EP1970672B1 - Positionsdetektor - Google Patents

Positionsdetektor Download PDF

Info

Publication number
EP1970672B1
EP1970672B1 EP08004718.6A EP08004718A EP1970672B1 EP 1970672 B1 EP1970672 B1 EP 1970672B1 EP 08004718 A EP08004718 A EP 08004718A EP 1970672 B1 EP1970672 B1 EP 1970672B1
Authority
EP
European Patent Office
Prior art keywords
calculator
correction value
phase difference
amplitude ratio
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08004718.6A
Other languages
English (en)
French (fr)
Other versions
EP1970672A3 (de
EP1970672A2 (de
Inventor
Yasukazu Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Publication of EP1970672A2 publication Critical patent/EP1970672A2/de
Publication of EP1970672A3 publication Critical patent/EP1970672A3/de
Application granted granted Critical
Publication of EP1970672B1 publication Critical patent/EP1970672B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24409Interpolation using memories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2449Error correction using hard-stored calibration data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the present invention relates to a position detector that converts, into position information, output signals from a position sensor which outputs two signals that sinusoidally vary at a pitch of wavelength ⁇ with respect to a measured displacement and have phases shifted from each other by 90 degrees.
  • position detectors are conventionally employed for providing feedback in performing position control.
  • these position detectors are configured using a position sensor which outputs two signals that sinusoidally vary at a small pitch with respect to a measured displacement and have phases shifted from each other by 90 degrees.
  • Such a position sensor is used because, even when the resolution accuracy (hereinafter referred to as interpolation accuracy) within the pitch obtained by performing interpolation processing with respect to the two signals is poor, as long as the pitch is small, the ratio by which the interpolation accuracy influences the actual position detection accuracy remains small.
  • Position detectors of this type are disclosed in JP 4-136715 A , JP 2003-14440 A , JP 2005-156348 A , and the like.
  • DE 101 63 504 A1 discloses a method for iteratively determining error correction values.
  • the method comprises measuring cosine and sine curves provided by position sensors of a position detector for each signal period and an estimation of offset, amplitude and phase errors, or of values proportional to them, from Fourier analysis of the measured values.
  • Fourier coefficients for the fundamental oscillation and the first harmonic are determined using a radius value obtained from the measured cosine and sine curves, wherein offset errors are determined from the fundamental oscillation and amplitude and phase errors are determined from the first harmonic. Iterative Fourier analysis is carried out until approximately exact correction values are obtained. Further, an interpolation is performed in order to obtain position information between two measured values.
  • components that degrade the interpolation accuracy such as an offset, phase difference, and amplitude ratio are quantitatively determined based on a value obtained by performing a Fourier analysis with respect to a change in an amount corresponding to the radius value of a Lissajous circle which is a root-sum-square of the two signals that sinusoidally vary at a pitch of wavelength ⁇ with respect to a measured displacement and have phases shifted from each other by 90 degrees.
  • the radius value changes sinusoidally at the wavelength ⁇ /2.
  • the radius value changes in the form of two sine waves having identical amplitudes and wavelengths of ⁇ and ⁇ /3, respectively, and when the other of the two signals includes a second order harmonic distortion component, the radius value changes in the form of two cosine waves having identical amplitudes and wavelengths of ⁇ and ⁇ /3, respectively. It is apparent that the change in the radius value occurs as variation much smaller compared to the amount of change of the two signals varying at the pitch of the wavelength ⁇ .
  • components that degrade the interpolation accuracy such as an offset, phase difference, and amplitude ratio, are quantitatively determined based on the radius value that varies by small amounts. Accordingly, even when the measured displacement is only a slight change of ⁇ or 1/2 ⁇ , the offset, phase difference, and amplitude ratio can be identified accurately. It is therefore possible to precisely determine changes in the offset, phase difference, and amplitude ratio which fluctuate depending on the position, to eliminate those accuracy-degrading components, and to thereby greatly improve the interpolation accuracy. As a result, both high accuracy and high speed can be simultaneously achieved in a position detector.
  • FIG. 2 is a diagram showing a basic structure of a position detector.
  • FIG. 3 is a block diagram showing an interpolation operation of a signal processing circuit 29 in FIG. 2 .
  • a protrusion 22 made of a magnetic member for indicating the origin is attached.
  • a printed circuit board 23 mounted on a non-rotating portion of the measurement target (motor) is positioned on a side adjacent to the outer surface of the rotor 21.
  • detection coils 24 and 25 formed of sinusoidal conductive patterns, as well as a detection coil 26 for detecting the protrusion 22 on the rotor 21 for indicating the origin.
  • an electromagnet 27 is provided on the rear side of the printed circuit board 23. When alternating current I x SIN(200000 ⁇ t) having the frequency of 100kHz is made to flow through a magnetizing coil 28, the electromagnet 27 generates alternating magnetizing flux toward the rotor 21 side.
  • signals AC and AS can be expressed by Equations 1 and 2 below:
  • AC G ⁇ COS 36 ⁇ ⁇ SIN 200000 ⁇ ⁇ t
  • AS G ⁇ SIN 36 ⁇ ⁇ SIN 200000 ⁇ ⁇ t
  • signals AC and AS are converted into numerical values DC and DS, which can be expressed by Equations 3 and 4 below:
  • the position detection sensor within the position detector shown in FIG. 2 outputs two signal outputs that sinusoidally vary at a pitch of wavelength ⁇ (10 degrees) of the measured displacement and have phases shifted from each other by 90 degrees.
  • the two digitized values DC, DS include offset voltages COF and SOF, as well as phase difference P and amplitude ratio B between the two signals. Accordingly, the above-noted Equations 3 and 4 are more precisely expressed by Equations 5 and 6 below:
  • the offset correction values COF and SOF stored in the memory units 10 and 11 are subtracted from the numerical values DC and DS by subtractors 8 and 9, such that numerical values DCA and DSA are obtained.
  • subtractor 14 a value obtained by multiplying the phase correction value PHJ stored in the memory unit 12 and the numerical value DCA is subtracted from the numerical value DSA, resulting in numerical value DSB from which the phase error component is removed.
  • multiplier 16 the numerical value DSB is multiplied by the amplitude ratio correction value BAJ stored in the memory unit 13, resulting in numerical value DSC having an amplitude substantially equal to that of the value DCA.
  • interpolation calculator 17 the values DCA and DSC are subjected to arctangent calculation using input of two variables, so as to be converted into position signal IP indicating a rotation amount within 1/36 rotation of the rotation shaft 1.
  • processing such as count processing based on changes in the position signal IP is carried out in order to obtain position data for at least one or more rotations of the rotation shaft 1, and the obtained data are output to a motor controller or the like. Further, when the protrusion 22 on the rotor 21 indicating the origin passes near the detection coil 26, the count value for incremental processing may be cleared, and after that, rotational positions within one rotation of the rotation shaft 1 may be detected as absolute positions.
  • the interpolation accuracy can be improved to some degree.
  • the offset, phase difference, and amplitude ratio in fact fluctuate depending on the rotational position, further improvement of the interpolation accuracy using constant correction values is extremely difficult.
  • a position detector in a position detector according to an embodiment of the present invention, components that degrade the interpolation accuracy, which are included in the two signals that vary sinusoidally at a pitch of wavelength ⁇ with respect to a measured displacement and have phases shifted from each other by 90 degrees, are accurately identified for every rotational position, and these degrading components are removed at every rotational position. Accordingly, the interpolation accuracy can be increased, thereby making it possible to simultaneously achieve both high accuracy and high speed in the position detector.
  • FIG. 1 is a block diagram showing an embodiment of the present invention.
  • blocks having functions identical to those in FIG. 3 are labeled with the same reference numerals, and explanations of those blocks will not be repeated.
  • Equation 7 the numerical values DCA and DSC after elimination of offset, phase difference, and amplitude ratio are subjected to calculation shown in Equation 7 below in a radius calculator 18, and radius value RD is output.
  • RD SQRT ⁇ DCA ⁇ ⁇ 2 + DCC ⁇ ⁇ 2
  • SQRT denotes square root
  • ⁇ 2 denotes square.
  • a fast Fourier transform (FFT) 19
  • the radius value RD output from the radius calculator 18 is subjected to fast Fourier calculation at every instance that the rotational position is changed by ⁇ , using the interpolation value IP output from the interpolation calculator 17.
  • a value corresponding to radius value RD for every positional change by 1/2 n of the wavelength ⁇ of positional signal IP (where n is an integer greater than or equal to 3) is calculated by means of averaging and interpolation processing.
  • the resulting 2 N number of radius values RDs are subjected to elimination of tilt change component, and then subjected to fast Fourier calculation for calculating the first- to third-order components.
  • the FFT 19 outputs: the cosine component and sine component having wavelength ⁇ , corresponding to the first-order components, as C1 and S1; the cosine component and sine component having wavelength ⁇ /2, corresponding to the second-order components, as C2 and S2; and the cosine component and sine component having wavelength ⁇ /3, corresponding to the third-order components, as C3 and S3.
  • the FFT 19 also calculates the average radius of the RD values at every occurrence of rotational position change by ⁇ , and outputs the calculated value as numerical value RDA.
  • the FFT 19 Upon completion of the fast Fourier calculation executed at every occurrence of rotational position change by ⁇ , the FFT 19 outputs a store command signal SET to memory units 30, 31, 32, and 33.
  • calculator 36 numerical value CO that is stored in memory unit 30 and used for eliminating the offset component from the numerical value DC is added together with the numerical value C1 which is the cosine component of wavelength ⁇ of radius value RD calculated in the FFT 19, and further, the numerical value C3 which is the cosine component of wavelength ⁇ /3 is subtracted.
  • the value thus calculated in the calculator 36 is stored in the memory unit 30 upon receipt of the store command signal SET from the FFT 19, and is used as the offset correction value for the numerical value DC.
  • calculator 37 numerical value SO that is stored in memory unit 31 and used for eliminating the offset component from the numerical value DS is added together with the numerical value S1 which is the sine component of wavelength ⁇ of radius value RD calculated in the FFT 19, and the numerical value S3 which is the sine component of wavelength ⁇ /3 is further added.
  • the value thus calculated in the calculator 37 is stored in the memory unit 31 upon receipt of the store command signal SET from the FFT 19, and is used as the offset correction value for the numerical value DS.
  • subtractor 38 the numerical value DP output by the calculator 35 is subtracted from numerical value PJ that is stored in the memory 32 for use for eliminating the phase difference included in the numerical value DSA.
  • the numerical value obtained as a result of the subtraction by the subtractor 38 is stored in the memory unit 32 upon receipt of the store command signal SET from the FFT, and is used as the phase difference correction value for the numerical value DSA.
  • phase difference is identified for each rotational change by wavelength ⁇ in the above embodiment, in principle, it is possible to identify the phase difference component not only for a rotational change by ⁇ but also for a rotational change by an integer multiple of ⁇ /2.
  • multiplier 39 numerical value BJ that is stored in the memory 33 for use for eliminating the amplitude ratio of the numerical value DSB is multiplied by the numerical value DB output by the calculator 34.
  • the numerical value obtained as a result of the multiplication by the multiplier 39 is stored in the memory unit 33 upon receipt of the store command signal SET from the FFT, and is used as the amplitude ratio correction value for the numerical value DSB.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (3)

  1. Positionsdetektor zum Detektieren einer Verlagerung eines Zielobjekts, der umfasst:
    - einen Positionssensor (24, 25), der zwei Signale ausgibt, die sich bezüglich der Verlagerung mit einer Teilung der Wellenlänge λ sinusförmig verändern und zueinander um 90 Grad verschobene Phasen haben;
    - einen Versatzspeicher (30, 31), der Versatzwerte (CO, SO) bezüglich der beiden Signale, die von dem Positionssensor (24, 25) ausgegeben werden, speichert;
    - einen Versatzbeseitigungsrechner (8, 9), der die Versatzwerte (CO, SO), die in dem Versatzspeicher (30, 31) gespeichert sind, aus den beiden entsprechenden Signalen, die von dem Positionssensor (24, 25) ausgegeben werden, beseitigt;
    - einen Interpolationsrechner (17), der die beiden Signale nach der Versatzbeseitigung in Positionsdaten (IP) umsetzt;
    - einen Radiusrechner (18), der die Wurzel der Summe der Quadrate der beiden Signale nach der Versatzbeseitigung berechnet; und
    - einen Versatzwertrechner (19, 36, 37), der die Versatzwerte (CO, SO), die in dem Versatzspeicher (30, 31) gespeichert werden sollen, anhand der Positionsdaten (IP) und eines Ausgangswerts (RP) von dem Radiusrechner (18), die erhalten werden, wenn sich die gemessene Verlagerung um ein ganzzahliges Vielfaches der Wellenlänge λ ändert, berechnet;
    wobei die Versatzwerte (CO, SO), die im Versatzspeicher (30, 31) gespeichert sind, unter Verwendung der Versatzwerte, die in dem Versatzwertrechner (19, 36, 37) erhalten werden, aktualisiert werden,
    dadurch gekennzeichnet, dass
    der Versatzwertrechner (19, 36, 37) die Versatzwerte anhand einer Komponente mit Wellenlänge λ und einer Komponente mit Wellenlänge λ/3, die durch Ausführen einer Fourier-Analyse in Bezug auf eine Änderung des Ausgangswerts (RD) des Radiusrechners (18) erhalten werden, berechnet.
  2. Positionsdetektor zum Detektieren einer Verlagerung eines Zielobjekts, der umfasst:
    - einen Positionssensor (24, 25), der zwei Signale ausgibt, die sich bezüglich der Verlagerung mit einer Teilung der Wellenlänge λ sinusförmig verändern und zueinander um 90 Grad verschobene Phasen besitzen;
    - einen Amplitudenverhältniskorrekturwert-Speicher (33), der einen Amplitudenverhältniskorrekturwert (BJ) bezüglich der beiden Signale, die von dem Positionssensor (24, 25) ausgegeben werden, speichert;
    - einen Amplitudenverhältniskorrektur-Rechner (16), der ein Amplitudenverhältnis der beiden Signale, die von dem Positionssensor ausgegeben werden, in Übereinstimmung mit dem Amplitudenverhältniskorrekturwert (BJ), der in dem Amplitudenverhältniskorrekturwert-Speicher (33) gespeichert ist, korrigiert;
    - einen Interpolationsrechner (17), der die beiden Signale nach der Amplitudenverhältniskorrektur in Positionsdaten (IP) umsetzt;
    - einen Radiusrechner (18), der eine Wurzel der Summe der Quadrate der beiden Signale nach der Amplitudenverhältniskorrektur berechnet; und
    - einen Amplitudenverhältniskorrekturwert-Rechner (19, 34, 39), der einen Amplitudenverhältniskorrekturwert (BJ), der in dem Amplitudenverhältniskorrekturwert-Speicher (33) gespeichert werden soll, anhand der Positionsdaten (IP) und eines Ausgangswerts (RP) von dem Radiusrechner (18), die erhalten werden, wenn sich die gemessene Verlagerung um ein ganzzahliges Vielfaches der Wellenlänge λ/2 ändert, berechnet;
    wobei der Amplitudenverhältniskorrekturwert (BJ), der in dem Amplitudenverhältniskorrekturwert-Speicher (33) gespeichert ist, unter Verwendung des Amplitudenverhältniskorrekturwerts, der in dem Amplitudenverhältniskorrekturwert-Rechner (19, 34, 39) erhalten wird, aktualisiert wird,
    dadurch gekennzeichnet, dass
    der Amplitudenverhältniskorrekturwert-Rechner (19, 34, 39) den Amplitudenverhältniskorrekturwert (BJ) anhand einer Komponente mit Wellenlänge λ/2, die durch Ausführen einer Fourier-Analyse bezüglich einer Änderung des Ausgangswerts (RD) des Radiusrechners (18) in Bezug auf die Positionsdaten erhalten wird, und einer Komponente, die einen Durchschnittsradius (RDA) besitzt, berechnet.
  3. Positionsdetektor zum Detektieren einer Verlagerung eines Zielobjekts, der umfasst:
    - einen Positionssensor (24, 25), der zwei Signale ausgibt, die sich bezüglich der Verlagerung mit einer Teilung der Wellenlänge λ sinusförmig ändern und zueinander um 90 Grad verschobene Phasen besitzen;
    - einen Phasendifferenzkorrekturwert-Speicher (32), der einen Phasendifferenzkorrekturwert (PJ) bezüglich der beiden Signale, die von dem Positionssensor (24, 25) ausgegeben werden, speichert;
    - einen Phasendifferenzkorrekturrechner (14, 15), der eine Phasendifferenz der beiden Signale, die von dem Positionssensor ausgegeben werden, in Übereinstimmung mit dem Phasendifferenzkorrekturwert (PJ), der in dem Phasendifferenzkorrekturwert-Speicher (32) gespeichert ist, korrigiert;
    - einen Interpolationsrechner (17), der die beiden Signale nach der Phasendifferenzkorrektur in Positionsdaten (IP) umsetzt;
    - einen Radiusrechner (18), der eine Wurzel der Summe der Quadrate der beiden Signale nach der Phasendifferenzkorrektur berechnet; und
    - einen Phasendifferenzkorrekturwert-Rechner (19, 35, 38), der einen Phasendifferenzkorrekturwert (PJ), der in dem Phasendifferenzkorrekturwert-Speicher (32) gespeichert werden soll, anhand der Positionsdaten (IP) und eines Ausgangswerts (RD) von dem Radiusrechner (18), die erhalten werden, wenn sich die gemessene Verlagerung um ein ganzzahliges Vielfaches der Wellenlänge λ/2 ändert, berechnet;
    wobei der Phasendifferenzkorrekturwert PJ, der in dem Phasendifferenzkorrekturwert-Speicher (32) gespeichert ist, unter Verwendung des Phasendifferenzkorrekturwerts, der in dem Phasendifferenzkorrekturwert-Rechner (19, 25, 32) erhalten wird, aktualisiert wird,
    dadurch gekennzeichnet, dass
    der Phasendifferenzkorrekturwert-Rechner (19, 35, 38) den Phasendifferenzkorrekturwert (PJ) anhand einer Komponente mit Wellenlänge λ/2, die durch Ausführen einer Fourier-Analyse bezüglich einer Änderung des Ausgangswerts (RD) des Radiusrechners (18) in Bezug auf die Positionsdaten erhalten wird, und einer Komponente, die einen Durchschnittsradius (RDA) besitzt, berechnet.
EP08004718.6A 2007-03-16 2008-03-13 Positionsdetektor Active EP1970672B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068620A JP4568298B2 (ja) 2007-03-16 2007-03-16 位置検出装置

Publications (3)

Publication Number Publication Date
EP1970672A2 EP1970672A2 (de) 2008-09-17
EP1970672A3 EP1970672A3 (de) 2011-06-22
EP1970672B1 true EP1970672B1 (de) 2015-07-01

Family

ID=39529659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08004718.6A Active EP1970672B1 (de) 2007-03-16 2008-03-13 Positionsdetektor

Country Status (7)

Country Link
US (1) US7711508B2 (de)
EP (1) EP1970672B1 (de)
JP (1) JP4568298B2 (de)
KR (2) KR101519908B1 (de)
CN (1) CN101266154B (de)
ES (1) ES2544650T3 (de)
TW (1) TWI468649B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111031B2 (ja) * 2007-09-14 2012-12-26 キヤノン株式会社 変位検出方法及びモータ制御装置
JP5106336B2 (ja) 2008-09-26 2012-12-26 オークマ株式会社 位置検出装置
GB0819767D0 (en) * 2008-10-28 2008-12-03 Renishaw Plc Absolute encoder setup indication
JP2010156554A (ja) * 2008-12-26 2010-07-15 Okuma Corp 位置検出装置
WO2011070391A1 (en) * 2009-12-10 2011-06-16 Aktiebolaget Skf Method for estimating the angular position, measuring device and sensor bearing
US8274495B2 (en) * 2010-05-25 2012-09-25 General Display, Ltd. System and method for contactless touch screen
JP5529666B2 (ja) 2010-07-29 2014-06-25 オークマ株式会社 位置検出装置
JP5327656B2 (ja) * 2011-07-13 2013-10-30 株式会社デンソー 物理量検出装置、および物理量検出装置の検査方法
US9222804B2 (en) * 2011-09-02 2015-12-29 Persimmon Technologies Corporation System and method for position sensing
JP5793053B2 (ja) * 2011-10-18 2015-10-14 オークマ株式会社 速度監視装置
JP5731569B2 (ja) * 2013-05-02 2015-06-10 ファナック株式会社 精度補正機能を備えたエンコーダ
EP3180591A1 (de) * 2014-08-14 2017-06-21 Continental Automotive GmbH Verfahren zum ermitteln eines orthogonalitätsfehlers zwischen zwei sensorsignalen
EP3180592A1 (de) * 2014-08-14 2017-06-21 Continental Automotive GmbH Verfahren zum ermitteln eines orthogonalitätsfehlers zwischen zwei sensorsignalen
DE102014226604B4 (de) * 2014-12-19 2022-10-27 Volkswagen Ag Verfahren und Vorrichtung zum Ausgleichen einer Anordnungstoleranz zwischen zwei Sensorelementen einer Lagesensoranordnung
JP2016118439A (ja) * 2014-12-19 2016-06-30 オークマ株式会社 位置検出装置
JP6530696B2 (ja) * 2015-11-25 2019-06-12 オークマ株式会社 周波数同定器
JP6688166B2 (ja) 2016-06-14 2020-04-28 オークマ株式会社 位置検出装置
CN107202796B (zh) * 2017-07-11 2023-07-07 深圳宜美智科技股份有限公司 Pcb板自动检测机
JP7084807B2 (ja) * 2018-07-10 2022-06-15 オークマ株式会社 電磁誘導型位置センサ用のセンサ基板、および、センサ基板の製造方法
CN111505538B (zh) * 2020-03-17 2022-12-09 天津中科华誉科技有限公司 磁场方向传感器校正和计算方法、装置、存储介质及设备
US20220187105A1 (en) * 2020-12-11 2022-06-16 Dmg Mori Co., Ltd. Automatic correction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108774A (ja) * 2002-09-13 2004-04-08 Fuji Electric Fa Components & Systems Co Ltd 光学式エンコーダの位置検出方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1485646A (en) * 1973-11-16 1977-09-14 Hitachi Ltd Digital displacement sensors
JP2593955B2 (ja) 1990-09-28 1997-03-26 オ−クマ株式会社 エンコーダ
US6029363A (en) * 1998-04-03 2000-02-29 Mitutoyo Corporation Self-calibrating position transducer system and method
JP3893033B2 (ja) * 2001-06-29 2007-03-14 オークマ株式会社 位置検出装置
JP4071465B2 (ja) * 2001-07-23 2008-04-02 オークマ株式会社 補正機能付き絶対位置検出器
US6564125B2 (en) * 2001-08-27 2003-05-13 Delphi Technologies, Inc. Method for updating a sensor using a robust sensor offset learning algorithm
DE10163504B4 (de) * 2001-12-21 2005-07-07 Siemens Ag Verfahren zur iterativen Fehlerkompensation von sin/cos-Lagemesssystemen nach Offset-, Amplituden- und Phasenfehler
JP2005003672A (ja) * 2003-05-19 2005-01-06 Yaskawa Electric Corp エンコーダ位置誤差解析装置
JP2005156348A (ja) 2003-11-26 2005-06-16 Okuma Corp 位置検出装置
DE102004038621B3 (de) * 2004-08-09 2006-02-16 Siemens Ag Ermittlungsverfahren für ein Lagesignal
JP4768248B2 (ja) * 2004-10-13 2011-09-07 株式会社ミツトヨ エンコーダ出力信号補正装置及び方法
JP4713123B2 (ja) * 2004-10-13 2011-06-29 株式会社ミツトヨ エンコーダ出力信号補正装置
JP2007068620A (ja) 2005-09-05 2007-03-22 Konica Minolta Holdings Inc 心理状態計測装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108774A (ja) * 2002-09-13 2004-04-08 Fuji Electric Fa Components & Systems Co Ltd 光学式エンコーダの位置検出方法

Also Published As

Publication number Publication date
CN101266154A (zh) 2008-09-17
TW200839194A (en) 2008-10-01
US20080228423A1 (en) 2008-09-18
JP2008232649A (ja) 2008-10-02
KR20140141552A (ko) 2014-12-10
EP1970672A3 (de) 2011-06-22
US7711508B2 (en) 2010-05-04
ES2544650T3 (es) 2015-09-02
JP4568298B2 (ja) 2010-10-27
KR20080084771A (ko) 2008-09-19
EP1970672A2 (de) 2008-09-17
KR101519908B1 (ko) 2015-05-13
CN101266154B (zh) 2012-01-04
TWI468649B (zh) 2015-01-11

Similar Documents

Publication Publication Date Title
EP1970672B1 (de) Positionsdetektor
EP1647811B1 (de) Verfahren und Vorrichtung zur Korrektur des Ausgangssignals eines Kodierers
EP2827106B1 (de) Winkelerfassungsvorrichtung
EP3640602B1 (de) Verfahren zum nachweis von fehlern in einem drehpositionssensorsystem mit sinus- und kosinus-signalen
KR101502259B1 (ko) 다회전 앱솔루트 회전각을 검출하는 장치 및 그 회전각을 검출하는 방법
JP4667186B2 (ja) 回転精度測定方法
JP5995589B2 (ja) 補正値導出装置、変位量導出装置、制御装置、および補正値導出方法
JP3893033B2 (ja) 位置検出装置
US9250057B2 (en) Displacement detection apparatus
JP5106336B2 (ja) 位置検出装置
EP2610592A2 (de) Geber mit Fehlererkennung und Fehlerkorrektur
JP2010156554A (ja) 位置検出装置
CN110998244B (zh) 角度检测器
CN107702733B (zh) 电磁感应式位置检测器
JP2008064498A (ja) 電磁誘導式エンコーダ
CN112825470A (zh) 伺服电动机的控制装置
CN111699365B (zh) 检测基于移动体的运动产生的位置变化量的方法以及装置
WO2014010063A1 (ja) モータ制御装置
JP2017142167A (ja) 位置検出装置および位置検出方法
JP2006125853A (ja) 位置検出方式
JP2012251879A (ja) 光学式アブソリュートエンコーダ及び装置
KR20070027058A (ko) 고 분해능 응용을 위한 다중 속도 시스템에서 rdc 오류보정 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20111213

AKX Designation fees paid

Designated state(s): CH DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 20140424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150205

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAYASHI, YASUKAZU

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008038748

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2544650

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008038748

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170320

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200304

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200313

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200401

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210313

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 17