EP1959816B1 - Interferometrische probenmessung - Google Patents

Interferometrische probenmessung Download PDF

Info

Publication number
EP1959816B1
EP1959816B1 EP06829365A EP06829365A EP1959816B1 EP 1959816 B1 EP1959816 B1 EP 1959816B1 EP 06829365 A EP06829365 A EP 06829365A EP 06829365 A EP06829365 A EP 06829365A EP 1959816 B1 EP1959816 B1 EP 1959816B1
Authority
EP
European Patent Office
Prior art keywords
measurement
reference beam
beams
superimposed
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06829365A
Other languages
English (en)
French (fr)
Other versions
EP1959816A2 (de
Inventor
Adolf Friedrich Fercher
Rainer Leitgeb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Meditec AG
Original Assignee
Carl Zeiss Meditec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200510058220 external-priority patent/DE102005058220A1/de
Priority claimed from AT13742006A external-priority patent/AT504181B1/de
Application filed by Carl Zeiss Meditec AG filed Critical Carl Zeiss Meditec AG
Publication of EP1959816A2 publication Critical patent/EP1959816A2/de
Application granted granted Critical
Publication of EP1959816B1 publication Critical patent/EP1959816B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02019Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • G01B9/02028Two or more reference or object arms in one interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02058Passive reduction of errors by particular optical compensation or alignment elements, e.g. dispersion compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/45Multiple detectors for detecting interferometer signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Definitions

  • the invention relates to a device for interferometric measurement of a sample, in particular of the eye, with a short-coherence interferometer arrangement, which has a measuring beam path through which a measuring beam incident on the sample, and a reference beam path through which a reference beam passes, which runs with the Measuring beam superimposed and brought to the interference.
  • the invention further relates to a method for short-coherence interferometric measurement of a sample, in particular of the eye, wherein a measuring beam is directed onto the sample by a first measuring beam path and superimposed with a reference beam which passes through a reference beam path and brought to interference.
  • optical short coherence tomography also OCT
  • OCT optical short coherence tomography
  • This principle can be measured with high sensitivity optical sections in the material, with axial resolutions, d. H. Resolutions along the optical axis of incidence of the radiation, can be achieved by a few microns.
  • the principle is based on optical interferometry and used for resolution in the depth direction, i. H. along the optical axis, a partially coherent light source.
  • a well-known application for the optical short-coherence tomography is the measurement of the eye, in particular of the human eye.
  • Carl Zeiss Meditec AG sells a device called the IOL-Master, which, among other things, determines the eye length, ie the distance between the corneal vertex and the fundus. During the measurement, the path length of the reference beam is changed.
  • the device is used especially in the context of cataract surgery.
  • the refractive power of an intraocular lens to be implanted is determined during cataract surgery and refractive eye surgery from the refractive initial state of the eye, the acoustically or optically determined length of the eye and an estimate of the postoperative anterior chamber depth. It is therefore necessary to have precise knowledge of these parameters before the intervention.
  • the scan process of the IOL master delivers on Interferometer output a signal, from the timing of which the lengths to be measured are determined. This scan takes time; The subject's movements during the measurement result in errors or inaccurate results.
  • a Fourier-analyzing interference method For spatial resolution in the depth direction, a spectrum of the interference pattern between the reference beam and the measuring beam is recorded, which was backscattered on the sample. This recording can be done simultaneously by means of a spectrometer (with a suitable broadband light source) or sequentially (with tunable sources). The inverse Fourier transform of the spectrum allows reconstruction of the structure along the depth direction.
  • the invention is therefore the object of a device of the type mentioned in such a way that larger sections of the eye can be measured quickly.
  • the interferometer arrangement is pre-adjusted for different, axially spaced sample areas with respect to the lengths of the reference beam paths.
  • Reference beam paths are spatially separated and of different lengths, wherein the path length difference specifies a distance of the measuring ranges in the sample.
  • the OCT measurement then only measures the deviation from the preset distance.
  • the radiation from the respective reference beam path is superimposed independently with the measuring beam and brought to detection.
  • the invention thus uses z.
  • FD OCT Fourier domain short-coherence interferometry
  • This spectrum is z. B. by means of a spectrometer, which is usually a dispersing element, such as a diffraction grating, and a focusing optics and a detector array, z.
  • a spectrometer which is usually a dispersing element, such as a diffraction grating, and a focusing optics and a detector array, z.
  • photodiode arrays or array cameras contains.
  • the registered by means of the detector array wavelength spectrum I ( ⁇ .), For example using the grating equation in the required signal spectrum or spectrum K-I (K) converted.
  • the Fourier transform of the K-spectrum provides a depth-dependent signal with signal peaks whose z-position indicates the path difference reference beam / measuring beam.
  • ⁇ ⁇ z 2 ln 2 ⁇ ⁇ ⁇ ⁇ 2 ⁇ ⁇ ⁇ ,
  • the measuring field depth Z is limited by the number of pixels or number N of the array photodiodes in the dispersion direction of the spectrometer or by the number of recordings during the tuning.
  • N ⁇ ⁇ K ⁇ z ⁇ .
  • ⁇ K is the bandwidth of the used optical radiation in the k-space.
  • N the pixel number of the spectrometer or the number of shots.
  • Conventional array pixel numbers of N ⁇ 1000 provide measurement field depths Z of approximately 5.3 mm.
  • the origin of the measuring field is the "path difference zero position", which is the position in the measuring beam for which the optical length of the measuring beam is equal to that of the reference beam.
  • the invention can be realized by a device for the interferometric measurement of a sample, in particular of the eye, with a short-coherence interferometer arrangement which has a measuring beam path through which a measuring beam is incident on the sample and a first reference beam path through which a reference beam passes is superposed with the measuring beam and brought to interference, wherein the interferometer has at least a second reference beam path which is at least partially separated from the first reference beam path and whose optical path length is different from that of the first reference beam path, the path length difference according to a distance of two in the depth direction of Sample of spaced sample areas is selected and wherein a control device from the detected superimposed beams by means of Fourier spectral analysis, taking into account the path length difference of the reference beam paths Ab the sample areas were determined.
  • the invention can be realized by a method for short-coherence interferometric measurement of a sample, in particular of the eye, wherein a measuring beam is directed onto the sample by a measuring beam path and superimposed with a reference beam which passes through a first reference beam path and is brought to interference, wherein at least one second reference beam path is provided which extends at least partially separated from the first reference beam path and whose optical path length differs from that of the first reference beam path, wherein the Path distance is selected according to a distance between two spaced apart in the depth direction of the sample sample areas and detects the superimposed radiation and is determined therefrom by Fourier spectral analysis, taking into account the path length difference of the reference beam paths, the distance of the sample areas.
  • the interferometer arrangement comprises a superimposition device which superimposes the reference beams from the two reference beam paths separately with the measuring beam from the Meßstrahlengang and then superimposed beams to a detector device for detection directs, which generates the spaced measuring ranges associated measurement signals .
  • the method that the beams from the two reference beam paths are superimposed separately with the measuring beam from the measuring beam path, the beams superimposed in this way are detected separately and measuring signals assigned to the spaced measuring ranges are generated.
  • the separation in superposition and detection can be done in various ways. On the one hand, a temporal separation is possible.
  • the measuring beam is thus superimposed successively with the reference beams from the reference beam paths and detected.
  • This has the advantage that only one detector unit is necessary, at the expense of a slightly longer measurement time.
  • the fact that only one Spektraf analysesvoriques is necessary on the detection side, can significantly reduce the effort and thus the cost.
  • the superimposition device has a switching mechanism for switching between the two reference beam paths, so that the superimposition takes place for the two reference beam paths sequentially.
  • the method is provided analogously that is switched sequentially between the two reference beam paths, so that the measuring beam is superimposed sequentially with radiation from the first and the second reference beam path and the superimposed beams are sequentially detected.
  • a higher measuring speed is achieved if the superimposition is such that a parallel detection of the separately superimposed beams, ie the interference pattern generated for the different measuring ranges, takes place.
  • a first approach uses polarization separation.
  • two reference beam paths are provided which lead to each other orthogonally polarized radiation.
  • two detector units are then also provided, which also evaluate mutually orthogonal radiation components of the superimposed radiation.
  • the superposition device for separate superimposition of a Polarization separation begins, so that the superposition and forwarding to the detector device for the two reference beam paths separated by polarization and simultaneously.
  • a separate polarization separation is used for separate superposition, so that the separate superposition and detection for the two reference beam paths separated by polarization and takes place simultaneously.
  • Another separation option results in a second variant through the use of different wavelength ranges.
  • the reference beam paths can then be coupled to one another by dichroic division of the incident reference radiation, and a corresponding number of detector devices are likewise preceded by a corresponding dichroic separation.
  • the superposition device uses a dichroic separation for the separate superimposition, so that the superimposition and the forwarding to the detector device for the two reference beam paths are spectrally separated and simultaneous.
  • a dichroic separation is used, so that the separate superposition and detection for the two reference beam paths is spectrally separated and simultaneously.
  • Another separation, which allows simultaneous measurement, lies in a spatial separation of the superimposed radiation.
  • the measuring radiation is spatially separated and superimposed in each case with correspondingly spatially separated reference beams from the reference beam paths.
  • the spatial separation can be realized in particular as a pupil division, which is why it is provided in a development that the overlay device for separate superposition uses a pupil division, so that the superimposition and the forwarding to the detector device for the two reference beam paths in a divided pupil of the beam path.
  • the concept according to the invention uses short-coherence FD OCT, where the required K spectrum can be generated both with spectrally sensitive detection and broadband sources and with spectrally non-resolving detection and tuning of a narrowband source.
  • the detector effort is reduced if a spectrally tunable radiation source supplying the interferometer arrangement and a spectrally non-resolving detector device are provided for the measurement.
  • the K-spectrum is composed here of the data on the tuning and then analyzed.
  • the measured distances are usually related to the distance to the interferometer or to the aforementioned path difference zero position. In a further invention, it is possible to relate these measuring signals to each other. This is done by the fact that the reference beam path no longer carries out the reflection on a static, incorporated in the interferometer reflector, but uses a incident on the sample and reflected back from there or scattered beam as a reference beam.
  • the reference beam path is offset from one another in the beam direction by a certain path length difference and the reference beam is reflected at a first sample area and the measuring beam is reflected at a second sample area of the sample and or backscattered and the interference between the measuring beam and the reference beam depends on the distance between the two sample areas, wherein a control device determines the distance of the sample areas from the detected superimposed beams by means of Fourier spectral analysis taking into account the path length difference of the reference beam paths.
  • the method that comprises the reference beam path, reference beam and measuring beam are offset from one another in the beam direction by a certain path length difference and the reference beam at a first sample area and the measuring beam at a second sample area of the sample reflected and / or backscattered and the distance is determined between the two sample areas from the interference between the measuring and reference beam, wherein the superimposed radiation is detected and determined by means of Fourier spectral analysis, taking into account the path length difference of the reference beam paths, the distance of the sample areas.
  • the autocorrelation function of the reference beam provides in the evaluation a first reference point and the superimposition of the reference beam with the measuring beam a referenced to this reference point second measuring point, for example, the signal for the fundus.
  • the focusing element contributes to the focusing effect of the eye, so that the focused on the fundus measuring beam incident as a parallel beam on the eye, whereas the other reference beam is already focused on the front of the eye.
  • the focusing element in the measuring beam path (widening) or in the reference beam path (collimating) can be provided. This procedure increases the signal strength considerably.
  • the reference or the measuring beam path has a preferably adjustable focusing element in order to focus the measuring beam on the eye retina for measurements on the eye.
  • the reference beam is focused on the ocular cornea by means of a preferably adjustable focusing element.
  • the measuring beam path or the reference beam path has a dispersion-compensating element in order to influence the influence of the eye on the measuring beam for measurements on the eye.
  • the reference or measuring beam is influenced by means of a preferably adjustable dispersion-compensating element with regard to the influence of the influence of the eye.
  • the focusing and the dispersion correction are closely related, it is favorable to couple the adjustment of the focusing element and the adjustment of the dispersion-correcting element, for example by a mechanical or electrical coupling, so that a synchronous adjustment of the dispersion-compensating element and the focusing element is effected.
  • the invention achieves an interferometer which measures several sections of the eye simultaneously by performing a separate measurement of the separated measuring ranges.
  • this separate measurement is simultaneously carried out by appropriate separate superposition of the measuring beam with radiation from different reference beam paths and separate detection of the superimposed radiation.
  • Separate spectrometers can be used for the separate detection if, as is the case for some variants of the FD OCT, a spectrally selective detection takes place.
  • the device according to the invention or the method according to the invention are, as already mentioned, particularly suitable for the measurement of the human eye, but also other partially transparent objects can thus be examined.
  • a three-dimensional sample image can be generated.
  • the device according to the invention is controlled by a corresponding control device in operation.
  • This control unit then ensures the described operation and in particular the realization of the described modes of operation.
  • the control device is also configured suitably, for example by a computer and corresponding program means to carry out the Meßsignalaufpung from the electrical signals of the detector or the detectors, in particular to perform the required for FD OCT Fourier transform.
  • the invention determines from at least two spaced-apart sample areas in a transparent and / or diffusive object, for. As in one eye, in a measuring time in the sub-second range, the distances of structures in the sample areas.
  • an arrangement according to a Michelson interferometer is preferably used.
  • Short-coherent radiation is used in the interferometer setup, wherein, for example, the short-coherent radiation emanating from a beam source is split up into a measuring beam and a reference beam.
  • the radiation used for measuring beam and reference beams thus has a short coherence length compared to the sample area distances.
  • the measuring beam irradiates the sample areas.
  • the reference beam is split into at least two spatially separated reference beam paths which impose different propagation time changes on the reference beams guided therein, these runtime changes being pre-adjusted to the distance of the sample areas.
  • the reflected reference lines are then combined separately interfering with the reflected and / or backscattered measuring beam.
  • the combined beams are detected and the detected signal, as already mentioned, is Fourier evaluated for distance measurement.
  • the sample is irradiated with a measuring beam, and a reference beam is provided for each sample area.
  • the sample areas may be located at different locations in the direction of incidence of the optical radiation, as well as laterally offset from one another.
  • the transit time difference of the reference beam paths corresponds to an optical distance of the sample areas with respect to the direction of incidence of the measurement beam, wherein at least one of the sample areas reflects and / or backscatters at least slightly (typically at least 10 -4 % of the radiation intensity).
  • the beam configuration of the measuring beam can also be moved over the sample, in particular periodically, so that the sample is scanned transversely to the axis of incidence.
  • profiles of the sample can be measured.
  • a sample can be measured with regard to distances or profiles. Particularly preferred is the use in an optically transparent and / or diffusive sample, since then the inner sample structure can be measured.
  • the path length differences of the spatially separated reference beam paths is approximately adjusted so that it corresponds to the expected distance, a thickness to be determined, etc. to a certain tolerance.
  • FD OCT is then determined only by deviation of the unknown, yet to be determined distance from the preset value. Should z. If, for example, the actual length of a human eye is measured, it is already well known that an optical length of 34 mm plus / minus 4 mm is to be expected.
  • the path length difference of the reference beam paths is set to 34 mm, and the signal evaluation of the Fourier analysis determines the variation within the possible range of 8 mm.
  • the device or the method in general, if the path length difference between the reference beam paths during the measurement is adjustable or is set.
  • the device according to the invention or the method according to the invention can be on the eye next to the eye length (central, peripheral), the anterior chamber depth (central, peripheral), the Comea thickness (central, peripheral), the tear film thickness (central, peripheral), the Lensendicke (central, peripheral) and the vitreous body thickness and corresponding surface profiles (topographies) of the cornea front surface, the Comea back surface, the lens front surface, the lens back surface and the retina are measured.
  • radii of curvature for example the cornea front surface, the cornea back surface, the lens front surface and the lens back surface, can be determined by suitable scanning mechanisms.
  • a sample area can also comprise several interesting subareas.
  • the measuring beam is focused at a location between the cornea front surface and the lens receding surface.
  • the reflection on the cornea front surface, the cornea back surface, the lens front surface and the lens back surface can then be detected within a sample area.
  • the distance between the cornea's back surface and the anterior surface of the lens is then the anterior chamber depth.
  • the only condition is that the measuring range in the sample area is so large that a range from the cornea front surface to the lens back surface is covered.
  • the inventors further recognized that in a particular embodiment of the spectral analyzer properties, the Fourier domain short-coherence interferometry is capable of measuring the entire eye length of the human eye with a measurement if certain parameters are maintained at the spectrometer.
  • An essential parameter was the number of pixels or the number of sensitive cells of the detector array. It is therefore provided in a further invention, an embodiment of the aforementioned device in which a spectrometer arrangement detects the superimposed beams having a spectrally spectrally fanning the element and a detector array having at least 7000 individual photosensitive cells.
  • the measuring range achieved with such a detector array is, for example, at a wavelength between 700 and 900 nm and a spectral bandwidth of 10 to 30 nm of the radiation used so large that the eye length can thus be measured.
  • a spectrometer arrangement is used to detect the superimposed rays, which has a spectrally spectrally fanning the element and a detector array having at least 7000 individual photosensitive cells.
  • Dss measurement signal of short-coherence interferometry which (analogous to the corresponding ultrasound method) so-called A-scan signal, is the cross-correlation of the reference light with the object light at the interferometer output.
  • A-scan signal is the cross-correlation of the reference light with the object light at the interferometer output.
  • z is the coordinate in the local area
  • IN (z) is the interferogram
  • I (k) is the intensity spectrum of the light used.
  • the direct application of the FD OCT to the eye length measurement failed because it can not detect the entire eye length corresponding spectrum with the previously available photodiode arrays.
  • N is the number of the pixel or diode photodiode array
  • ⁇ k is the wave-number range of the light.
  • Measurement of the entire eye length requires measurement fields of 40 mm depth and in some cases larger.
  • This problem bypasses the example EP 1 602 320 A1 with an interferometer, which - like the mentioned IOLMaster of Cart Zeiss Meditec AG - uses the cornea as a reference surface and reduces the reference beam measuring beam path difference by means of a flexible optical excerpt in the beam path.
  • the measuring window depth only has to detect the deviation between the reference beam measuring beam path difference and the eye length.
  • this principle is also disadvantageous: the spectrum used for the measurement at the interferometer output is now based on an interferogram of two light waves, both of which result from reflection at biological interfaces (for example cornea front surface and ocular lens front surface).
  • the present Fourier Domain Interferometry (FD OCT) for eye segment measurement preferably uses two measurement fields simultaneously, each with a separate associated reference and measurement beam used.
  • the eye is hereby illuminated with a double measuring beam consisting of two individual beams offset axially relative to each other, and two reference beams are used.
  • the depth of field of the FD OCT can double by both solutions, the depth of field of the FD OCT and get along for lower field depth claims with a measuring field.
  • the FD OCT has depth dependent sensitivity.
  • the sensitivity for that interface of a distance closest to the virtual reference mirror position is maximum.
  • it can be more than 10 dB lower for the maximum distance of the interface and prevent a measurement.
  • the A-Scan signal calculated with the complex spectrum still contains annoying terms.
  • the invention solves this problem as well, because each interface of a section to be measured can be represented by a corresponding reference beam length in the associated measuring field with maximum sensitivity.
  • the components of this double beam are reflected back at all interfaces of the eye. This results in reflected waves whose path differences are significantly reduced if their initial path difference is not greater than twice the eye length plus field depth. Such waves result in a high-contrast spectrum.
  • the initial path difference of the components of the illuminating double beam should be greater than twice the eye length plus depth of field.
  • FIG. 1 shows a fiber optic implementations of an interferometer 1.
  • the reflected reflected radiation is registered simultaneously in a Michelson structure with several pupil-separated beam paths and respective reference beams for different eye structures.
  • fiber optic couplers are used;
  • Other fiber optic or free jet interferometer structures may be used, for example with fiber optic circulators.
  • the simultaneous measurement of three positions of the eye structure is performed (cornea anterior surface, anterior surface of the lens and fundus). You can also modify the interferometer to measure more or less than three positions.
  • often only the beam axes are shown for the sake of simplicity. Also, in the following, sometimes simplistic is referred to as "ray”, rather than "ray bundle” or "ray bundle”.
  • a short-coherence light source 1 for example a superluminescent diode equipped with a pig-tail fiber or light coming from another short-coherence light source, is split by a fiber coupler 2 onto an interferometer measuring arm 3 and an interferometer reference arm 4.
  • a fiber coupler 2 In order to detect three structures located in different depth regions z of the eye, namely cornea 5, eye lens 6 and eye fundus 7, by means of Fourier domain short-coherence interferometry, three reference beam paths R1, R2, R3 with corresponding beam bundles are used simultaneously. These beam paths are separated from the reference arm fiber 4 via fiber couplers: a coupler 8 shares a fundus reference beam path. R1 in a fiber 9 from.
  • the remaining radiation in a fiber 10 is separated from a coupler 11 into a fiber 12 for the Comea reference beam R2 and a fiber 13 for the eye lens reference beam R3.
  • the fiber lengths for these three reference beam paths are dimensioned such that, despite the short coherence length, interference with the respective reflection beam bundle coming from the different object depths, namely the cornea 5, eye lens 6 and eye fundus 7, occurs at a photo detector array 43.
  • the emerging at the exit point 20 from the fiber 3 illumination radiation 21 is collimated by an optical system 22, such as a fiber collimator, passes through a beam splitter 25 as a parallel illumination beam 24 and illuminates the eye 26.
  • a reflected on the front surface of the cornea 5 comea reflex beam 27 comes virtually from a first Purkinje-Sanson image 28 and an eye-lens reflected ray bundle 29 reflected from the front surface of the lens comes virtually from a third Purkinje-Sanson image 30.
  • These two reflex beam bundles diverge at different angles. In the FIG. 1 is to keep the overview, drawn only a smaller angle range.
  • Another reflex comes from fundus 7 and forms the reflected fundus reflex beam 31.
  • the reflection beam bundles 27, 29 and 31 reflected on the eye are thus present as a superimposed measuring beam M and are directed by the beam splitter 25 into a detection branch D and there on a relay optics 33 in front of a spectrometer S.
  • the relay optics 33 adapts the measuring beam M, which is a mixture of the three reflection beam bundles, to the following spectrometer S.
  • This optics consists in the example of FIG. 1 from three partial optics 34, 35 and 36 different focal lengths.
  • the focal lengths are designed so that the three reflection beam bundles contained in the measurement beam M and reflected from different depths on the eye are focused in front of the spectrometer S in the same image plane 40; the foci are imaged by the spectrometer optics 41 'and 41 "via a diffraction grating 42 onto a photo-detector array 43, for example an array camera 44.
  • the spectrometer optics 41' and 41" can also be combined into a single optical system in front of or behind the diffraction grating 42 become.
  • the diffraction grating 42 disperses the different wavelengths of the incident light in the x-direction on photodetectors 435 of the photo-detector array 43.
  • 140 is one of the optics 41 'and 41 "(see FIG. 1 ) focused light beam of zero diffraction order of the grating 42; 141 and 142 are light beams of first diffraction orders of different wavelengths dispersed from the diffraction grating in the x-direction, which are focused by the optics 41 'and 41 "on the photoreceivers of the array into a column 432.
  • the light bundles of the first diffraction order are spectral components of the fundus 7 31 superimposed with the corresponding spectral components of the associated reference beam 53 from the reference beam R1.
  • Reflected by Cornea 5 and eye lens 6 and also superimposed with reference light from the remindertzsVahlenêtn R2 and R3 reflex beam bundles 27 and 29 are of the optics 41 'and 41 "focused on adjacent array columns 431 and 433.
  • the beam 51 emerging from the fiber 9 at the exit point 50 is collimated by an optical system 52 of a fiber collimator, passes through two dispersion compensation prisms 54 'and 54 "as a parallel reference beam 53 and is directed by a reflection prism 55 via a beam splitter 56 in the direction of an optical Axis 19 of the reference arm 4 is mirrored into the interferometer I in the first reference beam input R1
  • the reference beam 53 is characterized here only by its main beam FIG. 1 is further indicated that this first reference beam 53 is superimposed on the photo-detector array 43 with the coming of Fundus 7 reflex beam 31.
  • the reflection prism 55 is mounted on a table 57 of a manually or electrically actuatable displacement unit 57 '.
  • a Adaptation to different eye lengths and eye positions can also take place during a measuring sequence by a manual or electronically driven displacement of the reflection prism 55 by means of the displacement unit 57 '.
  • the current position of the prism 55 can be determined by means of a pointer 58 and a scale 59. Alternatively, electronic position indicators may also be used and their data may be entered directly into the computer 200.
  • the prisms 54 'and 54 can be displaced relative to one another in the direction of the double arrow 54"'.
  • the emerging from the fiber 12 at the exit point 60 beam 61 is collimated by an optic 62 of a fiber collimator and is a parallel reference beam 63 from a reflection prism 65 via a beam splitter 66 at an angle ⁇ to the optical axis 19 of the reference arm 4 in the second reference beam R2 reflected in the beam splitter 25.
  • the second reference beam 63 is superimposed on the photo-detector array 43 with the coming of the cornea 5 Retlexstrahlbündel 27.
  • the optical length of the second reference beam path R2 from the coupler 2 to the beam splitter 25 is ensured, or the origin of the measuring field is established.
  • This can also be done here by suitable choice of the fiber lengths and / or the position of the reflection prism 65.
  • an adjustment to different eye lengths and eye positions during a measurement by a displacement of the reflection prism 65 by means of a manually or electrically operated displacement unit 67 '.
  • the position of the prism 65 can be determined by means of a pointer 68 and a scale 69.
  • electronic position indicators can also be used here and their data can be entered directly into the computer 200.
  • the beam 71 emerging from the fiber 13 at the exit point 70 is collimated by an optical system 72 of a fiber collimator and as a parallel reference beam 73 after reflection on a reflection prism 75 from a reflection prism 76 in the third reference beam R3 at the angle a to the optical axis 19 of the reference arm 4 mirrored in the interferometer I.
  • FIG. 1 is indicated that the third reference beam 73 superimposed on the photo-detector array 43 with the coming of the front surface of the eye lens 6 and the 3rd Purkinje-Sanson image 30 reflex beam 29.
  • Interferometer I is shown, which is essentially the interferometer of the FIG. 1 corresponds, why the same elements are provided with the same reference numerals.
  • the interferometer is now executed in free-beam optics.
  • An origin beam 101 emitted by the short-coherence light source 1 is collimated by an optical system 102 and impinges on a beam splitter 103 as a parallel beam.
  • the beam splitter 103 splits the beam 101 onto a measuring beam 104 in the interferometer measuring arm 3 and a beam 105 in the interferometer Reference arm 4 on.
  • the beam 105 is again indicated here by its main beam.
  • the illumination beam bundle 104 reflected by the beam splitter 103 passes through the beam splitter 25 and illuminates the eye 26.
  • a measuring beam M which in turn contains a mixture of the following reflection beam bundles: the reflected beam bundle 27 reflected at the cornea front surface comes virtually from the 1st Purkinje-Sanson image 28 and the reflected from the lens front surface eye-lens reflex beam 29 comes virtually from the 3rd Purkinje-Sanson image 30. These two reflected beam are reflected divergent and are correspondingly expanded. In the FIG. 3 is drawn by these two reflex beam bundles again only a small angular range. Another reflex comes from the fundus 7 and forms the fundus reflex beam bundle 31. In this respect, identical conditions as in the interferometer I of FIG. 1 in front. This also applies to the detection of the superimposed beams in detection branch D.
  • three reference beams R1, R2, R3 used for the three structures located in different depth regions of the eye, for example cornea 5, eye lens 6 and fundus 7, as in the fiber optic interferometer I of FIG. 1 . These are generated here by means of beam splitters 109 and 110. Otherwise, the coupling and path length adjustment is unchanged.
  • an observation device consisting of a partially reflecting mirror 130 and an optic 131 is arranged.
  • the observation of the Proband eye can then be done directly (132), with the aid of an eyepiece 133 or with the help of a camera 134. It may also be useful to moisten the proband eye 26 additionally with an incoherent light source 135.
  • an image 136 of a reticule 137 can be used, which is projected onto the cornea 5 via semitransparent mirrors 138 and 130.
  • the eye 26 can be provided with collecting or dispersing auxiliary optics 140 which compensate the ametropia.
  • a polarizer 120 can linearly polarize and form the beam splitter 25 as a polarizing beam splitter.
  • further polarization-optical components such as ⁇ / 4 plates in the positions 121 and 122, it is possible according to the prior art to largely avoid reflection losses of reference and reflection beam bundles when passing through the beam splitter several times.
  • Such methods known in technical optics can also be used for the beam splitters 56 and 66.
  • the observation device described above consisting of the partially transmissive mirror 130 and the optics 131 and the auxiliary optics 140 for compensation of ametropia of the subject's eye, can also be used in the interferometer I of the FIG. 1 be used.
  • the measuring beam 24 impinging on the beam splitter 25 can be linearly polarized there by means of the polarizer 120, the beam splitter 25 can be formed as a polarizing beam splitter, and ⁇ / 4 plates in the positions 121 and 122 are arranged.
  • the relay optics 33 can be constructed in the simplest case of three circular partial optics 131, 132 and 133 of different refractive powers, as in the FIG. 5a is indicated. 131 ', 132' and 133 'are the puncture positions of the associated optical axes. The sub-optics are to be arranged so that their optical axes lie in the yz-plane, corresponding to the fanning out of the reference beams in the yz-plane. Alternatively, these three partial optics can also be composed of parts of larger circular optics having different refractive powers in order to increase their light conductance, as in US Pat FIG. 5b outlined. The optics 131, 132 and 133 of FIG.
  • the three partial optics can also be composed of central sections of larger circular optics of different powers, as shown in FIG. 5c is shown.
  • optics 151, 152 and 153 as central Cuts of larger optics (as indicated by circle 151 "for 151) .151 ', 152' and 153 'are the positions of the piercing points of the associated optical axes.
  • the partial optics of the relay optics 33 can also be positioned at different z positions of the optical interferometer axis 19. It must then be ensured only by appropriate choice of their focal lengths that the three reflection beam bundles 27, 29 and 31 are focused in a common plane 40 in front of the spectrometer.
  • the Fourier domain short-coherence interferometer I must be calibrated because of the separate reflection beams.
  • the Fourier domain short-coherence interferometry provides the measurement result as the optical distance of the object measuring point relative to the "path difference zero position" (for this, the optical length of the measuring beam is equal to the reference beam).
  • the distances of the origins of the independent reflection beam paths with reference beams R1, R2, R3 must therefore be determined.
  • the measuring range in the depths is limited, for example, at the initially assumed parameters to about 5.3 mm; the interferometer I must therefore also be roughly preconcerted to the expected eye distances.
  • a plane mirror can be positioned as an object in the measuring beam path at the expected position of the cornea as a basic setting.
  • all reflection prisms 55, 65, and 75 are then positioned so that all of the associated reference beams 53, 63, 73 show short-coherence interference with the light beam reflected from this plane plate.
  • the positions of each of a reference mirror can be set in the expected positions of the lens front surface 6 to be measured and of the fundus 7.
  • the measuring devices 58, 59 and 68, 69 and 78, 79 or the corresponding electronic position signals one has a base value for lengths to be measured.
  • the optical measurement now gives the distance of the actual position of the reflection points in the eye relative to the base position. If you add these to the base value, you have the required distance in high accuracy.
  • the three reflection beam bundles 27, 29 and 31 remitted by the eye also illuminate, in addition to the associated partial optics 34, 35 and 36, the respective other partial optics and will strike the detector array 43 defocused by them.
  • the positions of the bundle foci depend on the position of the eye 26, with the exception of the fundus focus.
  • the eye must therefore be positioned by means of the above-described device for observing the position of the subject's eye.
  • the reflex beam of fundus 7 and cornea 5 can be well discriminated.
  • FIGS. 1 and 3 show the measurement of the positions of comea anterior surface, anterior surface of lens and fundus.
  • other positions of eye structures can be measured simultaneously, for example, the lens back surface with the help of the 4th Purkinje-Sanson image virtually remitted light or the position of the cornea-back surface using the 2nd Purkinje-Sanson virtually remitted light.
  • It requires corresponding additional reference beam and relay sub-optics (33) and additional openings in the pinhole mask 80 and further array columns.
  • Meßfeldtiefen it can be assumed at Meßfeldtiefen to the 5 mm east of the fact that the two cornea positions are present in the measurement signal simultaneously.
  • the described interferometers can also be modified to measure other positions, such as the lens back surface.
  • z. B. the reference beam 53 are shortened accordingly and the focal length of the optics 35 are reduced.
  • an array 43 with only three (431, 432 and 433) or four columns is not meant to be limiting.
  • Commercially available array cameras often have several hundred columns. These can be used in two ways: on the one hand, you can leave several unused gaps between the columns to be read and thus prevent optical and electronic crosstalk. However, it is also possible to interconnect the row elements of several adjacent columns by binning in order to increase the measurement sensitivity.
  • FIG. 2 shows a modification of the interferometer I of FIG. 1 ; unchanged or functionally identical FIG. 1 Therefore, adopted elements are identified by the same reference numerals and will not be explained again here.
  • the difference between the design of the FIGS. 1 and 2 essentially lies in the fact that the spectrometer S now no longer uses a two-dimensional photo-Dekektorarray, but three single-row photo-detector arrays 531, 532 and 533. For dividing the z. B.
  • FIG. 6 A further modified interferometer I is in FIG. 6 shown. Again, unchanged or functionally identical FIG. 1 taken over components provided with the same reference numerals, so that the repetition of the description is unnecessary.
  • the interferometer I the FIG. 6 uses one opposite the FIG. 1 different type of spatial separation.
  • the separation of the measuring beam M and the superposition with the three reference beams 53, 63, 73 takes place here by beam splitters.
  • Components whose function or structure corresponds to that of FIG. 1 are denoted by the same reference numerals, optionally with a suffix .1, 2 or .3 was appended to distinguish the components for the three individual overlay.
  • the component 42.3 thus corresponds for example to the component 42 of FIG. 1 However, it is in the presentation of the FIG. 6 only effective for superposition with the reference beam R3.
  • the separate superimposition of the reflection beam 27, 29, 31 in the measuring beam M takes place in the construction of the FIG. 6 now not by a provided with a split pupil relay optics 33, but by deflecting 33.1- and 33.2, der.die reflex beam bundles 27 and 29 out of the beam.
  • the deflecting elements 33.2 and 33 can be designed, for example, as spectrally neutral beam splitters.
  • the deflecting element 33.2 derives a portion of the measuring beam M from the beam bundle, which has been divided off from the beam splitter 25, and makes it available for superposition with the second reference beam 63, which is coupled in separately via a beam splitter 66.
  • the downstream optics essentially corresponds to the optics of the detector branch D of FIG. 1 , with the difference that there is no spatially separated pupil; the beam path after the beam splitter 33.2 no longer leads spatially separated beams. Accordingly, the photo-detector array 43.2 does not have to be two-dimensional.
  • the remaining after the beam splitters 33.2 and 33.3 proportion of the measuring beam M is superimposed with the reference beam 53 and detected at the photo detector array 43.1 after previous spectral separation.
  • the interferometer of the FIG. 6 So has three spectrometers, S1 for the superposition of the remaining measuring beam M with the reference beam 53 from reference beam R1, the spectrometer S2 in the separated by the beam splitter 33.2 part of the beam path, in which the reference beam 63 is coupled, and the spectrometer S3, the Beam splitter 33.3 is downstream and the separated radiation superimposed with the reference beam 73 detects.
  • the spatial separation by beam splitters has the advantage that the pinholes 80.1, 80.2 and 80.3 can be designed much more effective on the Falstoffunterdrückung.
  • a separate focusing by means of the now independently adjustable partial optics 36.1, 36.2 and 36.3 is possible without any effort, whereby the signal / noise ratio is improved for the object areas separated in the depth.
  • FIG. 7 shows an interferometer I, which, like the interferometer described above, also pursues the principle of independently superimposing and detecting reference beams guided in differently long reference beam paths R1, R2 with a measuring beam M.
  • the details realized on the basis of the previously described figures are therefore also possible without restriction for the variants described below.
  • matching elements are provided with the same reference numerals, so that your explanation can be omitted here.
  • by appending a corresponding suffix .1, .2, etc. a distinction is made with regard to the reference beams and their beam paths or superimpositions.
  • the interferometer I the FIG. 7 makes a separation of the reference beam paths with respect to the polarization.
  • the radiation of the light source 1 is circularly polarized by means of a polarizer 300, before it falls on the beam splitter 25 and from there a sample P.
  • a circularly polarized light emitting beam source is used.
  • the circularly polarized radiation is split by means of a pole divider 301 into two beams polarized perpendicular to one another.
  • the pole divider can be designed, for example, as a Wollaston prism.
  • Adjustable gray filters 303.1 or 303.2 allow an adjustment of the intensity of the radiation in the two reference beam paths R1, R2, which is advantageous for optimizing the measurement signal.
  • the reference beams in R1 and R2 are reflected at reflectors 304.1 and 304.2, respectively.
  • Each reflector 304 is slidably mounted on a carriage 305, so that the path length of the reference beam path is individually adjustable. This can be done under control of the computer 200.
  • the adjusting mechanism can in particular have the structure described with reference to FIGS. 1ff.
  • the superimposed beams are again divided by a pole divider 302, so that superimposed beams 306.1 and 306.2 is present, in which the measuring beam M with the Reference beam from R1 or R2 is superimposed.
  • the different path length of the reference beam paths R1 and R2 causes, as already described above, a corresponding depth selection in the sample P, which in turn may be the human eye A, for example.
  • the thus separated according to their polarization superimposed beams 306 are then detected separately in a spectrometer S.
  • a scanner 307 with suitable optics is provided, which scans the sample with the incident radiation.
  • the possible construction of the spectrometer S is in FIG. 8 exemplified.
  • the polarizer 302 for example, each downstream of a polarization manipulator 308.1 or 308.2, with which you can rotate or set the polarization direction of the beams so that sets a maximum yield in the downstream beam path.
  • the polarization-separated beams 306.1 and 306.2 fall after passing through the polarization manipulator 308.1 or 308.2 on the diffraction grating 42.1 and 42.2, reflection diffraction grating.
  • the resulting spectral division is then detected in detector array lines 43.1 and 43.2, respectively.
  • the spectrometer S is constructed from two partial spectrometers S1 and S2, which individually detect the polarization-split superimposed radiation 306.
  • FD OCT can work in two ways.
  • a short-coherent beam source which has been described above can be used. Then a spectral separation of the superimposed radiation is required.
  • a tunable short-coherent radiation source can be used. If you tune the spectral range of this source, no spectral analysis of the radiation must be done more; instead, a spectrally insensitive detector can be used.
  • the sample structure can be obtained in both cases by forming the inverse Fourier transforms of the spectral interference pattern.
  • interferometer I can be adapted for one of the two modes of operation. The necessary modifications are in FIG. 9 exemplary for the interferometer I der FIG. 7 shown.
  • FIG. 7 can in the variant according to FIG. 9 can also be used for-TD OCT.
  • a synchronized adjustment of the path length of the reference beam paths R1, R2 is required and the tuning of the light source 1 is omitted.
  • FIG. 10 shows a modification of the construction of FIG. 7 , in which the spatial separation of the reference radiation R1 and R2 and the corresponding superposition now does not take place according to the polarization, but by spectral separation.
  • two light sources 1.1 and 1.2 which emit radiation at a different wavelength, as in FIG. 11 is shown.
  • the left-hand wavelength distribution can be assigned, for example, to the light source 1.1; the right-hand wavelength distribution is given in the radiation of the light source 1.2.
  • the construction of the interferometer I of FIG. 10 otherwise corresponds to the interferometer the FIG. 7 , with the difference that now the polarizers are no longer required, but propagate two spectrally separated beams through the interferometer.
  • FIG. 12 shows the structure of the spectrometer S, the two spectrally separated beams 306.1 and 306.2. prove. Again, for clarity, a spatial distance between the beams 306. 1 and 306.2 is shown, which need not be given.
  • the diffraction grating 42 divides the two superimposed, spectrally different beams into different solid angles, so that they can be directed to separate photo-detector arrays 43.1 and 43.2.
  • a deflection mirror 310 is additionally provided for widening the beam path.
  • the spectral analysis can be omitted and it is only the spectrally insensitive detectors 309.1 or 309.2 needed.
  • the superimposed beams 306.1 and 306.2 must be spatially separated by suitable means known to those skilled in the art.
  • FIG. 14 shows a further modification of the spectrometer of Figures 1-10 , but now no simultaneous measurement with superimposition of the reference beam paths R1, R2, etc. takes place, but a sequential overlay and measurement.
  • the structure corresponds essentially to that of FIG. 7 but no polarization-effective elements are used.
  • the reference beam R has a plurality of beam splitters 311 which divide the beam path into a plurality of reference beam paths R1, R2,..., Which end in respective reflectors 304.
  • Each reflector 304 is mounted on a carriage 305.
  • three different reference beam paths R1, R2, R3 are formed.
  • the beam splitters 311.1, 311.2 and 311.3 are followed by an aperture wheel 312, which implements a selection means which determines which of the reference beam paths R1, R2, R3 is active. The others are switched off.
  • the reference beam R1 active ie its reference beam is reflected at the mirror 304.1.
  • the spectrometer S detects the corresponding signal.
  • the length of the reference beam paths R1, R2, R3 causes, as already mentioned, the depth selection of the object area in the sample P.
  • the spectrometer or spectrometers S are preferably realized in the so-called Czerny-Turner structure. If the sample P or the eye A is illuminated with a plurality of spots or with an illumination line, which is possible for all constructions described here, spectrometers S are equipped with corresponding detector arrays which record the spectral interference pattern on different detector array lines.
  • a tuned light source 1 instead of the spectrometer S, as already mentioned, photodiodes or monochromators are offered which, as a rule, are the most sensitive for the tuned spectral range of the light source 1. If several spots or one line or line in the sample P are illuminated here, the detector is in turn equipped with the appropriate number of photodiodes or pixels. Basically, the photodetector must record the interference pattern synchronized to tune the light source. This is done by appropriate control of the computer 200, which is an exemplary implementation of a controller that controls the operation of the interferometer I.
  • control unit enables fully automatic two- or three-dimensional image acquisition.
  • FIG. 15 shows a variant of the spectrometer of FIG. 7 , where the eye is now illuminated with a double beam. Elements already in FIG. 7 are therefore not described again here.
  • the double jet represents two perpendicular to each other polarized measuring beams M1 and M2 are available, these rays are coaxial and are offset from each other.
  • the interferometer I the FIG. 15 So uses two measuring beams M1 and M2 and two reference beams R1 and R2. Thus, two simultaneous measurements are easily possible, for example, position of the cornea and position of the fundus.
  • the division of the double beam by means of Polmaschinem 313, 314 and deflecting mirrors 315, 316 also allows to make a separate focus for the two measuring beams M1 and M2.
  • the measuring beam M1 can be focused on the frontal surface of the eye, whereas the measuring beam M2 is incident parallel and thus focused through the eye lens in the fundus.
  • FIG. 16 shows a modification of the interferometer I of FIG. 15 in which now only one spectrometer S is provided for the two measuring beams M.
  • the sum of the path differences between the two measuring beams M1 and M2 and the associated reference beams R1 and R2 is suitably set to values smaller than the measuring field depth z.
  • the eye length then results, as for FIG. 15 already described; the difference in the positions of the two signal peaks of the two Fourier transforms is read on the computer monitor.
  • This adjustment can be effected by adjusting the path differences by an adjustment mechanism, for example a displacement mechanism of the type previously described for other interferometers, either at the respective measuring beam or reference beam.
  • An alternative is to use a measuring beam as the reference beam and adjust the optical path length of the beams suitably so that in turn two measuring signals, ie the autocorrelation function (AKF) of the reference beam and the interference signal, are displayed on the computer monitor.
  • the eye length is the sum of the path difference between the two beams plus the position difference of the two Fourier transforms read on the monitor. The device is thus insensitive to movements of the measurement object.
  • the interference pattern with respect to the path length difference on the cornea front surface This can be achieved in that the reference beam uses a reflex of the cornea, so the reference beam is reflected at the cornea.
  • An appropriate structure is in FIG. 17 shown. Components that have been taken over by the previously described Interferometer I unchanged or functionally identical, here again provided with the same reference numerals and will not be explained again.
  • the ray path of the FIG. 17 is that of a short-coherence interferometer I, which directs a double beam of two beams 400, 401, which are coaxial with each other and offset from each other, to the eye.
  • the advancing beam 401 acts as a reference beam which is reflected at the cornea front surface.
  • the path length difference between the beams 400 and 401 is adjusted via mirrors 318 and 319, which are acted upon by a beam splitter 317.
  • the path length difference essentially corresponds to the expected eye length L.
  • the preset path length difference ensures that the reference beam 401 interferes with the measuring beam 400 reflected at the fundus so that the spectrometer downstream of a beam splitter 322 records a corresponding interference signal.
  • a Fourier evaluation of the signal shows, on the one hand, the autocorrelation function of the reference beam 400, which interferes with itself, and, on the other hand, a corresponding distance for the superposition of the reference beam 401 with the measuring beam 400.
  • the path length difference Z which was set externally, is still present to take into account.
  • the length L of the eye A thus results from the sum of the measurement result of the optical measurement plus the mechanically set path length difference between 400 and 401.
  • the default allows the FD analysis by simple means, with a comparatively small range.
  • the interferometer of the FIG. 17 is an example in which the reference beam is reflected on the sample. As a result, an automatic relative measurement is achieved and the distance is not determined by the difference between two absolute measuring points. Locations of the sample are negligible.
  • FIG. 18 shows a fiber optic design of the interferometer I of FIG. 17 , Again, unchanged or functionally identical components are provided with the same reference numerals.
  • the formation of the beams 400, 401 is now accomplished using a coupler 323 that feeds two fibers that emit the reference beam 401 and the measuring beam 400.
  • the reference beam 400 is adjustable in terms of the path length by a displacement mechanism, as he previously already, for example, based on FIG. 1 was explained.
  • the optical system 320 is still arranged on the displacement mechanism, so that the displacement automatically results in a suitable focusing on the cornea 5.
  • dispersion compensation prisms 54 'and 54 are incorporated in the shift mechanism such that a change in length of the optical path automatically also a corresponding matched, ie dynamic dispersion compensation result. Otherwise, the structure corresponds functionally to the FIG. 17 , '
  • the monitor image 201 'shown after evaluation by the computer 200 is shown.
  • FIG. 18 can be seen that the measuring beam M1, which also acts as a reference beam R, is focused on the cornea front surface. It is thus achieved a dynamic focus that can be adapted to different eye lengths.
  • the measuring beam M2 is collimated so that the optical effect of the eye A focuses the measuring beam M2 on the fundus 7.
  • the reference mirror 304.1 is replaced by a partially transparent mirror 304.3. It can be arranged between the beam splitter 25 and the reference mirror 304.2 even more partially transparent reference mirror.
  • two or more reference beams in the reference beam path can be used at the same time and a plurality of measuring areas spaced at a depth can be detected.
  • These other reference mirrors can be mounted on translation tables to increase measurement flexibility.
  • the spectrometer S has a detector array 43 with at least 7000 pixels, z. B. 8000. It is then worked with only one measuring beam, and the partially transparent mirror 304.3 is omitted. As a result, there is only one reference beam path R in the interferometer 1.
  • the eye length measurement is performed by the pixel-rich array 43 in combination with suitable spectral fanning by the diffraction grating 43 in one measurement.
  • FIG. 24 201 denotes a light source common in short-coherence interferometry, for example a superluminescent diode.
  • An optical fiber 202 guides the radiation to a collimator 203 which collimates the light beam 204 emitted from the optical fiber and reflects it as a measuring beam 215 through a beam splitter 205 via a deflecting mirror 206 to a beam splitter 207.
  • the beam splitter 207 forms with the mirrors 208 and 209 Michelson interferometer 210, which generates a double beam 211 which is directed through a beam splitter 212 to an eye 213.
  • the reflected light waves from the interfaces of the eye 213 are mirrored by a beam splitter 212 to a beam splitter 214 and from there to a spectrometer 216.
  • the light beam 217 reflected by the beam splitter 205 impinges on a beam splitter 218, which forms another Michelson interferometer 221 with mirrors 219 and 220, which generates a reference double beam 222, which is likewise reflected by the beam splitter 214 to the spectrometer 216.
  • the spectrometer 216 consists of a reflection grating 223, a spectrometer optics 224 and a linear detector array 225.
  • a spectrometer with a transmission grating or other dispersive element may be used.
  • the intraocular distances are measured so that the two reference mirrors 219 and 220, for example with the aid of stepper motor or piezomotor-controlled positioning means 219 'and 220', are displaced in such a way that the signal peaks of those boundary surfaces in the measuring field become visible Define distance (cf. FIG. 21 ).
  • L S + R ' - R - C ' - C
  • FIG. 25 is part of the interferometer of FIG. 24 executed fiber-optically (structurally or functionally unchanged components are generally provided in the figures with the same reference numerals).
  • the light emitted from the short-coherence light source 201 is guided by an optical fiber 230 to a coupler 231 and divided thereby into the measuring beam and the reference beam supplied to the interferometers 210 and 221 through fibers 232 and 233 and collimators 234 and 235.
  • the remaining beam path corresponds to that of FIG. 24 ,
  • the short-coherence interferometer is equipped with a double-spectrometer 240. It consists of two equal diffraction gratings 242 and 243, a beam splitter 214, which here merges the beams diffracted at the gratings 242 and 243, and the linear detector array 225.
  • the light waves 241 reflected and backscattered by the eye 213 are diffracted by the diffraction grating 242 and the double reference beam 222 is diffracted by the diffraction grating 243; both diffraction patterns superimpose their diffraction image on the linear detector array 225.
  • the detector array 225 registers the real intensity I (k) of the (complex) frequency spectrum I (k) of the radiation at the interferometer output.
  • the diffraction grating 243 of the dual spectrometer 240 is connected to a piezoelectric actuator 245, which can shift it in the lattice plane normal to the grating lines by 1/4 of the lattice constant (double arrow 246). This gives the lattice-diffracted waves a phase shift of ⁇ / 2. In this position, therefore, registers the detector array 225 to the real intensity I (k) associated quadrature component, with which one obtains the complex frequency spectrum î (k) of the radiation at the interferometer output according to the above equation 3.
  • the grid 242 can be shifted by 1/4 of the lattice constant.
  • a phase shift of the reference beams can also be effected by means of an electro-optical phase modulator 244 in the double reference beam 222. This can also be arranged in the double measuring beam 241.
  • the lattice method works independently of the wavelength, this is not the case with the phase modulator method; the latter method can be used at wavelength bands up to several tens of nm.
  • FIG. 27 represents an arrangement for eye partial distance measurement by means of Fourier domain interferometry, which selectively uses the retinal pigment epithelium (RPE) for the axial length measurement and discriminates the light scattered back from the other retinal layers polarization-optical.
  • a linear polarizer 251 is located in the light bundle 204 emitted by the collimator 203. This polarizer ensures a defined polarization state of the light bundle 204, which illuminates the short-coherence interferometer.
  • a ⁇ / 4 plate 252 is at 45 ° to the plane of polarization.
  • the polarization plane of the beam 253 can be rotated by means of a ⁇ / 2 plate rotatable about the beam axis 253 'instead of the plate 252. This changes the intensity of the interference with the light reflected from the fundus.
  • auxiliaries possible, which can in principle be arranged in the measuring beam path and in particular in the double measuring beam 211 or reflected therein:
  • a lens group 280 of two cylindrical lenses 281 and 282 of opposite refractive power can be used.
  • Zoom optics 286 (for example, with a slidable - double arrow 287 - dissipating lens 288 between two converging lenses 289 and 290) can be used to compensate for an ametropia of the subject's eye.
  • This zoom lens has a center position with zero refractive power and can generate positive as well as negative refractive powers.
  • a refractometry device for example a Hartinger coincidence refractometer (open arrow 293)
  • a fixation light (arrow 295) can be mirrored in with the aid of a beam splitter 294 in order to fix the visual axis of the subject's eye 213.
  • the fixation light can be different in color (eg green). Also, it can be highlighted by blinking.
  • positionally adjustable fixing light can be used for fixing or varying the viewing direction.
  • the group 300 consists of two wedges 301 and 302, which are displaceable relative to each other (double arrow 297). This results in a deviation of the measuring beam (eg 211 whose magnitude can be changed by the amount of the relative displacement of the prism and its direction by rotation (double arrow 103) of the prism group about the axis 211 'of the double measuring beam 211 optical axis of the fixed eye to be set parallel to the beam axis 211 'of the measuring beam in order to obtain optimal light reflections from the eye.
  • the measuring beam eg 211 whose magnitude can be changed by the amount of the relative displacement of the prism and its direction by rotation (double arrow 103) of the prism group about the axis 211 'of the double measuring beam 211 optical axis of the fixed eye to be set parallel to the beam axis 211 'of the measuring beam in order to obtain optimal light reflections from the eye.
  • a zoom optics 310 is used for measurements on the anterior chamber of the subject's eye. It is designed so that its refractive power is adjustable from zero to several diopters.
  • the focusing of the measuring beam (eg, 211) produced by this optic in or near the anterior chamber increases the signal strength of the light portions reflected from the anterior chamber.
  • focusing requires very careful adjustment and maintaining the transversal position of the eye, which is difficult. One will therefore find the optimum at a lower focus. This must be found empirically via corresponding settings of the zoom optics 310.
  • this zoom optics in addition to a power adjustment (double arrow 311) and an adjustment of their position in the direction of the optical axis of the measuring beam have (double arrow 312).
  • the auxiliaries mentioned above can all be arranged together in the measuring beam path (eg the double measuring beam 211). Alternatively, of course, individual or some of these devices can be arranged. Group 300, however, usually requires separate fixation of the eye 213 and therefore should only be used in conjunction with eye fixation with components 294 and 295. Since the test person sees the measuring beam (for example 211) red at the wavelengths customarily used here, another color, for example green, is advantageous, as mentioned, for the reflected-in light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)

Description

  • Die Erfindung bezieht sich auf eine Vorrichtung zur interferometrischen Messung einer Probe, insbesondere des Auges, mit einer Kurzkohärenz-Interferometeranordnung, welche einen Meßstrahlengang, durch den ein Meßstrahl auf die Probe fällt, und einen Referenzstrahlengang aufweist, durch den ein Referenzstrahl läuft, der mit dem Meßstrahl überlagert und zur Interferenz gebracht wird. Die Erfindung bezieht sich weiter auf ein Verfahren zur kurzkohärenz-interferometrischen Messung einer Probe, insbesondere des Auges, wobei durch einen ersten Meßstrahlengang ein Meßstrahl auf die Probe gerichtet wird und mit einem Referenzstrahl, der einen Referenzstrahlengang durchläuft, überlagert und zur Interferenz gebracht wird.
  • Zur interferometrischen Messung oder Vermessung von Proben ist die optische Kurzkohärenztomographie (auch OCT) bekannt. Mit diesem Prinzip lassen sich mit hoher Empfindlichkeit optische Schnitte im Material vermessen, wobei axiale Auflösungen, d. h. Auflösungen entlang der optischen Einfallsachse der Strahlung, von wenigen Mikrometern erreicht werden. Das Prinzip basiert auf der optischen Interferometrie und verwendet für eine Auflösung in der Tiefenrichtung, d. h. entlang der optischen Achse, eine teilkohärente Lichtquelle.
  • Eine bekannte Anwendung für die optische Kurzkohärenztomographie ist die Vermessung des Auges, insbesondere des menschlichen Auges. Die Carl Zeiss Meditec AG vertreibt dazu unter der Bezeichnung IOL-Master ein Gerät, das unter anderem die Augenlänge, d. h. den Abstand zwischen Corneascheitel und Fundus, bestimmt. Hierbei wird während der Messung die Weglänge des Referenzstrahls verändert. Anwendung findet das Gerät insbesondere im Rahmen der Katarakt-Chirurgie. Die Brechkraft einer zu implantierenden Intraokularlinse wird bei der Katarakt-Chirurgie und der refraktiven Augenchirurgie aus dem refraktiven Ausgangszustands des Auges, der akustisch oder optisch bestimmten Länge des Auges und einer Abschätzung der postoperativen Vorderkammertiefe bestimmt. Man benötigt also vor dem Eingriff genaue Kenntnis über diese Parameter. Der Scanvorgang des IOL-Masters liefert am Interferometerausgang ein Signal, aus dessen zeitlichem Ablauf die zu messenden Längen bestimmt werden. Dieser Scanvorgang braucht Zeit; Bewegungen des Probanden während der Messung haben Fehler oder ungenaue Ergebnisse zur Folge.
  • Aus der WO03/086180 ist eine kunzkohärenz- luter ferometer anordnung mit einem Referenzarm mit mehreren Strahlerflexionen bekannt.
  • Weiter ist eine fourieranalysierende Interferenzmethode bekannt. Zur Ortsauflösung in Tiefenrichtung zeichnet man ein Spektrum des Interferenzmusters zwischen Referenzstrahl und Meßstrahl auf, der an der Probe rückgestreut wurde. Diese Aufzeichnung kann simultan mittels eines Spektrometers (bei geeigneter Breitbandlichtquelle) oder sequentiell (bei durchstimmbaren Quellen) erfolgen. Die inverse Fouriertransformierte des Spektrums ermöglicht eine Rekonstruktion der Struktur entlang der Tiefenrichtung.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art so fortzubilden, daß größere Teilstrecken des Auges schnell gemessen werden können.
  • Diese Aufgabe löst die Erfindung dadurch, daß die Interferometeranordnung für unterschiedliche, axial beabstandete Probenbereiche hinsichtlich der Längen der Referenzstrahlengänge vorabgestimmt ist. Referenzstrahlengänge sind räumlich getrennt und unterschiedlich lang, wobei die Weglängendifferenz einen Abstand der Meßbereiche in der Probe vorgibt. Die OCT-Messung mißt dann nur die Abweichung von voreingestelltem Abstand. Die Strahlung aus dem jeweiligen Referenzstrahlengang wird mit dem Meßstrahl eigenständig überlagert und zur Detektion gebracht.
  • Die Erfindung nutzt also z. B. die Fourier-Domain Kurzkohärenz-Interferometrie (FD OCT), welche das Wellenzahl-Spektrum des Signals am Interferometerausgang verwertet. Dieses Spektrum wird z. B. mittels eines Spektrometers aufgenommen, welches üblicherweise ein dispergierendes Element, beispielsweise ein Beugungsgitter, und eine fokussierende Optik sowie ein Detektor-Array, z. B. Photodioden-Arrays oder Array-Kameras, enthält. Das mittels des Detektorarrays registrierte Wellenlängenspektrum I(λ.) wird beispielsweise mit Hilfe der Gittergleichung in das benötigte Signalspektrum oder K-Spektrum I(K) umgerechnet. Der von typischen Photodioden-Arrays oder Array-Kameras elektronisch ausgeführte Scan ist sehr schnell, er benötigt wenige Millisekunden oder Bruchteile einer Millisekunde. Gleiches gilt für das Durchstimmen frequenzveränderlicher Strahlungsquellen, wenn man mit spektral nichtselektiven Detektoren arbeitet. Damit ist die für Messungen an Patienten vorteilhafte "One-Shot"-Qualität, bei der die relevanten Meßdaten aus einer einzigen oder sehr kurzen Belichtung des Auges gewonnen werden, erreicht.
  • Die Fourier-Transformation des K-Spektrums liefert ein tiefenabhängiges Signal mit Signalspitzen, deren z-Position die Wegdifferenz Referenzstrahl/Meßstrahl angibt.
  • Die Auflösung Δz der Kurzkohärenz-Interferometrie hängt mit der Halbwertsbreite Δλ, des Wellenlängenspektrums und dessen mittlerer Wellenlänge λ zusammen. Für ein Gauß'sches Spektrum erhält man: Δ z = 2 ln 2 π λ 2 Δ λ .
    Figure imgb0001
  • Die Meßfeldtiefe Z ist durch die Pixelzahl oder Anzahl N der Array-Photodioden in der Dispersionsrichtung des Spektrometers bzw. durch die Anzahl an Aufnahmen während des Durchstimmens begrenzt. Hier gilt N = Δ K z π ,
    Figure imgb0002
    worin ΔK die Bandbreite der benutzten optischen Strahlung im K-Raum ist. Die Meßfeldtiefe ist also Z = N 4 λ 2 Δ λ .
    Figure imgb0003
  • Sie hängt linear von der Pixelzahl N des Spektrometers bzw. der Aufnahmenanzahl ab. Übliche Array-Pixelzahlen von N ≈ 1000 liefern Meßfeldtiefen Z von rund 5,3 mm. Der Ursprung des Meßfelds ist die "Wegdifferenz-Null-Position", das ist jene Position im Meßstrahl, für welche die optische Länge des Meßstrahls gleich der des Referenzstrahl ist.
  • Die Erfindung kann verwirklicht werden durch eine Vorrichtung zur interferometrischen Messung einer Probe, insbesondere des Auges, mit einer Kurzkohärenz-Interferometeranordnung, welche einen Meßstrahlengang, durch den ein Meßstrahl auf die Probe fällt, und einen ersten Referenzstrahlengang aufweist, durch den ein Referenzstrahl läuft, der mit dem Meßstrahl überlagert und zur Interferenz gebracht wird, wobei die Interferometeranordnung mindestens einen zweiten Referenzstrahlengang aufweist, der vom ersten Referenzstrahlengang zumindest teilweise räumlich getrennt verläuft und dessen optischen Weglänge sich von der des ersten Referenzstrahlenganges unterscheidet, wobei die Weglängendifferenz gemäß einem Abstand zweier in Tiefenrichtung der Probe beabstandeter Probenbereiche gewählt ist und wobei eine Steuereinrichtung aus den detektierten überlagerten Strahlen mittels Fourier-Spektralanalyse unter Berücksichtigung der Weglängendifferenz der Referenzstrahlengänge den Abstand der Probenbereiche ermittelt. Analog kann die Erfindung realisiert werden durch ein Verfahren zur kurzkohärenz-interferometrischen Messung einer Probe, insbesondere des Auges, wobei durch einen Meßstrahlengang ein Meßstrahl auf die Probe gerichtet wird und mit einem Referenzstrahl, der einen ersten Referenzstrahlengang durchläuft, überlagert und zur Interferenz gebracht wird, wobei mindestens ein zweiter Referenzstrahlengang vorgesehen wird, der vom ersten Referenzstrahlengang zumindest teilweise getrennt verläuft und dessen optischen Weglänge sich von der des ersten Referenzstrahlenganges unterscheidet, wobei die Weglängendifferenz gemäß einem Abstand zweier in Tiefenrichtung der Probe beabstandeter Probenbereiche gewählt wird und die überlagerte Strahlung detektiert und daraus mittels Fourier-Spektralanalyse unter Berücksichtigung der Weglängendifferenz der Referenzstrahlengänge der Abstand der Probenbereiche ermittelt wird.
  • In der Interferometeranordnung ist es für die Signalgüte vorteilhaft, die Strahlung aus den beiden Referenzstrahlengängen jeweils getrennt mit der von der Probe rückreftektierten Meßstrahlung zu überlagern und nachzuweisen. Es ist deshalb in einer Weiterbildung vorgesehen, daß die Interferometeranordnung eine Überlagerungseinrichtung aufweist, die die Referenzstrahlen aus den zwei Referenzstrahlengängen getrennt mit dem Meßstrahl aus dem Meßstrahlengang überlagert und die derart überlagerten Strahlen dann an eine Detektoreinrichtung zum Nachweis leitet, welche den beabstandeten Meßbereichen zugeordnete Meßsignale erzeugt. Analog ist für das Verfahren vorgesehen, daß die Strahlen aus den zwei Referenzstrahlengängen getrennt mit dem Meßstrahl aus dem Meßstrahlengang überlagert, die derart überlagerten Strahlen getrennt detektiert und den beabstandeten Meßbereichen zugeordnete Meßsignale erzeugt werden.
  • Die Trennung bei Überlagerung und Nachweis kann auf verschiedenste Art und Weise erfolgen. Zum einen ist eine zeitliche Trennung möglich. Der Meßstrahl wird also nacheinander mit den Referenzstrahlen aus den Referenzstrahlengängen überlagert und nachgewiesen. Dies hat den Vorteil, daß nur eine Detektoreinheit notwendig ist, auf Kosten einer etwas längeren Meßdauer. Daß nur eine Spektrafanalysevorrichtung detektionsseitig notwendig ist, kann den Aufwand und damit die Kosten erheblich reduzieren. Es ist deshalb in einer Variante der Erfindung vorgesehen, daß die Überlagerungseinrichtung einen Umschaltmechanismus zum Umschalten zwischen den zwei Referenzstrahlengängen aufweist, so daß die Überlagerung für die zwei Referenzstrahlengänge sequentiell erfolgt. Für das Verfahren ist analog vorgesehen, daß zwischen den zwei Referenzstrahlengängen sequentiell umgeschaltet wird, so daß der Meßstrahl sequentiell mit Strahlung aus dem ersten und dem zweiten Referenzstrahlengang überlagert wird und die überlagerten Strahlen sequentiell detektiert werden.
  • Eine höhere Meßgeschwindigkeit erreicht man zum anderen, wenn die Überlagerung derart ist, daß ein paralleler Nachweis der getrennt überlagerten Strahlen, d. h. der für die unterschiedlichen Meßbereiche erzeugten Interferenzmuster erfolgt. Ein erster Ansatz verwendet eine Polarisationstrennung. So sind beispielsweise zwei Referenzstrahlengänge vorgesehen, die zueinander orthogonal polarisierte Strahlung führen. Detektionsseitig sind dann ebenfalls zwei Detektoreinheiten vorgesehen, die ebenfalls zueinander orthogonale Strahlungsanteile der überlagerten Strahlung auswerten. Es ist für diese erste Variante deshalb zweckmäßig, daß die Überlagerungseinrichtung zur getrennten Überlagerung eine Polarisationstrennung einsetzt, so daß die Überlagerung und das Weiterleiten zur Detektoreinrichtung für die zwei Referenzstrahlengänge nach Polarisation getrennt und gleichzeitig erfolgt. Weiter ist es für das Verfahren zweckmäßig, daß zur getrennten Überlagerung eine Polarisationstrennung einsetzt wird, so daß die getrennte Überlagerung und Detektion für die zwei Referenzstrahlengänge nach Polarisation getrennt und gleichzeitig erfolgt.
  • Eine weitere Trennmöglichkeit ergibt sich in einer zweiten Variante durch die Verwendung verschiedener Wellenlängenbereiche. Die Referenzstrahlengänge können dann durch dichroitische Aufteilung der einfallenden Referenzstrahlung aneinander gekoppelt werden und einer entsprechenden Anzahl von Detektoreinrichtungen ist ebenfalls eine entsprechende dichroitische Trennung vorgeordnet. Es ist für diese zweite Variante deshalb zweckmäßig, daß die Überlagerungseinrichtung zur getrennten Überlagerung eine dichroitische Trennung einsetzt, so daß die Überlagerung und das Weiterleiten zur Detektoreinrichtung für die zwei Referenzstrahlengänge spektral getrennt und gleichzeitig erfolgt. Analog ist für das Verfahren vorgesehen, daß zur getrennten Überlagerung eine dichroitische Trennung einsetzt wird, so daß die getrennte Überlagerung und Detektion für die zwei Referenzstrahlengänge spektral getrennt und gleichzeitig erfolgt.
  • Eine weitere Trennung, die eine simultane Messung ermöglicht, liegt in einer räumlichen Trennung der überlagerten Strahlung. In dieser dritten Variante wird die Meßstrahlung räumlich auseinandergeführt und jeweils mit entsprechend räumlich getrennten Referenzstrahlen aus den Referenzstrahlengängen überlagert. Die räumliche Trennung kann insbesondere als Pupillenteilung realisiert sein, weshalb in einer Weiterbildung vorgesehen ist, daß die Überlagerungseinrichtung zur getrennten Überlagerung eine Pupillenteilung einsetzt, so daß die Überlagerung und das Weiterleiten zur Detektoreinrichtung für die zwei Referenzstrahlengänge in einer geteilten Pupille des Strahlenganges erfolgt.
  • Das erfindungsgemäße Konzept verwendet, wie bereits erwähnt, Kurzkohärenz-FD OCT. Dabei kann das benötigte K-Spektrum sowohl mit spektral sensitiver Detektion und breitbandigen Quellen als auch mit spektral nichtauflösender Detektion und Durchstimmung einer schmalbandigen Quelle erzeugt werden. Natürlich verringert sich der Detektoraufwand, wenn eine die Interferometeranordnung speisende, spektral durchstimmbare Strahlungsquelle und eine spektral nichtauflösende Detektoreinrichtung zur Messung vorgesehen sind. Das K-Spektrum wird hier aus den Daten über die Durchstimmung zusammengesetzt und dann analysiert.
  • Bei FD OCT bestand bislang eine Problematik, daß man mit den verfügbaren Detektoren mit einer vorgegebenen Maximalanzahl an Pixeln bzw. Aufnahmen pro Zeiteinheit entweder die spektrale Auflösung und damit die Ortsauflösung maximieren konnte, oder den abgedeckten Spektralbereich, mithin den Meßbereich. Das erfindungsgemäße Konzept löst diese gegenläufige Kopplung nun dadurch auf, daß mehrere unterschiedlich lange Referenzstrahlengänge verwendet werden.
  • Die gemessenen Abstände sind üblicherweise auf den Abstand zum Interferometer bzw. zur bereits eingangs erwähnten Wegdifferenz-Null-Position bezogen. In einer weiteren Erfindung ist es möglich, diese Meßsignale aufeinander zu beziehen. Dies erfolgt dadurch, daß der Referenzstrahlengang nicht mehr die Reflektion an einem statischen, im Interferometer eingebauten Reflektor vornimmt, sondern einen auf die Probe einfallenden und von dort rückreflektierten oder -gestreuten Strahl als Referenzstrahl verwendet. Es ist für die eingangs genannte Interferometeranordnung deshalb erfindungsgemäß auch vorgesehen, daß der Referenzstrahlengang die Probe umfaßt, wobei Referenzstrahl und Meßstrahl gegeneinander in Strahlrichtung um eine bestimmte Weglängendifferenz versetzt sind und der Referenzstrahl an einem ersten Probenbereich und der Meßstrahl an einem zweiten Probenbereich der Probe reflektiert und/oder rückgestreut sind und die Interferenz zwischen Meßstrahl und Referenzstrahl vom Abstand zwischen den beiden Probenbereichen abhängt, wobei eine Steuereinrichtung aus den detektierten überlagerten Strahlen mittels Fourier-Spektralanalyse unter Berücksichtigung der Weglängendifferenz der Refererizstrahlengänge den Abstand der Probenbereiche ermittelt. Analog ist für das Verfahren vorgesehen, daß der Referenzstrahlengang umfaßt, Referenzstrahl und Meßstrahl gegeneinander in Strahlrichtung um eine bestimmte Weglängendifferenz versetzt sind und, der Referenzstrahl an einem ersten Probenbereich und der Meßstrahl an einem zweiten Probenbereich der Probe reflektiert und/oder rückgestreut werden und der Abstand zwischen den beiden Probenbereichen aus der Interferenz zwischen Meß- und Referenzstrahl bestimmt wird, wobei die überlagerte Strahlung detektiert und daraus mittels Fourier-Spektralanalyse unter Berücksichtigung der Weglängendifferenz der Referenzstrahlengänge der Abstand der Probenbereiche ermittelt wird.
  • Bei der Vermessung des Auges bietet es sich natürlich an, den Rückreflex von der Homhautvorderfläche auszuwerten, da dann auf besonders einfache Art und Weise die Augenlänge gemessen werden kann. Die Autokorrelationsfunktion des Referenzstrahls liefert bei der Auswertung einen ersten Bezugspunkt und die Überlagerung des Referenzstrahles mit dem Meßstrahl einen auf diesen Bezugspunkt referenzierten zweiten Meßpunkt, beispielsweise das Signal für den Augenhintergrund.
  • Bei der Vermessung des Auges ist es zweckmäßig, ein Fokussierelement in einem der Strahlengänge vorzusehen, um eine Fokussierung der beiden Strahlen sowohl auf der Cornea als auch am Fundus des Auges zu gewährleisten. Das Fokussierelement trägt also damit der fokussierenden Wirkung des Auges Rechnung, so daß der auf den Fundus fokussierte Meßstrahl als paralleles Strahlenbündel auf das Auge einfällt, wohingegen der andere Referenzstrahl bereits auf die Augenvorderfläche fokussiert ist. Natürlich kann das Fokussierelement im Meßstrahlengang (aufweitend) oder im Referenzstrahlengang (kollimierend) vorgesehen sein. Dieses Vorgehen erhöht die Signalstärke erheblich. Es ist deshalb zweckmäßig, daß der Referenz- oder der Meßstrahlengang ein vorzugsweise verstellbares Fokussierelement aufweist, um für Messungen am Auge den Meßstrahl auf die Augennetzhaut zu fokussieren. Für das analoge Verfahren ist es gleichermaßen vorteilhaft, daß für Messungen am Auge der Referenzstrahl mittels eines vorzugsweise verstellbaren Fokussierelement auf die Augenhomhaut fokussiert wird.
  • Beim Durchgang durch das Auge kann ein Dispersionseinfluß auftreten, der störend bemerkbar machen kann. Es ist deshalb zweckmäßig, eine entsprechende Dispersionskompensation vorzusehen. Zweckmäßigerweise ist deshalb in der Vorrichtung dafür gesorgt, daß der Meßstrahlengang oder der Referenzstrahlengang ein dispersionskompensierendes Element aufweist, um für Messungen am Auge Dispersionseinflüssen des Auges auf den Meßstrahl zu beeinflussen. Für das Verfahren gilt analog, daß für Messungen am Auge der Referenz- oder Meßstrahl mittels eines vorzugsweise verstellbaren dispersionskompensierendes Elementes hinsichtlich Dispersionseinflüssen des Auges beeinflußt wird.
  • Da die Fokussierung und die Dispersionskorrektur in einem engen Zusammenhang miteinander stehen, ist es günstig, die Verstellung des Fokussierelementes und die Einstellung des dispersionskorrigierenden Elementes miteinander zu koppeln, beispielsweise durch eine mechanische oder elektrische Kopplung, so daß eine synchrone Verstellung des dispersionskompensierenden Elementes und des Fokussierelementes bewirkt ist.
  • Die Erfindung erreicht also ein Interferometer, das mehrere Teilstrecken des Auges gleichzeitig mißt, indem eine getrennte Messung der separierten Meßbereiche erfolgt. Vorzugsweise ist diese getrennte Messung gleichzeitig durch entsprechende getrennte Überlagerung des Meßstrahles mit Strahlung aus verschiedenen Referenzstrahlengängen und getrenntem Nachweis der überlagerten Strahlung durchgerührt. Dabei können für die getrennten Nachweise separate Spektrometer verwendet werden, wenn, wie für einige Varianten der FD OCT, eine spektralselektive Detektion erfolgt.
  • Die erfindungsgemäße Vorrichtung bzw. das erfindungsgemäße Verfahren eignen sich, wie bereits erwähnt, besonders für die Vermessung des menschlichen Auges, aber auch andere teiltransparente Objekte können damit untersucht werden.
  • Erweitert man die Vorrichtung um eine Scanvorrichtung, die den Strahl quer über das Auge ablenkt, beispielsweise durch eine Parallelverschiebung oder eine Strahlablenkung, beispielsweise mittels Scan-Spiegeln, läßt sich ein dreidimensionales Probenbild erzeugen.
  • Mit dem erfindungsgemäßen Prinzip können mehrere Teilmessungen gleichzeitig quasi als "One-Shot"-Aufnahmen erfolgen oder auch Meßsequenzen mit vielen schnell aufeinander folgenden Einzelmessungen, die jeweils aus mehreren Teilmessungen bestehen, ausgeführt werden.
  • Zweckmäßigerweise wird die erfindungsgemäße Vorrichtung durch eine entsprechendes Steuergerät im Betrieb gesteuert. Dieses Steuergerät stellt dann den geschilderten Betrieb und insbesondere die Realisierung der geschilderten Betriebsweisen sicher. Vorteilhafterweise ist das Steuergerät auch geeignet ausgestaltet, beispielsweise durch einen Computer und entsprechende Programm-Mittel, um die Meßsignalaufbereitung aus den elektrischen Signalen des Detektors bzw. der Detektoren vorzunehmen, insbesondere die für FD OCT erforderliche Fourier-Transformation auszuführen.
  • Die Erfindung ermittelt von wenigstens zwei voneinander beabstandeten Probenbereichen bei einem transparenten und/oder diffusiven Gegenstand, z. B. bei einem Auge, in einer Meßzeit im Sub-Sekundenbereich die Abstände von Strukturen in den Probenbereichen. Hierzu wird vorzugsweise eine Anordnung gemäß einem Michelson-Interferometer verwendet. Im Interferometeraufbau wird kurzkohärente Strahlung verwendet, wobei beispielsweise die von einer Strahlquelle ausgehende kurzkohärente Strahlung in einen Meß- und einem Referenzstrahl aufgeteilt wird. Die verwendete Strahlung für Meßstrahl und Referenzstrahlen hat also im Vergleich zu den Probenbereichsabständen eine kurze Kohärenzlänge. Der Meßstrahl bestrahlt die Probenbereiche. Der Referenzstrahl wird in mindestens zwei räumlich getrennte Referenzstrahlengänge aufgeteilt, die den darin geführten Referenzstrahlen unterschiedliche Laufzeitänderungen aufprägen, wobei diese Laufzeitänderungen auf den Abstand der Probenbereiche vorabgestimmt sind. Die reflektierten Referenzstrählen werden dann getrennt interferierend mit den reflektierten und/oder rückgestreuten Meßstrahl vereinigt. Die vereinigten Strahlen werden detektiert und das detektierte Signal, wie bereits erwähnt, zur Distanzmessung fourierausgewertet.
  • Zur Messung des Abstandes der Meßbereiche bei einer transparenten und/oder diffusiven Probe, wie es zur Abstands-, Längen-, Dicken- und Profilmessung notwendig ist, wird die Probe mit einem Meßstrahl bestrahlt, und für jeden Probenbereich ist ein Referenzstrahl vorgesehen. Die Probenbereiche können sich dabei an verschiedenen Orten in Einfallsrichtung der optischen Strahlung befinden, wie auch seitlich versetzt zueinander. Der Laufzeitunterschied der Referenzstrahlengänge entspricht einem optischen Abstand der Probenbereiche in Bezug auf die Einfallsrichtung des Meßstrahls, wobei wenigstens einer der Probenbereiche wenigstens geringfügig (typischerweise mindestens 10-4 % der Strahlungsintensität) reflektiert und/oder rückstreut. Natürlich kann die Strahlkonfiguration des Meßstrahls auch über die Probe, insbesondere periodisch, bewegt werden, so daß die Probe quer zur Einfallsachse abgescannt wird. Damit können Profile der Probe vermessen werden. Anstatt nur einen Meßstrahl entlang einer optischen Achse einfallen zu lassen, kann man natürlich auch mehrere Meßstrahlen in einem Abstand nebeneinander einfallen lassen, um ein Oberflächenprofil schneller zu ermitteln.
  • Mit der erfindungsgemäßen Vorrichtung und dem erfindungsgemäßen Verfahren kann eine Probe hinsichtlich Abständen oder Profilen vermessen werden. Besonders bevorzugt ist der Einsatz bei einer optisch transparenten und/oder diffusiven Probe, da dann auch die innere Probenstruktur gemessen werden kann. Die Weglängenunterschiede der räumlich getrennten Referenzstrahlengänge wird näherungsweise so eingestellt, daß sie dem zu erwartenden Abstand, einer zu bestimmenden Dicke, etc. bis auf eine gewisse Toleranz entspricht. Mit FD OCT wird dann nur noch durch Abweichung des nicht bekannten, noch zu bestimmenden Abstands vom voreingestellten Wert ermittelt. Soll z. B. die tatsächliche Länge eines menschlichen Auges gemessen werden, so weiß man bereits schön vorher, daß eine optische Länge von 34 mm plus/minus 4 mm zu erwarten ist. Man stellt also die Weglängendifferenz der Referenzstrahlengänge auf 34 mm ein, und die Signalauswertung der Fourier-Analyse ermittelt die Variation innerhalb des möglichen Bereiches von 8 mm. Natürlich ist es für die Vorrichtung bzw. das Verfahren ganz allgemein zweckmäßig, wenn die Weglängendifferenz zwischen den Referenzstrahlengängen während der Messung einstellbar ist bzw. eingestellt wird.
  • Mit der erfindungsgemäßen Vorrichtung bzw. dem erfindungsgemäßen Verfahren kann man am Auge neben der Augenlänge (zentral, peripher), auch die Vorderkammertiefe (zentral, peripher), die Comea-Dicke (zentral, peripher), die Tränenfilmdicke (zentral, peripher), die Linsendicke (zentral, peripher) und die Glaskörperdicke sowie entsprechende Oberflächenprofile (Topographien) der Cornea-Vorderfläche, der Comea-Rückfläche, der Linsenvorderfläche, der Linsenrückfläche und der Netzhaut gemessen werden. Ferner lassen sich durch geeignete Scanmechanismen Krümmungsradien, z: B. der Cornea-Vorderfläche, der-Cornea-Rückfläche, der Linsenvorderfläche und der Linsenrückfläche, bestimmen.
  • Natürlich kann ein Probenbereich auch mehrere interessante Teilbereiche umfassen. So kann man einen Probenbereich derart definieren, daß er die gesamte Augenvorderkammer umfaßt. Hierzu wird der Meßstrahl an einen Ort zwischen der Cornea-Vorderfläche und der Linsenrücktläche fokussiert. So kann dann die Reflexion an der Cornea-Vorderfläche, der Cornea-Rückftäche, der Linsenvorderfläche und der Linsenrückfläche innerhalb eines Probenbereiches detektiert werden. Die Distanz zwischen Cornea-Rückfläche und Linsenvorderfläche ist dann die Vorderkammertiefe. Bedingung dafür ist lediglich, daß der Meßbereich in dem Probenbereich so groß ist, daß ein Bereich von der Cornea-Vorderfläche bis zur Linsenrückfläche abgedeckt ist.
  • Die Erfinder erkannten weiter, daß bei einer bestimmten Ausgestaltung der Spektralanalyseeigenschaften die Fourier-Domain Kurzkohärenz-Interferometrie in der Lage ist, die gesamte Augenlänge des menschlichen Auges mit einer Messung zu erfassen, wenn bestimmte Parameter am Spektrometer eingehalten werden. Als wesentlicher Parameter stellte sich die Pixelzahl bzw. Anzahl empfindlicher Zellen des Detektor-Arrays heraus. Es ist deshalb in einer weiteren Erfindung eine Ausgestaltung der eingangs genannten Vorrichtung vorgesehen, bei der eine Spektrometeranordnung die überlagerten Strahlen detektiert, die ein die Strahlen spektral auffächerndes Element und ein Dektor-Array aufweist, das mindestens 7000 einzelne photoempfindliche Zellen aufweist. Der mit einem derartigen Detektor-Array erreichte Meßbereich ist beispielsweise bei einer Wellenlänge zwischen 700 und 900 nm sowie einer spektralen Bandbreite von 10 - 30 nm der verwendeten Strahlung so groß, daß damit die Augenlänge meßbar ist. Analog ist deshalb auch für das Verfahren der eingangs genannten Art vorgesehen, daß zur Detektion der überlagerten Strahlen eine Spektrometeranordnung verwendet wird, die ein die Strahlen spektral auffächerndes Element und ein Dektor-Array aufweist, das mindestens 7000 einzelne photoempfindliche Zellen aufweist.
  • Soweit in der voranstehenden oder nachfolgenden Beschreibung Verfahrensschritte, insbesondere Signalauswertungen, Ansteuerungen von verstellbaren Komponenten, wie beispielsweise einer durchstimmbaren Strahlungsquelle etc., erwähnt sind, können in den Vorrichtungen gemäß der Erfindung diese Verfahrensschritte durch die Steuereinrichtung vorgenommen werden, die dazu geeignete Betriebsmittel, beispielsweise eine Software-Steuerung umfaßt. Natürlich können die hier beschriebenen Merkmale auch in anderen Kombinationen als beschrieben realisiert werden. Insbesondere kann ein bestimmtes Merkmal auch ohne andere damit beschriebenen Merkmalen verwendet werden.
  • Dss Meßsignal der Kurzkohärenz-Interferometrie, das (in Analogie zum entsprechenden Ultraschall-Verfahren) sogenannte A-Scan-Signal, ist die Kreuzkorrelation des Referenzlichts mit dem Objektlicht am Interferometerausgang. Per Fouriertransformation einer spektralen Intensitätsverteilung bekommt man die Autokorrelation des zugrunde liegenden Lichtsignals. Bildet man die Fourier-Transformation (FT) des Lichtspektrums I(k) am Interferometerausgang, erhält man eine Autokorrelation der Summen der überlagerten Referenz- und Objektwellen. Diese Autokorrelation enthält auch die gewünschte Kreuzkorrelation oder das Interferogramm IN(z) des Referenzlichts mit dem Objektlicht. IN(z) ist dann das A-Scan Signal, das z.B. am Computer-Monitor dargestellt wird. Die Signalspitzen markieren die Positionen lichtreflektierender Stellen im Meßobjekt, wie Figur 21 zeigt. Wir können daher für das A-Scan-Signal vereinfacht schreiben: IN z FT I k
    Figure imgb0004
  • k ist die Wellenzahl, für die bekanntermaßen gilt: k = π/λ. z ist die Koordinate im Ortsbereich; IN(z) ist das Interferogramm und I(k) das Intensitätsspektrum des verwendeten Lichts. Im Stand der Technik wird in der Kurzkohärenz-Interferometrie meist Licht von Superlumineszenzdioden im nahen Infrarotbereich mit Wellenlängen-Bandbreiten um Δλ = 20nm benutzt. Dies ergibt eine Kohärenzlänge und damit eine Meßgenauigkeit in der Größenordnung von 30 µm. Die direkte Anwendung der FD OCT zur Augenlängen-Messung scheiterte daran, daß man mit den bisher erhältlichen Photodioden-Arrays nicht das gesamte der Augenlänge entsprechende Spektrum detektieren kann. Die Feldtiefe T (zuvor auch als Z bezeichnet), die ein Detektor-Array liefert, ist gegeben durch T = N π / 2 Δ k ,
    Figure imgb0005
    worin N die Pixel- oder Diodenanzahl des Photodioden-Arrays ist und Δk die Wellenzahl-Bandbreite des Lichts ist. Mit heute üblichen Anordnungen erreicht man Feldtiefen von etwa T ≈ 5 mm. Strecken größer T können offensichtlich nicht gemessen werden, wie man an Figur 21 leicht abliest.
  • Für die Messung der gesamten Augenlänge sind Meßfelder von 40 mm Tiefe und in Einzelfällen auch größer erforderlich. Dieses Problem umgeht beispielsweise die EP 1 602 320 A1 mit einem Interferometer, das - wie der erwähnte IOLMaster der Cart Zeiss Meditec AG - als Referenzfläche die Cornea benutzt und die Referenzstrahl-Meßstrahl-Wegdifferenz mittels eines flexiblen optischen Auszugs im Strahlengang verkleinert. So muß die Meßfenster-Tiefe nur die Abweichung zwischen der Referenzstrahl-Meßstrahl-Wegdifferenz und der Augenlänge zu erfassen. Dieses Prinzip ist jedoch auch nachteilig: Das für die Messung benutzte Spektrum am Interferometer-Ausgang basiert nun nämlich auf einem Interferogramm zweier Lichtwellen, die beide durch Reflexion an biologischen Grenzflächen (beispielsweise Cornea-Vorderfläche und Augenlinsen-Vorderfläche) entstehen. Man sieht ein Signal nur, wenn beide sehr instabilen Signale gleichzeitig vorhanden sind. Das ist nicht immer einfach zu realisieren; außerdem ist eine Optimierung der Intensitäten dieser zwei Wellen für maximale Sensitivität nicht einfach, da die für die Messung effektiven Reflektivitäten beider biologischer Grenzflächen auch von der Strahlposition abhängt, die wegen der inhärenten Bewegungen lebender Objekte schwer kontrollierbar ist. Schließlich ist die Sensitivität der FD OCT von der Position des Signals im. Meßfeld abhängig. Es können daher nicht beide eine zu messende Strecke markierenden Signale mit optimaler Sensitivität detektiert werden.
  • Die vorliegende Fourier-Domain-Interferometrie (FD OCT) zur Augen-Teilstreckenmessung verwendet vorzugsweise gleichzeitig zwei Meßfelder mit jeweils separatem zugehörigem Referenz- und Meßstrahl benutzt. Das Auge wird hierbei mit einem aus zwei gegeneinander axial versetzten Einzelstrahlen bestehenden Doppel-Meßstrahl beleuchtet und es werden zwei Referenzstrahlen benutzt.
  • Bei dieser "2-Meßfelder-Methode" werden über die zugehörigen Referenzspiegel die Meß-Positionen zweier Meßfelder in weiten Bereichen frei wählbar und es können gleichzeitig zwei separate Teilstrecken von der Ausdehnung des Meßfelds mit den darin enthaltenen Reflexen sichtbar gemacht werden. Sinnvollerweise wird man die Referenzstrahllängen so wählen, daß in den zwei Meßfeldern enthaltene Signal-Spitzen (S1 und S2) im Meßergebnis, also in der Fourier-Transformierten des Spektrums, nicht überlappen, sondern separat dargestellt werden, wie es in Figur 22 illustriert ist. Nun entspricht der Abstand der zwei Signal-Spitzen allerdings nicht mehr dem tatsächlichen Abstand der zugrunde liegenden reflektierenden Flächen, sondern ist um die Differenz der zwei Referenzstrahlen verkürzt. Man kann die Positionen der Meßflächen in Realzeit verfolgen und so erkennen, ob man eine sinnvolle Messung ausführt. Eine Identifizierung der Meßsignale ist ebenfalls aufgrund der Kopplung ihrer Positionen an die entsprechenden Referenzspiegel leicht erkennbar. Die nutzbare Feldtiefe T bzw. Z wird bei dem bekannten Ansatz auch dadurch begrenzt, daß das Kurzkohärenz-Interferogramm IN(z) aus der vom Detektor-Array registrierten reellen Intensität I(k) und nicht aus dem (komplexen) Frequenzspektrum j(k) des Lichts am Interferometer-Ausgang berechnet wird. Das Ergebnis ist eine Hermitesche Funktion: Man erhält nicht das Interferogramm IN(z), sondern die Autokorrelation der Summen der überlagerten Referenz- und Objektwellen und bei optimaler Position des Referenzspiegels zwei separate, zum Koordinaten-Ursprung symmetrische Rekonstruktionen des Meßsignals, nämlich eine bei positiven und eine bei negativen Koordinaten, was die Meßtiefe mindestens halbiert. Zu diesem Problem werden hier zwei Lösungen angegeben:
    1. 1. Man kann das komplexe Spektrum î(k) durch rechnerische komplexe Ergänzung der gemessenen reellen Intensität I(k) mit der zugehörigen Quadraturkomponente oder "Blindkomponente" rechnerisch a posteriori, also im Anschluß an die eigentliche Messung, gewinnen. Dadurch verschwindet die Rekonstruktion des Meßsignals bei negativen Koordinaten: l ^ k = ½ l k + i HT l k
      Figure imgb0006
      HT {I} ist die Hilbert-Transformierte von / oder die zu / gehörige Quadraturkomponente.
    2. 2. Man kann die zur reellen Intensität I(k) zugehörige Quadraturkomponente auch experimentell messen, indem man im Spektrum I(k) eine Phasenverschiebung von 90° einführt. Die technische Lösung beruht nun auf geringen Verschiebungen des im Spektrometer benutzten Beugungsgitters.
  • Grundsätzlich kann man durch beide Lösungen die Feldtiefe des FD OCT verdoppeln und für geringere Feldtiefenansprüche auch mit einem Meßfeld auskommen. Jedoch muß man bedenken, daß der FD OCT tiefenabhängige Sensitivität besitzt. So ist die Sensitivität für jene Grenzfläche einer Strecke, die der virtuellen Referenzspiegel-Position am nächsten liegt, maximal. Sie kann aber für die hiervon maximal distanzierte Grenzfläche mehr als 10 dB geringer sein und eine Messung unterbinden. Ferner enthält das mit dem komplexen Spektrum berechnete A-Scan Signal immer noch störende Terme. Die Erfindung löst auch dieses Problem, weil jede Grenzfläche einer zu messenden Strecke durch eine entsprechende Referenzstrahl-Länge im zugehörigen Meßfeld mit maximaler Sensitivität dargestellt werden kann.
  • Bei den Messungen erhält man per Fourier-Transformation des Spektrums für jede lichtreflektierende Stelle im Auge eine Signalspitze. Die Zuordnung dieser Signale zu den tatsächlichen Augenstrukturen ist nicht immer einfach. Besonders die Signale der Retina können sehr komplex sein, wie es beispielsweise in Figur 23 dargestellt ist. Hierbei dominiert in der Regel das am retinalen Pigmentepithel (RPE) reflektierte Licht. Zur Augenlängenmessung wäre der Abstand dieses Signals vom vorderen Corneasignal geeignet. Allerdings kommt es auch vor, daß, je nach Position des Auges, andere Signalspitzen des retinalen Signalkomplexes dominieren, was zu Fehlmessungen führen kann. Um eindeutige Längenmessungen zu erhalten, gibt es die folgenden drei Möglichkeiten:
    1. 1. Man kann mehrmals messen, weil der FD OCT sehr schnell ist. Die Erfahrung zeigt, daß man dann meist auch Signale mit einer starken RPE-Spitze erhält. Man erkennt sie daran, daß sie bei den größten z-Positionen des Retina-Signalkomplexes auftritt.
    2. 2. Man kann die Signale mehrerer Messung summieren; dann erhält man eine Summe mit dominierender RPE Spitze.
    3. 3. Man kann die Tatsache benutzen, daß das vom RPE remittierte Licht in seiner Polarisation anders ist als Licht von den übrigen retinalen Schichten. Ein orthogonal zum Beleuchtungslicht polarisierter Referenzstrahl kann daher das von den übrigen retinalen Schichten reflektierte Licht stärker unterdrücken als jenes vom RPE.
  • Beleuchtet man das Auge, wie hier auch z. T. vorgesehen, mit einem Doppelstrahl, werden die Komponenten dieses Doppelstrahls an allen Grenzflächen des Auges zurück reflektiert. Dies führt zu reflektierten Wellen, deren Wegdifferenzen erheblich verkleinert werden, wenn deren Anfangs-Wegdifferenz nicht größer ist als zweimal Augenlänge plus Feldtiefe. Solche Wellen ergeben ein kontrastreiches Spektrum. Um die hierdurch erzeugten Artefakte zu vermeiden, sollte vorzugsweise die Anfangs-Wegdifferenz der Komponenten des beleuchtenden Doppelstrahls größer sein als zweimal Augenlänge plus Feldtiefe.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung beispielhalber noch näher erläutert. Es zeigen:
  • Fig.1
    eine interferometrische Vorrichtung zur Vermessung eines Auges, wobei Meßstrahlung räumlich getrennt mit Strahlung aus drei Referenzstrahlengängen zur Interferenz gebracht wird,
    Fig. 2
    eine Darstellung ähnlich der Fig. 1 mit einer abgewandelten Spektrometer- Einheit,
    Fig. 3
    eine Darstellung ähnlich der Fig. 1, nun jedoch unter der Verwendung von Festoptiken anstelle Lichtleitfasern,
    Fig. 4
    eine Schemadarstellung zur Veranschaulichung der Wirkung eines Beugungsgitters des Interferometers der Fig. 1 - 3,
    Fig. 5a - c
    Ausführungsbeispiele für eine Optik mit geteilter Pupille, wie sie in den Interferometern der Fig. 1-3 zum Einsatz kommen könnne,
    Fig. 6
    ein weiteres Interferometer ähnlich dem der Fig. 1, jedoch mit einer andersartigen räumlichen Trennung der Überlagerung des Meßstrahles mit den Referenzstrahlen,
    Fig. 7
    ein Interferometer ähnlich dem der Fig. 1, wobei die getrennte Überlagerung des Meßstrahls mit den Referenzstrahlen durch eine Polarisationstrennung erfolgt,
    Fig. 8 und 9
    Details einer möglichen Bauweise des Interferometers der Fig. 7,
    Fig. 10
    ein Interferometer ähnlich dem der Fig. 10, wobei die Trennung hier spektral erfolgt,
    Fig. 11
    eine Grafik zur Erläuterung der Wirkung der spektralen Trennung,
    Fig. 12 und 13
    Detailansichten von Komponenten, wie sie im Interferometer der Fig. 10 verwendet werden können,
    Fig. 14
    ein Interferometer ähnlich dem der Fig. 7, wobei die getrennte Überlagerung des Meßstrahls mit den Referenzstrahlen hiersequentiell erfolgt,
    Fig. 15
    ein Interferometer ähnlich dem der Fig. 7, wobei hier ein Doppelstrahl als Meßstrahl verwendet wird,
    Fig. 16
    eine Abwandlung des Interferometers der Fig. 15 mit nur einem Spektrometer,
    Fig. 17
    ein Spektrometer ähnlich dem der Fig. 15, jedoch ohne Polarisationstrennung aber mit Doppelstrahl,
    Fig. 18
    eine faseroptische Bauweise für das Spektrometer der Fig. 17,
    Fig. 19
    ein vereinfachtes Interferometer zur gleichzeitigen Detektion von in der Tiefe beabstandeten Bereichen,
    Fig.20
    ein vereinfachtes Kurzkohärenz-Fourier-Domain-Interferometer zur Messung von zwei oder mehr in der Tiefe beabstandeten Bereichen,
    Fig. 21
    ein vereinfachter Meßsignalverlauf bei einer Tiefenmessung (A-Scan),
    Fig. 22
    ein vereinfachter Meßsignalverlauf bei einer Tiefenmessung mit einem komplexeren Signal,
    Fig. 23
    ein Meßsignalverlauf bei Messung der Augenretina,
    Fig. 24
    eine Vorrichtung zur Kurzkohärenz-Interferometrie mit einem Doppel-Meßstrahl und einem Doppel-Referenzstrahl,
    Fig. 25
    eine weitere Vorrichtung zur Kurzkohärenz-Interferometrie mit einem Doppel- Meßstraht und einem Doppel-Referenzstrahl,
    Fig. 26
    eine weitere Vorrichtung zur Kurzkohärenz-Interferometrie mit einem Doppel- Meßstrahl und einem Doppel-Referenzstrahl,
    Fig. 27
    eine weitere Vorrichtung zur Kurzkohärenz-Interferometrie mit einem Doppel- Meßstrahl und einem Doppel-Referenzstrahl und
    Fig. 28
    eine weitere Vorrichtung zur Kurzkohärenz-Interferometrie mit einem Doppel- Meßstrahl und einem Doppel-Referenzstrahl, in der exemplarisch verschiedene, ganz grundsätzlich mögliche Zusatzeinrichtungen vorhanden sind.
  • Figur 1 zeigt eine faseroptische Implementierungen eines Interferometers 1. Die remittierte Reflexstrahlung wird in einem Michelson-Aufbau mit mehreren pupillenmäßig getrennten Strahlengängen und jeweils zugehöriger Referenzstrahlen für verschiedene Augenstrukturen gleichzeitig registriert. Hierzu werden faseroptischer Koppler verwendet; es können auch andere faseroptische oder Freistrahl-Interferometerstrukturen benutzt werden, beispielsweise mit faseroptischen Zirkulatoren. Außerdem erfolgt die gleichzeitige Messung von drei Positionen der Augenstruktur (Corneavorderfläche, Linsenvorderfläche und Fundus). Man kann das Interferometer auch für die Messung von mehr oder weniger als drei Positionen abwandeln. In den Zeichnungen sind zur Vereinfachung oftmals nur die Strahlachsen eingezeichnet. Auch wird nachfolgend manchmal vereinfachend von "Strahl" gesprochen, anstatt von "Strahlenbündel" oder "Strahlenbüschel".
  • Von einer Kurzkohärenz-Lichtquelle 1, beispielsweise einer mit einer "Pig-Tail"-Faser ausgestatteten Superlumineszenzdiode oder von einer anderen Kurzkohärenz-Lichtquelle kommendes Licht wird von einem Faserkoppler 2 auf einen Interferometer-Meßarm 3 und einen Interferometer-Referenzarm 4 aufgeteilt. Um drei in unterschiedlichen Tiefenbereichen z des Auges liegenden Strukturen, nämlich Cornea 5, Augenlinse 6 und Augenfundus 7, mittels Fourier-Domain Kurzkohärenz-Interferometrie zu erfassen, werden simultan drei Referenzstrahlengänge R1, R2, R3 mit entsprechenden Strahlbündeln benutzt. Diese Strahlengänge werden aus der Referenzarm-Faser 4 über Faserkoppler abgeteilt: ein Koppler 8 teilt einen Fundus-Referenzstrahlengang. R1 in eine Faser 9. ab. Die verbleibende Strahlung in einer Faser 10 wird von einem Koppler 11 in eine Faser 12 für den Comea-Referenzstrahlengang R2 und eine Faser 13 für den Augenlinsen-Referenzstrahlengang R3 getrennt. Die Faserlängen für diese drei Referenzstrahlengänge sind so dimensioniert, daß an einem Photo-Detektorarray 43 trotz der kurzen Kohärenzlänge Interferenz mit dem jeweiligen aus den unterschiedlichen Objekttiefen kommenden Reflexstrahlbündel, nämlich von Cornea 5, Augenlinse 6 und Augenfundus 7, auftritt.
  • Die am Austrittspunkt 20 aus der Faser 3 austretende Beleuchtungsstrahlung 21 wird von einer Optik 22, beispielsweise einem Faser-Kollimator, kollimiert, durchläuft als paralleles Beleuchtungsstrahlbündel 24 einen Strahlteiler 25 und beleuchtet das Auge 26. Ein an der Vorderfläche der Cornea 5 reflektierter Comea-Reflexstrahl 27 kommt virtuell aus einem 1. Purkinje-Sanson-Bild 28 und ein von der Linsenvorderfläche reflektierte Augenlinsen-Reflexstrahlbündel 29 kommt virtuell aus einem 3. Purkinje-Sanson-Bild 30. Diese beiden Reflexstrahlbündel divergieren unter verschiedenen Winkeln. In der Figur 1 ist, um die Übersicht zu wahren, nur ein kleinerer Winkelbereich gezeichnet. Ein weiterer Reflex kommt vom Fundus 7 und bildet das reflektierte Fundus-Reflexstrahlbündel 31.
  • Die am Auge reflektierten Reflexstrahlbündel 27, 29 und 31 liegen somit als überlagerter Meßstrahl M vor und werden vom Strahlteiler 25 in einen Detektionszweig D und dort auf eine Relaisoptik 33 vor einem Spektrometer S gerichtet. Die Relaisoptik 33 paßt den Meßstrahl M, der ein Gemisch aus den drei Reflexstrahlbündeln ist, an das nachfolgende Spektrometer S an. Diese Optik besteht in dem Beispiel der Figur 1 aus drei Teiloptiken 34, 35 und 36 unterschiedlicher Brennweiten. Die Brennweiten sind so ausgelegt, daß die drei im Meßstrahl M enthaltenen, aus unterschiedlichen Tiefen am Auge reflektierten Reflexstrahlbündel in derselben Bildebene 40 vor dem Spektrometer S fokussiert sind; die Foki werden von den Spektrometeroptiken 41' und 41" über ein Beugungsgitter 42 auf ein Photo-Detektorarray 43 beispielsweise eine Array-Kamera 44 abgebildet. Die Spektrometeroptiken 41' und 41" können auch zu einer einzigen Optik zusammengefaßt vor oder hinter dem Beugungsgitter 42 aufgestellt werden.
  • Wie in Figur 4 dargestellt ist, dispergiert das Beugungsgitter 42 die verschiedenen Wellenlängen des eintreffenden Lichts in x-Richtung auf Photodetektoren 435 des Photo-Detektorarray 43. In Figur 4 ist 140 ein von den Optiken 41' und 41" (siehe Figur 1) fokussiertes Lichtbündel nullter Beugungsordnung des Gitters 42; 141 und 142 sind von dem Beugungsgitter in x-Richtung dispergierte Lichtbündel erster Beugungsordnungen verschiedener Wellenlängen, die von den Optiken 41' und 41" auf die Photoempfänger des Arrays in eine Spalte 432 fokussiert werden. Den Lichtbündeln erster Beugungsordnung sind spektrale Komponenten des vom Fundus 7 remittierten Reflexstrahlbündels. 31 mit den entsprechenden spektralen Komponenten des zugehörigen Referenzstrahls 53 aus dem Referenzstrahlengang R1 überlagert. Die von Cornea 5 und Augenlinse 6 remittierten und ebenfalls mit Referenzlicht aus den ReferertzsVahlengängen R2 bzw. R3 überlagerten Reflexstrahlbündel 27 und 29 werden von den Optiken 41' und 41" auf benachbarte Array-Spalten 431 und 433 fokussiert.
  • Das am Austrittspunkt 50 aus der Faser 9 austretende Strahlbündel 51 wird von einer Optik 52 eines Faser-Kollimators kollimiert, durchläuft als paralleler Referenzstrahl 53 zwei Dispersions-Kompensationsprismen 54' und 54" und wird von einem Reflexionsprisma 55 über einen Strahlteiler 56 in Richtung einer optischen Achse 19 des Referenzarms 4 in das Interferometer I im ersten Referenzstrahleingang R1 eingespiegelt. Der Referenzstrahl 53 ist hier nur durch seinen Hauptstrahl gekennzeichnet. In der Figur 1 ist weiter angedeutet, daß dieser erste Referenzstrahl 53 auf dem Photo-Detektorarray 43 mit dem vom Fundus 7 kommenden Reflexstrahlbündel 31 überlagert ist. Durch Anpassung der optischen Länge des ersten ReferenzsVahlganges R1 vom Koppler 2 bis zum Strahlteiler 25 an die optische Länge vom Koppler 2 über den Fundus 7 des Auges A und zurück zum Strahlteiler 25 werden Interferenzen der überlappenden Strahlbündel sichergestellt; das bedeutet, daß der Ursprung des betreffenden Meßfelds am Fundus 7 liegt. Dies ist durch geeignete Wahl der Faserlängen und/oder der Position des Reflektionsprismas 55 eingestellt. Dazu ist vorzugsweise eine Verstellmechanik vorgesehen.
  • Diese kann beispielsweise wie in Fig. 1 ausgebildet sein. Das Reflektionsprisma 55 ist auf einem Tisch 57 einer manuell oder elektrisch betätigbaren Verschiebeeinheit 57' montiert. Eine Anpassung an unterschiedliche Augenlängen und Augenpositionen kann außerdem während einer Meßsequenz durch eine manuelle oder elektronisch angetriebene Verschiebung des Reflektionsprismas 55 mittels der Verschiebeeinheit 57' erfolgen. Die aktuelle Position des Prismas 55 kann mit Hilfe eines Zeigers 58 und eines Maßstabs 59 festgestellt werden. Alternativ können auch elektronische Positionsanzeigen benutzt werden und deren Daten können direkt in den Computer 200 eingegeben werden. Zur Kompensation der Probandenabhängigen Dispersion des Auges können die Prismen 54' und 54" relativ zueinander in Richtung des Doppelpfeils 54"' verschoben werden.
  • Das am Austrittspunkt 60 aus der Faser 12 austretende Strahlbündel 61 wird von einer Optik 62 eines Faser-Kollimators kollimiert und wird als paralleler Referenzstrahl 63 von einem Reflexionsprisma 65 über einen Strahlteiler 66 unter einem Winkel β zur optischen Achse 19 des Referenzarms 4 im zweiten Referenzstrahlengang R2 in den Strahlteiler 25 eingespiegelt. In Figur 1 ist angedeutet, daß die zweite Referenzstrahl 63 auf dem Photo-Detektorarray 43 mit dem von der Cornea 5 kommenden Retlexstrahlbündel 27 überlagert ist. Durch Anpassung der optischen Länge des zweiten Referenzstrahlengangs R2 vom Koppler 2 bis zum Strahlteiler 25 an die optische Länge vom Koppler 2 über die Cornea zum Strahlteiler 25 werden Kurzkohärenz-Interferenzen dieser zwei überlagernden Lichtbündel sichergestellt, beziehungsweise der Ursprung des Meßfelds festgelegt. Dies kann auch hier durch geeignete Wahl der Faserlängen und/oder der Position des Reflektionsprismas 65 erfolgen. Auch hier kann vorzugsweise eine Anpassung an unterschiedliche Augenlängen und Augenpositionen während einer Messung erfolgen, und zwar durch eine Verschiebung des Reflektionsprismas 65 mittels einer manuell oder elektrisch betätigten Verschiebeeinheit 67'. Die Position des Prismas 65 kann mit Hilfe eines Zeigers 68 und eines Maßstabs 69 festgestellt werden. Alternativ können auch hier elektronische Positionsanzeigen benutzt werden und deren Daten können direkt in den Computer 200 eingegeben werden.
  • Das am Austrittspunkt 70 aus der Faser 13 austretende Strahlbündel 71 wird von einer Optik 72 eines Faser-Kollimators kollimiert und als paralleler Referenzstrahl 73 nach Reflexion an einem Reflexionsprisma 75 von einem Reflexionsprisma 76 im dritten Referenzstrahlengang R3 unter dem Winkel a zur optischen Achse 19 des Referenzarms 4 in das Interferometer I eingespiegelt. In Figur 1 ist angedeutet, daß der dritte Referenzstrahl 73 auf dem Photo-Detektorarray 43 mit dem von der Vorderfläche der Augenlinse 6 beziehungsweise aus dem 3. Purkinje-Sanson Bild 30 kommenden Reflexstrahlbündel 29 überlagert. Durch Anpassung der optischen Länge des dritten Referenzstrahlenganges R3 vom Koppler 2 bis zum Strahlteiler 25 an die optische Länge vom Koppler 2 über die Vorderfläche der-Augenlinse zum Strahlteiler 25 werden Kurzkohärenz-Interferenzen der überlagernden Lichtbündel sichergestellt, beziehungsweise die Position des Ursprungs dieses Meßfelds festgelegt. Dies erfolgt auch hier durch geeignete Wahl der Faserlängen und/oder der Position des Reflektionsprismas 75. Auch während einer Meßsequenz am Auge kann vorzugsweise eine Anpassung an unterschiedliche Augenlängen und Augenpositionen erfolgen, und zwar durch eine Verschiebung des Reflektionsprismas 75 mittels einer manuell oder elektrisch betätigten Verschiebeeinheit 77'. Auch hier kann die Position des Reflexionsprismas 75 mit Hilfe eines Zeigers 78 und eines Maßstabs 79 festgestellt werden. Alternativ können auch hier elektronische Positionsanzeigen benutzt werden und deren Daten können direkt in den Computer 200 eingegeben werden.
  • In Figur 3 ist Interferometer I dargestellt, das im wesentlichen dem Interferometer der Figur 1 entspricht, weshalb gleiche Elemente mit den gleichen Bezugszeichen versehen sind. Im Unterschied zur Figur 1 ist das Interferometer hier nun aber in Freistrahloptik ausgeführt. Ein von der Kurzkohärenz-Lichtquelle 1 emittierte Ursprungs-Strahlbündel 101, wird von einer Optik 102 kollimiert und trifft als Parallelstrahl auf einen Strahlteiler 103. Der Strahlteiler 103 teilt das Strahlbündel 101 auf ein Meßstrahlbündel 104 im Interferometer-Meßarm 3 und ein Strahlbündel 105 im Interferometer-Referenzarm 4 auf. Das Strahlbündel 105 ist hier wieder durch seinen Hauptstrahl angedeutet.
  • Das vom Strahlteiler 103 reflektierte Beleuchtungsstrahlbündel 104 durchläuft den Strahlteiler 25 und beleuchtet das Auge 26. Zurück läuft ein Meßstrahl M, der wiederum ein Gemisch aus folgenden Reflexstrahlbündeln enthält: das an der Corneavorderfläche reflektierte Reflexstrahlbündel 27 kommt virtuell aus dem 1. Purkinje-Sanson-Bild 28 und das von der Linsenvorderfläche reflektierte Augenlinsen-Reflexstrahlbündel 29 kommt virtuell aus dem 3. Purkinje-Sanson-Bild 30. Diese beiden Reflexstrahlbündel werden divergent reflektiert und sind entsprechend aufgeweitet. In der Figur 3 ist von diesen beiden Reflexstrahlbündeln wieder nur ein kleiner Winkelbereich gezeichnet. Ein weiterer Reflex kommt vom Fundus 7 und bildet das Fundus-Reflexstrahlbündel 31. Insoweit liegen identische Verhältnisse wie bei dem Interferometer I der Figur 1 vor. Dies gilt auch für die Detektion der überlagerten Strahlen im Detektionzweig D.
  • Für die drei in unterschiedlichen Tiefenbereichen des Auges befindlichen Strukturen, beispielsweise Cornea 5, Augenlinse 6 und Fundus 7, werden, wie im faseroptischen Interferometer I der Figur 1, drei Referenzstrahlgänge R1, R2, R3 benutzt. Diese werden hier mit Hilfe von Strahlteiler 109 und 110 erzeugt. Ansonsten ist die Einkopplung und Weglängenverstellung unverändert.
  • Im Interferometer I der Figur 3 ist zur Beobachtung der Position des Probandenauges 26 relativ zum Fundus-Reflexstrahlenbündel 31 noch eine Beobachtungsvorrichtung bestehend aus einem teildurchlässigen Spiegel 130 und einer Optik 131 angeordnet. Die Beobachtung des Probandenauges kann dann direkt (132), mit Hilfe eines Okulars 133 oder mit Hilfe einer Kamera 134 erfolgen. Es kann auch sinnvoll sein, das Probandenauge 26 zusätzlich mit einer inkohärenten Lichtquelle 135 zu befeuchten. Ferner kann zur präzisen Positionierung des Probandenauges ein Bild 136 einer Strichplatte 137 benutzt werden, welches über teildurchlässige Spiegel 138 und 130 auf die Cornea 5 projiziert wird.
  • Bei Fehlsichtigkeit können dem Auge 26 sammelnde oder zerstreuende Hilfsoptiken 140 vorgesetzt werden, welche die Fehlsichtigkeit kompensieren.
  • Es sei noch erwähnt, daß man zur Vermeidung von störenden Reflexionen und zur Optimierung der Strahlintensitäten das auf den Strahlteiler 25 treffende Beleuchtungsstrahlbündel 104 mittels eines Polarisators 120 linear polarisieren kann und den Strahlteiler 25 als polarisierenden Strahlteiler ausbilden kann. Unter Verwendung weiterer polarisationsoptischer Komponenten wie λ/4-Platten in den Positionen 121 und 122 können dem Stand der Technik entsprechend Reflexionsverluste von Referenz- und Reflexstrahlbündel beim mehrmaligen Durchgang durch den Strahlteiler weitgehend- vermieden werden. Solche in der technischen Optik bekannte Methoden können auch für die Strahlteiler 56 und 66 benutzt werden.
  • Die oben beschriebene Beobachtungsvorrichtung, bestehend aus dem teildurchlässigem Spiegel 130 und der Optik 131 sowie der Hilfsoptik 140 zur Kompensation von Ametropien des Probandenauges, können auch im Interferometer I der Figur 1 eingesetzt werden. Ebenso kann dort auch zur Vermeidung von störenden Reflexionen und zur Optimierung der Strahlintensitäten das auf den Strahlteiler 25 treffende Meßstrahlbündel 24 mittels des Polarisators 120 linear polarisiert werden, der Strahlteiler 25 als polarisierender Strahlteiler ausgebildet werden, und λ/4-Platten in den Positionen 121 und 122 angeordnet werden.
  • Die Relaisoptik 33 kann im einfachsten Fall aus drei kreisrunden Teiloptiken 131, 132 und 133 unterschiedlicher Brechkräfte aufgebaut sein, wie das in der Figur 5a angedeutet ist. 131', 132' und 133' sind die Durchstoßpositionen der zugehörigen optischen Achsen. Die Teiloptiken sind so anzuordnen, daß ihre optischen Achsen in der y-z-Ebene liegen, entsprechend der Auffächerung der Referenzstrahlen in der y-z-Ebene. Alternativ können diese drei Teiloptiken zur Erhöhung ihrer Lichtleitwerte auch aus Teilen größerer kreisrunder Optiken unterschiedlicher Brechkräfte zusammengesetzt werden, wie in Figur 5b skizziert ist. Den Optiken 131, 132 und 133 der Figur 5a entsprechen hier die Teiloptiken 141, 142, und 143; die Durchstoßpunkte der optischen Achsen 141' und 143' können hier auch außerhalb der zugehörigen Teiloptiken liegen. Schließlich können die drei Teiloptiken auch aus zentralen Ausschnitten größerer kreisrunder Optiken unterschiedlicher Brechkräfte zusammengesetzt werden, wie es in Figur 5c abgebildet ist. Hier sind Optiken 151, 152 und 153 als zentrale Ausschnitte größerer Optiken ausgeführt (wie für 151 mit dem Kreis 151" angedeutet). 151', 152' und 153' sind die Positionen die Durchstoßpunkte der zugehörigen optischen Achsen.
  • Grundsätzlich können die Teiloptiken der Relaisoptik 33 auch an verschiedenen z-Positionen der optischen Interferometerachse 19 positioniert sein. Es muß dann nur durch entsprechende Wahl ihrer Brennweiten gewährleistet sein, daß die drei Reflexstrahlbündel 27, 29 und 31 in einer gemeinsamen Ebene 40 vor dem Spektrometer fokussiert werden.
  • Das Fourier-Domain Kurzkohärenz-Interferometer I muß wegen der separaten Reflexstrahlen kalibriert werden. Die Fourier-Domain Kurzkohärenz-Interferometrie liefert als Meßergebnis die optische Distanz der Objekt-Meßstelle relativ zur "Wegdifferenz-Null-Position" (für diese ist die optische Länge des Meßstrahls gleich der des Referenzstrahls). Die Distanzen der Ursprünge der voneinander unabhängigen Reflexstrahlengänge mit Referenzstrahlen R1, R2, R3 müssen daher festgelegt werden. Außerdem ist der Meßbereich in der Tiefen begrenzt, bei den eingangs angenommenen Parametern beispielsweise auf rund 5,3 mm; das Interferometer I muß daher auch an die zu erwartenden Augendistanzen grob vorangepaßt werden. Zur Anpassung und Kalibrierung kann beispielsweise als Grundeinstellung ein Planspiegel als Objekt im Meßstrahlengang an der zu erwartenden Position der Cornea positioniert werden. Als nächstes werden dann alle Reflexionsprismen (55, 65 und 75) so positioniert, daß alle zugehörigen Referenzstrahlen 53, 63, 73 Kurzkohärenz-Interferenzen mit dem von dieser Planplatte reflektierten Lichtbündel zeigen. Von dieser Grundjustierung ausgehend, können beispielsweise die Positionen je eines Referenzspiegel in die zu erwartenden Positionen der zu messenden Linsenvorderfläche 6 und des Fundus 7 eingestellt werden. Durch Ablesen der ausgeführten Verschiebungen mittels der Meßvorrichtungen 58, 59 sowie 68, 69 und 78, 79 oder der entsprechenden elektronischen Positionssignale hat man einen Basiswert für zu messenden Längen. Die optische Messung gibt nun die Distanz der tatsächlichen Position der Reflexionsstellen im Auge relativ zur Basisposition. Addiert man diese zum Basiswert, hat man die gesuchte Distanz in hoher Genauigkeit.
  • Die drei vom Auge remittierten Reflexstrahlbündel 27, 29 und 31 beleuchten neben den zugehörigen Teiloptiken 34, 35 und 36 auch die jeweils anderen Teiloptiken und werden von diesen defokussiert auf das Detektorarray 43 treffen. Es kommt dadurch zu Falschlicht und damit zu einem unerwünschten Untergrund. Da dieses Falschlicht mit den dort fokussierten Referenzstrahlen 53, 63, 73 bezüglich Wegdifferenz nicht angepaßt ist, entstehen am Detektorarray sehr hohe Modulationsfrequenzen, die vom Detektorarray nicht aufgelöst werden. Dennoch kann es neben dem erhöhten Rauschen durch Aliasing zu zusätzlichen Fehlsignalen kommen. Es ist daher vorteilhaft, dieses Falschlicht so weit wie möglich zu unterdrücken. Das ist durch eine räumliche Filterung in der Bildebene 40 möglich. Hierzu wird in dieser Ebene eine Lochblendenmaske 80 angebracht, mit drei Öffnungen an den Stellen der Bündelfoki. Die Positionen der Bündelfoki hängen allerdings - mit Ausnahme des Fundusbündel-Fokus - von der Position des Auges 26 ab. Das Auge muß daher mittels der oben beschriebenen Vorrichtung zur Beobachtung der Position des Probandenauges positioniert werden. So können die Reflexstrahlbündel von Fundus 7 und Cornea 5 gut diskriminiert werden.
  • Die Figuren 1 und 3 zeigen die Messung der Positionen von Comeavorderfläche, Linsenvorderfläche und Fundus. Wie schon eingangs erwähnt, können jedoch noch weitere Positionen von Augenstrukturen gleichzeitig gemessen werden, beispielsweise die Linsenrückfläche mit Hilfe des vom 4. Purkinje-Sanson Bild virtuell remittierten Lichts oder die Position der Cornea-Rückfläche mit Hilfe des vom 2. Purkinje-Sanson virtuell remittierten Lichts. Es bedarf hierzu entsprechender zusätzlicher Referenzstrahlbündel und Relais-Teiloptiken (33) sowie zusätzlicher Öffnungen in der Lochblendenmaske 80 und weiterer Arrayspalten. Allerdings kann man bei Meßfeldtiefen um die 5 mm ost davon ausgehen, daß die beiden Cornea-Positionen im Meßsignal gleichzeitig vorhanden sind.
  • Schließlich kann man die beschriebenen Interferometer auch zur Messung anderer Positionen wie etwa der Linsenrückfläche modifizieren. Hierzu muß z. B. der Referenzstrahl 53 entsprechend verkürzt werden und die Brennweite der Optik 35 verkleinert werden.
  • Es sei noch erwähnt, daß die Verwendung eines Arrays 43 mit nur drei (431, 432 und 433) oder vier Spalten nicht einschränkend zu verstehen ist. Kommerziell erhältliche Array-Kameras besitzen oft mehrere hundert Spalten. Diese können auf zweierlei Weise benutzt werden: man kann einerseits zwischen den auszulesenden Spalten mehrere ungenutzt lassen und damit optisches und elektronisches Übersprechen unterbinden. Es können aber auch die Zeilenelemente mehrerer benachbarter Spalten durch Binning miteinander verbunden werden, um die Meßempfindlichkeit zu erhöhen.
  • Figur 2 zeigt eine Abwandlung des Interferometer I der Figur 1; unverändert oder funktionsgleich aus Figur 1 übernommene Elemente sind deshalb mit denselben Bezugszeichen gekennzeichnet und werden hier nicht noch einmal erläutert. Der Unterschied zwischen der Bauweise der Figuren 1 und 2 liegt im wesentlichen darin, daß das Spektrometer S nun nicht mehr ein zweidimensionales Photo-Dekektorarray verwendet, sondern drei einzelne Zeilen-Photo-Detektorarrays 531, 532 und 533. Zur Aufteilung der z. B. durch Pupillentrennung räumlich getrennten mit den Referenzstrahlen 53, 63, 73 überlagerten Reflexstrahlenbündeln 31, 29, 27 sind im Detektionszweig D zwei geeignete Spiegel 540, 541 vorgesehen, die zwei der mit Referenzstrahlen überlagerten Reflexstrahlbündel zu zwei senkrecht zur optischen Achse liegenden Photo-Detektorarrayzeilen 531 und 533 umlenken.
  • Ein nochmals abgewandeltes Interferometer I ist in Figur 6 gezeigt. Auch hier sind unverändert oder funktionsgleich aus Figur 1 übernommene Bauteile mit denselben Bezugszeichen versehen, so daß die Wiederholung der Beschreibung entbehrlich ist. Das Interferometer I der Figur 6 verwendet eine gegenüber der Figur 1 abweichende Art der räumlichen Auftrennung. Die Auftrennung des Meßstrahls M und die Überlagerung mit den drei Referenzstrahlen 53, 63, 73 erfolgt hier durch Strahlteiler. Bauteile, die in ihrer Funktion oder ihrem Aufbau dem der Figur 1 entsprechen, sind mit denselben Bezugszeichen versehen, wobei gegebenenfalls zur Unterscheidung der Bauteile für die drei einzelnen Überlagerung ein Suffix .1, .2 oder .3 angehängt wurde. Das Bauteil 42.3 entspricht also beispielsweise dem Bauteil 42 der Figur 1, esist jedoch in der Darstellung der Figur 6 lediglich für die Überlagerung mit dem Referenzstrahl R3 wirksam.
  • Die getrennte Überlagerung der Reflexstrahlbündel 27, 29, 31 im Meßstrahl M erfolgt in der Bauweise der Figur 6 nun nicht durch eine mit geteilter Pupille versehenen Relaisoptik 33, sondern durch Umlenkelemente 33.1- sowie 33.2, die.die Reflexstrahlbündel 27 und 29 aus dem Strahl auskoppeln. Die Umlenkelemente 33.2 und 33 können dabei beispielshalber als spektral neutrale Strahlteiler ausgeführt werden.
  • Das Umlenkelement 33.2 leitet einen Teil des Meßstrahles M aus dem Strahlbündel, das vom Strahlteiler 25 abgeteilt wurde, aus und stellt es zur Überlagerung mit dem zweiten Referenzstrahl 63 bereit, der separat über einen Strahlteiler 66 eingekoppelt wird. Die nachgeschaltete Optik entspricht im wesentlichen der Optik des Detektorzweigs D der Figur 1, mit dem Unterschied, daß nun keine räumliche getrennte Pupille vorliegt; der Strahlengang nach dem Strahlteiler 33.2 führt keine räumliche getrennten Strahlen mehr. Dementsprechend muß das Photo-Detektorarray 43.2 auch nicht zweidimensional ausgeführt sein.
  • Gleiches gilt für das Photo-Detektorarray 43.3, das am Ende des Strahlengangs nach der Abteilung durch den Strahlteiler 33.3 liegt.
  • Der nach den Strahlteilern 33.2 und 33.3 noch vorhandene Anteil des Meßstrahles M wird mit dem Referenzstrahl 53 überlagert und am Photo-Detektorarray 43.1 nach zu voriger spektraler Auftrennung nachgewiesen.
  • Das Interferometer der Figur 6 weist also drei Spektrometer auf, S1 für die Überlagerung des verbleibenden Meßstrahls M mit dem Referenzstrahl 53 aus Referenzstrahlengang R1, das Spektrometer S2 im durch den Strahlteiler 33.2 abgetrennten Teil des Strahlengangs, in den der Referenzstrahl 63 eingekoppelt wird, und das Spektrometer S3, das dem Strahlteiler 33.3 nachgeschaltet ist und die abgeteilte Strahlung überlagert mit dem Referenzstrahl 73 nachweist.
  • Die räumliche Abtrennung durch Strahlteiler hat den Vorteil, daß die Lochblenden 80.1, 80.2 und 80.3 sehr viel wirksamer auf die Falschlichtunterdrückung ausgelegt werden können. Auch ist eine separate Fokussierung mittels der nun einfacher eigenständig verstellbaren Teiloptiken 36.1, 36.2 und 36.3 ohne Aufwand möglich, wodurch das Signal/Rausch-Verhältnis für die in der Tiefe separierten Objektbereiche verbessert ist.
  • Figur 7 zeigt ein Interferometer I, das wie die zuvor beschriebenen Interferometer auch das Prinzip verfolgt, in unterschiedlich langen Referenzstrahlengängen R1, R2 geführte Referenzstrahlen mit einem Meßstrahl M eigenständig zu überlagern und nachzuweisen. Die anhand der zuvor geschilderten Figuren realisierten Details sind deshalb auch uneingeschränkt für die nachfolgend beschriebenen Varianten möglich. Auch sind übereinstimmende Elemente mit denselben Bezugszeichen versehen, so daß auf Ihre Erläuterung hier verzichtet werden kann. Ebenso ist in den nachfolgenden Figuren durch Anhängung eines entsprechendes Suffixes .1, .2 etc. eine Unterscheidung hinsichtlich der Referenzstrahlen und deren Strahlengänge bzw. -überlagerungen getroffen.
  • Das Interferometer I der Figur 7 nimmt eine Trennung der Referenzstrahlengänge hinsichtlich der Polarisation vor. Dazu wird die Strahlung der Lichtquelle 1 mittels eines Polarisators 300 zirkular polarisiert, bevor sie auf den Strahlteiler 25 und von dort eine Probe P fällt. Alternativ wird eine zirkular polarisiertes Licht abgebende Strahlquelle verwendet. Im Referenzstrahlengang R wird die zirkular polarisierte Strahlung mittels eines Polteilers 301 in zwei senkrecht zueinander polarisierte Strahlen aufgeteilt. Der Polteiler kann beispielsweise als Wollaston-Prisma ausgeführt werden. Einstellbare Graufilter 303.1 bzw. 303.2 erlauben eine Einstellung der Intensität der Strahlung in den zwei Referenzstrahlgängen R1, R2, was zur Optimierung des Meßsignals vorteilhaft ist. Die Referenzstrahlen in R1 und R2 werden an Reflektoren 304.1 bzw. 304.2 reflektiert. Jeder Reflektor 304 ist auf einem Schlitten 305 verschieblich befestigt, so daß die Weglänge des Referenzstrahlengangs individuell einstellbar ist. Dies kann unter Steuerung des Computers 200 erfolgen. Die Verstellmechanik kann dabei insbesondere den anhand der Figuren 1ff geschilderten Aufbau haben. Der überlagerte Meßstrahl M mit den Referenzstrahlen, die in Rückreflexionsrichtung des Referenzstrahlengangs R1 und R2 nach dem Polteiler 301 überlagert sind, erfolgt im Detektionszweig D.
  • Darin werden die überlagerten Strahlen wieder durch einen Polteiler 302 aufgeteilt, so daß überlagerte Strahlen 306.1 und 306.2 vorliegt, in denen der Meßstrahl M mit dem Referenzstrahl aus R1 bzw. R2 überlagert ist. Die unterschiedliche Weglänge der Referenzstrahlengängen R1 und R2 bewirkt dabei, wie zuvor bereits beschrieben, eine entsprechende Tiefenselektion in der Probe P, die beispielsweise wiederum das menschliche Auge A sein kann. Die derart nach ihrer Polarisation getrennten überlagerten Strahlen 306 werden dann in einem Spektrometer S getrennt nachgewiesen.
  • Zur räumlichen Vermessung der Probe P ist schließlich noch ein Scanner 307 mit geeigneter Optik vorgesehen, der die Probe mit der einfallenden Strahlung abscant.
  • Der mögliche Aufbau des Spektrometers S ist in Figur 8 exemplarisch dargestellt. Dem Polteiler 302 ist beispielsweise jeweils ein Polarisationsmanipulator 308.1 bzw. 308.2 nachgeordnet, mit dem man die Polarisationsrichtung der Strahlen so drehen bzw. einstellen kann, daß sich im nachgeordneten Strahlengang eine maximale Ausbeute einstellt. Die polarisationsgetrennten Strahlen 306.1 und 306.2 fallen nach Durchlauf durch den Polarisationsmanipulator 308.1 bzw. 308.2 auf das Beugungsgitter 42.1 bzw. 42.2, Reflexionsbeugungsgitter. Die so erhaltene spektrale Aufteilung wird dann in Detektorarrayzeilen 43.1 bzw. 43.2.nachgewiesen.
  • Das Spektrometer S ist aus zwei Teil-Spektrometem S1 und S2 aufgebaut, die die polarisationsgeteilte überlagerte Strahlung 306 individuell nachweisen.
  • Die in den Figuren 1-6 durch räumliche Trennung realisierte getrennte Überlagerung und Detektion ist in der Bauweise der Figur 7 durch eine Polarisationstrennung erreicht.
  • FD OCT kann, wie erwähnt, auf zwei Weisen arbeiten. Zum einen kann eine kurz-kohärente Strahlquelle verwendet werden, die es vorstehend beschrieben wurde. Dann ist eine spektrale Auftrennung der überlagerten Strahlung erforderlich. Zum anderen kann auch eine durchstimmbare kurz-kohärente Strahlungsquelle verwendet werden. Stimmt man den Spektralbereich dieser Quelle durch, muß keine spektrale Analyse der Strahlung mehr erfolgen; statt dessen kann ein spektral unempfindlicher Detektor verwendet werden. Die Probenstruktur kann in beiden Fällen durch Bildung der inversen Fouriertransformierten des spektralen Interferenzmusters erhalten werden. Natürlich können die zuvor und auch nachfolgend erläuterten Interferometer I für eine der beiden Arbeitsweisen angepaßt werden. Die nötigen Abwandlungen sind in Figur 9 exemplarisch für das Interferometer I der Figur 7 gezeigt. Dem Polarisationsstrahlteiler 302 sind anstelle der Spektrometer S1 und S2 nun lediglich individuelle Detektoren 309.1 und 309.2 nachzuordnen, die keine spektrale Analyse der einfallenden Strahlung vornehmen. Die Bauweise der Figur 7 kann in der Variante gemäß Figur 9 auch für-TD OCT eingesetzt werden. Hier ist lediglich eine synchronisierte Verstellung der Weglänge der Referenzstrahlengänge R1, R2 erforderlich und das Durchstimmen der Lichtquelle 1 entfällt.
  • Figur 10 zeigt eine Abwandlung der Bauweise der Figur 7, bei der die räumliche Trennung der Referenzstrahlung R1 und R2 und die entsprechende Überlagerung nun nicht gemäß der Polarisation erfolgt, sondern durch spektrale Trennung. Es sind deshalb zwei Lichtquellen 1.1 und 1.2 vorgesehen, die Strahlung bei einer unterschiedlichen Wellenlänge abgeben, wie dies in Figur 11 gezeigt ist. Im dort aufgetragenen Spektrum ist die linke Wellenlängenverteilung beispielsweise der Lichtquelle 1.1 zuzuordnen, die rechte Wellenlängenverteilung ist in der Strahlung der Lichtquelle 1.2 gegeben. Die Bauweise des Interferometers I der Figur 10 entspricht ansonsten der dem Interferometer der Figur 7, mit dem Unterschied, daß nun die Polteiler nicht mehr erforderlich sind, sondern zwei spektral getrennte Strahlen durch das Interferometer propagieren. Die der Übersichtlichkeit halber eingezeichnete räumliche Trennung muß dabei zwingend im gesamten Strahlengang vorhanden sein, gegebenenfalls können geeignete nicht dichroitische Teiler eingesetzt werden. Der Aufbau kann dann im wesentlichen dem der Figur 7 entsprechen, wobei die Polteiler 301 und 302 durch entsprechend dichroitische Teiler ersetzt sind und der Polarisator 300 gegen eine entsprechende Überlagerungseinheit der spektral verschiedenen-Strahlen asugetauscht ist.
  • Figur 12 zeigt den Aufbau des Spektrometers S, das die zwei spektral getrennten Strahlen 306.1 und 306.2. nachweist. Wieder ist zur Verdeutlichung ein räumlicher Abstand zwischen den Strahlen 306. 1 und 306.2 eingezeichnet, der nicht gegeben sein muß. Das Beugungsgitter 42 teilt die beiden überlagerten, spektral verschiedenen Strahlen in unterschiedliche Raumwinkel ab, so daß sie auf eigenständige Photo-Detektorarrays 43.1 sowie 43. 2 geleitet werden können. In der Bauweise der Figur 12 ist zur Aufweitung des Strahlengangs zusätzlich noch ein Umlenkspiegel 310 vorgesehen.
  • Für den Fall, daß die Lichtquellen 1.1 und 1.2 durchgestimmt werden, kann die spektrale Analyse wiederum entfallen und es sind lediglich die spektral unempfindlichen Detektoren 309.1 bzw. 309.2 vonnöten. Hierzu müssen die überlagerten Strahlen 306. 1 und 306.2 allerdings durch geeignete Mittel, die dem Fachmann bekannt sind, räumlich getrennt sein.
  • Natürlich kann statt zwei eigenständigen Lichtquellen 1.1 und 1.2 auch eine Lichtquelle verwendet werden, die zwei chromatisch verschiedene Strahlen simultan abgibt. Figur 14 zeigt eine weitere Abwandlung des Spektrometers der Figuren 1-10, wobei nun allerdings keine gleichzeitige Messung mit Überlagerung aus den Referenzstrahlengängen R1, R2 usw. erfolgt, sondern eine sequentielle Überlagerung und Messung. Der Aufbau entspricht im wesentlichen dem der Figur 7, jedoch sind keine polarisationswirksamen Elemente eingesetzt.
  • Der Referenzstrahlengang R weist statt dessen mehrere Strahlteiler 311 auf, die den Strahlengang in mehrere Referenzstrahlengänge R1, R2, ... aufteilen, die jeweils in entsprechenden Reflektoren 304 enden. Jeder Reflektor 304 ist auf einen Schlitten 305 befestigt. Es sind im Ausführungsbeispiel drei verschiedene Referenzstrahlengänge R1, R2, R3 gebildet. Den Strahlteilern 311.1, 311.2 bzw. 311.3 ist ein Blendenrad 312 nachgeordnet, das ein-Wahlmittel realisiert, welches festlegt, welcher der Referenzstrahlengänge R1, R2, R3 aktiv ist. Die anderen sind abgeschaltet. In der Darstellung der Figur 14 ist der Referenzstrahlengang R1 aktiv, d. h. dessen Referenzstrahl wird am Spiegel 304.1 reflektiert. Durch Umschalten des Blendenrads 312 wird also jeweils ein unterschiedlich langer Referenzstrahlengang aktiv geschaltet, so daß der überlagerte Strahl 306 immer eine Überlagerung aus dem Meßstrahl M mit dem Referenzstrahl aus dem entsprechend aktivierten Referenzstrahlengang gebildet ist. Das Spektrometer S weist dann das entsprechende Signal nach. Die Länge der Referenzstrahlengänge R1, R2, R3 (natürlich kann eine beliebige Anzahl von Referenzstrahlengängen verwendet werden) bewirkt, wie bereits erwähnt, die Tiefenauswahl des Objektbereiches in der Probe P.
  • Verwendet man für die zuvor oder nachfolgend beschriebenen Interferometer eine Breitbandlichtquette 1 sind das bzw. die Spektrometer S vorzugsweise im sogenannten Czerny-Turner-Aufbau realisiert. Beleuchtet man die Probe P bzw. das Auge A mit mehreren Spots oder mit einer Beleuchtungslinie, was für alle hier beschriebenen Bauweisen möglich ist, sind Spektrometer S mit entsprechenden Detektorarrays ausgestattet, die das spektrale Interferenzmuster auf verschiedenen Detektorarrayzeilen aufnehmen.
  • Bei einer durchgestimmten Lichtquelle 1 bieten sich anstelle der Spektrometer S, wie bereits erwähnt, Photodioden oder Monochromatoren an, die für den durchgestimmten Spektralbereich der Lichtquelle 1 in der Regel am empfindlichsten sind. Werden hier mehrere Spots oder eine Zeile bzw. Linie in der Probe P beleuchtet, ist der Detektor wiederum mit der entsprechenden Anzahl von Photodioden oder Pixel ausgestattet. Grundsätzlich muß der Photodetektor das Interferenzmuster synchronisiert zur Durchstimmung der Lichtquelle aufzeichnen. Dies erfolgt durch geeignete Steuerung des Computers 200, der eine exemplarische Realisierung eines Steuergeräts ist, das den Betrieb des Interferometers I steuert.
  • Das Steuergerät ermöglicht insbesondere eine voll automatische zwei- oder drei-dimensionale Bildgewinnung.
  • Figur 15 zeigt eine Variante des Spektrometers der Figur 7, wobei das Auge nun mit einem Doppelstrahl beleuchtet wird. Elemente, die bereits in Figur 7 geschildert wurden, werden hier deshalb nicht noch einmal beschrieben. Der Doppelstrahl stellt zwei senkrecht zueinander polarisierte Meßstrahlen M1 und M2 zur Verfügung, wobei diese Strahlen koaxial laufen und gegeneinander versetzt sind. Das Interferometer I der Figur 15 verwendet also zwei Meßstrahlen M1 und M2 und zwei Referenzstrahlen R1 und R2. Damit sind zwei gleichzeitige Messungen einfach möglich, beispielsweise Position der Cornea und Position des Fundus. Die Aufteilung des Doppelstrahls mittels Polteilem 313, 314 und Umlenkspiegeln 315, 316 erlaubt es weiter, eine separate Fokussierung für die beiden Meßstrahlen M1 und M2 vorzunehmen. Dazu muß lediglich ein Fokuselement in den Umlenkweg zwischen den Polteilern 313 und 314 geschaltet werden. Damit kann beispielsweise der Meßstrahl M1 auf die Augenvorderfläche fokussiert werden, wohingegen der Meßstrahl M2 parallel und damit durch die Augenlinse im Fundus fokussiert einfällt. Die Augenlänge L erhält man als Summe aus dem Versatz (= der Wegdifferenz) der zwei Meßstrahlen M1 und M2 aufgrund der Strahlaufspaltung durch die Strahlteiler 313 und 314, plus die Wegdifferenz der Referenzstrahlen R1 und R2, plus eine noch verbleibende optische Wegdifferenz die sich aus der Differenz der Positionen der Signalpeaks der zwei Fouriertransformierten der zwei K-Spektren ergibt.
  • Figur 16 zeigt eine Abwandlung des Interferometers I der Figur 15,- bei dem nun-für die zwei Meßstrahlen M nur ein Spektrometer S vorgesehen ist. Dazu ist die Summe der Wegdifferenzen zwischen den beiden Meßstrahlen M1 und M2 und den zugehörigen Referenzstrahlen R1 und R2 geeignet auf Werte kleiner als die Meßfeldtiefe z eingestellt. Die Augenlänge ergibt sich dann, wie für Figur 15 schon beschrieben; die Differenz der Positionen der zwei Signalpeaks der zwei Fouriertransformierten wird am Computer-Monitor abgelesen Diese Einstellung kann dadurch bewirkt werden, daß man die Wegdifferenzen durch einen Verstellmechanismus, beispielsweise einen Verschiebemechanismus der zuvor für andere Interferometer geschilderten Art, entweder am jeweiligen Meßstrahl oder Referenzstrahl einstellt.
  • Eine Alternative besteht darin, einen Meßstrahl als Referenzstrahl zu verwenden und die optische Weglänge der Strahlen geeignet so einzustellen, daß wiederum zwei Meßsignale, also die Autokorrelationsfunktion (AKF) des Referenzstrahles und das Interferenzsignal, am Computer-Monitor dargestellt werden. Nun ergibt sich die Augenlänge als Summe aus Wegdifferenz zwischen den beiden Strahlen plus am Monitor abgelesene Positionsdifferenz der zwei Fourier-Transformierten. Die Vorrichtung ist damit auf Bewegungen des Meßobjektes unempfindlich.
  • Für die Messung der Augenlänge ist es vorteilhaft, das Interferenzmuster hinsichtlich der Weglängendifferenz auf die Corneavorderfläche zu beziehen: Dies kann man dadurch erreichen, daß der Referenzstrahlengang einen Reflex von der Cornea ausnutzt, also das Referenzstrahlbündel an der Cornea reflektiert wird. Ein entsprechender Aufbau ist in Figur 17 dargestellt. Bauteile die von den zuvor geschilderten Interferometern I unverändert oder funktionsgleich übernommen wurden, sind hier wieder mit denselben Bezugszeichen versehen und werden nicht noch einmal erläutert.
  • Der Strahlengang der Figur 17 ist der eines Kurzkohärenz-Interferometers I, das einen Doppelstrahl aus zwei Strahlen 400, 401, die koaxial zueinander sind und gegeneinander versetzt sind, auf das Auge richtet. Der vorauseilende Strahl 401 wirkt als Referenzstrahl, der an der Corneavorderfläche reflektiert wird. Die Weglängendifferenz zwischen den Strahlen 400 und 401 wird dabei über Spiegel 318 und 319 eingestellt, die über einen Strahlteiler 317 beaufschlagt werden. Die Weglängendifferenz entspricht im wesentlichen der zu erwartenden Augenlänge L. Die voreingestellte Weglängendifferenz sorgt dafür, daß der Referenzstrahl 401 zusammen mit dem am Fundus reflektierten Meßstrahl 400 interferiert, so daß das einem Strahlteiler 322 nachgeordnete Spektrometer ein entsprechendes Interferenzsignal aufzeichnet. Eine Fourier-Auswertung des Signals zeigt dann zum einen die Autokorrelationsfunktion des Referenzstrahls 400, der mit sich selbst interferiert, und zum anderen einen entsprechenden Abstand für die Überlagerung des Referenzstrahles 401 mit dem Meßstrahl 400. Zusätzlich ist noch die Weglängendifferenz Z, die extern eingestellt wurde, zu berücksichtigen. Die Länge L des Auges A ergibt sich also aus der Summe aus dem Meßergebnis der optischen Messung plus der mechanisch eingestellten Weglängendifferenz zwischen 400 und 401. Die Voreinstellung ermöglicht die FD-Analyse mit einfachen Mitteln, bei vergleichsweise geringem Meßbereich.
  • Das Interferometer der Figur 17 ist ein Beispiel, bei dem der Referenzstrahl an der Probe reflektiert ist. Dadurch ist eine automatische Relativmessung erreicht und der Abstand wird nicht durch Differenz zweier absoluter Meßpunkte ermittelt. Ortsvarianten der Probe sind dadurch zu vernachlässigen.
  • Figur 18 zeigt eine faseroptische Ausbildung des Interferometers I der Figur 17. Wiederum sind unverändert oder funktionsgleich übernommene Bauteile mit denselben Bezugszeichen versehen. Die Bildung der Strahlen 400, 401 erfolgt nun unter Verwendung eines Kopplers 323, der zwei Fasern speist, die den Referenzstrahl 401 und den Meßstrahl 400 abgeben. Der Referenzstrahl 400 ist hinsichtlich der Weglänge durch einen Verschiebemechanismus einstellbar, wie er zuvor bereits beispielsweise anhand der Figur 1 erläutert wurde. Zusätzlich ist auf dem Verschiebemechanismus aber noch die Optik 320 angeordnet, so daß sich mit der Verschiebung automatisch auch eine geeignete Fokussierung auf die Cornea 5 ergibt. Weiter sind die Dispersions-Kompensationsprismen 54' und 54" in den Verschiebemechanismus derart eingebunden, daß eine Längenänderung des Lichtweges automatisch auch eine entsprechende angepaßte, d. h. dynamische Dispersions-Kompensation zur Folge hat. Ansonsten entspricht der Aufbau funktionell dem der Figur 17. '
  • Zusätzlich ist zur Verdeutlichung noch das nach der Auswertung durch den Computer 200 dargestellte Monitor-Bild 201' gezeigt. Auch ist Figur 18 zu entnehmen, daß der Meßstrahl M1, der zugleich auch als Referenzstrahl R wirkt, auf die Corneavorderfläche fokussiert ist. Es ist damit ein dynamischer Fokus erreicht, der an verschiedene Augenlängen angepaßt werden kann. Durch die verstellbare Optik 325 ist der Meßstrahl M2 so kollimiert, daß die optische Wirkung des Auges A den Meßstrahl M2 am Fundus 7 fokussiert.
  • Bei verminderten Ansprüchen an die Signalqualität kann man die Strahlseparations-Vorrichtungen vereinfachen. Dann hat man mehrere Meßsignale gleichzeitig am Array und in der Fouriertransformierten. Entsprechende Strahlengänge sind in den Figuren 19 und 20 abgebildet. Es handelt sich um Vereinfachungen der Strahlengänge der Bauweise gemäß Figur 16. Der Referenzspiegel 304.2 ist nun in beiden Anordnungen auf einem Verschiebetisch 304.4 montiert. Durch Bewegen dieses. Verschiebetisches kann man an der synchronen Bewegung des zugehörigen Signalpeaks der Fouriertransformierten erkennen, zu welcher Probenfläche er gehört.
  • In der Figur 20 ist der Referenzspiegel 304.1 durch einen teildurchlässigen Spiegel 304.3 ersetzt. Es können zwischen dem Strahlteiler 25 und dem Referenzspiegel 304.2 noch weitere teildurchlässige Referenzspiegel angeordnet werden. So können gleichzeitig zwei oder mehrere Referenzstrahlen im Referenzstrahlengang benutzt werden und mehrere in der Tiefe beabstandete Meßbereiche erfaßt werden. Diese weiteren Referenzspiegel können auf Verschiebetischen montiert werden, um die Meßflexibilität zu erhöhen.
  • Die Bauweise der Figur 20 kann noch weiter abgewandelt werden. Dann weist das Spektrometer S ein Detektor-Array 43 mit mindestens 7000 Pixeln auf, z. B. 8000. Es wird dann mit nur einem Meßstrahl gearbeitet, und der teildurchlässige Spiegel 304.3 entfällt. Dadurch liegt im Interferometer 1 nur noch ein Referenzstrahlengang R vor. Die Augenlängenmessung erfolgt durch das pixelreiche Array 43 in Kombination mit geeigneter spektraler Auffächerung durch das Beugungsgitter 43 in einer Messung.
  • In Figur 24 bezeichnet 201 eine in der Kurzkohärenz-Interferometrie übliche Lichtquelle, beispielsweise eine Superlumineszenz-Diode. Eine Lichtleitfaser 202 leitet die Strahlung zu einem Kollimator 203, der das aus der Lichtleitfaser emittierte Lichtbündel 204 kollimiert und durch einen Strahlteiler 205 hindurch als Meßstrahl 215 über einen Umlenkspiegel 206 zu einem Strahlteiler 207 reflektiert. Der Strahlteiler 207 bildet mit den Spiegeln 208 und 209 ein Michelson-Interferometer 210, welches einen Doppelstrahl 211 erzeugt, der durch einen Strahlteiler 212 hindurch auf ein Auge 213 gerichtet wird. Die von den Grenzflächen des Auges 213 reflektierten und zurück gestreuten Lichtwellen werden von einem Strahlteiler 212 zu einem Strahlteiler 214 und von diesem zu einem Spektrometer 216 gespiegelt.
  • Das vom Strahlteiler 205 gespiegelte Lichtbündel 217 trifft auf einen Strahlteiler 218, der mit Spiegeln 219 und 220 ein weiteres Michelson-Interferometer 221 bildet, welches einen Referenz-Doppelstrahl 222 erzeugt, der durch den Strahlteiler 214 hindurch ebenfalls zum Spektrometer 216 gespiegelt wird. Das Spektrometer 216 besteht aus einem Reflexionsgitter 223, einer Spektrometeroptik 224 und einem linearen Detektor-Array 225. Alternativ kann auch ein Spektrometer mit einem Transmissionsgitter oder einem anderen dispersiven Element benutzt werden.
  • Die Messung intraokulärer Distanzen erfolgt so, daß die zwei Referenzspiegel 219 und 220, beispielsweise mit Hilfe von Schrittmotor- oder Piezomotor-gesteuerten Positionierem 219' und 220', so verschoben werden, daß die Signalspitzen jener Grenzflächen im Meßfeld sichtbar werden, die die zu messende Distanz definieren (vgl. Figur 21). Für die in Figur 21 angedeutete Messung der Augenlänge L ist beispielsweise L = S + - R - - C
    Figure imgb0007
  • In Figur 25 ist ein Teil des Interferometers der Figur 24 faseroptisch ausgeführt (strukturell oder funktionell unveränderte Bauteile sind in den Figuren generell mit den gleichen Bezugszeichen versehen). Hier wird das von der Kurzkohärenz-Lichtquelle 201 emittierte Licht von einer Lichtleitfaser 230 zu einem Koppler 231 geführt und von diesem in Meßstrahl und Referenzstrahl geteilt, die durch Fasern 232 und 233 und Kollimatoren 234 und 235 den Interferometern 210 und 221 zugeführt werden. Der restliche Strahlengang entspricht dem der Figur 24.
  • In Figur 26 ist das Kurzhohärenz-Interferometer mit einem Doppel-Spektrometer 240 ausgerüstet. Es besteht aus zwei gleichen Beugungsgittern 242 und 243, einem Strahlteiler 214, der hier die an den Gittern 242 und 243 gebeugten Strahlen zusammenführt, und dem linearen Detektor-Array 225. Die vom Auge 213 reflektierten und zurückgestreuten Lichtwellen 241 werden von dem Beugungsgitter 242 gebeugt, und der Doppel-Referenzstrahl 222 wird von dem Beugungsgitter 243 gebeugt; beide Beugungsbilder überlagern ihr Beugungsbild auf dem linearen Detektor-Array 225. Man muß die zwei Beugungsgitter 242 und 243 durch Beobachtung von der Array-Seite her so einjustieren, daß sie kongruent sind. Dann arbeitet das in der Figur 6 dargestellte Kurzhohärenz-Interferometer genauso, wie das der Figuren 4 und 5. Das Detektor-Array 225 registriert die reelle Intensität I(k) des (komplexen) Frequenzspektrums I(k) der Strahlung am Interferometer-Ausgang.
  • Das Beugungsgitter 243 des Doppel-Spektrometers 240 ist mit einem piezoelektrischen Aktuator 245 verbunden, der es in der Gitterebene normal zu den Gitterlinien um 1/4 der Gitterkonstante verschieben kann (Doppelpfeil 246). Damit erhalten die am Gitter gebeugten Wellen eine Phasenverschiebung von π/2. In dieser Position registriert daher das Detektor-Array 225 die zur reellen Intensität I(k) zugehörige Quadraturkomponente, mit der man nach obiger Gleichung 3 das komplexe Frequenzspektrum î(k) der Strahlung am Interferometer-Ausgang erhält.
  • Analog kann auch das Gitter 242 um 1/4 der Gitterkonstante verschoben werden. Alternativ kann eine Phasenverschiebung der Referenzstrahlen auch mittels eines elektrooptischen Phasenmodulators 244 im Doppel-Referenzstrahl 222 erfolgen. Dieser kann auch im Doppel-Meßstrahl 241 angeordnet werden. Während jedoch die Gitter-Methode von der Wellenlänge unabhängig wirkt, ist dies bei der Phasenmodulator-Methode nicht der Fall; letztere Methodekann bei Wellenlängen-Bandbreiten bis zu einigen 10 nm verwendet werden.
  • Figur 27 stellt eine Anordnung zur Augen-Teilstreckenmessung mittels Fourier-Domain-Interferometrie dar, die zur Achslängenmessung selektiv das retinale Pigmentepithel (RPE) benutzt und das von den anderen retinalen Schichten zurück gestreute Licht polarisationsoptisch diskriminiert. Hierzu befindet sich in dem vom Kollimator 203 abgestrahlten Lichtbündel 204 ein Linear-Polarisator 251. Dieser stellt einen definierten Polarisationszustand des Lichtbündels 204, welches das Kurzkohärenz-Interferometer beleuchtet, sicher. Ferner befindet sich in jenem Referenz-Teilstrahl 253, der mit dem vom Fundus des Auges 213 reflektierten Licht interferiert, eine λ/4-Platte 252 unter 45° zur Polarisationsebene. Hierdurch entsteht zirkular polarisiertes Licht, das durch die Reflexion am Referenzspiegel 219 seine Drehrichtung umkehrt. Beim nochmaligen Durchlaufen der λ/4-Platte 252 entsteht wieder linear polarisiertes Licht, nunmehr jedoch mit um 90° gedrehter Polarisationsebene, also normal zur ursprünglichen Polarisationsebene. Bei normal zur ursprünglichen Richtung polarisiertem Licht führt lediglich das vom RPE reflektierte Licht, welches in seiner Polarisationsrichtung verändert ist, zu Interferenzen. So erhält man die Distanz zwischen Cornea-Vorderfläche und RPE, also eine Augen-Achslängenmessung auf Basis des RPE.
  • Durch Drehen der λ/4 -Platte (Doppelpfeil 255) um eine Achse 253' parallel zur Achse des Strahls 253 kann der Anteil des parallel zur ursprünglichen Polarisationsebene polarisierten Lichts verändert werden. Hierdurch wird die Stärke der Interferenzen mit dem vom Fundus reflektierten Licht eingestellt, und neben dem RPE können auch andere Grenzschichten der Retina sichtbar gemacht werden.
  • Analog hierzu kann die Polarisationsebene des Strahls 253 mit Hilfe einer um die Strahlachse 253' drehbaren λ/2 -Platte anstatt der Platte 252 gedreht werden. Dies verändert die Stärke der Interferenzen mit dem vom Fundus reflektierten Licht.
  • Weitere Anpassungen an verschiedene Meßumstände sind durch die in Figur 28 angeführten Hilfseinrichtungen möglich, die prinzipiell im Meßstrahlengang und insbesondere darin im Doppel-Meßstrahl 211 angeordnet oder darin eingespiegelt werden können:
  • Zur Kompensation des Astigmatismus der Probandenaugen kann eine Linsengruppe 280 aus zwei Zylinderlinsen 281 und 282 entgegengesetzter Brechkraft benutzt werden. Durch Verdrehen ihrer Zylinderachsen um die Achse des Meßstrahls (z. B. 211) relativ zueinander (Doppelpfeil 283) können unterschiedliche zylindrische Brechkräfte der Linsengruppe realisiert werden. Durch Drehen der gesamten Linsengruppe (Doppelpfeil 284) um die Achse-211' des Meßstrahls kann die Orientierung der Zylinderachse der Gruppe verändert werden. Mit dieser Hilfseinrichtung kann man im Meßstrahl einen dem Probandenauge entgegengesetzten Astigmatismus erzeugen und den Probanden-Astigmatismus kompensieren.
  • Eine Zoom-Optik 286 (beispielsweise mit einer verschiebbaren - Doppelpfeil 287 - Zerstreungslinse 288 zwischen zwei Sammellinsen 289 und 290) kann dazu verwendet werden, eine Ametropie des Probandenauges zu kompensieren. Diese Zoom-Optik hat eine Mittelstellung mit Brechkraft Null und kann positive als auch negative Brechkräfte erzeugen. Mit Hilfe eines Strahlteilers 292 kann eine Refraktometrie-Vorrichtung, beispielsweise ein Hartinger Koinzidenz-Refraktometer (offener Pfeil 293) eingespiegelt werden. Analog kann mit Hilfe eines Strahlteilers 294 ein Fixierlicht (Pfeil 295) eingespiegelt werden, um die Sehachse des Probandenauges 213 festzulegen. Das Fixierlicht kann farblich unterschiedlich (z. B. grün) sein. Auch kann es durch blinken hervorgehoben werden. Zur Festlegung bzw. Variation der Blickrichtung kann positionsverstellbares Fixierlicht verwendet werden.
  • Die Gruppe 300 besteht aus zwei Keilen 301 und 302, die relativ zueinander verschiebbar sind (Doppelpfeil 297). Hierdurch kommt es zu einer Deviation des Meßstrahls (z. B. 211 deren Größe durch den Betrag der relativen Prismenverschiebung und deren Richtung durch Drehen (Doppelpfeil 103) der Prismengruppe um die Achse 211' des Doppel-Meßstrahls 211 verändert werden kann. So kann die optische Achse des fixierten Auges parallel zur Strahlachse 211' des Meßstrahls eingestellt werden, um optimale Lichtreflexe aus dem Auge zu erhalten.
  • Eine Zoom-Optik 310 dient für Messungen an der Vorderkammer des Probandenauges. Sie ist so ausgelegt, daß ihre Brechkraft von Null bis zu mehreren Dioptrien einstellbar ist. Die durch diese Optik erzeugte Fokussierung des Meßstrahls (z. B. 211) in oder nahe an die Vorderkammer erhöht die Signalstärke der aus der Vorderkammer reflektierten Lichtanteile. Zustarke Fokussierung jedoch erfordert sehr sorgfältige Einstellung und Beibehaltung der transversalen Position des Auges, was schwierig ist. Man wird daher das Optimum bei einer geringeren Fokussierung finden. Dieses muß empirisch über entsprechende Einstellungen der Zoom-Optik 310 gefunden werden. Hierzu kann diese Zoom-Optik neben einer Brechkraftverstellung (Doppelpfeil 311) auch eine Verstellmöglichkeit ihrer Position in Richtung der optischen Achse des Meßstrahls besitzen (Doppelpfeil 312). Auch kann man anstelle der Zoom-Optik Optiken 313 entsprechender fixer Brechkraft in den Strahlengang einschwenken (Doppelpfeil 314), und ebenfalls in Richtung der optischen Achse 211' verstellbar anordnen.
  • Die oben angeführten Hilfseinrichtungen können alle zusammen im Meßstrahlengang (z. B. den Doppel-Meßstrahl 211) angeordnet werden. Alternativ können natürlich auch einzelne oder einige dieser Einrichtungen angeordnet werden. Die Gruppe 300 erfordert jedoch meist eine separat Fixierung des Auges 213 und sollte daher nur gemeinsam mit der Augenfixierung mit den Komponenten 294 und 295 verwendet werden. Da der Proband bei den hier üblicherweise benutzten Wellenlängen den Meßstrahl (z. B. 211) rot sieht, ist, wie erwähnt, für das eingespiegelte Licht eine andere Farbe, beispielsweise grün, vorteilhaft.
  • Es sei noch erwähnt, daß neben der Konfiguration eines FDI nach Figur 24 auch die anderen Konfigurationen analog zu Figur 25 faseroptisch modifiziert werden können.
  • Das erfindungsgemäßen Verfahren wurden im obigen Text anhand der Messung der Achslänge des Auges beschrieben. Es sei jedoch hier auch explizit darauf hingewiesen, daß diese Verfahren auch zur Messung anderer intraokulärer Distanzen, wie der Corneadicke, der Vorderkammertiefe und der Linsendicke eingesetzt werden können. Hierzu müssen lediglich die Referenzspiegel 219 und 220 in solche Positionen verschoben werden, daß die entsprechenden Reflexe in den zwei Meßfenstem sichtbar werden. Die Längenmessung erfolgt analog wie oben im Zusammenhang mit Gleichung 4 beschrieben.

Claims (18)

  1. Vorrichtung zur interferometrischen Messung einer Probe (P), insbesondere des Auges (A), mit einer Kurzkohärenz-Interferometeranordnung (I), welche einen Meßstrahlengang, durch den ein Meßstrahl auf die Probe (P) fällt, und einen ersten Referenzstrahlengang (R) aufweist, durch den ein Referenzstrahl läuft, der mit dem Meßstrahl überlagert und zur Interferenz gebracht wird, dadurch gekennzeichnet, daß
    die Interferometeranordnung (I) mindestens einen zweiten Referenzstrahlengang (R2) aufweist, dessen optischen Weglänge sich von der des ersten Referenzstrahlenganges (R1) unterscheidet, wobei die Weglängendifferenz gemäß einem Abstand zweier in Tiefenrichtung der Probe (P) beabstandeter Probenbereiche (5, 6, 7) gewählt ist und wobei eine Steuereinrichtung (200) aus den detektierten überlagerten Strahlen mittels Fourier-Spektralanalyse unter Berücksichtigung der Weglängendifferenz der Referenzstrahlengänge (R1, R2) den Abstand der Probenbereiche (5, 6, 7) ermittelt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Interferometeranordnung (I) eine Überlagerungseinrichtung (25, 322) aufweist, die die Referenzstrahlen (53, 63, 73) aus den Referenzstrahlengängen (R1, R2) getrennt mit dem Meßstrahl (M) aus dem Meßstrahlengang überlagert und die derart überlagerten Strahlen dann an eine Detektoreinrichtung (S) zum Nachweis weiterleitet.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Überlagerungseinrichtung einen Umschaltmechanismus (322) zum Umschalten zwischen den zwei Referenzstrahlengängen (R1, R2) aufweist, so daß die Überlagerung für die zwei Referenzstrahlengänge (R1, R2) sequentiell erfolgt.
  4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Überlagerungseinrichtung (25) zur getrennten Überlagerung eine Polarisationstrennung einsetzt, so daß die Überlagerung und das Weiterleiten zur Detektoreinrichtung (S) für die zwei Referenzstrahlengänge (R1, R2) nach Polarisation getrennt und gleichzeitig erfolgt.
  5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Überlagerungseinrichtung (25) zur getrennten Überlagerung eine dichroitische Trennung einsetzt, so daß die Überlagerung und das Weiterleiten zur Detektoreinrichtung (S) für die zwei Referenzstrahlengänge (R1, R2) spektral getrennt und gleichzeitig erfolgt.
  6. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Überlagerungseinrichtung (25) zur getrennten Überlagerung den Meßstrahl (M) in Meßstrahlbündel räumlich auftrennt und die aufgetrennten Meßstrahlbündel jeweils mit einem der Referenzstrahlen (53, 63, 73) aus einem der Referenzstrahlengänge (R1. R2, R3) überlagert, wobei zur räumlichen Auftrennung insbesondere eine Pupillenteilung eingesetzt ist.
  7. Vorrichtung nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß mindestens ein Spektrometer (S) vorgesehen ist, das die überlagerten Strahlen spektral analysiert und Meßsignale an die Steuereinrichtung (200) leitet.
  8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß eine die Interferometeranordnung speisende, spektral durchstimmbare Strahlungsquelle (1) und eine spektral nicht-auflösende Detektoreinrichtung (S) zur Messung vorgesehen sind, wobei die Detektoreinrichtung (S) Meßsignale an die Steuereinrichtung (200) leitet, die unter Berücksichtigung der Durchstimmung der Strahlungsquelle (1) die Fourier-Spektralanalyse durchführt.
  9. Vorrichtung nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß im Meßstrahlengang mehrere coaxiale und axiale gegeneinander versetzte Meßstrahlen (M1, M2; 211) auf die Probe fallen.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß für jeden Meßstrahl genau ein Referenzstrahl vorgesehen ist.
  11. Verfahren zur kurzkohärenz-interferometrischen Messung einer Probe, insbesondere des Auges, wobei durch einen Meßstrahlengang ein Meßstrahl auf die Probe gerichtet wird und mit einem Referenzstrahl, der einen ersten Referenzstrahlengang durchläuft, überlagert und zur Interferenz gebracht wird, dadurch gekennzeichnet, daß mindestens ein zweiter Referenzstrahlengang vorgesehen wird, dessen optische Weglänge sich von der des ersten Referenzstrahlenganges unterscheidet, wobei die Weglängendifferenz gemäß einem Abstand zweier in Tiefenrichtung der Probe beabstandeter Probenbereiche gewählt wird und die überlagerte Strahlung detektiert und daraus mittels Fourier-Spektralanalyse unter Berücksichtigung der Weglängendifferenz der Referenzstrahlengänge der Abstand der Probenbereiche ermittelt wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Strahlen aus den zwei Referenzstrahlengängen getrennt mit dem Meßstrahl aus dem ersten Meßstrahlengang überlagert, die derart überlagerten Strahlen detektiert und den beabstandeten Probenbereichen zugeordnete Meßsignale erzeugt werden.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zwischen den zwei Referenzstrahlengängen sequentiell umgeschaltet wird, so daß der Meßstrahl sequentiell mit Strahlung aus dem ersten und dem zweiten Referenzstrahlengang überlagert wird und die überlagerten Strahlen sequentiell detektiert werden.
  14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zur getrennten Überlagerung eine Polarisationstrennung einsetzt wird, so daß die getrennte Überlagerung und Detektion für die zwei Referenzstrahlengänge nach Polarisation getrennt und gleichzeitig erfolgt.
  15. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zur getrennten Überlagerung eine dichroitische Trennung einsetzt wird, so daß die getrennte Überlagerung und Detektion für die zwei Referenzstrahlengänge spektral getrennt und gleichzeitig erfolgt.
  16. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zur getrennten Überlagerung eine räumliche Auftrennung des Meßstrahls in Meßstrahlbündel erfolgt und die aufgetrennten Meßstrahlbündel jeweils mit einem der Referenzstrahlen überlagert werden, wobei zur räumlichen Auftrennung insbesondere eine Pupillenteilung eingesetzt wird.
  17. Verfahren nach einem der obigen Verfahrensansprüche, dadurch gekennzeichnet, daß die überlagerten Strahlen spektral selektiv detektiert werden.
  18. Verfahren nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, daß die Strahlung spektral durchgestimmt und die zur Überlagerung gebrachten Strahlen spektral nichtauflösend detektiert werden.
EP06829365A 2005-12-06 2006-12-06 Interferometrische probenmessung Active EP1959816B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200510058220 DE102005058220A1 (de) 2005-12-06 2005-12-06 Interferometrische Probenmessung
AT13742006A AT504181B1 (de) 2006-08-16 2006-08-16 Fourier-domain-interferometrie zur augen-teilstreckenmessung
PCT/EP2006/011738 WO2007065670A2 (de) 2005-12-06 2006-12-06 Interferometrische probenmessung

Publications (2)

Publication Number Publication Date
EP1959816A2 EP1959816A2 (de) 2008-08-27
EP1959816B1 true EP1959816B1 (de) 2011-07-20

Family

ID=37846156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06829365A Active EP1959816B1 (de) 2005-12-06 2006-12-06 Interferometrische probenmessung

Country Status (5)

Country Link
US (2) US7982881B2 (de)
EP (1) EP1959816B1 (de)
JP (1) JP5149196B2 (de)
AT (1) ATE516739T1 (de)
WO (1) WO2007065670A2 (de)

Families Citing this family (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
WO2008091961A2 (en) * 2007-01-23 2008-07-31 Volcano Corporation Optical coherence tomography implementation
JP5032203B2 (ja) * 2007-05-24 2012-09-26 株式会社トプコン 眼底観察装置及びそれを制御するプログラム
WO2008154349A2 (en) * 2007-06-06 2008-12-18 Oregon Health & Science University Method and apparatus for localized polarization sensitive imaging
US8192026B2 (en) 2007-06-20 2012-06-05 Tearscience, Inc. Tear film measurement
US7758190B2 (en) 2007-06-20 2010-07-20 Tearscience, Inc. Tear film measurement
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
JP5524835B2 (ja) 2007-07-12 2014-06-18 ヴォルカノ コーポレイション 生体内撮像用カテーテル
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
DE102007046507A1 (de) 2007-09-28 2009-04-02 Carl Zeiss Meditec Ag Kurzkoheränz-Interferometer
JP5339828B2 (ja) * 2007-10-04 2013-11-13 キヤノン株式会社 光干渉断層撮像装置及び光干渉断層撮像方法
US7800759B2 (en) * 2007-12-11 2010-09-21 Bausch & Lomb Incorporated Eye length measurement apparatus
US8348429B2 (en) 2008-03-27 2013-01-08 Doheny Eye Institute Optical coherence tomography device, method, and system
US11839430B2 (en) 2008-03-27 2023-12-12 Doheny Eye Institute Optical coherence tomography-based ophthalmic testing methods, devices and systems
EP2296531B1 (de) 2008-04-23 2017-12-27 Bioptigen, Inc. Optische-kohärenz-tomographie- (oct-) bildgebungssysteme zur verwendung bei pädiatrischen ophthalmischen anwendungen und relevante verfahren und computerprogramm-produkte
DE102008028312A1 (de) 2008-06-13 2009-12-17 Carl Zeiss Meditec Ag SS-OCT-Interferometrie zur Vermessung einer Probe
JP5324839B2 (ja) * 2008-06-19 2013-10-23 株式会社トプコン 光画像計測装置
DE102008029479A1 (de) 2008-06-20 2009-12-24 Carl Zeiss Meditec Ag Kurzkohärenz-Interferometerie zur Abstandsmessung
US8820931B2 (en) 2008-07-18 2014-09-02 Doheny Eye Institute Optical coherence tomography-based ophthalmic testing methods, devices and systems
DE102008051272A1 (de) 2008-10-10 2010-04-15 Carl Zeiss Meditec Ag Tiefenauflösende optische Kohärenzreflektrometrie
EP2346386B1 (de) * 2008-08-12 2013-04-10 Carl Zeiss Meditec AG Tiefenauflösende optische kohärenzreflektometrie
US8937724B2 (en) * 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
DE102008063225A1 (de) * 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Vorrichtung zur Swept Source Optical Coherence Domain Reflectometry
JP5683782B2 (ja) * 2008-12-25 2015-03-11 株式会社トプコン 距離測定装置及び距離測定方法
JP5364385B2 (ja) * 2009-01-06 2013-12-11 株式会社トプコン 光画像計測装置及びその制御方法
JP5232038B2 (ja) * 2009-02-12 2013-07-10 株式会社ニデック 眼寸法測定装置
JP5249071B2 (ja) * 2009-02-12 2013-07-31 株式会社ニデック 眼寸法測定装置
EP2413699B1 (de) * 2009-04-01 2019-11-20 Tearscience, Inc. Osi-apparat zur abbildung eines augentränenfilms
US8888286B2 (en) 2009-04-01 2014-11-18 Tearscience, Inc. Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography
US9642520B2 (en) 2009-04-01 2017-05-09 Tearscience, Inc. Background reduction apparatuses and methods of ocular surface interferometry (OSI) employing polarization for imaging, processing, and/or displaying an ocular tear film
US8915592B2 (en) 2009-04-01 2014-12-23 Tearscience, Inc. Apparatuses and methods of ocular surface interferometry (OSI) employing polarization and subtraction for imaging, processing, and/or displaying an ocular tear film
US9888839B2 (en) 2009-04-01 2018-02-13 Tearscience, Inc. Methods and apparatuses for determining contact lens intolerance in contact lens wearer patients based on dry eye tear film characteristic analysis and dry eye symptoms
JP5558735B2 (ja) * 2009-04-13 2014-07-23 キヤノン株式会社 光断層撮像装置及びその制御方法
JP5491064B2 (ja) * 2009-04-28 2014-05-14 株式会社トプコン 光画像計測装置
JP5645445B2 (ja) * 2009-05-22 2014-12-24 キヤノン株式会社 撮像装置及び撮像方法
JP5610706B2 (ja) 2009-05-22 2014-10-22 キヤノン株式会社 撮像装置および撮像方法
DE102009022958A1 (de) * 2009-05-28 2010-12-02 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zur optischen Messung von Relativabständen
US20110096294A1 (en) * 2009-06-26 2011-04-28 Peyman Gholam A Non-contact optical coherence tomography imaging of the central and peripheral retina
DE102009041996A1 (de) * 2009-09-18 2011-03-24 Carl Zeiss Meditec Ag Ophthalmologisches Biometrie- oder Bilderzeugungssystem und Verfahren zur Erfassung und Auswertung von Messdaten
JP5597012B2 (ja) * 2010-03-31 2014-10-01 キヤノン株式会社 断層画像撮像装置および断層画像撮像方法
JP2011214969A (ja) * 2010-03-31 2011-10-27 Canon Inc 撮像装置及び撮像方法
KR101515034B1 (ko) * 2010-03-31 2015-04-24 캐논 가부시끼가이샤 광간섭 단층촬상장치 및 그 제어장치
WO2011139148A1 (en) * 2010-05-04 2011-11-10 Akkolens International B.V. Corneal topographer
EP2384692B1 (de) * 2010-05-07 2020-09-09 Rowiak GmbH Anordnung und Verfahren zur Interferometrie
JP5610884B2 (ja) * 2010-07-09 2014-10-22 キヤノン株式会社 光断層撮像装置及び光断層撮像方法
WO2012012355A1 (en) * 2010-07-19 2012-01-26 Lumetrics, Inc. Fiber-based interferometric device for measuring axial dimensions of a human eye
DE102010046907B4 (de) * 2010-08-16 2013-01-31 Universität Stuttgart Robustes One-Shot-Interferometer und Verfahren , insbesondere auch als Scout-Sensor zur multi-sensoriellen Materialmessung oder Tumorzellen-Erkennung
JP2012042348A (ja) * 2010-08-19 2012-03-01 Canon Inc 断層画像表示装置およびその制御方法
JP5650482B2 (ja) * 2010-09-30 2015-01-07 株式会社ニデック 眼科撮影装置
JP5675268B2 (ja) * 2010-10-21 2015-02-25 キヤノン株式会社 光干渉断層撮像装置、光干渉断層撮像方法、補償方法およびプログラム
US8770753B2 (en) * 2010-12-03 2014-07-08 Optovue, Inc. Scanning and processing using optical coherence tomography
DE102010055350A1 (de) * 2010-12-20 2012-06-21 Carl Zeiss Meditec Ag Vorrichtung zur interferometrischen Vermessung der Augenlänge und des vorderen Augenabschnitts
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
EP2485009A1 (de) * 2011-02-04 2012-08-08 Haag-Streit Ag Frequenzbereichs-OCT
US20130321822A1 (en) * 2011-02-15 2013-12-05 Klaus Vogler System and method for measuring internal dimensions of an object by optical coherence tomography
DE102011103360B3 (de) 2011-05-27 2012-09-13 Carl Zeiss Meditec Ag Verfahren zum Bestimmen wenigstens einer optischen Eigenschaften eines Patientenauges mit einer Intraokularlinse
EP2574273B1 (de) * 2011-06-23 2014-09-24 Nidek Co., Ltd. Optisches Kohärenztomographiegerät
JP5930620B2 (ja) * 2011-06-28 2016-06-08 キヤノン株式会社 光干渉断層装置および方法
US8767217B2 (en) * 2011-07-29 2014-07-01 Tornado Spectral Systems, Inc. Time domain-frequency domain optical coherence tomography apparatus and methods for use
WO2013033592A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical-electrical rotary joint and methods of use
KR101684566B1 (ko) * 2011-12-30 2016-12-08 웨이브라이트 게엠베하 일체형 안과용 장치
JP2013148509A (ja) 2012-01-20 2013-08-01 Canon Inc 画像処理装置及び画像処理方法
JP5936368B2 (ja) 2012-01-20 2016-06-22 キヤノン株式会社 光干渉断層撮影装置及びその作動方法
JP6146951B2 (ja) 2012-01-20 2017-06-14 キヤノン株式会社 画像処理装置、画像処理方法、撮影装置及び撮影方法
JP6061554B2 (ja) 2012-01-20 2017-01-18 キヤノン株式会社 画像処理装置及び画像処理方法
JP6039185B2 (ja) 2012-01-20 2016-12-07 キヤノン株式会社 撮影装置
JP5988772B2 (ja) 2012-01-20 2016-09-07 キヤノン株式会社 画像処理装置及び画像処理方法
ITPI20120009A1 (it) * 2012-01-24 2013-07-25 Visia Imaging S R L "un metodo per ridurre il tempo della misura a scansione della lunghezza assiale oculare e dispositivo per attuare tale metodo"
JP5946654B2 (ja) * 2012-03-02 2016-07-06 株式会社トーメーコーポレーション 眼科装置
JP2015509433A (ja) 2012-03-07 2015-03-30 オプトビュー,インコーポレーテッド 光干渉断層法を用いた生体計測
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
EP2904671B1 (de) 2012-10-05 2022-05-04 David Welford Systeme und verfahren zum verstärken von licht
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
WO2014085911A1 (en) 2012-12-05 2014-06-12 Tornado Medical Systems, Inc. System and method for wide field oct imaging
CA2894403A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
CA2895989A1 (en) 2012-12-20 2014-07-10 Nathaniel J. Kemp Optical coherence tomography system that is reconfigurable between different imaging modes
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
EP2934282B1 (de) 2012-12-20 2020-04-29 Volcano Corporation Ortung von intravaskulären bildern
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US9339177B2 (en) 2012-12-21 2016-05-17 Tearscience, Inc. Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
EP2936626A4 (de) 2012-12-21 2016-08-17 David Welford Systeme und verfahren zur verengung einer wellenlängenlichtemission
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
WO2014100606A1 (en) 2012-12-21 2014-06-26 Meyer, Douglas Rotational ultrasound imaging catheter with extended catheter body telescope
EP2936426B1 (de) 2012-12-21 2021-10-13 Jason Spencer System und verfahren zur grafischen verarbeitung medizinischer daten
CA2895940A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
CN113705586A (zh) 2013-03-07 2021-11-26 飞利浦影像引导治疗公司 血管内图像中的多模态分割
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
CN105228518B (zh) 2013-03-12 2018-10-09 火山公司 用于诊断冠状微脉管疾病的系统和方法
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
CN105120759B (zh) 2013-03-13 2018-02-23 火山公司 用于从旋转血管内超声设备产生图像的系统和方法
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US9226856B2 (en) 2013-03-14 2016-01-05 Envision Diagnostics, Inc. Inflatable medical interfaces and other medical devices, systems, and methods
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10772497B2 (en) 2014-09-12 2020-09-15 Envision Diagnostics, Inc. Medical interfaces and other medical devices, systems, and methods for performing eye exams
US20160030151A1 (en) 2013-03-14 2016-02-04 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
JP6198448B2 (ja) * 2013-05-02 2017-09-20 株式会社トーメーコーポレーション 光断層画像撮影装置
CN108670190A (zh) 2013-05-03 2018-10-19 眼泪科学公司 用于对睑板腺进行成像以供睑板腺分析的眼睑照明系统和方法
CN105324649B (zh) 2013-06-20 2020-08-11 赛莱特私人有限公司 光谱波前分析仪和用于分析波前的方法
DE102013110425A1 (de) * 2013-09-20 2015-04-09 Karl Storz Gmbh & Co. Kg Okular
JP6285136B2 (ja) 2013-09-24 2018-02-28 株式会社トーメーコーポレーション 眼科装置
US9795290B2 (en) 2013-11-15 2017-10-24 Tearscience, Inc. Ocular tear film peak detection and stabilization detection systems and methods for determining tear film layer characteristics
US9291500B2 (en) * 2014-01-29 2016-03-22 Raytheon Company Configurable combination spectrometer and polarizer
KR102381930B1 (ko) * 2014-03-13 2022-04-04 내셔널 유니버시티 오브 싱가포르 광학 간섭 장치
KR102414277B1 (ko) * 2014-04-07 2022-06-29 노바 엘티디. 광학 위상 측정 방법 및 시스템
JP6261450B2 (ja) * 2014-05-30 2018-01-17 株式会社トーメーコーポレーション 眼科装置
EP3164667B1 (de) * 2014-07-01 2020-05-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Vorrichtung und verfahren für optische kohärenztomografie-mikroskopie
WO2016004508A1 (en) * 2014-07-09 2016-01-14 Nova Coast Medical Ltd. Retinal thickness
CA2957355A1 (en) 2014-09-02 2016-03-10 Costruzioni Strumenti Oftalmici C.S.O. S.R.L. An optical coherence tomography system and method
DE102015101251A1 (de) 2015-01-28 2016-07-28 Carl Zeiss Ag Optische Kohärenztomographie zur Messung an der Retina
CN105147241B (zh) * 2015-07-03 2017-06-16 南京航空航天大学 基于双空间载频技术拓展oct成像深度的方法与系统
EP3349642B1 (de) 2015-09-17 2020-10-21 Envision Diagnostics, Inc. Medizinische schnittstellen und andere medizinische vorrichtungen, systeme und verfahren zur durchführung von augenuntersuchungen
JP6691365B2 (ja) * 2015-09-30 2020-04-28 株式会社トプコン 眼科装置
US10436573B2 (en) * 2015-12-09 2019-10-08 Carl Zeiss Meditec, Inc. Balanced detection systems
JP6628589B2 (ja) * 2015-12-11 2020-01-08 株式会社Screenホールディングス 撮像装置
KR101812608B1 (ko) * 2016-02-04 2017-12-27 전북대학교산학협력단 일체형 편광간섭계 및 이를 적용한 스냅샷 분광편광계
JP2017142192A (ja) * 2016-02-12 2017-08-17 株式会社トーメーコーポレーション 光干渉断層計
EP3448234A4 (de) 2016-04-30 2019-05-01 Envision Diagnostics, Inc. Medizinprodukte, systeme und verfahren zur durchführung von augenuntersuchungen und augenverfolgung
FI20165576A (fi) * 2016-07-11 2018-01-12 Photono Oy Laite ja menetelmä kerroksen optisen paksuuden mittaamiseksi
CN107894204B (zh) * 2016-10-04 2020-02-21 财团法人工业技术研究院 干涉仪及其成像方法
JP6720051B2 (ja) * 2016-10-27 2020-07-08 株式会社日立エルジーデータストレージ 光画像計測装置、光画像計測方法
EP3922165A1 (de) 2017-01-28 2021-12-15 Cylite Pty Ltd Optische kohärenzmetrologie und tomografie mit verbesserter registrierung
US10342422B2 (en) * 2017-02-13 2019-07-09 Cellview Imaging Inc. Retinal thickness
JP7068869B2 (ja) * 2017-03-14 2022-05-17 株式会社トプコン 涙液層厚み測定装置及び方法
CN106963337B (zh) * 2017-03-29 2018-04-24 天津市索维电子技术有限公司 一种实现大景深眼前节分析系统
WO2019014767A1 (en) 2017-07-18 2019-01-24 Perimeter Medical Imaging, Inc. SAMPLE CONTAINER FOR STABILIZING AND ALIGNING EXCISED ORGANIC TISSUE SAMPLES FOR EX VIVO ANALYSIS
WO2019236888A1 (en) * 2018-06-06 2019-12-12 Boston Medical Center Corporation Systems and methods for fiber-based visible and near infrared optical coherence tomography
DE102018118352A1 (de) * 2018-07-30 2020-01-30 Carl Zeiss Meditec Ag Ophthalmologisches Operationsmikroskop
JP7406219B2 (ja) * 2018-09-11 2023-12-27 株式会社トーメーコーポレーション 眼科装置
JP7188747B2 (ja) * 2018-12-05 2022-12-13 株式会社トーメーコーポレーション 眼科装置
EP3730897A1 (de) * 2019-04-25 2020-10-28 Nokia Technologies Oy Vorrichtung, systeme und verfahren zur detektion von licht
WO2020245511A1 (fr) * 2019-06-07 2020-12-10 Fogale Nanotech Dispositif et procédé de mesure d'interfaces d'un élément optique
WO2021049740A1 (en) 2019-09-12 2021-03-18 Samsung Electronics Co., Ltd. Eye accommodation distance measuring device and method, and head-mounted display
DE102020118331A1 (de) * 2020-07-10 2022-01-13 Heidelberg Engineering Gmbh Anordnung und Verfahren zur Ermittlung von Augenlängen
FR3114385B1 (fr) * 2020-09-21 2024-08-30 Fogale Nanotech Dispositif et procédé de mesure d’interfaces d’un élément optique
CN116368346A (zh) * 2020-10-12 2023-06-30 Asml荷兰有限公司 干涉仪系统和光刻设备
US20220296094A1 (en) * 2021-03-18 2022-09-22 Optos Plc Multimode eye analyzing system, method and computer-readable medium
US20220330813A1 (en) * 2021-04-15 2022-10-20 Amo Development, Llc Methods and systems for thickness measurements using spectrally resolved full gradient topography
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device
US20230366671A1 (en) * 2022-04-14 2023-11-16 Miami University Field scanning optical coherence tomography

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064289A (en) * 1989-02-23 1991-11-12 Hewlett-Packard Company Linear-and-angular measuring plane mirror interferometer
US6198540B1 (en) 1997-03-26 2001-03-06 Kowa Company, Ltd. Optical coherence tomography have plural reference beams of differing modulations
DE19814057B4 (de) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Anordnung zur optischen Kohärenztomographie und Kohärenztopographie
CN1309759A (zh) * 1998-06-02 2001-08-22 探索研究院 使用波数域反射技术及背景振幅减少和补偿的共焦干涉显微术的的方法和设备
KR20010083041A (ko) * 1998-06-02 2001-08-31 추후 파수 도메인 반사측정과 배경 진폭 감소 및 보상을 사용한공초점 간섭 마이크로스코피용 방법 및 장치
US6256102B1 (en) * 1999-04-27 2001-07-03 University Of Central Florida Dual-beam low-coherence interferometer with improved signal-to-noise ratio
ATE398433T1 (de) * 1999-09-10 2008-07-15 Haag Ag Streit Vorrichtung zur fotoablation der kornea mit einem laserstrahl
EP1232377B1 (de) * 1999-11-24 2004-03-31 Haag-Streit Ag Verfahren und vorrichtung zur messung optischer eigenschaften wenigstens zweier voneinander distanzierter bereiche in einem transparenten und/oder diffusiven gegenstand
US7242833B2 (en) * 2000-07-10 2007-07-10 University Health Network Method and apparatus for high resolution coherent optical imaging
ATE541202T1 (de) 2002-01-24 2012-01-15 Gen Hospital Corp Vorrichtung und verfahren zur ortung und verminderung des rauschens von signalen in der niedrigkohärenzinterferometrie (lci) und der optische kohärenztomografie (oct) mittels paralleldetektion von spektralbändern
US20050140981A1 (en) 2002-04-18 2005-06-30 Rudolf Waelti Measurement of optical properties
DE50308223D1 (de) 2002-04-18 2007-10-31 Haag Ag Streit Messung optischer eigenschaften
DE10228103A1 (de) 2002-06-24 2004-01-15 Bayer Cropscience Ag Fungizide Wirkstoffkombinationen
GB0220914D0 (en) * 2002-09-10 2002-10-23 Qinetiq Ltd Lidar apparatus and method
WO2004043245A1 (en) 2002-11-07 2004-05-27 Pawel Woszczyk A method of fast imaging of objects by means of spectral optical coherence tomography
US7563748B2 (en) 2003-06-23 2009-07-21 Cognis Ip Management Gmbh Alcohol alkoxylate carriers for pesticide active ingredients
WO2005017502A1 (en) * 2003-07-28 2005-02-24 Symyx Technologies, Inc. Parallel infrared spectroscopy apparatus and method
GB2407155A (en) * 2003-10-14 2005-04-20 Univ Kent Canterbury Spectral interferometry method and apparatus
CN103181753B (zh) * 2003-10-27 2016-12-28 通用医疗公司 用于使用频域干涉测量法进行光学成像的方法和设备
DE10360570B4 (de) * 2003-12-22 2006-01-12 Carl Zeiss Optisches Meßsystem und optisches Meßverfahren
US7126693B2 (en) * 2004-03-29 2006-10-24 Carl Zeiss Meditec, Inc. Simple high efficiency optical coherence domain reflectometer design
JP4409331B2 (ja) 2004-03-30 2010-02-03 株式会社トプコン 光画像計測装置
EP1602320B1 (de) 2004-06-03 2013-09-04 Nidek Co., Ltd. Ophthalmologische Vorrichtung
AT500501B1 (de) * 2004-06-14 2008-11-15 Zeiss Carl Meditec Ag Vorrichtung zur messung von teilstrecken am auge mittels fourier-domain kurzkohärenz-interferometrie
EP1769092A4 (de) 2004-06-29 2008-08-06 Europ Nickel Plc Verbesserte auslaugung von grundmetallen
DE102004037479A1 (de) * 2004-08-03 2006-03-16 Carl Zeiss Meditec Ag Fourier-Domain OCT Ray-Tracing am Auge
JP4505807B2 (ja) * 2004-08-09 2010-07-21 国立大学法人 筑波大学 多重化スペクトル干渉光コヒーレンストモグラフィー
US7400410B2 (en) * 2005-10-05 2008-07-15 Carl Zeiss Meditec, Inc. Optical coherence tomography for eye-length measurement
EP1994361B1 (de) * 2006-01-19 2016-07-27 Optovue, Inc. Bilderzeugender optischer Kohärenztomograph im Fourierbereich

Also Published As

Publication number Publication date
US20080285043A1 (en) 2008-11-20
US7982881B2 (en) 2011-07-19
JP5149196B2 (ja) 2013-02-20
JP2009518088A (ja) 2009-05-07
EP1959816A2 (de) 2008-08-27
US20110292395A1 (en) 2011-12-01
WO2007065670A3 (de) 2007-10-11
US8437008B2 (en) 2013-05-07
ATE516739T1 (de) 2011-08-15
WO2007065670A2 (de) 2007-06-14

Similar Documents

Publication Publication Date Title
EP1959816B1 (de) Interferometrische probenmessung
WO2007065493A1 (de) Interferometrische probenmessung
EP2346386B1 (de) Tiefenauflösende optische kohärenzreflektometrie
EP2367469B1 (de) Vorrichtung und methode zur swept source optical coherence domain reflectometry
EP1781161B1 (de) Fourier-domain oct ray-tracing am auge
EP2193328A1 (de) Kurzkohärenz-interferometer
EP1713378B1 (de) Kurzkohärenz-interferometrische längenmessung am auge
WO2003073041A1 (de) Niederkohärenz-interferometrisches gerät zur lichtoptischen abtastung eines objektes
CH697225B1 (de) Verfahren zur Gewinnung von Topogrammen und Tomogrammen der Augenstruktur.
DE102008028312A1 (de) SS-OCT-Interferometrie zur Vermessung einer Probe
WO2016120401A1 (de) Optische kohärenztomographie zur messung an der retina
WO2016058910A1 (de) Optische kohärenztomographie zur messung an der retina
WO2009153005A1 (de) Kurzkohärenz-interferometrie zur abstandsmessung
DE102014115153A1 (de) Optische Kohärenztomographie
DE102018130396A1 (de) Holoskopische, optische Kohärenztomographie
DE102014115155A1 (de) Optische Kohärenztomographie zur Messung an der Retina
WO2011138036A1 (de) Anordnung und verfahren zur interferometrie
AT511740B1 (de) Verfahren und anordnungen zur raum-zeit-domäne kurzkohärenz-interferometrie für die ophthalmologische teilstrecken-längenmessung und cornea-topographie
AT500501B1 (de) Vorrichtung zur messung von teilstrecken am auge mittels fourier-domain kurzkohärenz-interferometrie
EP3821200B1 (de) Oct-system und oct-verfahren
AT507140B1 (de) Mehrfach-a-scan kurzkohärenz-interferometrische distanzmessung am auge
AT504181A1 (de) Fourier-domain-interferometrie zur augen-teilstreckenmessung
DE102021129555A1 (de) Weitfeld-Swept-Source-OCT und -Verfahren für bewegte Objekte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080429

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009870

Country of ref document: DE

Effective date: 20110922

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111120

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

26N No opposition filed

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

BERE Be: lapsed

Owner name: CARL ZEISS MEDITEC A.G.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009870

Country of ref document: DE

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CARL ZEISS MEDITEC AG, DE

Free format text: FORMER OWNER: CARL ZEISS MEDITEC AG, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 18

Ref country code: DE

Payment date: 20231214

Year of fee payment: 18

Ref country code: AT

Payment date: 20231221

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 18