particular to WC-Co systems, because it leads to the partial destruction of the pre-existing carbide skeleton and, therefore, does not make it possible to obtain the properties desired for the cutting edge.
  • Infiltration is a liquid enrichment of a solid / liquid system that is not perfectly dense under the sole motive force of capillarity, also called capillary pressure.
  • Infiltration involves a so-called non-condensed third phase (gas phase) in addition to the two condensed phases (solid, liquid).
  • composition gradient cermets having a hard outer surface and a ductile core, by natural sintering (without application of external pressure) in the solid phase of a multilayer part, each layer having a composition different.
  • this method does not completely densify the material and must be followed by an expensive treatment of hot isostatic compaction.
  • the preparation of the composition gradient cermet is complex since it requires the realization of a succession of elementary layers which fit into each other, each layer having a different composition.
  • this process which is complex and very expensive, does not make it possible to obtain a continuous gradient of composition.
  • a cermet thus obtained comprises a succession of layers of hardness and expansion coefficients substantially different from each other, causing risks of delamination at the interface between two successive layers.
  • the object of the present invention is to overcome these disadvantages by providing a means for manufacturing under satisfactory industrial conditions blocks of dense material based on cermet for cutting or drilling tools having both a very good resistance surface wear and good tenacity at heart so as to have an improved life compared to that of conventional tools.
  • the subject of the invention is a method for manufacturing a part, and in particular a cutting edge, comprising at least one block made of dense material consisting of hard particles dispersed in a binder phase, the dense material being capable of being locally enriched. in binder phase by imbibition of an imbibition material.
  • a protective material is deposited on all or part of the block surface capable of preventing the migration of the imbibition material through the walls on which the protective material is deposited and possibly modifying the kinetics of migration of the binder phase in the block, leaving free at least one imbibition area of a block surface, the imbibition area is placed in contact with an imbibition material capable of locally enriching the block in the binder phase, and then the dense block is subjected to a suitable thermal cycle consisting of heating, maintaining temperature and cooling, so as to pass the imbibition material at least partially in the state liquid and the binder phase of the block completely in the liquid state so that the binder phase enrichment is done only through the imbibition area, so as to create in the block a continuous gradient in binder phase on distanc are millet and of the desired shape.
  • the thermal cycle is carried out, so that in the assembly formed by the dense material block and the imbibition material, a temperature gradient such that the minimum imbibition temperature is reached the interface between the block and the imbibition material, and such that, in the block, the temperature is higher than the minimum imbibition temperature and, in the imbibition material, at least in the vicinity of the interface, the temperature is below the minimum imbibition temperature.
  • the thermal cycle can also be carried out so that the time spent in the liquid state and the holding temperature generate a liquid volume of the imbibition material just sufficient for the desired enrichment.
  • the imbibing material is, for example, a pellet consisting of a compact of compacted powdered powder under heat, one side of which is in contact with a surface of the block made of dense material. It preferably has a local change in the composition of its binder phase following a rise in temperature in a crucible leading to a non-collapse of the imbibition material.
  • the imbibition material may also be in the form of a paste (a mixture of a powder and an aqueous cement) deposited on a surface of the block made of dense material, for example with a brush, or in the form of a projected coating by plasma or laser.
  • a paste a mixture of a powder and an aqueous cement
  • the advantage of such conditioning of the imbibition material is that it can adapt to all block geometries.
  • the block in contact with the imbibing material is placed in a refractory crucible chemically inert with respect to the imbibition material, for example alumina or graphite, and heated in an oven under a controlled atmosphere or under vacuum.
  • a refractory crucible chemically inert with respect to the imbibition material, for example alumina or graphite
  • the constituent phases of the block of dense material generally comprise at least hard particles of one or more metal carbides, and a ductile metallic binder phase, which preferably forms a temperature eutectic with the metal carbide (s).
  • the block may further consist of other hard particles such as diamond particles.
  • the imbibing material preferably has a composition close to that of the binder phase of the dense material block.
  • the composition of the imbibition material is close to that of the liquid binder phase of the dense material block.
  • the metallic binder phase of the imbibition material consisting of one or more metal elements taken from Co, Fe, Ni, and at most 15% by weight, of one or more metal elements selected from Cu, Si, Mn, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, the remainder being impurities.
  • the minimum imbibition temperature is, in general, the melting temperature Te of the block eutectic in dense material and corresponds, in general, to the melting temperature of the binder phase of the dense block.
  • the thermal cycle comprises a rise in temperature at a holding temperature Tm greater than or equal to the melting temperature Te of the block eutectic of dense material, preferably less than Te + 200 ° C., and better still, lower at Te + 50 ° C, preferably followed by a short hold at the temperature Tm, then a rapid cooling, about 50 ° C / min, at a temperature below Te, and, finally, a cooling more slow, at 5 ° C / min, to room temperature.
  • Tm the melting temperature Te of the block eutectic of dense material
  • the material of which the block made of dense material is made can be a cermet of the WC-Co or WC- [Co and / or Ni and / or Fe] type, to which diamond particles have optionally been added, and the imbibition material is a eutectic of the WC-M type, M being one or more metals taken from Co, Ni and Fe.
  • the cermet of which the block made of dense material is made may in particular be of the WC-Co type and comprise at most 35% by weight of cobalt, and the imbibition material may in particular be a eutectic of the WC-Co type, comprising at most 65 % by weight of cobalt.
  • this protective layer may consist in particular of boron nitride, but also possibly of graphite or alumina.
  • the block of dense material is for example a bit of drill bit, and after the imbibition treatment can be reported on one side of the block a PDC (Polycrystalline Diamond Compact) diamond-shaped insert ("compact of pollycrystalline diamond”). or TSP (Thermally Stable Polycrystalline diamond: “thermally stable polycrystalline diamond”).
  • PDC Polycrystalline Diamond Compact
  • TSP Thermalally Stable Polycrystalline diamond: “thermally stable polycrystalline diamond”
  • the diamond plate can be directly reported by HPHT (High Pressure - High Temperature) process on the block of dense material previously treated by imbibition.
  • HPHT High Pressure - High Temperature
  • the diamond wafer may also be attached to another homogeneous dense cermet support block which is then imbibed together on the first imbibed treated block.
  • the invention also relates to a cutter for a drill tool head for cutting and / or grinding rocks, such as a drill bit, a mine pick, a tricone, a PDC or TSP tool, an impregnated tool, a cutting tool for a tool for felling or fragmentation of rock or drilling, or for a tool for machining materials, comprising a block of dense material consisting of hard particles dispersed in a binder phase, in particular of the type WC- Co, optionally added diamonds, which comprises, over a distance greater than 3 mm (millimeter distance), a continuous composition gradient so as to form a tenacious core opening on one side, surrounded by a hard layer on the surface.
  • a cutter for a drill tool head for cutting and / or grinding rocks such as a drill bit, a mine pick, a tricone, a PDC or TSP tool, an impregnated tool, a cutting tool for a tool for felling or fragmentation of rock or drilling, or for a tool for
  • the cutter may, in addition, be surmounted by a PDC or TSP type diamond wafer on one face of the block.
  • cutters for drilling tools are parts comprising blocks of dense material of generally parallelepipedal or cylindrical shape, obtained by powder metallurgy, made of a material whose structure comprises on the one hand hard particles such as metal carbides, and in particular tungsten carbides, and on the other hand a binder phase consisting of a metal or metal alloy which, in contact with the carbides, can form in temperature, a eutectic having a melting temperature lower than both the melting temperature of the carbides and the melting temperature of the metal or metal alloy.
  • This metal or metal alloy is for example cobalt, but can be also iron, or nickel, or a mixture of these metals.
  • the binding phase may contain addition metals whose sum content may be up to 15% by weight, but in general does not exceed 1% by weight.
  • addition metals may be copper to improve the electrical conductivity, or silicon which has a surfactant effect with respect to the system consisting of carbide and the binder phase, or which may still be carburigenic elements that can form mixed carbides or carbides of the type M x C y other than tungsten carbide.
  • carbides of the type M x C y other than tungsten carbide are in particular manganese, chromium, molybdenum, vanadium, niobium, tantalum, titanium, zirconium and hafnium.
  • composition of the binder phase may comprise addition elements which are usually encountered in such ceramic-metal materials and which modify the shape and / or inhibit the magnification of the hard particles.
  • addition elements which are usually encountered in such ceramic-metal materials and which modify the shape and / or inhibit the magnification of the hard particles.
  • the chemical composition of these materials includes unavoidable impurities that result from the processes of making. The person skilled in the art knows these impurities.
  • diamond particles are added. These diamond particles are added to the powder mixture which is used to manufacture the block by sintering.
  • the block is dense and consists of hard particles dispersed in a binder phase.
  • the block is made of a dense material.
  • the temperature-forming composition of the eutectic has a cobalt content of about 65% by weight.
  • the blocking properties obtained thus depend in particular on the relative proportions of carbide (s) and metal or metal alloy.
  • its binder phase content is generally much lower than that of the eutectic and even substantially less than 35% by weight.
  • the lower the binder phase content the higher the hardness, and therefore the wear resistance of the material.
  • the lower the binder phase content the lower the cermet toughness.
  • the properties of the cermet also depend on the size and shape of the carbide grains.
  • a method for enriching the binder phase of a part of the block and possibly modifying its composition, by imbibition, from a dense sintered cermet is used. preferably having a homogeneous composition.
  • the phenomenon of imbibition is possible in two-phase systems (hard particles constituting the solid phase - binder phase constituting the liquid phase at the imbibition temperature) fulfilling certain conditions.
  • the binder phase which is liquid must wet the hard particles, these same hard particles must be partially soluble in the liquid binder phase and the system must have Ostwald ripening. with modification of the shape of the hard particles without necessarily a magnification of these particles by the phenomenon of dissolution - reprecipitation.
  • the imbibition material preferably has a composition that is identical to or similar to that of the eutectic of the cermet considered at the imbibition temperature. In this case, the imbibition increases the content of the cermet in the binder phase without modifying the chemical composition of this material.
  • the imbibing material may have a composition different from that of the binding phase of the dense cermet. In this case, there is not only enrichment of the cermet in the binder phase, but also modification of the chemical composition of the binder phase and possibly the carbide phase.
  • the imbibition phenomenon is thermally activated and its kinetics is therefore related to the temperature but also to the initial binding phase content of the cermet, as well as to the size and shape of the hard particles.
  • the imbibition is usually used to enrich dense binder-phase cermet blocks by dipping one of their ends in a liquid having the eutectic composition of the cermet considered.
  • This so-called dipping imbibition method has the disadvantage that the liquid-imbibing material migrates not only into the cermet through (s) zone (s) of contact but also through the faces adjacent to this (these) zone ( s), making the shape of the gradient difficult to control.
  • a block 1 to be treated a dense material consisting of hard particles embedded in a binder phase, in contact with a pellet 2 made of an imbibition material capable of migrating, starting from a certain temperature, by imbibition inside the block 1.
  • the block 1 is generally cylindrical or parallelepipedal shape and has a lower face 3, one or more side faces 5 and an upper face 6.
  • the wafer 2 imbibition material is in contact of the lower face 3 of the block 1, and the contact area 4 of the pellet 2 of imbibition material and of the block 1, also called imbibition area, is substantially less than the surface of the lower face 3 of the block 1.
  • the face or the lateral faces 5 and the upper face 6 of the block 1 are covered with a layer 7 of protective material.
  • This protective material which is, for example, boron nitride, is intended on the one hand to prevent the transfer of imbibition material through this protective layer and, on the other hand, to modify the kinetics of migration of the binder phase. in the block.
  • the assembly constituted by the block 1 with its protective layer 7 and by the wafer 2 of imbibition material, is placed in a crucible inert chemically at the temperatures of the heat treatment, for example alumina or graphite 8 placed in a furnace 9 under a controlled atmosphere which may be a vacuum oven or an oven under a nitrogen or argon atmosphere.
  • a crucible inert chemically at the temperatures of the heat treatment for example alumina or graphite 8 placed in a furnace 9 under a controlled atmosphere which may be a vacuum oven or an oven under a nitrogen or argon atmosphere.
  • This oven must be capable of reaching a sufficient temperature, so that the imbibing material and the binder phase of the block are partially or completely in the liquid state, for example 1350 ° C, or even 1320 ° C, for the case of a WC-Co block, with high heating and cooling rates in order to be able to control and in particular to minimize the time that the assembly will pass above the eutectic temperature of the treated system which is the temperature at from which the imbibition occurs and which for cermets of the WC-Co type is of the order of 1300 ° C.
  • This oven can be a resistance furnace, an induction furnace, a microwave oven or a SPS (Spark Plasma Sintering) installation.
  • the block 1 of dense material is then subjected to a thermal cycle which first comprises heating to a temperature greater than or equal to the temperature at which at least the contact zone 4 between the pellet 2 of imbibition material and the lower surface 3 of the block 1 goes into the liquid state.
  • the heating is carried out so that the temperature inside the block is greater than the melting temperature Te of the block eutectic.
  • the natural temperature gradient of the furnace is used so that the heating is carried out so that the temperature inside at least part of the wafer 2 of imbibition material remains below the temperature of the furnace. melting of the imbibition material.
  • the imbibition material migrates inside the block 1 in dense material at the contact zone 4 between the wafer 2 of imbibition material and the lower surface 3 of the block 1, on the other hand, it does not migrate by the external side walls 5, nor by the upper wall 6 of the block.
  • the enrichment of imbibition material of the block 1 in dense material is essentially in an inner zone opening on the bottom wall 3 and extending towards the inside of the block.
  • the heat treatment comprises, as shown in FIG. figure 2 , a heating phase up to the melting temperature Te of the eutectic, then a phase 16 in which the temperature is maintained above the temperature Te to a holding temperature T m at which the block is maintained for a holding time t m , then a phase 17 in which the block 1 is cooled very rapidly to a temperature below the temperature Te and, finally, a cooling phase 18 slower to room temperature.
  • the imbibition material consolidates and shrinks. Beyond the temperature Te, a eutectic liquid is formed at the contact surface.
  • the bearing temperature should not be too far from the temperature Te, but enough to generate enough liquid and allow the wetting and migration of a liquid in chemical equilibrium with the dense cermet to be soaked. This temperature difference is for example at most 200 ° C or better 100 ° C, and preferably less than 50 ° C.
  • the total time t t above the minimum temperature T imbibition generally less than 15 min, as well as the holding temperature T m and the holding time t m , are chosen to ensure adapted distribution of the imbibition material inside the dense material block. The skilled person knows how to choose these parameters.
  • the cooling between the bearing temperature and the eutectic imbibition temperature is carried out rapidly, so as to avoid uncontrolled migration of the imbibing material.
  • the rapid cooling rate is greater than 40 ° C / min, more preferably greater than 50 ° C / min and more preferably greater than 60 ° C / min.
  • the cooling rate remains below 100 ° C./min.
  • the cooling is done at a substantially lower speed so as to avoid generating excessive residual stresses inside the block of dense material.
  • blocks of dense material such as that shown in section at the figure 3 and which has a core having a high binder phase content and an outer zone 21 having a low binder phase content. Due to its low binder phase content, the outer zone 21 has a very high hardness, so a very high wear resistance but low toughness. On the other hand, because of its high content in the binder phase, the inner zone 20 has a very good toughness and therefore good impact resistance.
  • the dense cermet block is of the tungsten carbide / cobalt type
  • the latter must have a cobalt content of less than 35% by weight. weight. Indeed, beyond this content, the imbibition process is impossible.
  • this block is brought into contact with an imbibition material consisting of a mixture of tungsten carbide / cobalt whose cobalt content can vary between 35% and 65% by weight.
  • the mixture has the eutectic composition corresponding to 65% by weight of cobalt.
  • This mixture of tungsten carbide / cobalt is homogenized, for example dry or wet, preferably in a turbula, for several hours.
  • the mixture is then compacted, for example cold in a single-action mold or is mixed with an aqueous cement.
  • the imbibition material When the imbibition material is compacted cold, it is in the form of a pellet which is brought into contact with the block that is to be treated.
  • the imbibition material consists of a powder mixed with an aqueous cement, it can be deposited on the block with a brush on a defined area which can have any shape. It can also be deposited by plasma projection or laser projection techniques.
  • the technique of brush or spray application has the advantage of allowing to deposit the imbibition material on any area of a block whose shape may be more complex than that of a parallelepiped or a cylinder.
  • the size and shape of the imbibition area must be adapted to the shape of the gradient that is to be generated inside the block. The skilled person knows how to make these adaptations.
  • the inventors have found quite unexpectedly that the presence of the protective layer on the outer surface of the dense material block had a significant effect on the migration of the imbibition material inside the block.
  • the protective layer made it possible to obtain a steeper binder phase gradient and consequently a much greater hardness gradient than is possible to obtain. in the absence of this protective material.
  • the binder phase gradient may be domed.
  • the imbibition material consisting of a pellet of tungsten carbide / cobalt eutectic composition, that is to say about 65% by weight of cobalt.
  • the size of the WC grains is, for example, approximately 1 ⁇ m corresponding to an initial hardness of 1230 HV.
  • the assembly is placed in an alumina crucible inside a resistance furnace and heated to a temperature of 1350 ° C. (sample temperature) for 3 minutes.
  • the outer walls of the dense block which were not intended to be in contact with the imbibing material were coated with a protective material consisting of boron nitride.
  • the hardness in the vicinity of the outer surface of the block was of the order of 1370 HV, while the minimum hardness inside the core of the block was 890 HV only, a difference in hardness of the order of 480 HV, the variation of hardness being able to take place on distances of the order of 5mm.
  • the outer walls of the dense block have not been coated with a protective layer.
  • the maximum hardness observed was 1200 HV at the outer surface of the block, and the minimum hardness at the heart of the 1010 HV block, which corresponds to a difference of only 190 HV.
  • the protective material increases the interfacial energy between the binder phase and the carbide phase, and thus affects the migration of the binder phase within the block.
  • the method which has just been described and which makes it possible to obtain dense blocks intended to constitute cutting tools has the advantage of making it possible to obtain blocks whose external part is hard and the part Central is tenacious.
  • This variation of hardness is done over millimeter distances.
  • the variation in hardness is over a distance greater than 0.5 mm, preferably greater than 1 mm, even greater than 2 mm, or even 3 mm, but preferably less than 30 mm, better still less than 8 mm. mm, even less than 6 mm.
  • a synthetic diamond wafer after imbibition of the dense block, it is possible to deposit on the upper face of the block, a synthetic diamond wafer, while maintaining in part the gradient obtained by the imbibition treatment.
  • This relatively thick diamond layer preferably greater than 0.5 mm, can be set up by pressing a graphite powder by HPHT (High Pressure - High Temperature) process.
  • HPHT High Pressure - High Temperature
  • a cutting as shown in section at figure 5 which consists of a dense cermet support block 40 whose core 41 has been enriched in binder phase by imbibition to be more tenacious, and a diamond plate 42 attached to a face 43 of the support block.
  • the amplitude of the hardness gradient inside the support block is no longer than 350 HV instead of 480 HV, but the maximum hardness at the periphery of the sample is 1550 HV instead of 1370 HV and the minimum hardness is 1200 HV at the bottom of the block instead of 890 HV, ie a block support harder on the surface, but a little less tenacious at heart compared to the same treated block, before HPHT operation.
  • a dense cermet block 50 is used which has been treated according to one or the other of the imbibition methods indicated above in order to give it a core 51 whose toughness has been improved by increasing the the binder phase content.
  • this cermet is assembled by imbibition through a surface 55 a cutting 52 consisting of a support block 53 in dense and homogeneous cermet on which has previously been reported a diamond plate 54.
  • compositions of the blocks 53 and 50 are chosen so that, when they are brought into contact and brought to a temperature greater than or equal to the eutectic temperature, there is a binder phase migration of one of the blocks to the other, so as to ensure the perfect assembly of these two blocks.
  • cermets having compositions and / or sizes and / or hard particle shapes such that the migration pressures are different. These migration pressures depend in particular on the size and shape of the carbide particles and the binder phase content. The skilled person knows how to choose these cermet structures.
  • cutters for drill tool heads such as tricones, PDC or TSP tools, impregnated tools for oil drilling, or even cutters for felling tools. or fragmentation of rocks or drilling, in the field of mining, civil engineering, or tools for machining materials.
  • These cutters are pieces which comprise at least one block of dense material obtained by the method according to the invention or which consist of such a block.
  • These blocks can have very different shapes, adapted to the case for which they are intended. They can thus constitute blades.
  • cutters can be installed on any type of tool for oil drilling or mining drilling or in the field of civil engineering, especially on any ground or subsoil excavation machine.
  • These applications include peaks used on mining machines of the type "point attack” or type “continuous minor” or type “shearing” or tunneling soft rocks.
  • These applications can also be knobs used on machines including full section such as tunnel boring machines or drills, or rotary drill bit or rotary-percussion drilling.
  • This method can also be used to fabricate metal working tool elements for which a very hard active surface is desired on a more tenacious body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Earth Drilling (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Drilling Tools (AREA)

Claims (18)

  1. Verfahren zur Herstellung eines Teiles, insbesondere einer Schneide, bestehend aus mindestens einem Block aus dichtem Werkstoff (1, 40, 50), der aus harten Partikeln gleicher oder unterschiedlicher Beschaffenheit besteht, die in einer duktilen Bindemittelphase verteilt sind, wobei der dichte Werkstoff geeignet ist, lokal durch Tränken mit einem Tränkmittel an Bindemittelphase angereichert zu werden, dadurch gekennzeichnet, dass auf die ganze oder einen Teil der Oberfläche des Blockes unter Freilassen mindestens eines Tränkbereichs (4) einer Fläche (3) des Blockes ein Schutzmittel (7) aufgetragen wird, das in der Lage ist, das Eindringen des Tränkmittels durch die Wände zu verhindern, auf die das Schutzmittel aufgetragen ist, und eventuell die Kinetik der Wanderung der Bindemittelphase im Block zu ändern, der Tränkbereich (4) der Fläche (3) des Blockes (1) mit einem Tränkmittel (2) in Berührung gebracht wird und dann der dichte Block in Berührung mit dem Tränkmittel einer geeigneten Temperaturfolge unterworfen wird, um das Tränkmittel mindestens teilweise in den flüssigen Zustand überzuführen und die Bindemittelphase des Blockes vollständig in den flüssigen Zustand überzuführen, derart, dass die Anreicherung an Bindemittelphase ausschließlich durch den Tränkbereich erfolgt, derart, dass im Block über Millimeterstrecken und in der gewünschten Form ein stetiger Bindemittelphasengradient erzeugt wird,
    wobei die festen Partikel, aus denen der Werkstoff des Blockes besteht, mindestens harte Karbidpartikel umfassen und die Bindemittelphase metallisch ist,
    wobei das Tränkmittel aus in einer Bindemittelphase verteilten harten Partikeln besteht,
    wobei die Temperaturfolge, der der Block in Berührung mit dem Tränkmittel ausgesetzt wird, in einer Temperaturerhöhung bis zu einer Haltetemperatur Tm, die in einem Intervall [Schmelzpunkt des Eutektikums des Blockes aus dichtem Werkstoff Te; Te + 200°C, vorzugsweise Te + 50°C] liegt, einem Halten der Haltetemperatur Tm während einer Haltezeit tm, die in Abhängigkeit von der Geometrie des Blockes und der Geometrie des gewünschten Zusammensetzungsgradienten auf zwischen 0 und 15 Minuten festgelegt wird, und dann einer zunächst raschen Abkühlung auf eine Temperatur unterhalb Te und schließlich einer langsameren Abkühlung auf Umgebungstemperatur besteht.
  2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass die Temperaturfolge derart ausgeführt wird, dass sich in der Einheit aus dichtem Block und Tränkmittel ein Temperaturgradient ausbildet, derart, dass die minimale Tränktemperatur an der Grenzfläche zwischen dem Block und dem Tränkmittel erreicht wird, und derart, dass die Temperatur im Block mindestens nahe der Grenzfläche höher ist, als die minimale Tränktemperatur, und im Tränkmittel mindestens nahe der Grenzfläche niedriger, als die minimale Tränktemperatur.
  3. Verfahren nach irgendeinem der Patentansprüche 1 bis 2, dadurch gekennzeichnet, dass das Tränkmittel ein Pellet (2) ist, bestehend aus einem Presskörper aus unter Last kalt gepresstem Pulver, dessen eine Seite mit einer Fläche des Blockes aus dichtem Werkstoff in Berührung steht.
  4. Verfahren nach irgendeinem der Patentansprüche 1 bis 2, dadurch gekennzeichnet, dass das Tränkmittel die Form einer Beschichtung auf einer Fläche des Blockes aus dichtem Werkstoff hat, die beispielsweise mit einem Pinsel, durch Plasmaspritzen oder Laserspritzen aufgetragen wurde.
  5. Verfahren nach irgendeinem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass der Block (1) in Berührung mit dem Tränkmittel (2) in einem Ofen (9) unter Schutzgasatmosphäre oder im Vakuum erhitzt wird.
  6. Verfahren nach irgendeinem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass der Block aus dichtem Werkstoff außerdem Partikel aus natürlichem oder synthetischem Diamant einer Größe von bis zu 1 mm Durchmesser enthält.
  7. Verfahren nach irgendeinem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass die Partikel und die Bindemittelphase des Tränkmittels dieselbe Beschaffenheit haben, wie die des Blockes aus dichtem Werkstoff.
  8. Verfahren nach Patentanspruch 7, dadurch gekennzeichnet, dass die Partikel und die Bindemittelphase des Tränkmittels nicht im selben Verhältnis zueinander stehen, wie im Block.
  9. Verfahren nach irgendeinem der Patentansprüche 1 bis 8, dadurch gekennzeichnet, dass die chemische Zusammensetzung des Tränkmittels zu mindestens 85 Gewichtsprozent aus einem Eutektikum besteht, gebildet aus dem oder den Karbid(en) des Blockes aus dichtem Werkstoff und der metallischen Bindemittelphase, derart, dass der Abstand zwischen dem Schmelzpunkt der Bindemittelphase des Tränkmittels und dem Schmelzpunkt der Bindemittelphase des Blockes kleiner ist als 200°C, und zu höchstens 15 Gewichtsprozent aus einem oder mehreren metallischen Elementen, unter Cu, Si, Mn, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf ausgewählt, während der Rest Verunreinigungen sind.
  10. Verfahren nach irgendeinem der Patentansprüche 7 bis 9, dadurch gekennzeichnet, dass die minimale Tränktemperatur der Schmelzpunkt Te des Eutektikums des Blockes aus dichtem Werkstoff ist.
  11. Verfahren nach irgendeinem der Patentansprüche 1 bis 10, dadurch gekennzeichnet, dass die rasche Abkühlung größer ist, als 40°C/min und die langsamere Abkühlung kleiner, als 10°C/min.
  12. Verfahren nach irgendeinem der Patentansprüche 1 bis 11, dadurch gekennzeichnet, dass der Werkstoff, aus dem der Block aus dichtem Werkstoff besteht, ein dichtes Cermet des Typs WC-Co oder WC-[Co und/oder Ni und/oder Fe] ist, dem eventuell Diamant-Partikel zugesetzt wurden, und dadurch, dass das Tränkmittel vom Typ WC-M ist, wobei M für ein oder mehrere Metall(e) unter Co, Ni und Fe steht.
  13. Verfahren nach Patentanspruch 12, dadurch gekennzeichnet, dass das Cermet, aus dem der Block aus dichtem Werkstoff besteht, vom Typ WC-Co ist und höchstens 35 Gewichtsprozent Kobalt enthält, und dadurch, dass das Tränkmittel einen Kobaltgehalt von 35 bis 65 Gewichtsprozent aufweist.
  14. Verfahren nach irgendeinem der Patentansprüche 1 bis 13, dadurch gekennzeichnet, dass die Schutzschicht aus Bornitrid, Graphit oder Aluminiumoxid besteht.
  15. Verfahren nach irgendeinem der Patentansprüche 1 bis 14, dadurch gekennzeichnet, dass der Block (40, 50) aus dichtem Werkstoff ein Schneidenträger eines Bohrwerkzeugs ist und dadurch, dass nach dem Tränken des Blockes auf eine Seite des Blockes ein diamantbesetztes Plättchen (42, 54) des Typs PDC (Polycristalline Diamond Compact) oder TSP (Thermally Stable Polycristalline diamond) gesetzt wird.
  16. Verfahren nach Patentanspruch 15, dadurch gekennzeichnet, dass das diamantbesetzte Plättchen (42) durch HPHT (hohen Druck und hohe Temperatur) direkt auf den vorher getränkten Block (40) aufgebracht wird.
  17. Verfahren nach Patentanspruch 15, dadurch gekennzeichnet, dass die diamantbesetzte Platte (54) von einem Cermet (53) getragen wird, das durch Tränken am vorher getränkten Block (50) aus dichtem Werkstoff angebracht wird.
  18. Verfahren nach irgendeinem der Patentansprüche 1 bis 17, dadurch gekennzeichnet, dass das Teil eine Schneide für einen Bohrwerkzeugkopf, wie etwa einen Dreikegelrollenmeißel, ein PDC- oder TSP-Werkzeug, ein imprägniertes Werkzeug für Erdölbohrungen, eine Schneide für ein Verhau- oder Felszertrümmerungs- oder Sprenglochbohrwerkzeug oder für ein Materialbearbeitungswerkzeug ist.
EP08102886.2A 2007-03-27 2008-03-25 Herstellungsverfahren eines Teils, das mindestens einen Block aus dichtem Material umfasst, das aus harten Partikeln besteht, die in der Bindephase dispergiert werden, zum Einsatz bei Werkzeugen zum Schneiden oder Bohren Not-in-force EP1975264B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0754061A FR2914206B1 (fr) 2007-03-27 2007-03-27 Procede pour fabriquer une piece comprenant au moins un bloc en materiau dense constitue de particules dures dispersees dans une phase liante : application a des outils de coupe ou de forage.

Publications (2)

Publication Number Publication Date
EP1975264A1 EP1975264A1 (de) 2008-10-01
EP1975264B1 true EP1975264B1 (de) 2017-06-14

Family

ID=38650034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08102886.2A Not-in-force EP1975264B1 (de) 2007-03-27 2008-03-25 Herstellungsverfahren eines Teils, das mindestens einen Block aus dichtem Material umfasst, das aus harten Partikeln besteht, die in der Bindephase dispergiert werden, zum Einsatz bei Werkzeugen zum Schneiden oder Bohren

Country Status (5)

Country Link
US (1) US8647562B2 (de)
EP (1) EP1975264B1 (de)
JP (2) JP2009030157A (de)
CN (1) CN101275213B (de)
FR (1) FR2914206B1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2619547C (en) 2007-02-06 2016-05-17 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US7942219B2 (en) 2007-03-21 2011-05-17 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
FR2914206B1 (fr) 2007-03-27 2009-09-04 Sas Varel Europ Soc Par Action Procede pour fabriquer une piece comprenant au moins un bloc en materiau dense constitue de particules dures dispersees dans une phase liante : application a des outils de coupe ou de forage.
US8858871B2 (en) * 2007-03-27 2014-10-14 Varel International Ind., L.P. Process for the production of a thermally stable polycrystalline diamond compact
US9297211B2 (en) 2007-12-17 2016-03-29 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
GB0816837D0 (en) * 2008-09-15 2008-10-22 Element Six Holding Gmbh A Hard-Metal
GB0816836D0 (en) 2008-09-15 2008-10-22 Element Six Holding Gmbh Steel wear part with hard facing
FR2936817B1 (fr) 2008-10-07 2013-07-19 Varel Europ Procece pour fabriquer une piece comprenant un bloc en materiau dense du type carbure cemente, presentant un grandient de proprietes et piece obtenue
RU2510823C2 (ru) * 2008-10-15 2014-04-10 Варел Интернейшнл, Инд., Л.П. Термостойкий поликристаллический алмазный композит
US8663349B2 (en) 2008-10-30 2014-03-04 Us Synthetic Corporation Polycrystalline diamond compacts, and related methods and applications
SE533070C2 (sv) * 2008-11-10 2010-06-22 Seco Tools Ab Sätt att tillverka skärverktyg
GB0903322D0 (en) 2009-02-27 2009-04-22 Element Six Holding Gmbh Hard-metal substrate with graded microstructure
US20120177453A1 (en) 2009-02-27 2012-07-12 Igor Yuri Konyashin Hard-metal body
GB2481957B (en) * 2009-05-06 2014-10-15 Smith International Methods of making and attaching tsp material for forming cutting elements, cutting elements having such tsp material and bits incorporating such cutting
US8783389B2 (en) 2009-06-18 2014-07-22 Smith International, Inc. Polycrystalline diamond cutting elements with engineered porosity and method for manufacturing such cutting elements
JP2013502328A (ja) * 2009-08-21 2013-01-24 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング カッティングインサート、特にスローアウェイ式のカッティングインサートの精密プレス加工及び焼結
CN102140617A (zh) * 2011-03-10 2011-08-03 海门市沪海有色铸造有限公司 低压铸造用铁质升液管硫化方法
US9234391B2 (en) 2011-11-29 2016-01-12 Smith International, Inc. Shear cutter with improved wear resistance of WC-CO substrate
US9279291B2 (en) 2011-12-30 2016-03-08 Smith International, Inc. Diamond enhanced drilling insert with high impact resistance
US10315922B2 (en) 2014-09-29 2019-06-11 Baker Hughes, A Ge Company, Llc Carbon composites and methods of manufacture
US20160130519A1 (en) * 2014-11-06 2016-05-12 Baker Hughes Incorporated Methods for preparing anti-friction coatings
US9745451B2 (en) 2014-11-17 2017-08-29 Baker Hughes Incorporated Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
US10300627B2 (en) 2014-11-25 2019-05-28 Baker Hughes, A Ge Company, Llc Method of forming a flexible carbon composite self-lubricating seal
US9726300B2 (en) 2014-11-25 2017-08-08 Baker Hughes Incorporated Self-lubricating flexible carbon composite seal
CN105018780B (zh) * 2015-07-21 2017-01-25 吉林大学 一种孕镶金刚石钻头用的无硬质相胎体配方及其制备方法
US10125274B2 (en) 2016-05-03 2018-11-13 Baker Hughes, A Ge Company, Llc Coatings containing carbon composite fillers and methods of manufacture
FR3060427A1 (fr) 2016-12-21 2018-06-22 Centre National De La Recherche Scientifique Procede de traitement d'un materiau composite superdur destine a etre utilise pour la realisation d'outils de coupe
TWI652352B (zh) * 2017-09-21 2019-03-01 國立清華大學 共晶瓷金材料
CN110229989B (zh) * 2019-05-09 2021-04-23 陕西理工大学 一种多元硬质合金及其制备方法

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745623A (en) 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
JPS5288502A (en) * 1976-01-20 1977-07-25 Tone Boring Co Triicone bit and method of manufacturing it
US4225322A (en) 1978-01-10 1980-09-30 General Electric Company Composite compact components fabricated with high temperature brazing filler metal and method for making same
JPS58500329A (ja) 1981-03-05 1983-03-03 タ−バイン・メタル・テクノロジ−・インコ−ポレ−テッド 耐摩耗性および耐壊食性部材およびそのための方法
US4610931A (en) 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
DE3112460C2 (de) 1981-03-28 1983-01-20 Fried. Krupp Gmbh, 4300 Essen Verfahren zur Herstellung eines Verbundkörpers sowie Anwendung dieses Verfahrens
DD203750A1 (de) 1982-02-10 1983-11-02 Immelborn Hartmetallwerk Hartmetallschneidplatte fuer schwerspanbare staehle
US4548786A (en) 1983-04-28 1985-10-22 General Electric Company Coated carbide cutting tool insert
US4726718A (en) 1984-03-26 1988-02-23 Eastman Christensen Co. Multi-component cutting element using triangular, rectangular and higher order polyhedral-shaped polycrystalline diamond disks
US5028177A (en) 1984-03-26 1991-07-02 Eastman Christensen Company Multi-component cutting element using triangular, rectangular and higher order polyhedral-shaped polycrystalline diamond disks
JPH0683890B2 (ja) * 1984-03-27 1994-10-26 東芝機械株式会社 成形機用耐摩耗部材の製造方法
US4525178A (en) 1984-04-16 1985-06-25 Megadiamond Industries, Inc. Composite polycrystalline diamond
EP0182759B2 (de) 1984-11-13 1993-12-15 Santrade Ltd. Gesinterte Hartmetallegierung zum Gesteinsbohren und zum Schneiden von Mineralien
US5127923A (en) 1985-01-10 1992-07-07 U.S. Synthetic Corporation Composite abrasive compact having high thermal stability
US4664705A (en) 1985-07-30 1987-05-12 Sii Megadiamond, Inc. Infiltrated thermally stable polycrystalline diamond
JPS6274076A (ja) 1985-09-27 1987-04-04 Sumitomo Electric Ind Ltd 多重層被覆硬質合金の製造法
SE456428B (sv) * 1986-05-12 1988-10-03 Santrade Ltd Hardmetallkropp for bergborrning med bindefasgradient och sett att framstella densamma
US4943488A (en) 1986-10-20 1990-07-24 Norton Company Low pressure bonding of PCD bodies and method for drill bits and the like
US5111895A (en) 1988-03-11 1992-05-12 Griffin Nigel D Cutting elements for rotary drill bits
US5011514A (en) 1988-07-29 1991-04-30 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
US6413589B1 (en) 1988-11-29 2002-07-02 Chou H. Li Ceramic coating method
JPH0689380B2 (ja) * 1988-12-07 1994-11-09 東芝機械株式会社 耐食耐摩耗部材およびその製造方法
US5217923A (en) * 1989-02-13 1993-06-08 Kabushiki Kaisha Toshiba Method of fabricating a semiconductor device having silicided source/drain regions
JPH0349834A (ja) 1989-07-14 1991-03-04 Sumitomo Electric Ind Ltd 金を接合材とする工具及びその製造方法
JP3191878B2 (ja) * 1991-02-21 2001-07-23 三菱マテリアル株式会社 気相合成ダイヤモンド被覆切削工具の製造法
WO1993008952A1 (en) 1991-10-28 1993-05-13 Alcan International Limited Method for modifying the surface of an aluminum substrate
US5441817A (en) * 1992-10-21 1995-08-15 Smith International, Inc. Diamond and CBN cutting tools
JPH06235005A (ja) * 1992-12-10 1994-08-23 Alloy Kogyo Kk 耐摩耗材料及びその製法
US5839329A (en) * 1994-03-16 1998-11-24 Baker Hughes Incorporated Method for infiltrating preformed components and component assemblies
US5560839A (en) * 1994-06-27 1996-10-01 Valenite Inc. Methods of preparing cemented metal carbide substrates for deposition of adherent diamond coatings and products made therefrom
US7396501B2 (en) 1994-08-12 2008-07-08 Diamicron, Inc. Use of gradient layers and stress modifiers to fabricate composite constructs
US5645617A (en) 1995-09-06 1997-07-08 Frushour; Robert H. Composite polycrystalline diamond compact with improved impact and thermal stability
JP3309897B2 (ja) * 1995-11-15 2002-07-29 住友電気工業株式会社 超硬質複合部材およびその製造方法
US5880382A (en) 1996-08-01 1999-03-09 Smith International, Inc. Double cemented carbide composites
WO1998032312A1 (en) 1997-01-17 1998-07-23 California Institute Of Technology Microwave technique for brazing materials
US6679243B2 (en) 1997-04-04 2004-01-20 Chien-Min Sung Brazed diamond tools and methods for making
US6315065B1 (en) 1999-04-16 2001-11-13 Smith International, Inc. Drill bit inserts with interruption in gradient of properties
AU3389699A (en) 1998-04-22 1999-11-08 De Beers Industrial Diamond Division (Proprietary) Limited Diamond compact
US6592985B2 (en) 2000-09-20 2003-07-15 Camco International (Uk) Limited Polycrystalline diamond partially depleted of catalyzing material
US6541115B2 (en) * 2001-02-26 2003-04-01 General Electric Company Metal-infiltrated polycrystalline diamond composite tool formed from coated diamond particles
CN1236105C (zh) * 2002-06-24 2006-01-11 西安交通大学 感应加热镁合金表面合金化改性方法
KR101021461B1 (ko) 2002-07-26 2011-03-16 미쓰비시 마테리알 가부시키가이샤 초경합금제 부재와 다이아몬드제 부재의 접합 구조 및접합 방법, 굴삭 공구의 절단편, 절단 부재, 및 굴삭 공구
JP2004060201A (ja) * 2002-07-26 2004-02-26 Mitsubishi Materials Corp 高速回転操業条件ですぐれた耐微少欠け性を発揮する掘削工具の切刃片
US7261752B2 (en) 2002-09-24 2007-08-28 Chien-Min Sung Molten braze-coated superabrasive particles and associated methods
US20050050801A1 (en) 2003-09-05 2005-03-10 Cho Hyun Sam Doubled-sided and multi-layered PCD and PCBN abrasive articles
US6869460B1 (en) 2003-09-22 2005-03-22 Valenite, Llc Cemented carbide article having binder gradient and process for producing the same
US7699904B2 (en) 2004-06-14 2010-04-20 University Of Utah Research Foundation Functionally graded cemented tungsten carbide
US7754333B2 (en) 2004-09-21 2010-07-13 Smith International, Inc. Thermally stable diamond polycrystalline diamond constructions
GB2454122B (en) 2005-02-08 2009-07-08 Smith International Thermally stable polycrystalline diamond cutting elements and bits incorporating the same
CN100497739C (zh) * 2005-04-30 2009-06-10 中国科学院金属研究所 一种高温合金防护方法
US7487849B2 (en) 2005-05-16 2009-02-10 Radtke Robert P Thermally stable diamond brazing
US7377341B2 (en) 2005-05-26 2008-05-27 Smith International, Inc. Thermally stable ultra-hard material compact construction
US7887747B2 (en) 2005-09-12 2011-02-15 Sanalloy Industry Co., Ltd. High strength hard alloy and method of preparing the same
US7757793B2 (en) 2005-11-01 2010-07-20 Smith International, Inc. Thermally stable polycrystalline ultra-hard constructions
US8066087B2 (en) 2006-05-09 2011-11-29 Smith International, Inc. Thermally stable ultra-hard material compact constructions
CA2619547C (en) 2007-02-06 2016-05-17 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US7942219B2 (en) 2007-03-21 2011-05-17 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
FR2914206B1 (fr) 2007-03-27 2009-09-04 Sas Varel Europ Soc Par Action Procede pour fabriquer une piece comprenant au moins un bloc en materiau dense constitue de particules dures dispersees dans une phase liante : application a des outils de coupe ou de forage.
US8061454B2 (en) 2008-01-09 2011-11-22 Smith International, Inc. Ultra-hard and metallic constructions comprising improved braze joint
US8435626B2 (en) 2008-03-07 2013-05-07 University Of Utah Research Foundation Thermal degradation and crack resistant functionally graded cemented tungsten carbide and polycrystalline diamond
FR2936817B1 (fr) 2008-10-07 2013-07-19 Varel Europ Procece pour fabriquer une piece comprenant un bloc en materiau dense du type carbure cemente, presentant un grandient de proprietes et piece obtenue
EP2184122A1 (de) 2008-11-11 2010-05-12 Sandvik Intellectual Property AB Zementierter Carbidkörper und Verfahren
AU2010279358A1 (en) 2009-08-07 2012-03-01 Smith International, Inc. Functionally graded polycrystalline diamond insert

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SORLIER E ET AL: "Elaboration de gradients de composition continue dans des taillants PDC", 13 November 2006 (2006-11-13), pages 1 - 9, XP002532888, Retrieved from the Internet <URL:http://hal.archives-ouvertes.fr/docs/00/14/45/46/PDF/Sorlier-Colin_Materiaux_2006_Dijon_9_p.pdf> [retrieved on 20070510] *

Also Published As

Publication number Publication date
CN101275213B (zh) 2012-10-10
JP5961194B2 (ja) 2016-08-02
FR2914206B1 (fr) 2009-09-04
JP2014122428A (ja) 2014-07-03
FR2914206A1 (fr) 2008-10-03
US8647562B2 (en) 2014-02-11
CN101275213A (zh) 2008-10-01
US20080240879A1 (en) 2008-10-02
EP1975264A1 (de) 2008-10-01
JP2009030157A (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
EP1975264B1 (de) Herstellungsverfahren eines Teils, das mindestens einen Block aus dichtem Material umfasst, das aus harten Partikeln besteht, die in der Bindephase dispergiert werden, zum Einsatz bei Werkzeugen zum Schneiden oder Bohren
EP2347025B1 (de) Verfahren zur herstellung eines teils, umfassend einen block aus dichtem material, bestehend aus harten teilchen und bindemittelphase, mit eigenschaftsgradient und resultierendes teil
US7462003B2 (en) Polycrystalline diamond composite constructions comprising thermally stable diamond volume
US8858871B2 (en) Process for the production of a thermally stable polycrystalline diamond compact
US8763730B2 (en) Diamond bonded construction with improved braze joint
US7350601B2 (en) Cutting elements formed from ultra hard materials having an enhanced construction
BE1013009A4 (fr) Palier renforce de diamant pour trepan de forage de terre.
US8499861B2 (en) Ultra-hard composite constructions comprising high-density diamond surface
US20080085407A1 (en) Superabrasive elements, methods of manufacturing, and drill bits including same
CA2524112C (en) Drill bit cutting elements with selectively positioned wear resistant surface
IE20080214A1 (en) Polycrystalline diamond constructions having improved thermal stability
US10077608B2 (en) Thermally stable materials, cutter elements with such thermally stable materials, and methods of forming the same
US20190054574A1 (en) Wear resistant coating
US20120040157A1 (en) Superhard element, a tool comprising same and methods for making such superhard element
RU2510823C2 (ru) Термостойкий поликристаллический алмазный композит
FR2914207A1 (fr) Procede d&#39;assemblage de deux blocs en materiau dense ou non dense constitue de particules dures dispersees dans une phas phase liante : application a des outils de coupe ou de forage.
IE85954B1 (en) Diamond bonded construction with improved braze joint

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

16A New documents despatched to applicant after publication of the search report

Effective date: 20081022

17P Request for examination filed

Effective date: 20090304

17Q First examination report despatched

Effective date: 20090417

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/10 20060101ALI20131011BHEP

Ipc: C22C 29/08 20060101AFI20131011BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170104

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOURFAYE, ALFAZAZI

Inventor name: COLIN, CHRISTOPHE

Inventor name: SELLAMI, HEDI

Inventor name: SORLIER, ELODIE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 901012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008050647

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170614

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170915

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171014

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008050647

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

26N No opposition filed

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20180925

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180921

Year of fee payment: 11

Ref country code: GB

Payment date: 20180921

Year of fee payment: 11

Ref country code: AT

Payment date: 20180924

Year of fee payment: 11

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 901012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190325

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190927

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080325

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008050647

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 901012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170614